at v4.16-rc7 32 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_KERNEL_H 3#define _LINUX_KERNEL_H 4 5 6#include <stdarg.h> 7#include <linux/linkage.h> 8#include <linux/stddef.h> 9#include <linux/types.h> 10#include <linux/compiler.h> 11#include <linux/bitops.h> 12#include <linux/log2.h> 13#include <linux/typecheck.h> 14#include <linux/printk.h> 15#include <linux/build_bug.h> 16#include <asm/byteorder.h> 17#include <uapi/linux/kernel.h> 18 19#define USHRT_MAX ((u16)(~0U)) 20#define SHRT_MAX ((s16)(USHRT_MAX>>1)) 21#define SHRT_MIN ((s16)(-SHRT_MAX - 1)) 22#define INT_MAX ((int)(~0U>>1)) 23#define INT_MIN (-INT_MAX - 1) 24#define UINT_MAX (~0U) 25#define LONG_MAX ((long)(~0UL>>1)) 26#define LONG_MIN (-LONG_MAX - 1) 27#define ULONG_MAX (~0UL) 28#define LLONG_MAX ((long long)(~0ULL>>1)) 29#define LLONG_MIN (-LLONG_MAX - 1) 30#define ULLONG_MAX (~0ULL) 31#define SIZE_MAX (~(size_t)0) 32 33#define U8_MAX ((u8)~0U) 34#define S8_MAX ((s8)(U8_MAX>>1)) 35#define S8_MIN ((s8)(-S8_MAX - 1)) 36#define U16_MAX ((u16)~0U) 37#define S16_MAX ((s16)(U16_MAX>>1)) 38#define S16_MIN ((s16)(-S16_MAX - 1)) 39#define U32_MAX ((u32)~0U) 40#define S32_MAX ((s32)(U32_MAX>>1)) 41#define S32_MIN ((s32)(-S32_MAX - 1)) 42#define U64_MAX ((u64)~0ULL) 43#define S64_MAX ((s64)(U64_MAX>>1)) 44#define S64_MIN ((s64)(-S64_MAX - 1)) 45 46#define STACK_MAGIC 0xdeadbeef 47 48/** 49 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value 50 * @x: value to repeat 51 * 52 * NOTE: @x is not checked for > 0xff; larger values produce odd results. 53 */ 54#define REPEAT_BYTE(x) ((~0ul / 0xff) * (x)) 55 56/* @a is a power of 2 value */ 57#define ALIGN(x, a) __ALIGN_KERNEL((x), (a)) 58#define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a)) 59#define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask)) 60#define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) 61#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) 62 63/* generic data direction definitions */ 64#define READ 0 65#define WRITE 1 66 67/** 68 * ARRAY_SIZE - get the number of elements in array @arr 69 * @arr: array to be sized 70 */ 71#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) 72 73#define u64_to_user_ptr(x) ( \ 74{ \ 75 typecheck(u64, x); \ 76 (void __user *)(uintptr_t)x; \ 77} \ 78) 79 80/* 81 * This looks more complex than it should be. But we need to 82 * get the type for the ~ right in round_down (it needs to be 83 * as wide as the result!), and we want to evaluate the macro 84 * arguments just once each. 85 */ 86#define __round_mask(x, y) ((__typeof__(x))((y)-1)) 87#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) 88#define round_down(x, y) ((x) & ~__round_mask(x, y)) 89 90/** 91 * FIELD_SIZEOF - get the size of a struct's field 92 * @t: the target struct 93 * @f: the target struct's field 94 * Return: the size of @f in the struct definition without having a 95 * declared instance of @t. 96 */ 97#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) 98 99#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP 100 101#define DIV_ROUND_DOWN_ULL(ll, d) \ 102 ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; }) 103 104#define DIV_ROUND_UP_ULL(ll, d) DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d)) 105 106#if BITS_PER_LONG == 32 107# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) 108#else 109# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) 110#endif 111 112/* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */ 113#define roundup(x, y) ( \ 114{ \ 115 const typeof(y) __y = y; \ 116 (((x) + (__y - 1)) / __y) * __y; \ 117} \ 118) 119#define rounddown(x, y) ( \ 120{ \ 121 typeof(x) __x = (x); \ 122 __x - (__x % (y)); \ 123} \ 124) 125 126/* 127 * Divide positive or negative dividend by positive or negative divisor 128 * and round to closest integer. Result is undefined for negative 129 * divisors if the dividend variable type is unsigned and for negative 130 * dividends if the divisor variable type is unsigned. 131 */ 132#define DIV_ROUND_CLOSEST(x, divisor)( \ 133{ \ 134 typeof(x) __x = x; \ 135 typeof(divisor) __d = divisor; \ 136 (((typeof(x))-1) > 0 || \ 137 ((typeof(divisor))-1) > 0 || \ 138 (((__x) > 0) == ((__d) > 0))) ? \ 139 (((__x) + ((__d) / 2)) / (__d)) : \ 140 (((__x) - ((__d) / 2)) / (__d)); \ 141} \ 142) 143/* 144 * Same as above but for u64 dividends. divisor must be a 32-bit 145 * number. 146 */ 147#define DIV_ROUND_CLOSEST_ULL(x, divisor)( \ 148{ \ 149 typeof(divisor) __d = divisor; \ 150 unsigned long long _tmp = (x) + (__d) / 2; \ 151 do_div(_tmp, __d); \ 152 _tmp; \ 153} \ 154) 155 156/* 157 * Multiplies an integer by a fraction, while avoiding unnecessary 158 * overflow or loss of precision. 159 */ 160#define mult_frac(x, numer, denom)( \ 161{ \ 162 typeof(x) quot = (x) / (denom); \ 163 typeof(x) rem = (x) % (denom); \ 164 (quot * (numer)) + ((rem * (numer)) / (denom)); \ 165} \ 166) 167 168 169#define _RET_IP_ (unsigned long)__builtin_return_address(0) 170#define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) 171 172#ifdef CONFIG_LBDAF 173# include <asm/div64.h> 174# define sector_div(a, b) do_div(a, b) 175#else 176# define sector_div(n, b)( \ 177{ \ 178 int _res; \ 179 _res = (n) % (b); \ 180 (n) /= (b); \ 181 _res; \ 182} \ 183) 184#endif 185 186/** 187 * upper_32_bits - return bits 32-63 of a number 188 * @n: the number we're accessing 189 * 190 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress 191 * the "right shift count >= width of type" warning when that quantity is 192 * 32-bits. 193 */ 194#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) 195 196/** 197 * lower_32_bits - return bits 0-31 of a number 198 * @n: the number we're accessing 199 */ 200#define lower_32_bits(n) ((u32)(n)) 201 202struct completion; 203struct pt_regs; 204struct user; 205 206#ifdef CONFIG_PREEMPT_VOLUNTARY 207extern int _cond_resched(void); 208# define might_resched() _cond_resched() 209#else 210# define might_resched() do { } while (0) 211#endif 212 213#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 214 void ___might_sleep(const char *file, int line, int preempt_offset); 215 void __might_sleep(const char *file, int line, int preempt_offset); 216/** 217 * might_sleep - annotation for functions that can sleep 218 * 219 * this macro will print a stack trace if it is executed in an atomic 220 * context (spinlock, irq-handler, ...). 221 * 222 * This is a useful debugging help to be able to catch problems early and not 223 * be bitten later when the calling function happens to sleep when it is not 224 * supposed to. 225 */ 226# define might_sleep() \ 227 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0) 228# define sched_annotate_sleep() (current->task_state_change = 0) 229#else 230 static inline void ___might_sleep(const char *file, int line, 231 int preempt_offset) { } 232 static inline void __might_sleep(const char *file, int line, 233 int preempt_offset) { } 234# define might_sleep() do { might_resched(); } while (0) 235# define sched_annotate_sleep() do { } while (0) 236#endif 237 238#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0) 239 240/** 241 * abs - return absolute value of an argument 242 * @x: the value. If it is unsigned type, it is converted to signed type first. 243 * char is treated as if it was signed (regardless of whether it really is) 244 * but the macro's return type is preserved as char. 245 * 246 * Return: an absolute value of x. 247 */ 248#define abs(x) __abs_choose_expr(x, long long, \ 249 __abs_choose_expr(x, long, \ 250 __abs_choose_expr(x, int, \ 251 __abs_choose_expr(x, short, \ 252 __abs_choose_expr(x, char, \ 253 __builtin_choose_expr( \ 254 __builtin_types_compatible_p(typeof(x), char), \ 255 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ 256 ((void)0))))))) 257 258#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ 259 __builtin_types_compatible_p(typeof(x), signed type) || \ 260 __builtin_types_compatible_p(typeof(x), unsigned type), \ 261 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) 262 263/** 264 * reciprocal_scale - "scale" a value into range [0, ep_ro) 265 * @val: value 266 * @ep_ro: right open interval endpoint 267 * 268 * Perform a "reciprocal multiplication" in order to "scale" a value into 269 * range [0, @ep_ro), where the upper interval endpoint is right-open. 270 * This is useful, e.g. for accessing a index of an array containing 271 * @ep_ro elements, for example. Think of it as sort of modulus, only that 272 * the result isn't that of modulo. ;) Note that if initial input is a 273 * small value, then result will return 0. 274 * 275 * Return: a result based on @val in interval [0, @ep_ro). 276 */ 277static inline u32 reciprocal_scale(u32 val, u32 ep_ro) 278{ 279 return (u32)(((u64) val * ep_ro) >> 32); 280} 281 282#if defined(CONFIG_MMU) && \ 283 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)) 284#define might_fault() __might_fault(__FILE__, __LINE__) 285void __might_fault(const char *file, int line); 286#else 287static inline void might_fault(void) { } 288#endif 289 290extern struct atomic_notifier_head panic_notifier_list; 291extern long (*panic_blink)(int state); 292__printf(1, 2) 293void panic(const char *fmt, ...) __noreturn __cold; 294void nmi_panic(struct pt_regs *regs, const char *msg); 295extern void oops_enter(void); 296extern void oops_exit(void); 297void print_oops_end_marker(void); 298extern int oops_may_print(void); 299void do_exit(long error_code) __noreturn; 300void complete_and_exit(struct completion *, long) __noreturn; 301 302#ifdef CONFIG_ARCH_HAS_REFCOUNT 303void refcount_error_report(struct pt_regs *regs, const char *err); 304#else 305static inline void refcount_error_report(struct pt_regs *regs, const char *err) 306{ } 307#endif 308 309/* Internal, do not use. */ 310int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res); 311int __must_check _kstrtol(const char *s, unsigned int base, long *res); 312 313int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res); 314int __must_check kstrtoll(const char *s, unsigned int base, long long *res); 315 316/** 317 * kstrtoul - convert a string to an unsigned long 318 * @s: The start of the string. The string must be null-terminated, and may also 319 * include a single newline before its terminating null. The first character 320 * may also be a plus sign, but not a minus sign. 321 * @base: The number base to use. The maximum supported base is 16. If base is 322 * given as 0, then the base of the string is automatically detected with the 323 * conventional semantics - If it begins with 0x the number will be parsed as a 324 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 325 * parsed as an octal number. Otherwise it will be parsed as a decimal. 326 * @res: Where to write the result of the conversion on success. 327 * 328 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 329 * Used as a replacement for the obsolete simple_strtoull. Return code must 330 * be checked. 331*/ 332static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res) 333{ 334 /* 335 * We want to shortcut function call, but 336 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0. 337 */ 338 if (sizeof(unsigned long) == sizeof(unsigned long long) && 339 __alignof__(unsigned long) == __alignof__(unsigned long long)) 340 return kstrtoull(s, base, (unsigned long long *)res); 341 else 342 return _kstrtoul(s, base, res); 343} 344 345/** 346 * kstrtol - convert a string to a long 347 * @s: The start of the string. The string must be null-terminated, and may also 348 * include a single newline before its terminating null. The first character 349 * may also be a plus sign or a minus sign. 350 * @base: The number base to use. The maximum supported base is 16. If base is 351 * given as 0, then the base of the string is automatically detected with the 352 * conventional semantics - If it begins with 0x the number will be parsed as a 353 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 354 * parsed as an octal number. Otherwise it will be parsed as a decimal. 355 * @res: Where to write the result of the conversion on success. 356 * 357 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 358 * Used as a replacement for the obsolete simple_strtoull. Return code must 359 * be checked. 360 */ 361static inline int __must_check kstrtol(const char *s, unsigned int base, long *res) 362{ 363 /* 364 * We want to shortcut function call, but 365 * __builtin_types_compatible_p(long, long long) = 0. 366 */ 367 if (sizeof(long) == sizeof(long long) && 368 __alignof__(long) == __alignof__(long long)) 369 return kstrtoll(s, base, (long long *)res); 370 else 371 return _kstrtol(s, base, res); 372} 373 374int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res); 375int __must_check kstrtoint(const char *s, unsigned int base, int *res); 376 377static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res) 378{ 379 return kstrtoull(s, base, res); 380} 381 382static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res) 383{ 384 return kstrtoll(s, base, res); 385} 386 387static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res) 388{ 389 return kstrtouint(s, base, res); 390} 391 392static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res) 393{ 394 return kstrtoint(s, base, res); 395} 396 397int __must_check kstrtou16(const char *s, unsigned int base, u16 *res); 398int __must_check kstrtos16(const char *s, unsigned int base, s16 *res); 399int __must_check kstrtou8(const char *s, unsigned int base, u8 *res); 400int __must_check kstrtos8(const char *s, unsigned int base, s8 *res); 401int __must_check kstrtobool(const char *s, bool *res); 402 403int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res); 404int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res); 405int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res); 406int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res); 407int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res); 408int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res); 409int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res); 410int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res); 411int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res); 412int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res); 413int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res); 414 415static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res) 416{ 417 return kstrtoull_from_user(s, count, base, res); 418} 419 420static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res) 421{ 422 return kstrtoll_from_user(s, count, base, res); 423} 424 425static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res) 426{ 427 return kstrtouint_from_user(s, count, base, res); 428} 429 430static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res) 431{ 432 return kstrtoint_from_user(s, count, base, res); 433} 434 435/* Obsolete, do not use. Use kstrto<foo> instead */ 436 437extern unsigned long simple_strtoul(const char *,char **,unsigned int); 438extern long simple_strtol(const char *,char **,unsigned int); 439extern unsigned long long simple_strtoull(const char *,char **,unsigned int); 440extern long long simple_strtoll(const char *,char **,unsigned int); 441 442extern int num_to_str(char *buf, int size, unsigned long long num); 443 444/* lib/printf utilities */ 445 446extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...); 447extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list); 448extern __printf(3, 4) 449int snprintf(char *buf, size_t size, const char *fmt, ...); 450extern __printf(3, 0) 451int vsnprintf(char *buf, size_t size, const char *fmt, va_list args); 452extern __printf(3, 4) 453int scnprintf(char *buf, size_t size, const char *fmt, ...); 454extern __printf(3, 0) 455int vscnprintf(char *buf, size_t size, const char *fmt, va_list args); 456extern __printf(2, 3) __malloc 457char *kasprintf(gfp_t gfp, const char *fmt, ...); 458extern __printf(2, 0) __malloc 459char *kvasprintf(gfp_t gfp, const char *fmt, va_list args); 460extern __printf(2, 0) 461const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args); 462 463extern __scanf(2, 3) 464int sscanf(const char *, const char *, ...); 465extern __scanf(2, 0) 466int vsscanf(const char *, const char *, va_list); 467 468extern int get_option(char **str, int *pint); 469extern char *get_options(const char *str, int nints, int *ints); 470extern unsigned long long memparse(const char *ptr, char **retptr); 471extern bool parse_option_str(const char *str, const char *option); 472extern char *next_arg(char *args, char **param, char **val); 473 474extern int core_kernel_text(unsigned long addr); 475extern int init_kernel_text(unsigned long addr); 476extern int core_kernel_data(unsigned long addr); 477extern int __kernel_text_address(unsigned long addr); 478extern int kernel_text_address(unsigned long addr); 479extern int func_ptr_is_kernel_text(void *ptr); 480 481unsigned long int_sqrt(unsigned long); 482 483extern void bust_spinlocks(int yes); 484extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ 485extern int panic_timeout; 486extern int panic_on_oops; 487extern int panic_on_unrecovered_nmi; 488extern int panic_on_io_nmi; 489extern int panic_on_warn; 490extern int sysctl_panic_on_rcu_stall; 491extern int sysctl_panic_on_stackoverflow; 492 493extern bool crash_kexec_post_notifiers; 494 495/* 496 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It 497 * holds a CPU number which is executing panic() currently. A value of 498 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec(). 499 */ 500extern atomic_t panic_cpu; 501#define PANIC_CPU_INVALID -1 502 503/* 504 * Only to be used by arch init code. If the user over-wrote the default 505 * CONFIG_PANIC_TIMEOUT, honor it. 506 */ 507static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout) 508{ 509 if (panic_timeout == arch_default_timeout) 510 panic_timeout = timeout; 511} 512extern const char *print_tainted(void); 513enum lockdep_ok { 514 LOCKDEP_STILL_OK, 515 LOCKDEP_NOW_UNRELIABLE 516}; 517extern void add_taint(unsigned flag, enum lockdep_ok); 518extern int test_taint(unsigned flag); 519extern unsigned long get_taint(void); 520extern int root_mountflags; 521 522extern bool early_boot_irqs_disabled; 523 524/* 525 * Values used for system_state. Ordering of the states must not be changed 526 * as code checks for <, <=, >, >= STATE. 527 */ 528extern enum system_states { 529 SYSTEM_BOOTING, 530 SYSTEM_SCHEDULING, 531 SYSTEM_RUNNING, 532 SYSTEM_HALT, 533 SYSTEM_POWER_OFF, 534 SYSTEM_RESTART, 535} system_state; 536 537#define TAINT_PROPRIETARY_MODULE 0 538#define TAINT_FORCED_MODULE 1 539#define TAINT_CPU_OUT_OF_SPEC 2 540#define TAINT_FORCED_RMMOD 3 541#define TAINT_MACHINE_CHECK 4 542#define TAINT_BAD_PAGE 5 543#define TAINT_USER 6 544#define TAINT_DIE 7 545#define TAINT_OVERRIDDEN_ACPI_TABLE 8 546#define TAINT_WARN 9 547#define TAINT_CRAP 10 548#define TAINT_FIRMWARE_WORKAROUND 11 549#define TAINT_OOT_MODULE 12 550#define TAINT_UNSIGNED_MODULE 13 551#define TAINT_SOFTLOCKUP 14 552#define TAINT_LIVEPATCH 15 553#define TAINT_AUX 16 554#define TAINT_FLAGS_COUNT 17 555 556struct taint_flag { 557 char c_true; /* character printed when tainted */ 558 char c_false; /* character printed when not tainted */ 559 bool module; /* also show as a per-module taint flag */ 560}; 561 562extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT]; 563 564extern const char hex_asc[]; 565#define hex_asc_lo(x) hex_asc[((x) & 0x0f)] 566#define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4] 567 568static inline char *hex_byte_pack(char *buf, u8 byte) 569{ 570 *buf++ = hex_asc_hi(byte); 571 *buf++ = hex_asc_lo(byte); 572 return buf; 573} 574 575extern const char hex_asc_upper[]; 576#define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)] 577#define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4] 578 579static inline char *hex_byte_pack_upper(char *buf, u8 byte) 580{ 581 *buf++ = hex_asc_upper_hi(byte); 582 *buf++ = hex_asc_upper_lo(byte); 583 return buf; 584} 585 586extern int hex_to_bin(char ch); 587extern int __must_check hex2bin(u8 *dst, const char *src, size_t count); 588extern char *bin2hex(char *dst, const void *src, size_t count); 589 590bool mac_pton(const char *s, u8 *mac); 591 592/* 593 * General tracing related utility functions - trace_printk(), 594 * tracing_on/tracing_off and tracing_start()/tracing_stop 595 * 596 * Use tracing_on/tracing_off when you want to quickly turn on or off 597 * tracing. It simply enables or disables the recording of the trace events. 598 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on 599 * file, which gives a means for the kernel and userspace to interact. 600 * Place a tracing_off() in the kernel where you want tracing to end. 601 * From user space, examine the trace, and then echo 1 > tracing_on 602 * to continue tracing. 603 * 604 * tracing_stop/tracing_start has slightly more overhead. It is used 605 * by things like suspend to ram where disabling the recording of the 606 * trace is not enough, but tracing must actually stop because things 607 * like calling smp_processor_id() may crash the system. 608 * 609 * Most likely, you want to use tracing_on/tracing_off. 610 */ 611 612enum ftrace_dump_mode { 613 DUMP_NONE, 614 DUMP_ALL, 615 DUMP_ORIG, 616}; 617 618#ifdef CONFIG_TRACING 619void tracing_on(void); 620void tracing_off(void); 621int tracing_is_on(void); 622void tracing_snapshot(void); 623void tracing_snapshot_alloc(void); 624 625extern void tracing_start(void); 626extern void tracing_stop(void); 627 628static inline __printf(1, 2) 629void ____trace_printk_check_format(const char *fmt, ...) 630{ 631} 632#define __trace_printk_check_format(fmt, args...) \ 633do { \ 634 if (0) \ 635 ____trace_printk_check_format(fmt, ##args); \ 636} while (0) 637 638/** 639 * trace_printk - printf formatting in the ftrace buffer 640 * @fmt: the printf format for printing 641 * 642 * Note: __trace_printk is an internal function for trace_printk() and 643 * the @ip is passed in via the trace_printk() macro. 644 * 645 * This function allows a kernel developer to debug fast path sections 646 * that printk is not appropriate for. By scattering in various 647 * printk like tracing in the code, a developer can quickly see 648 * where problems are occurring. 649 * 650 * This is intended as a debugging tool for the developer only. 651 * Please refrain from leaving trace_printks scattered around in 652 * your code. (Extra memory is used for special buffers that are 653 * allocated when trace_printk() is used.) 654 * 655 * A little optization trick is done here. If there's only one 656 * argument, there's no need to scan the string for printf formats. 657 * The trace_puts() will suffice. But how can we take advantage of 658 * using trace_puts() when trace_printk() has only one argument? 659 * By stringifying the args and checking the size we can tell 660 * whether or not there are args. __stringify((__VA_ARGS__)) will 661 * turn into "()\0" with a size of 3 when there are no args, anything 662 * else will be bigger. All we need to do is define a string to this, 663 * and then take its size and compare to 3. If it's bigger, use 664 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just 665 * let gcc optimize the rest. 666 */ 667 668#define trace_printk(fmt, ...) \ 669do { \ 670 char _______STR[] = __stringify((__VA_ARGS__)); \ 671 if (sizeof(_______STR) > 3) \ 672 do_trace_printk(fmt, ##__VA_ARGS__); \ 673 else \ 674 trace_puts(fmt); \ 675} while (0) 676 677#define do_trace_printk(fmt, args...) \ 678do { \ 679 static const char *trace_printk_fmt __used \ 680 __attribute__((section("__trace_printk_fmt"))) = \ 681 __builtin_constant_p(fmt) ? fmt : NULL; \ 682 \ 683 __trace_printk_check_format(fmt, ##args); \ 684 \ 685 if (__builtin_constant_p(fmt)) \ 686 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \ 687 else \ 688 __trace_printk(_THIS_IP_, fmt, ##args); \ 689} while (0) 690 691extern __printf(2, 3) 692int __trace_bprintk(unsigned long ip, const char *fmt, ...); 693 694extern __printf(2, 3) 695int __trace_printk(unsigned long ip, const char *fmt, ...); 696 697/** 698 * trace_puts - write a string into the ftrace buffer 699 * @str: the string to record 700 * 701 * Note: __trace_bputs is an internal function for trace_puts and 702 * the @ip is passed in via the trace_puts macro. 703 * 704 * This is similar to trace_printk() but is made for those really fast 705 * paths that a developer wants the least amount of "Heisenbug" effects, 706 * where the processing of the print format is still too much. 707 * 708 * This function allows a kernel developer to debug fast path sections 709 * that printk is not appropriate for. By scattering in various 710 * printk like tracing in the code, a developer can quickly see 711 * where problems are occurring. 712 * 713 * This is intended as a debugging tool for the developer only. 714 * Please refrain from leaving trace_puts scattered around in 715 * your code. (Extra memory is used for special buffers that are 716 * allocated when trace_puts() is used.) 717 * 718 * Returns: 0 if nothing was written, positive # if string was. 719 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used) 720 */ 721 722#define trace_puts(str) ({ \ 723 static const char *trace_printk_fmt __used \ 724 __attribute__((section("__trace_printk_fmt"))) = \ 725 __builtin_constant_p(str) ? str : NULL; \ 726 \ 727 if (__builtin_constant_p(str)) \ 728 __trace_bputs(_THIS_IP_, trace_printk_fmt); \ 729 else \ 730 __trace_puts(_THIS_IP_, str, strlen(str)); \ 731}) 732extern int __trace_bputs(unsigned long ip, const char *str); 733extern int __trace_puts(unsigned long ip, const char *str, int size); 734 735extern void trace_dump_stack(int skip); 736 737/* 738 * The double __builtin_constant_p is because gcc will give us an error 739 * if we try to allocate the static variable to fmt if it is not a 740 * constant. Even with the outer if statement. 741 */ 742#define ftrace_vprintk(fmt, vargs) \ 743do { \ 744 if (__builtin_constant_p(fmt)) { \ 745 static const char *trace_printk_fmt __used \ 746 __attribute__((section("__trace_printk_fmt"))) = \ 747 __builtin_constant_p(fmt) ? fmt : NULL; \ 748 \ 749 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \ 750 } else \ 751 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \ 752} while (0) 753 754extern __printf(2, 0) int 755__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap); 756 757extern __printf(2, 0) int 758__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap); 759 760extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode); 761#else 762static inline void tracing_start(void) { } 763static inline void tracing_stop(void) { } 764static inline void trace_dump_stack(int skip) { } 765 766static inline void tracing_on(void) { } 767static inline void tracing_off(void) { } 768static inline int tracing_is_on(void) { return 0; } 769static inline void tracing_snapshot(void) { } 770static inline void tracing_snapshot_alloc(void) { } 771 772static inline __printf(1, 2) 773int trace_printk(const char *fmt, ...) 774{ 775 return 0; 776} 777static __printf(1, 0) inline int 778ftrace_vprintk(const char *fmt, va_list ap) 779{ 780 return 0; 781} 782static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { } 783#endif /* CONFIG_TRACING */ 784 785/* 786 * min()/max()/clamp() macros that also do 787 * strict type-checking.. See the 788 * "unnecessary" pointer comparison. 789 */ 790#define __min(t1, t2, min1, min2, x, y) ({ \ 791 t1 min1 = (x); \ 792 t2 min2 = (y); \ 793 (void) (&min1 == &min2); \ 794 min1 < min2 ? min1 : min2; }) 795 796/** 797 * min - return minimum of two values of the same or compatible types 798 * @x: first value 799 * @y: second value 800 */ 801#define min(x, y) \ 802 __min(typeof(x), typeof(y), \ 803 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \ 804 x, y) 805 806#define __max(t1, t2, max1, max2, x, y) ({ \ 807 t1 max1 = (x); \ 808 t2 max2 = (y); \ 809 (void) (&max1 == &max2); \ 810 max1 > max2 ? max1 : max2; }) 811 812/** 813 * max - return maximum of two values of the same or compatible types 814 * @x: first value 815 * @y: second value 816 */ 817#define max(x, y) \ 818 __max(typeof(x), typeof(y), \ 819 __UNIQUE_ID(max1_), __UNIQUE_ID(max2_), \ 820 x, y) 821 822/** 823 * min3 - return minimum of three values 824 * @x: first value 825 * @y: second value 826 * @z: third value 827 */ 828#define min3(x, y, z) min((typeof(x))min(x, y), z) 829 830/** 831 * max3 - return maximum of three values 832 * @x: first value 833 * @y: second value 834 * @z: third value 835 */ 836#define max3(x, y, z) max((typeof(x))max(x, y), z) 837 838/** 839 * min_not_zero - return the minimum that is _not_ zero, unless both are zero 840 * @x: value1 841 * @y: value2 842 */ 843#define min_not_zero(x, y) ({ \ 844 typeof(x) __x = (x); \ 845 typeof(y) __y = (y); \ 846 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); }) 847 848/** 849 * clamp - return a value clamped to a given range with strict typechecking 850 * @val: current value 851 * @lo: lowest allowable value 852 * @hi: highest allowable value 853 * 854 * This macro does strict typechecking of @lo/@hi to make sure they are of the 855 * same type as @val. See the unnecessary pointer comparisons. 856 */ 857#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi) 858 859/* 860 * ..and if you can't take the strict 861 * types, you can specify one yourself. 862 * 863 * Or not use min/max/clamp at all, of course. 864 */ 865 866/** 867 * min_t - return minimum of two values, using the specified type 868 * @type: data type to use 869 * @x: first value 870 * @y: second value 871 */ 872#define min_t(type, x, y) \ 873 __min(type, type, \ 874 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \ 875 x, y) 876 877/** 878 * max_t - return maximum of two values, using the specified type 879 * @type: data type to use 880 * @x: first value 881 * @y: second value 882 */ 883#define max_t(type, x, y) \ 884 __max(type, type, \ 885 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \ 886 x, y) 887 888/** 889 * clamp_t - return a value clamped to a given range using a given type 890 * @type: the type of variable to use 891 * @val: current value 892 * @lo: minimum allowable value 893 * @hi: maximum allowable value 894 * 895 * This macro does no typechecking and uses temporary variables of type 896 * @type to make all the comparisons. 897 */ 898#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi) 899 900/** 901 * clamp_val - return a value clamped to a given range using val's type 902 * @val: current value 903 * @lo: minimum allowable value 904 * @hi: maximum allowable value 905 * 906 * This macro does no typechecking and uses temporary variables of whatever 907 * type the input argument @val is. This is useful when @val is an unsigned 908 * type and @lo and @hi are literals that will otherwise be assigned a signed 909 * integer type. 910 */ 911#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi) 912 913 914/** 915 * swap - swap values of @a and @b 916 * @a: first value 917 * @b: second value 918 */ 919#define swap(a, b) \ 920 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) 921 922/** 923 * container_of - cast a member of a structure out to the containing structure 924 * @ptr: the pointer to the member. 925 * @type: the type of the container struct this is embedded in. 926 * @member: the name of the member within the struct. 927 * 928 */ 929#define container_of(ptr, type, member) ({ \ 930 void *__mptr = (void *)(ptr); \ 931 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ 932 !__same_type(*(ptr), void), \ 933 "pointer type mismatch in container_of()"); \ 934 ((type *)(__mptr - offsetof(type, member))); }) 935 936/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */ 937#ifdef CONFIG_FTRACE_MCOUNT_RECORD 938# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD 939#endif 940 941/* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */ 942#define VERIFY_OCTAL_PERMISSIONS(perms) \ 943 (BUILD_BUG_ON_ZERO((perms) < 0) + \ 944 BUILD_BUG_ON_ZERO((perms) > 0777) + \ 945 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \ 946 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \ 947 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \ 948 /* USER_WRITABLE >= GROUP_WRITABLE */ \ 949 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \ 950 /* OTHER_WRITABLE? Generally considered a bad idea. */ \ 951 BUILD_BUG_ON_ZERO((perms) & 2) + \ 952 (perms)) 953#endif