Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <linux/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/sched/mm.h>
85#include <linux/mutex.h>
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
95#include <linux/ethtool.h>
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
98#include <linux/bpf.h>
99#include <linux/bpf_trace.h>
100#include <net/net_namespace.h>
101#include <net/sock.h>
102#include <net/busy_poll.h>
103#include <linux/rtnetlink.h>
104#include <linux/stat.h>
105#include <net/dst.h>
106#include <net/dst_metadata.h>
107#include <net/pkt_sched.h>
108#include <net/pkt_cls.h>
109#include <net/checksum.h>
110#include <net/xfrm.h>
111#include <linux/highmem.h>
112#include <linux/init.h>
113#include <linux/module.h>
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
117#include <net/iw_handler.h>
118#include <asm/current.h>
119#include <linux/audit.h>
120#include <linux/dmaengine.h>
121#include <linux/err.h>
122#include <linux/ctype.h>
123#include <linux/if_arp.h>
124#include <linux/if_vlan.h>
125#include <linux/ip.h>
126#include <net/ip.h>
127#include <net/mpls.h>
128#include <linux/ipv6.h>
129#include <linux/in.h>
130#include <linux/jhash.h>
131#include <linux/random.h>
132#include <trace/events/napi.h>
133#include <trace/events/net.h>
134#include <trace/events/skb.h>
135#include <linux/pci.h>
136#include <linux/inetdevice.h>
137#include <linux/cpu_rmap.h>
138#include <linux/static_key.h>
139#include <linux/hashtable.h>
140#include <linux/vmalloc.h>
141#include <linux/if_macvlan.h>
142#include <linux/errqueue.h>
143#include <linux/hrtimer.h>
144#include <linux/netfilter_ingress.h>
145#include <linux/crash_dump.h>
146#include <linux/sctp.h>
147#include <net/udp_tunnel.h>
148#include <linux/net_namespace.h>
149
150#include "net-sysfs.h"
151
152/* Instead of increasing this, you should create a hash table. */
153#define MAX_GRO_SKBS 8
154
155/* This should be increased if a protocol with a bigger head is added. */
156#define GRO_MAX_HEAD (MAX_HEADER + 128)
157
158static DEFINE_SPINLOCK(ptype_lock);
159static DEFINE_SPINLOCK(offload_lock);
160struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161struct list_head ptype_all __read_mostly; /* Taps */
162static struct list_head offload_base __read_mostly;
163
164static int netif_rx_internal(struct sk_buff *skb);
165static int call_netdevice_notifiers_info(unsigned long val,
166 struct netdev_notifier_info *info);
167static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169/*
170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171 * semaphore.
172 *
173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
176 * dev_base_head list, and hold dev_base_lock for writing when they do the
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
188DEFINE_RWLOCK(dev_base_lock);
189EXPORT_SYMBOL(dev_base_lock);
190
191static DEFINE_MUTEX(ifalias_mutex);
192
193/* protects napi_hash addition/deletion and napi_gen_id */
194static DEFINE_SPINLOCK(napi_hash_lock);
195
196static unsigned int napi_gen_id = NR_CPUS;
197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199static seqcount_t devnet_rename_seq;
200
201static inline void dev_base_seq_inc(struct net *net)
202{
203 while (++net->dev_base_seq == 0)
204 ;
205}
206
207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208{
209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212}
213
214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215{
216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217}
218
219static inline void rps_lock(struct softnet_data *sd)
220{
221#ifdef CONFIG_RPS
222 spin_lock(&sd->input_pkt_queue.lock);
223#endif
224}
225
226static inline void rps_unlock(struct softnet_data *sd)
227{
228#ifdef CONFIG_RPS
229 spin_unlock(&sd->input_pkt_queue.lock);
230#endif
231}
232
233/* Device list insertion */
234static void list_netdevice(struct net_device *dev)
235{
236 struct net *net = dev_net(dev);
237
238 ASSERT_RTNL();
239
240 write_lock_bh(&dev_base_lock);
241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 hlist_add_head_rcu(&dev->index_hlist,
244 dev_index_hash(net, dev->ifindex));
245 write_unlock_bh(&dev_base_lock);
246
247 dev_base_seq_inc(net);
248}
249
250/* Device list removal
251 * caller must respect a RCU grace period before freeing/reusing dev
252 */
253static void unlist_netdevice(struct net_device *dev)
254{
255 ASSERT_RTNL();
256
257 /* Unlink dev from the device chain */
258 write_lock_bh(&dev_base_lock);
259 list_del_rcu(&dev->dev_list);
260 hlist_del_rcu(&dev->name_hlist);
261 hlist_del_rcu(&dev->index_hlist);
262 write_unlock_bh(&dev_base_lock);
263
264 dev_base_seq_inc(dev_net(dev));
265}
266
267/*
268 * Our notifier list
269 */
270
271static RAW_NOTIFIER_HEAD(netdev_chain);
272
273/*
274 * Device drivers call our routines to queue packets here. We empty the
275 * queue in the local softnet handler.
276 */
277
278DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279EXPORT_PER_CPU_SYMBOL(softnet_data);
280
281#ifdef CONFIG_LOCKDEP
282/*
283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284 * according to dev->type
285 */
286static const unsigned short netdev_lock_type[] = {
287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302
303static const char *const netdev_lock_name[] = {
304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319
320static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322
323static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324{
325 int i;
326
327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 if (netdev_lock_type[i] == dev_type)
329 return i;
330 /* the last key is used by default */
331 return ARRAY_SIZE(netdev_lock_type) - 1;
332}
333
334static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
336{
337 int i;
338
339 i = netdev_lock_pos(dev_type);
340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 netdev_lock_name[i]);
342}
343
344static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345{
346 int i;
347
348 i = netdev_lock_pos(dev->type);
349 lockdep_set_class_and_name(&dev->addr_list_lock,
350 &netdev_addr_lock_key[i],
351 netdev_lock_name[i]);
352}
353#else
354static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 unsigned short dev_type)
356{
357}
358static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359{
360}
361#endif
362
363/*******************************************************************************
364 *
365 * Protocol management and registration routines
366 *
367 *******************************************************************************/
368
369
370/*
371 * Add a protocol ID to the list. Now that the input handler is
372 * smarter we can dispense with all the messy stuff that used to be
373 * here.
374 *
375 * BEWARE!!! Protocol handlers, mangling input packets,
376 * MUST BE last in hash buckets and checking protocol handlers
377 * MUST start from promiscuous ptype_all chain in net_bh.
378 * It is true now, do not change it.
379 * Explanation follows: if protocol handler, mangling packet, will
380 * be the first on list, it is not able to sense, that packet
381 * is cloned and should be copied-on-write, so that it will
382 * change it and subsequent readers will get broken packet.
383 * --ANK (980803)
384 */
385
386static inline struct list_head *ptype_head(const struct packet_type *pt)
387{
388 if (pt->type == htons(ETH_P_ALL))
389 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 else
391 return pt->dev ? &pt->dev->ptype_specific :
392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393}
394
395/**
396 * dev_add_pack - add packet handler
397 * @pt: packet type declaration
398 *
399 * Add a protocol handler to the networking stack. The passed &packet_type
400 * is linked into kernel lists and may not be freed until it has been
401 * removed from the kernel lists.
402 *
403 * This call does not sleep therefore it can not
404 * guarantee all CPU's that are in middle of receiving packets
405 * will see the new packet type (until the next received packet).
406 */
407
408void dev_add_pack(struct packet_type *pt)
409{
410 struct list_head *head = ptype_head(pt);
411
412 spin_lock(&ptype_lock);
413 list_add_rcu(&pt->list, head);
414 spin_unlock(&ptype_lock);
415}
416EXPORT_SYMBOL(dev_add_pack);
417
418/**
419 * __dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
426 *
427 * The packet type might still be in use by receivers
428 * and must not be freed until after all the CPU's have gone
429 * through a quiescent state.
430 */
431void __dev_remove_pack(struct packet_type *pt)
432{
433 struct list_head *head = ptype_head(pt);
434 struct packet_type *pt1;
435
436 spin_lock(&ptype_lock);
437
438 list_for_each_entry(pt1, head, list) {
439 if (pt == pt1) {
440 list_del_rcu(&pt->list);
441 goto out;
442 }
443 }
444
445 pr_warn("dev_remove_pack: %p not found\n", pt);
446out:
447 spin_unlock(&ptype_lock);
448}
449EXPORT_SYMBOL(__dev_remove_pack);
450
451/**
452 * dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
454 *
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
458 * returns.
459 *
460 * This call sleeps to guarantee that no CPU is looking at the packet
461 * type after return.
462 */
463void dev_remove_pack(struct packet_type *pt)
464{
465 __dev_remove_pack(pt);
466
467 synchronize_net();
468}
469EXPORT_SYMBOL(dev_remove_pack);
470
471
472/**
473 * dev_add_offload - register offload handlers
474 * @po: protocol offload declaration
475 *
476 * Add protocol offload handlers to the networking stack. The passed
477 * &proto_offload is linked into kernel lists and may not be freed until
478 * it has been removed from the kernel lists.
479 *
480 * This call does not sleep therefore it can not
481 * guarantee all CPU's that are in middle of receiving packets
482 * will see the new offload handlers (until the next received packet).
483 */
484void dev_add_offload(struct packet_offload *po)
485{
486 struct packet_offload *elem;
487
488 spin_lock(&offload_lock);
489 list_for_each_entry(elem, &offload_base, list) {
490 if (po->priority < elem->priority)
491 break;
492 }
493 list_add_rcu(&po->list, elem->list.prev);
494 spin_unlock(&offload_lock);
495}
496EXPORT_SYMBOL(dev_add_offload);
497
498/**
499 * __dev_remove_offload - remove offload handler
500 * @po: packet offload declaration
501 *
502 * Remove a protocol offload handler that was previously added to the
503 * kernel offload handlers by dev_add_offload(). The passed &offload_type
504 * is removed from the kernel lists and can be freed or reused once this
505 * function returns.
506 *
507 * The packet type might still be in use by receivers
508 * and must not be freed until after all the CPU's have gone
509 * through a quiescent state.
510 */
511static void __dev_remove_offload(struct packet_offload *po)
512{
513 struct list_head *head = &offload_base;
514 struct packet_offload *po1;
515
516 spin_lock(&offload_lock);
517
518 list_for_each_entry(po1, head, list) {
519 if (po == po1) {
520 list_del_rcu(&po->list);
521 goto out;
522 }
523 }
524
525 pr_warn("dev_remove_offload: %p not found\n", po);
526out:
527 spin_unlock(&offload_lock);
528}
529
530/**
531 * dev_remove_offload - remove packet offload handler
532 * @po: packet offload declaration
533 *
534 * Remove a packet offload handler that was previously added to the kernel
535 * offload handlers by dev_add_offload(). The passed &offload_type is
536 * removed from the kernel lists and can be freed or reused once this
537 * function returns.
538 *
539 * This call sleeps to guarantee that no CPU is looking at the packet
540 * type after return.
541 */
542void dev_remove_offload(struct packet_offload *po)
543{
544 __dev_remove_offload(po);
545
546 synchronize_net();
547}
548EXPORT_SYMBOL(dev_remove_offload);
549
550/******************************************************************************
551 *
552 * Device Boot-time Settings Routines
553 *
554 ******************************************************************************/
555
556/* Boot time configuration table */
557static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559/**
560 * netdev_boot_setup_add - add new setup entry
561 * @name: name of the device
562 * @map: configured settings for the device
563 *
564 * Adds new setup entry to the dev_boot_setup list. The function
565 * returns 0 on error and 1 on success. This is a generic routine to
566 * all netdevices.
567 */
568static int netdev_boot_setup_add(char *name, struct ifmap *map)
569{
570 struct netdev_boot_setup *s;
571 int i;
572
573 s = dev_boot_setup;
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 memset(s[i].name, 0, sizeof(s[i].name));
577 strlcpy(s[i].name, name, IFNAMSIZ);
578 memcpy(&s[i].map, map, sizeof(s[i].map));
579 break;
580 }
581 }
582
583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584}
585
586/**
587 * netdev_boot_setup_check - check boot time settings
588 * @dev: the netdevice
589 *
590 * Check boot time settings for the device.
591 * The found settings are set for the device to be used
592 * later in the device probing.
593 * Returns 0 if no settings found, 1 if they are.
594 */
595int netdev_boot_setup_check(struct net_device *dev)
596{
597 struct netdev_boot_setup *s = dev_boot_setup;
598 int i;
599
600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 !strcmp(dev->name, s[i].name)) {
603 dev->irq = s[i].map.irq;
604 dev->base_addr = s[i].map.base_addr;
605 dev->mem_start = s[i].map.mem_start;
606 dev->mem_end = s[i].map.mem_end;
607 return 1;
608 }
609 }
610 return 0;
611}
612EXPORT_SYMBOL(netdev_boot_setup_check);
613
614
615/**
616 * netdev_boot_base - get address from boot time settings
617 * @prefix: prefix for network device
618 * @unit: id for network device
619 *
620 * Check boot time settings for the base address of device.
621 * The found settings are set for the device to be used
622 * later in the device probing.
623 * Returns 0 if no settings found.
624 */
625unsigned long netdev_boot_base(const char *prefix, int unit)
626{
627 const struct netdev_boot_setup *s = dev_boot_setup;
628 char name[IFNAMSIZ];
629 int i;
630
631 sprintf(name, "%s%d", prefix, unit);
632
633 /*
634 * If device already registered then return base of 1
635 * to indicate not to probe for this interface
636 */
637 if (__dev_get_by_name(&init_net, name))
638 return 1;
639
640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 if (!strcmp(name, s[i].name))
642 return s[i].map.base_addr;
643 return 0;
644}
645
646/*
647 * Saves at boot time configured settings for any netdevice.
648 */
649int __init netdev_boot_setup(char *str)
650{
651 int ints[5];
652 struct ifmap map;
653
654 str = get_options(str, ARRAY_SIZE(ints), ints);
655 if (!str || !*str)
656 return 0;
657
658 /* Save settings */
659 memset(&map, 0, sizeof(map));
660 if (ints[0] > 0)
661 map.irq = ints[1];
662 if (ints[0] > 1)
663 map.base_addr = ints[2];
664 if (ints[0] > 2)
665 map.mem_start = ints[3];
666 if (ints[0] > 3)
667 map.mem_end = ints[4];
668
669 /* Add new entry to the list */
670 return netdev_boot_setup_add(str, &map);
671}
672
673__setup("netdev=", netdev_boot_setup);
674
675/*******************************************************************************
676 *
677 * Device Interface Subroutines
678 *
679 *******************************************************************************/
680
681/**
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
684 *
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 */
688
689int dev_get_iflink(const struct net_device *dev)
690{
691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 return dev->netdev_ops->ndo_get_iflink(dev);
693
694 return dev->ifindex;
695}
696EXPORT_SYMBOL(dev_get_iflink);
697
698/**
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
701 * @skb: The packet.
702 *
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
706 */
707int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708{
709 struct ip_tunnel_info *info;
710
711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 return -EINVAL;
713
714 info = skb_tunnel_info_unclone(skb);
715 if (!info)
716 return -ENOMEM;
717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return -EINVAL;
719
720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721}
722EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
724/**
725 * __dev_get_by_name - find a device by its name
726 * @net: the applicable net namespace
727 * @name: name to find
728 *
729 * Find an interface by name. Must be called under RTNL semaphore
730 * or @dev_base_lock. If the name is found a pointer to the device
731 * is returned. If the name is not found then %NULL is returned. The
732 * reference counters are not incremented so the caller must be
733 * careful with locks.
734 */
735
736struct net_device *__dev_get_by_name(struct net *net, const char *name)
737{
738 struct net_device *dev;
739 struct hlist_head *head = dev_name_hash(net, name);
740
741 hlist_for_each_entry(dev, head, name_hlist)
742 if (!strncmp(dev->name, name, IFNAMSIZ))
743 return dev;
744
745 return NULL;
746}
747EXPORT_SYMBOL(__dev_get_by_name);
748
749/**
750 * dev_get_by_name_rcu - find a device by its name
751 * @net: the applicable net namespace
752 * @name: name to find
753 *
754 * Find an interface by name.
755 * If the name is found a pointer to the device is returned.
756 * If the name is not found then %NULL is returned.
757 * The reference counters are not incremented so the caller must be
758 * careful with locks. The caller must hold RCU lock.
759 */
760
761struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762{
763 struct net_device *dev;
764 struct hlist_head *head = dev_name_hash(net, name);
765
766 hlist_for_each_entry_rcu(dev, head, name_hlist)
767 if (!strncmp(dev->name, name, IFNAMSIZ))
768 return dev;
769
770 return NULL;
771}
772EXPORT_SYMBOL(dev_get_by_name_rcu);
773
774/**
775 * dev_get_by_name - find a device by its name
776 * @net: the applicable net namespace
777 * @name: name to find
778 *
779 * Find an interface by name. This can be called from any
780 * context and does its own locking. The returned handle has
781 * the usage count incremented and the caller must use dev_put() to
782 * release it when it is no longer needed. %NULL is returned if no
783 * matching device is found.
784 */
785
786struct net_device *dev_get_by_name(struct net *net, const char *name)
787{
788 struct net_device *dev;
789
790 rcu_read_lock();
791 dev = dev_get_by_name_rcu(net, name);
792 if (dev)
793 dev_hold(dev);
794 rcu_read_unlock();
795 return dev;
796}
797EXPORT_SYMBOL(dev_get_by_name);
798
799/**
800 * __dev_get_by_index - find a device by its ifindex
801 * @net: the applicable net namespace
802 * @ifindex: index of device
803 *
804 * Search for an interface by index. Returns %NULL if the device
805 * is not found or a pointer to the device. The device has not
806 * had its reference counter increased so the caller must be careful
807 * about locking. The caller must hold either the RTNL semaphore
808 * or @dev_base_lock.
809 */
810
811struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812{
813 struct net_device *dev;
814 struct hlist_head *head = dev_index_hash(net, ifindex);
815
816 hlist_for_each_entry(dev, head, index_hlist)
817 if (dev->ifindex == ifindex)
818 return dev;
819
820 return NULL;
821}
822EXPORT_SYMBOL(__dev_get_by_index);
823
824/**
825 * dev_get_by_index_rcu - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
828 *
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold RCU lock.
833 */
834
835struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836{
837 struct net_device *dev;
838 struct hlist_head *head = dev_index_hash(net, ifindex);
839
840 hlist_for_each_entry_rcu(dev, head, index_hlist)
841 if (dev->ifindex == ifindex)
842 return dev;
843
844 return NULL;
845}
846EXPORT_SYMBOL(dev_get_by_index_rcu);
847
848
849/**
850 * dev_get_by_index - find a device by its ifindex
851 * @net: the applicable net namespace
852 * @ifindex: index of device
853 *
854 * Search for an interface by index. Returns NULL if the device
855 * is not found or a pointer to the device. The device returned has
856 * had a reference added and the pointer is safe until the user calls
857 * dev_put to indicate they have finished with it.
858 */
859
860struct net_device *dev_get_by_index(struct net *net, int ifindex)
861{
862 struct net_device *dev;
863
864 rcu_read_lock();
865 dev = dev_get_by_index_rcu(net, ifindex);
866 if (dev)
867 dev_hold(dev);
868 rcu_read_unlock();
869 return dev;
870}
871EXPORT_SYMBOL(dev_get_by_index);
872
873/**
874 * dev_get_by_napi_id - find a device by napi_id
875 * @napi_id: ID of the NAPI struct
876 *
877 * Search for an interface by NAPI ID. Returns %NULL if the device
878 * is not found or a pointer to the device. The device has not had
879 * its reference counter increased so the caller must be careful
880 * about locking. The caller must hold RCU lock.
881 */
882
883struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884{
885 struct napi_struct *napi;
886
887 WARN_ON_ONCE(!rcu_read_lock_held());
888
889 if (napi_id < MIN_NAPI_ID)
890 return NULL;
891
892 napi = napi_by_id(napi_id);
893
894 return napi ? napi->dev : NULL;
895}
896EXPORT_SYMBOL(dev_get_by_napi_id);
897
898/**
899 * netdev_get_name - get a netdevice name, knowing its ifindex.
900 * @net: network namespace
901 * @name: a pointer to the buffer where the name will be stored.
902 * @ifindex: the ifindex of the interface to get the name from.
903 *
904 * The use of raw_seqcount_begin() and cond_resched() before
905 * retrying is required as we want to give the writers a chance
906 * to complete when CONFIG_PREEMPT is not set.
907 */
908int netdev_get_name(struct net *net, char *name, int ifindex)
909{
910 struct net_device *dev;
911 unsigned int seq;
912
913retry:
914 seq = raw_seqcount_begin(&devnet_rename_seq);
915 rcu_read_lock();
916 dev = dev_get_by_index_rcu(net, ifindex);
917 if (!dev) {
918 rcu_read_unlock();
919 return -ENODEV;
920 }
921
922 strcpy(name, dev->name);
923 rcu_read_unlock();
924 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 cond_resched();
926 goto retry;
927 }
928
929 return 0;
930}
931
932/**
933 * dev_getbyhwaddr_rcu - find a device by its hardware address
934 * @net: the applicable net namespace
935 * @type: media type of device
936 * @ha: hardware address
937 *
938 * Search for an interface by MAC address. Returns NULL if the device
939 * is not found or a pointer to the device.
940 * The caller must hold RCU or RTNL.
941 * The returned device has not had its ref count increased
942 * and the caller must therefore be careful about locking
943 *
944 */
945
946struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 const char *ha)
948{
949 struct net_device *dev;
950
951 for_each_netdev_rcu(net, dev)
952 if (dev->type == type &&
953 !memcmp(dev->dev_addr, ha, dev->addr_len))
954 return dev;
955
956 return NULL;
957}
958EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959
960struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961{
962 struct net_device *dev;
963
964 ASSERT_RTNL();
965 for_each_netdev(net, dev)
966 if (dev->type == type)
967 return dev;
968
969 return NULL;
970}
971EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972
973struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974{
975 struct net_device *dev, *ret = NULL;
976
977 rcu_read_lock();
978 for_each_netdev_rcu(net, dev)
979 if (dev->type == type) {
980 dev_hold(dev);
981 ret = dev;
982 break;
983 }
984 rcu_read_unlock();
985 return ret;
986}
987EXPORT_SYMBOL(dev_getfirstbyhwtype);
988
989/**
990 * __dev_get_by_flags - find any device with given flags
991 * @net: the applicable net namespace
992 * @if_flags: IFF_* values
993 * @mask: bitmask of bits in if_flags to check
994 *
995 * Search for any interface with the given flags. Returns NULL if a device
996 * is not found or a pointer to the device. Must be called inside
997 * rtnl_lock(), and result refcount is unchanged.
998 */
999
1000struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 unsigned short mask)
1002{
1003 struct net_device *dev, *ret;
1004
1005 ASSERT_RTNL();
1006
1007 ret = NULL;
1008 for_each_netdev(net, dev) {
1009 if (((dev->flags ^ if_flags) & mask) == 0) {
1010 ret = dev;
1011 break;
1012 }
1013 }
1014 return ret;
1015}
1016EXPORT_SYMBOL(__dev_get_by_flags);
1017
1018/**
1019 * dev_valid_name - check if name is okay for network device
1020 * @name: name string
1021 *
1022 * Network device names need to be valid file names to
1023 * to allow sysfs to work. We also disallow any kind of
1024 * whitespace.
1025 */
1026bool dev_valid_name(const char *name)
1027{
1028 if (*name == '\0')
1029 return false;
1030 if (strlen(name) >= IFNAMSIZ)
1031 return false;
1032 if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 return false;
1034
1035 while (*name) {
1036 if (*name == '/' || *name == ':' || isspace(*name))
1037 return false;
1038 name++;
1039 }
1040 return true;
1041}
1042EXPORT_SYMBOL(dev_valid_name);
1043
1044/**
1045 * __dev_alloc_name - allocate a name for a device
1046 * @net: network namespace to allocate the device name in
1047 * @name: name format string
1048 * @buf: scratch buffer and result name string
1049 *
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1054 * duplicates.
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1057 */
1058
1059static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060{
1061 int i = 0;
1062 const char *p;
1063 const int max_netdevices = 8*PAGE_SIZE;
1064 unsigned long *inuse;
1065 struct net_device *d;
1066
1067 if (!dev_valid_name(name))
1068 return -EINVAL;
1069
1070 p = strchr(name, '%');
1071 if (p) {
1072 /*
1073 * Verify the string as this thing may have come from
1074 * the user. There must be either one "%d" and no other "%"
1075 * characters.
1076 */
1077 if (p[1] != 'd' || strchr(p + 2, '%'))
1078 return -EINVAL;
1079
1080 /* Use one page as a bit array of possible slots */
1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082 if (!inuse)
1083 return -ENOMEM;
1084
1085 for_each_netdev(net, d) {
1086 if (!sscanf(d->name, name, &i))
1087 continue;
1088 if (i < 0 || i >= max_netdevices)
1089 continue;
1090
1091 /* avoid cases where sscanf is not exact inverse of printf */
1092 snprintf(buf, IFNAMSIZ, name, i);
1093 if (!strncmp(buf, d->name, IFNAMSIZ))
1094 set_bit(i, inuse);
1095 }
1096
1097 i = find_first_zero_bit(inuse, max_netdevices);
1098 free_page((unsigned long) inuse);
1099 }
1100
1101 snprintf(buf, IFNAMSIZ, name, i);
1102 if (!__dev_get_by_name(net, buf))
1103 return i;
1104
1105 /* It is possible to run out of possible slots
1106 * when the name is long and there isn't enough space left
1107 * for the digits, or if all bits are used.
1108 */
1109 return -ENFILE;
1110}
1111
1112static int dev_alloc_name_ns(struct net *net,
1113 struct net_device *dev,
1114 const char *name)
1115{
1116 char buf[IFNAMSIZ];
1117 int ret;
1118
1119 BUG_ON(!net);
1120 ret = __dev_alloc_name(net, name, buf);
1121 if (ret >= 0)
1122 strlcpy(dev->name, buf, IFNAMSIZ);
1123 return ret;
1124}
1125
1126/**
1127 * dev_alloc_name - allocate a name for a device
1128 * @dev: device
1129 * @name: name format string
1130 *
1131 * Passed a format string - eg "lt%d" it will try and find a suitable
1132 * id. It scans list of devices to build up a free map, then chooses
1133 * the first empty slot. The caller must hold the dev_base or rtnl lock
1134 * while allocating the name and adding the device in order to avoid
1135 * duplicates.
1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137 * Returns the number of the unit assigned or a negative errno code.
1138 */
1139
1140int dev_alloc_name(struct net_device *dev, const char *name)
1141{
1142 return dev_alloc_name_ns(dev_net(dev), dev, name);
1143}
1144EXPORT_SYMBOL(dev_alloc_name);
1145
1146int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 const char *name)
1148{
1149 BUG_ON(!net);
1150
1151 if (!dev_valid_name(name))
1152 return -EINVAL;
1153
1154 if (strchr(name, '%'))
1155 return dev_alloc_name_ns(net, dev, name);
1156 else if (__dev_get_by_name(net, name))
1157 return -EEXIST;
1158 else if (dev->name != name)
1159 strlcpy(dev->name, name, IFNAMSIZ);
1160
1161 return 0;
1162}
1163EXPORT_SYMBOL(dev_get_valid_name);
1164
1165/**
1166 * dev_change_name - change name of a device
1167 * @dev: device
1168 * @newname: name (or format string) must be at least IFNAMSIZ
1169 *
1170 * Change name of a device, can pass format strings "eth%d".
1171 * for wildcarding.
1172 */
1173int dev_change_name(struct net_device *dev, const char *newname)
1174{
1175 unsigned char old_assign_type;
1176 char oldname[IFNAMSIZ];
1177 int err = 0;
1178 int ret;
1179 struct net *net;
1180
1181 ASSERT_RTNL();
1182 BUG_ON(!dev_net(dev));
1183
1184 net = dev_net(dev);
1185 if (dev->flags & IFF_UP)
1186 return -EBUSY;
1187
1188 write_seqcount_begin(&devnet_rename_seq);
1189
1190 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191 write_seqcount_end(&devnet_rename_seq);
1192 return 0;
1193 }
1194
1195 memcpy(oldname, dev->name, IFNAMSIZ);
1196
1197 err = dev_get_valid_name(net, dev, newname);
1198 if (err < 0) {
1199 write_seqcount_end(&devnet_rename_seq);
1200 return err;
1201 }
1202
1203 if (oldname[0] && !strchr(oldname, '%'))
1204 netdev_info(dev, "renamed from %s\n", oldname);
1205
1206 old_assign_type = dev->name_assign_type;
1207 dev->name_assign_type = NET_NAME_RENAMED;
1208
1209rollback:
1210 ret = device_rename(&dev->dev, dev->name);
1211 if (ret) {
1212 memcpy(dev->name, oldname, IFNAMSIZ);
1213 dev->name_assign_type = old_assign_type;
1214 write_seqcount_end(&devnet_rename_seq);
1215 return ret;
1216 }
1217
1218 write_seqcount_end(&devnet_rename_seq);
1219
1220 netdev_adjacent_rename_links(dev, oldname);
1221
1222 write_lock_bh(&dev_base_lock);
1223 hlist_del_rcu(&dev->name_hlist);
1224 write_unlock_bh(&dev_base_lock);
1225
1226 synchronize_rcu();
1227
1228 write_lock_bh(&dev_base_lock);
1229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230 write_unlock_bh(&dev_base_lock);
1231
1232 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233 ret = notifier_to_errno(ret);
1234
1235 if (ret) {
1236 /* err >= 0 after dev_alloc_name() or stores the first errno */
1237 if (err >= 0) {
1238 err = ret;
1239 write_seqcount_begin(&devnet_rename_seq);
1240 memcpy(dev->name, oldname, IFNAMSIZ);
1241 memcpy(oldname, newname, IFNAMSIZ);
1242 dev->name_assign_type = old_assign_type;
1243 old_assign_type = NET_NAME_RENAMED;
1244 goto rollback;
1245 } else {
1246 pr_err("%s: name change rollback failed: %d\n",
1247 dev->name, ret);
1248 }
1249 }
1250
1251 return err;
1252}
1253
1254/**
1255 * dev_set_alias - change ifalias of a device
1256 * @dev: device
1257 * @alias: name up to IFALIASZ
1258 * @len: limit of bytes to copy from info
1259 *
1260 * Set ifalias for a device,
1261 */
1262int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263{
1264 struct dev_ifalias *new_alias = NULL;
1265
1266 if (len >= IFALIASZ)
1267 return -EINVAL;
1268
1269 if (len) {
1270 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271 if (!new_alias)
1272 return -ENOMEM;
1273
1274 memcpy(new_alias->ifalias, alias, len);
1275 new_alias->ifalias[len] = 0;
1276 }
1277
1278 mutex_lock(&ifalias_mutex);
1279 rcu_swap_protected(dev->ifalias, new_alias,
1280 mutex_is_locked(&ifalias_mutex));
1281 mutex_unlock(&ifalias_mutex);
1282
1283 if (new_alias)
1284 kfree_rcu(new_alias, rcuhead);
1285
1286 return len;
1287}
1288
1289/**
1290 * dev_get_alias - get ifalias of a device
1291 * @dev: device
1292 * @name: buffer to store name of ifalias
1293 * @len: size of buffer
1294 *
1295 * get ifalias for a device. Caller must make sure dev cannot go
1296 * away, e.g. rcu read lock or own a reference count to device.
1297 */
1298int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299{
1300 const struct dev_ifalias *alias;
1301 int ret = 0;
1302
1303 rcu_read_lock();
1304 alias = rcu_dereference(dev->ifalias);
1305 if (alias)
1306 ret = snprintf(name, len, "%s", alias->ifalias);
1307 rcu_read_unlock();
1308
1309 return ret;
1310}
1311
1312/**
1313 * netdev_features_change - device changes features
1314 * @dev: device to cause notification
1315 *
1316 * Called to indicate a device has changed features.
1317 */
1318void netdev_features_change(struct net_device *dev)
1319{
1320 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1321}
1322EXPORT_SYMBOL(netdev_features_change);
1323
1324/**
1325 * netdev_state_change - device changes state
1326 * @dev: device to cause notification
1327 *
1328 * Called to indicate a device has changed state. This function calls
1329 * the notifier chains for netdev_chain and sends a NEWLINK message
1330 * to the routing socket.
1331 */
1332void netdev_state_change(struct net_device *dev)
1333{
1334 if (dev->flags & IFF_UP) {
1335 struct netdev_notifier_change_info change_info = {
1336 .info.dev = dev,
1337 };
1338
1339 call_netdevice_notifiers_info(NETDEV_CHANGE,
1340 &change_info.info);
1341 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1342 }
1343}
1344EXPORT_SYMBOL(netdev_state_change);
1345
1346/**
1347 * netdev_notify_peers - notify network peers about existence of @dev
1348 * @dev: network device
1349 *
1350 * Generate traffic such that interested network peers are aware of
1351 * @dev, such as by generating a gratuitous ARP. This may be used when
1352 * a device wants to inform the rest of the network about some sort of
1353 * reconfiguration such as a failover event or virtual machine
1354 * migration.
1355 */
1356void netdev_notify_peers(struct net_device *dev)
1357{
1358 rtnl_lock();
1359 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361 rtnl_unlock();
1362}
1363EXPORT_SYMBOL(netdev_notify_peers);
1364
1365static int __dev_open(struct net_device *dev)
1366{
1367 const struct net_device_ops *ops = dev->netdev_ops;
1368 int ret;
1369
1370 ASSERT_RTNL();
1371
1372 if (!netif_device_present(dev))
1373 return -ENODEV;
1374
1375 /* Block netpoll from trying to do any rx path servicing.
1376 * If we don't do this there is a chance ndo_poll_controller
1377 * or ndo_poll may be running while we open the device
1378 */
1379 netpoll_poll_disable(dev);
1380
1381 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382 ret = notifier_to_errno(ret);
1383 if (ret)
1384 return ret;
1385
1386 set_bit(__LINK_STATE_START, &dev->state);
1387
1388 if (ops->ndo_validate_addr)
1389 ret = ops->ndo_validate_addr(dev);
1390
1391 if (!ret && ops->ndo_open)
1392 ret = ops->ndo_open(dev);
1393
1394 netpoll_poll_enable(dev);
1395
1396 if (ret)
1397 clear_bit(__LINK_STATE_START, &dev->state);
1398 else {
1399 dev->flags |= IFF_UP;
1400 dev_set_rx_mode(dev);
1401 dev_activate(dev);
1402 add_device_randomness(dev->dev_addr, dev->addr_len);
1403 }
1404
1405 return ret;
1406}
1407
1408/**
1409 * dev_open - prepare an interface for use.
1410 * @dev: device to open
1411 *
1412 * Takes a device from down to up state. The device's private open
1413 * function is invoked and then the multicast lists are loaded. Finally
1414 * the device is moved into the up state and a %NETDEV_UP message is
1415 * sent to the netdev notifier chain.
1416 *
1417 * Calling this function on an active interface is a nop. On a failure
1418 * a negative errno code is returned.
1419 */
1420int dev_open(struct net_device *dev)
1421{
1422 int ret;
1423
1424 if (dev->flags & IFF_UP)
1425 return 0;
1426
1427 ret = __dev_open(dev);
1428 if (ret < 0)
1429 return ret;
1430
1431 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432 call_netdevice_notifiers(NETDEV_UP, dev);
1433
1434 return ret;
1435}
1436EXPORT_SYMBOL(dev_open);
1437
1438static void __dev_close_many(struct list_head *head)
1439{
1440 struct net_device *dev;
1441
1442 ASSERT_RTNL();
1443 might_sleep();
1444
1445 list_for_each_entry(dev, head, close_list) {
1446 /* Temporarily disable netpoll until the interface is down */
1447 netpoll_poll_disable(dev);
1448
1449 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450
1451 clear_bit(__LINK_STATE_START, &dev->state);
1452
1453 /* Synchronize to scheduled poll. We cannot touch poll list, it
1454 * can be even on different cpu. So just clear netif_running().
1455 *
1456 * dev->stop() will invoke napi_disable() on all of it's
1457 * napi_struct instances on this device.
1458 */
1459 smp_mb__after_atomic(); /* Commit netif_running(). */
1460 }
1461
1462 dev_deactivate_many(head);
1463
1464 list_for_each_entry(dev, head, close_list) {
1465 const struct net_device_ops *ops = dev->netdev_ops;
1466
1467 /*
1468 * Call the device specific close. This cannot fail.
1469 * Only if device is UP
1470 *
1471 * We allow it to be called even after a DETACH hot-plug
1472 * event.
1473 */
1474 if (ops->ndo_stop)
1475 ops->ndo_stop(dev);
1476
1477 dev->flags &= ~IFF_UP;
1478 netpoll_poll_enable(dev);
1479 }
1480}
1481
1482static void __dev_close(struct net_device *dev)
1483{
1484 LIST_HEAD(single);
1485
1486 list_add(&dev->close_list, &single);
1487 __dev_close_many(&single);
1488 list_del(&single);
1489}
1490
1491void dev_close_many(struct list_head *head, bool unlink)
1492{
1493 struct net_device *dev, *tmp;
1494
1495 /* Remove the devices that don't need to be closed */
1496 list_for_each_entry_safe(dev, tmp, head, close_list)
1497 if (!(dev->flags & IFF_UP))
1498 list_del_init(&dev->close_list);
1499
1500 __dev_close_many(head);
1501
1502 list_for_each_entry_safe(dev, tmp, head, close_list) {
1503 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504 call_netdevice_notifiers(NETDEV_DOWN, dev);
1505 if (unlink)
1506 list_del_init(&dev->close_list);
1507 }
1508}
1509EXPORT_SYMBOL(dev_close_many);
1510
1511/**
1512 * dev_close - shutdown an interface.
1513 * @dev: device to shutdown
1514 *
1515 * This function moves an active device into down state. A
1516 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518 * chain.
1519 */
1520void dev_close(struct net_device *dev)
1521{
1522 if (dev->flags & IFF_UP) {
1523 LIST_HEAD(single);
1524
1525 list_add(&dev->close_list, &single);
1526 dev_close_many(&single, true);
1527 list_del(&single);
1528 }
1529}
1530EXPORT_SYMBOL(dev_close);
1531
1532
1533/**
1534 * dev_disable_lro - disable Large Receive Offload on a device
1535 * @dev: device
1536 *
1537 * Disable Large Receive Offload (LRO) on a net device. Must be
1538 * called under RTNL. This is needed if received packets may be
1539 * forwarded to another interface.
1540 */
1541void dev_disable_lro(struct net_device *dev)
1542{
1543 struct net_device *lower_dev;
1544 struct list_head *iter;
1545
1546 dev->wanted_features &= ~NETIF_F_LRO;
1547 netdev_update_features(dev);
1548
1549 if (unlikely(dev->features & NETIF_F_LRO))
1550 netdev_WARN(dev, "failed to disable LRO!\n");
1551
1552 netdev_for_each_lower_dev(dev, lower_dev, iter)
1553 dev_disable_lro(lower_dev);
1554}
1555EXPORT_SYMBOL(dev_disable_lro);
1556
1557/**
1558 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559 * @dev: device
1560 *
1561 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1562 * called under RTNL. This is needed if Generic XDP is installed on
1563 * the device.
1564 */
1565static void dev_disable_gro_hw(struct net_device *dev)
1566{
1567 dev->wanted_features &= ~NETIF_F_GRO_HW;
1568 netdev_update_features(dev);
1569
1570 if (unlikely(dev->features & NETIF_F_GRO_HW))
1571 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1572}
1573
1574static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1575 struct net_device *dev)
1576{
1577 struct netdev_notifier_info info = {
1578 .dev = dev,
1579 };
1580
1581 return nb->notifier_call(nb, val, &info);
1582}
1583
1584static int dev_boot_phase = 1;
1585
1586/**
1587 * register_netdevice_notifier - register a network notifier block
1588 * @nb: notifier
1589 *
1590 * Register a notifier to be called when network device events occur.
1591 * The notifier passed is linked into the kernel structures and must
1592 * not be reused until it has been unregistered. A negative errno code
1593 * is returned on a failure.
1594 *
1595 * When registered all registration and up events are replayed
1596 * to the new notifier to allow device to have a race free
1597 * view of the network device list.
1598 */
1599
1600int register_netdevice_notifier(struct notifier_block *nb)
1601{
1602 struct net_device *dev;
1603 struct net_device *last;
1604 struct net *net;
1605 int err;
1606
1607 rtnl_lock();
1608 err = raw_notifier_chain_register(&netdev_chain, nb);
1609 if (err)
1610 goto unlock;
1611 if (dev_boot_phase)
1612 goto unlock;
1613 for_each_net(net) {
1614 for_each_netdev(net, dev) {
1615 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1616 err = notifier_to_errno(err);
1617 if (err)
1618 goto rollback;
1619
1620 if (!(dev->flags & IFF_UP))
1621 continue;
1622
1623 call_netdevice_notifier(nb, NETDEV_UP, dev);
1624 }
1625 }
1626
1627unlock:
1628 rtnl_unlock();
1629 return err;
1630
1631rollback:
1632 last = dev;
1633 for_each_net(net) {
1634 for_each_netdev(net, dev) {
1635 if (dev == last)
1636 goto outroll;
1637
1638 if (dev->flags & IFF_UP) {
1639 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1640 dev);
1641 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1642 }
1643 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1644 }
1645 }
1646
1647outroll:
1648 raw_notifier_chain_unregister(&netdev_chain, nb);
1649 goto unlock;
1650}
1651EXPORT_SYMBOL(register_netdevice_notifier);
1652
1653/**
1654 * unregister_netdevice_notifier - unregister a network notifier block
1655 * @nb: notifier
1656 *
1657 * Unregister a notifier previously registered by
1658 * register_netdevice_notifier(). The notifier is unlinked into the
1659 * kernel structures and may then be reused. A negative errno code
1660 * is returned on a failure.
1661 *
1662 * After unregistering unregister and down device events are synthesized
1663 * for all devices on the device list to the removed notifier to remove
1664 * the need for special case cleanup code.
1665 */
1666
1667int unregister_netdevice_notifier(struct notifier_block *nb)
1668{
1669 struct net_device *dev;
1670 struct net *net;
1671 int err;
1672
1673 rtnl_lock();
1674 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1675 if (err)
1676 goto unlock;
1677
1678 for_each_net(net) {
1679 for_each_netdev(net, dev) {
1680 if (dev->flags & IFF_UP) {
1681 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1682 dev);
1683 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1684 }
1685 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1686 }
1687 }
1688unlock:
1689 rtnl_unlock();
1690 return err;
1691}
1692EXPORT_SYMBOL(unregister_netdevice_notifier);
1693
1694/**
1695 * call_netdevice_notifiers_info - call all network notifier blocks
1696 * @val: value passed unmodified to notifier function
1697 * @info: notifier information data
1698 *
1699 * Call all network notifier blocks. Parameters and return value
1700 * are as for raw_notifier_call_chain().
1701 */
1702
1703static int call_netdevice_notifiers_info(unsigned long val,
1704 struct netdev_notifier_info *info)
1705{
1706 ASSERT_RTNL();
1707 return raw_notifier_call_chain(&netdev_chain, val, info);
1708}
1709
1710/**
1711 * call_netdevice_notifiers - call all network notifier blocks
1712 * @val: value passed unmodified to notifier function
1713 * @dev: net_device pointer passed unmodified to notifier function
1714 *
1715 * Call all network notifier blocks. Parameters and return value
1716 * are as for raw_notifier_call_chain().
1717 */
1718
1719int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1720{
1721 struct netdev_notifier_info info = {
1722 .dev = dev,
1723 };
1724
1725 return call_netdevice_notifiers_info(val, &info);
1726}
1727EXPORT_SYMBOL(call_netdevice_notifiers);
1728
1729#ifdef CONFIG_NET_INGRESS
1730static struct static_key ingress_needed __read_mostly;
1731
1732void net_inc_ingress_queue(void)
1733{
1734 static_key_slow_inc(&ingress_needed);
1735}
1736EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1737
1738void net_dec_ingress_queue(void)
1739{
1740 static_key_slow_dec(&ingress_needed);
1741}
1742EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1743#endif
1744
1745#ifdef CONFIG_NET_EGRESS
1746static struct static_key egress_needed __read_mostly;
1747
1748void net_inc_egress_queue(void)
1749{
1750 static_key_slow_inc(&egress_needed);
1751}
1752EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1753
1754void net_dec_egress_queue(void)
1755{
1756 static_key_slow_dec(&egress_needed);
1757}
1758EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1759#endif
1760
1761static struct static_key netstamp_needed __read_mostly;
1762#ifdef HAVE_JUMP_LABEL
1763static atomic_t netstamp_needed_deferred;
1764static atomic_t netstamp_wanted;
1765static void netstamp_clear(struct work_struct *work)
1766{
1767 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1768 int wanted;
1769
1770 wanted = atomic_add_return(deferred, &netstamp_wanted);
1771 if (wanted > 0)
1772 static_key_enable(&netstamp_needed);
1773 else
1774 static_key_disable(&netstamp_needed);
1775}
1776static DECLARE_WORK(netstamp_work, netstamp_clear);
1777#endif
1778
1779void net_enable_timestamp(void)
1780{
1781#ifdef HAVE_JUMP_LABEL
1782 int wanted;
1783
1784 while (1) {
1785 wanted = atomic_read(&netstamp_wanted);
1786 if (wanted <= 0)
1787 break;
1788 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1789 return;
1790 }
1791 atomic_inc(&netstamp_needed_deferred);
1792 schedule_work(&netstamp_work);
1793#else
1794 static_key_slow_inc(&netstamp_needed);
1795#endif
1796}
1797EXPORT_SYMBOL(net_enable_timestamp);
1798
1799void net_disable_timestamp(void)
1800{
1801#ifdef HAVE_JUMP_LABEL
1802 int wanted;
1803
1804 while (1) {
1805 wanted = atomic_read(&netstamp_wanted);
1806 if (wanted <= 1)
1807 break;
1808 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1809 return;
1810 }
1811 atomic_dec(&netstamp_needed_deferred);
1812 schedule_work(&netstamp_work);
1813#else
1814 static_key_slow_dec(&netstamp_needed);
1815#endif
1816}
1817EXPORT_SYMBOL(net_disable_timestamp);
1818
1819static inline void net_timestamp_set(struct sk_buff *skb)
1820{
1821 skb->tstamp = 0;
1822 if (static_key_false(&netstamp_needed))
1823 __net_timestamp(skb);
1824}
1825
1826#define net_timestamp_check(COND, SKB) \
1827 if (static_key_false(&netstamp_needed)) { \
1828 if ((COND) && !(SKB)->tstamp) \
1829 __net_timestamp(SKB); \
1830 } \
1831
1832bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1833{
1834 unsigned int len;
1835
1836 if (!(dev->flags & IFF_UP))
1837 return false;
1838
1839 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1840 if (skb->len <= len)
1841 return true;
1842
1843 /* if TSO is enabled, we don't care about the length as the packet
1844 * could be forwarded without being segmented before
1845 */
1846 if (skb_is_gso(skb))
1847 return true;
1848
1849 return false;
1850}
1851EXPORT_SYMBOL_GPL(is_skb_forwardable);
1852
1853int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1854{
1855 int ret = ____dev_forward_skb(dev, skb);
1856
1857 if (likely(!ret)) {
1858 skb->protocol = eth_type_trans(skb, dev);
1859 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1860 }
1861
1862 return ret;
1863}
1864EXPORT_SYMBOL_GPL(__dev_forward_skb);
1865
1866/**
1867 * dev_forward_skb - loopback an skb to another netif
1868 *
1869 * @dev: destination network device
1870 * @skb: buffer to forward
1871 *
1872 * return values:
1873 * NET_RX_SUCCESS (no congestion)
1874 * NET_RX_DROP (packet was dropped, but freed)
1875 *
1876 * dev_forward_skb can be used for injecting an skb from the
1877 * start_xmit function of one device into the receive queue
1878 * of another device.
1879 *
1880 * The receiving device may be in another namespace, so
1881 * we have to clear all information in the skb that could
1882 * impact namespace isolation.
1883 */
1884int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1885{
1886 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1887}
1888EXPORT_SYMBOL_GPL(dev_forward_skb);
1889
1890static inline int deliver_skb(struct sk_buff *skb,
1891 struct packet_type *pt_prev,
1892 struct net_device *orig_dev)
1893{
1894 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1895 return -ENOMEM;
1896 refcount_inc(&skb->users);
1897 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1898}
1899
1900static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1901 struct packet_type **pt,
1902 struct net_device *orig_dev,
1903 __be16 type,
1904 struct list_head *ptype_list)
1905{
1906 struct packet_type *ptype, *pt_prev = *pt;
1907
1908 list_for_each_entry_rcu(ptype, ptype_list, list) {
1909 if (ptype->type != type)
1910 continue;
1911 if (pt_prev)
1912 deliver_skb(skb, pt_prev, orig_dev);
1913 pt_prev = ptype;
1914 }
1915 *pt = pt_prev;
1916}
1917
1918static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1919{
1920 if (!ptype->af_packet_priv || !skb->sk)
1921 return false;
1922
1923 if (ptype->id_match)
1924 return ptype->id_match(ptype, skb->sk);
1925 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1926 return true;
1927
1928 return false;
1929}
1930
1931/*
1932 * Support routine. Sends outgoing frames to any network
1933 * taps currently in use.
1934 */
1935
1936void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1937{
1938 struct packet_type *ptype;
1939 struct sk_buff *skb2 = NULL;
1940 struct packet_type *pt_prev = NULL;
1941 struct list_head *ptype_list = &ptype_all;
1942
1943 rcu_read_lock();
1944again:
1945 list_for_each_entry_rcu(ptype, ptype_list, list) {
1946 /* Never send packets back to the socket
1947 * they originated from - MvS (miquels@drinkel.ow.org)
1948 */
1949 if (skb_loop_sk(ptype, skb))
1950 continue;
1951
1952 if (pt_prev) {
1953 deliver_skb(skb2, pt_prev, skb->dev);
1954 pt_prev = ptype;
1955 continue;
1956 }
1957
1958 /* need to clone skb, done only once */
1959 skb2 = skb_clone(skb, GFP_ATOMIC);
1960 if (!skb2)
1961 goto out_unlock;
1962
1963 net_timestamp_set(skb2);
1964
1965 /* skb->nh should be correctly
1966 * set by sender, so that the second statement is
1967 * just protection against buggy protocols.
1968 */
1969 skb_reset_mac_header(skb2);
1970
1971 if (skb_network_header(skb2) < skb2->data ||
1972 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1973 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1974 ntohs(skb2->protocol),
1975 dev->name);
1976 skb_reset_network_header(skb2);
1977 }
1978
1979 skb2->transport_header = skb2->network_header;
1980 skb2->pkt_type = PACKET_OUTGOING;
1981 pt_prev = ptype;
1982 }
1983
1984 if (ptype_list == &ptype_all) {
1985 ptype_list = &dev->ptype_all;
1986 goto again;
1987 }
1988out_unlock:
1989 if (pt_prev) {
1990 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1991 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1992 else
1993 kfree_skb(skb2);
1994 }
1995 rcu_read_unlock();
1996}
1997EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1998
1999/**
2000 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2001 * @dev: Network device
2002 * @txq: number of queues available
2003 *
2004 * If real_num_tx_queues is changed the tc mappings may no longer be
2005 * valid. To resolve this verify the tc mapping remains valid and if
2006 * not NULL the mapping. With no priorities mapping to this
2007 * offset/count pair it will no longer be used. In the worst case TC0
2008 * is invalid nothing can be done so disable priority mappings. If is
2009 * expected that drivers will fix this mapping if they can before
2010 * calling netif_set_real_num_tx_queues.
2011 */
2012static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2013{
2014 int i;
2015 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2016
2017 /* If TC0 is invalidated disable TC mapping */
2018 if (tc->offset + tc->count > txq) {
2019 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2020 dev->num_tc = 0;
2021 return;
2022 }
2023
2024 /* Invalidated prio to tc mappings set to TC0 */
2025 for (i = 1; i < TC_BITMASK + 1; i++) {
2026 int q = netdev_get_prio_tc_map(dev, i);
2027
2028 tc = &dev->tc_to_txq[q];
2029 if (tc->offset + tc->count > txq) {
2030 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2031 i, q);
2032 netdev_set_prio_tc_map(dev, i, 0);
2033 }
2034 }
2035}
2036
2037int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2038{
2039 if (dev->num_tc) {
2040 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2041 int i;
2042
2043 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2044 if ((txq - tc->offset) < tc->count)
2045 return i;
2046 }
2047
2048 return -1;
2049 }
2050
2051 return 0;
2052}
2053EXPORT_SYMBOL(netdev_txq_to_tc);
2054
2055#ifdef CONFIG_XPS
2056static DEFINE_MUTEX(xps_map_mutex);
2057#define xmap_dereference(P) \
2058 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2059
2060static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2061 int tci, u16 index)
2062{
2063 struct xps_map *map = NULL;
2064 int pos;
2065
2066 if (dev_maps)
2067 map = xmap_dereference(dev_maps->cpu_map[tci]);
2068 if (!map)
2069 return false;
2070
2071 for (pos = map->len; pos--;) {
2072 if (map->queues[pos] != index)
2073 continue;
2074
2075 if (map->len > 1) {
2076 map->queues[pos] = map->queues[--map->len];
2077 break;
2078 }
2079
2080 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2081 kfree_rcu(map, rcu);
2082 return false;
2083 }
2084
2085 return true;
2086}
2087
2088static bool remove_xps_queue_cpu(struct net_device *dev,
2089 struct xps_dev_maps *dev_maps,
2090 int cpu, u16 offset, u16 count)
2091{
2092 int num_tc = dev->num_tc ? : 1;
2093 bool active = false;
2094 int tci;
2095
2096 for (tci = cpu * num_tc; num_tc--; tci++) {
2097 int i, j;
2098
2099 for (i = count, j = offset; i--; j++) {
2100 if (!remove_xps_queue(dev_maps, cpu, j))
2101 break;
2102 }
2103
2104 active |= i < 0;
2105 }
2106
2107 return active;
2108}
2109
2110static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2111 u16 count)
2112{
2113 struct xps_dev_maps *dev_maps;
2114 int cpu, i;
2115 bool active = false;
2116
2117 mutex_lock(&xps_map_mutex);
2118 dev_maps = xmap_dereference(dev->xps_maps);
2119
2120 if (!dev_maps)
2121 goto out_no_maps;
2122
2123 for_each_possible_cpu(cpu)
2124 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2125 offset, count);
2126
2127 if (!active) {
2128 RCU_INIT_POINTER(dev->xps_maps, NULL);
2129 kfree_rcu(dev_maps, rcu);
2130 }
2131
2132 for (i = offset + (count - 1); count--; i--)
2133 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2134 NUMA_NO_NODE);
2135
2136out_no_maps:
2137 mutex_unlock(&xps_map_mutex);
2138}
2139
2140static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2141{
2142 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2143}
2144
2145static struct xps_map *expand_xps_map(struct xps_map *map,
2146 int cpu, u16 index)
2147{
2148 struct xps_map *new_map;
2149 int alloc_len = XPS_MIN_MAP_ALLOC;
2150 int i, pos;
2151
2152 for (pos = 0; map && pos < map->len; pos++) {
2153 if (map->queues[pos] != index)
2154 continue;
2155 return map;
2156 }
2157
2158 /* Need to add queue to this CPU's existing map */
2159 if (map) {
2160 if (pos < map->alloc_len)
2161 return map;
2162
2163 alloc_len = map->alloc_len * 2;
2164 }
2165
2166 /* Need to allocate new map to store queue on this CPU's map */
2167 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2168 cpu_to_node(cpu));
2169 if (!new_map)
2170 return NULL;
2171
2172 for (i = 0; i < pos; i++)
2173 new_map->queues[i] = map->queues[i];
2174 new_map->alloc_len = alloc_len;
2175 new_map->len = pos;
2176
2177 return new_map;
2178}
2179
2180int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2181 u16 index)
2182{
2183 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2184 int i, cpu, tci, numa_node_id = -2;
2185 int maps_sz, num_tc = 1, tc = 0;
2186 struct xps_map *map, *new_map;
2187 bool active = false;
2188
2189 if (dev->num_tc) {
2190 num_tc = dev->num_tc;
2191 tc = netdev_txq_to_tc(dev, index);
2192 if (tc < 0)
2193 return -EINVAL;
2194 }
2195
2196 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2197 if (maps_sz < L1_CACHE_BYTES)
2198 maps_sz = L1_CACHE_BYTES;
2199
2200 mutex_lock(&xps_map_mutex);
2201
2202 dev_maps = xmap_dereference(dev->xps_maps);
2203
2204 /* allocate memory for queue storage */
2205 for_each_cpu_and(cpu, cpu_online_mask, mask) {
2206 if (!new_dev_maps)
2207 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2208 if (!new_dev_maps) {
2209 mutex_unlock(&xps_map_mutex);
2210 return -ENOMEM;
2211 }
2212
2213 tci = cpu * num_tc + tc;
2214 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2215 NULL;
2216
2217 map = expand_xps_map(map, cpu, index);
2218 if (!map)
2219 goto error;
2220
2221 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2222 }
2223
2224 if (!new_dev_maps)
2225 goto out_no_new_maps;
2226
2227 for_each_possible_cpu(cpu) {
2228 /* copy maps belonging to foreign traffic classes */
2229 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2230 /* fill in the new device map from the old device map */
2231 map = xmap_dereference(dev_maps->cpu_map[tci]);
2232 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2233 }
2234
2235 /* We need to explicitly update tci as prevous loop
2236 * could break out early if dev_maps is NULL.
2237 */
2238 tci = cpu * num_tc + tc;
2239
2240 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2241 /* add queue to CPU maps */
2242 int pos = 0;
2243
2244 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2245 while ((pos < map->len) && (map->queues[pos] != index))
2246 pos++;
2247
2248 if (pos == map->len)
2249 map->queues[map->len++] = index;
2250#ifdef CONFIG_NUMA
2251 if (numa_node_id == -2)
2252 numa_node_id = cpu_to_node(cpu);
2253 else if (numa_node_id != cpu_to_node(cpu))
2254 numa_node_id = -1;
2255#endif
2256 } else if (dev_maps) {
2257 /* fill in the new device map from the old device map */
2258 map = xmap_dereference(dev_maps->cpu_map[tci]);
2259 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2260 }
2261
2262 /* copy maps belonging to foreign traffic classes */
2263 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2264 /* fill in the new device map from the old device map */
2265 map = xmap_dereference(dev_maps->cpu_map[tci]);
2266 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2267 }
2268 }
2269
2270 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2271
2272 /* Cleanup old maps */
2273 if (!dev_maps)
2274 goto out_no_old_maps;
2275
2276 for_each_possible_cpu(cpu) {
2277 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2278 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2279 map = xmap_dereference(dev_maps->cpu_map[tci]);
2280 if (map && map != new_map)
2281 kfree_rcu(map, rcu);
2282 }
2283 }
2284
2285 kfree_rcu(dev_maps, rcu);
2286
2287out_no_old_maps:
2288 dev_maps = new_dev_maps;
2289 active = true;
2290
2291out_no_new_maps:
2292 /* update Tx queue numa node */
2293 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2294 (numa_node_id >= 0) ? numa_node_id :
2295 NUMA_NO_NODE);
2296
2297 if (!dev_maps)
2298 goto out_no_maps;
2299
2300 /* removes queue from unused CPUs */
2301 for_each_possible_cpu(cpu) {
2302 for (i = tc, tci = cpu * num_tc; i--; tci++)
2303 active |= remove_xps_queue(dev_maps, tci, index);
2304 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2305 active |= remove_xps_queue(dev_maps, tci, index);
2306 for (i = num_tc - tc, tci++; --i; tci++)
2307 active |= remove_xps_queue(dev_maps, tci, index);
2308 }
2309
2310 /* free map if not active */
2311 if (!active) {
2312 RCU_INIT_POINTER(dev->xps_maps, NULL);
2313 kfree_rcu(dev_maps, rcu);
2314 }
2315
2316out_no_maps:
2317 mutex_unlock(&xps_map_mutex);
2318
2319 return 0;
2320error:
2321 /* remove any maps that we added */
2322 for_each_possible_cpu(cpu) {
2323 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2324 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2325 map = dev_maps ?
2326 xmap_dereference(dev_maps->cpu_map[tci]) :
2327 NULL;
2328 if (new_map && new_map != map)
2329 kfree(new_map);
2330 }
2331 }
2332
2333 mutex_unlock(&xps_map_mutex);
2334
2335 kfree(new_dev_maps);
2336 return -ENOMEM;
2337}
2338EXPORT_SYMBOL(netif_set_xps_queue);
2339
2340#endif
2341void netdev_reset_tc(struct net_device *dev)
2342{
2343#ifdef CONFIG_XPS
2344 netif_reset_xps_queues_gt(dev, 0);
2345#endif
2346 dev->num_tc = 0;
2347 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2348 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2349}
2350EXPORT_SYMBOL(netdev_reset_tc);
2351
2352int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2353{
2354 if (tc >= dev->num_tc)
2355 return -EINVAL;
2356
2357#ifdef CONFIG_XPS
2358 netif_reset_xps_queues(dev, offset, count);
2359#endif
2360 dev->tc_to_txq[tc].count = count;
2361 dev->tc_to_txq[tc].offset = offset;
2362 return 0;
2363}
2364EXPORT_SYMBOL(netdev_set_tc_queue);
2365
2366int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2367{
2368 if (num_tc > TC_MAX_QUEUE)
2369 return -EINVAL;
2370
2371#ifdef CONFIG_XPS
2372 netif_reset_xps_queues_gt(dev, 0);
2373#endif
2374 dev->num_tc = num_tc;
2375 return 0;
2376}
2377EXPORT_SYMBOL(netdev_set_num_tc);
2378
2379/*
2380 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2381 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2382 */
2383int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2384{
2385 bool disabling;
2386 int rc;
2387
2388 disabling = txq < dev->real_num_tx_queues;
2389
2390 if (txq < 1 || txq > dev->num_tx_queues)
2391 return -EINVAL;
2392
2393 if (dev->reg_state == NETREG_REGISTERED ||
2394 dev->reg_state == NETREG_UNREGISTERING) {
2395 ASSERT_RTNL();
2396
2397 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2398 txq);
2399 if (rc)
2400 return rc;
2401
2402 if (dev->num_tc)
2403 netif_setup_tc(dev, txq);
2404
2405 dev->real_num_tx_queues = txq;
2406
2407 if (disabling) {
2408 synchronize_net();
2409 qdisc_reset_all_tx_gt(dev, txq);
2410#ifdef CONFIG_XPS
2411 netif_reset_xps_queues_gt(dev, txq);
2412#endif
2413 }
2414 } else {
2415 dev->real_num_tx_queues = txq;
2416 }
2417
2418 return 0;
2419}
2420EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2421
2422#ifdef CONFIG_SYSFS
2423/**
2424 * netif_set_real_num_rx_queues - set actual number of RX queues used
2425 * @dev: Network device
2426 * @rxq: Actual number of RX queues
2427 *
2428 * This must be called either with the rtnl_lock held or before
2429 * registration of the net device. Returns 0 on success, or a
2430 * negative error code. If called before registration, it always
2431 * succeeds.
2432 */
2433int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2434{
2435 int rc;
2436
2437 if (rxq < 1 || rxq > dev->num_rx_queues)
2438 return -EINVAL;
2439
2440 if (dev->reg_state == NETREG_REGISTERED) {
2441 ASSERT_RTNL();
2442
2443 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2444 rxq);
2445 if (rc)
2446 return rc;
2447 }
2448
2449 dev->real_num_rx_queues = rxq;
2450 return 0;
2451}
2452EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2453#endif
2454
2455/**
2456 * netif_get_num_default_rss_queues - default number of RSS queues
2457 *
2458 * This routine should set an upper limit on the number of RSS queues
2459 * used by default by multiqueue devices.
2460 */
2461int netif_get_num_default_rss_queues(void)
2462{
2463 return is_kdump_kernel() ?
2464 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2465}
2466EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2467
2468static void __netif_reschedule(struct Qdisc *q)
2469{
2470 struct softnet_data *sd;
2471 unsigned long flags;
2472
2473 local_irq_save(flags);
2474 sd = this_cpu_ptr(&softnet_data);
2475 q->next_sched = NULL;
2476 *sd->output_queue_tailp = q;
2477 sd->output_queue_tailp = &q->next_sched;
2478 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2479 local_irq_restore(flags);
2480}
2481
2482void __netif_schedule(struct Qdisc *q)
2483{
2484 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2485 __netif_reschedule(q);
2486}
2487EXPORT_SYMBOL(__netif_schedule);
2488
2489struct dev_kfree_skb_cb {
2490 enum skb_free_reason reason;
2491};
2492
2493static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2494{
2495 return (struct dev_kfree_skb_cb *)skb->cb;
2496}
2497
2498void netif_schedule_queue(struct netdev_queue *txq)
2499{
2500 rcu_read_lock();
2501 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2502 struct Qdisc *q = rcu_dereference(txq->qdisc);
2503
2504 __netif_schedule(q);
2505 }
2506 rcu_read_unlock();
2507}
2508EXPORT_SYMBOL(netif_schedule_queue);
2509
2510void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2511{
2512 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2513 struct Qdisc *q;
2514
2515 rcu_read_lock();
2516 q = rcu_dereference(dev_queue->qdisc);
2517 __netif_schedule(q);
2518 rcu_read_unlock();
2519 }
2520}
2521EXPORT_SYMBOL(netif_tx_wake_queue);
2522
2523void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2524{
2525 unsigned long flags;
2526
2527 if (unlikely(!skb))
2528 return;
2529
2530 if (likely(refcount_read(&skb->users) == 1)) {
2531 smp_rmb();
2532 refcount_set(&skb->users, 0);
2533 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2534 return;
2535 }
2536 get_kfree_skb_cb(skb)->reason = reason;
2537 local_irq_save(flags);
2538 skb->next = __this_cpu_read(softnet_data.completion_queue);
2539 __this_cpu_write(softnet_data.completion_queue, skb);
2540 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2541 local_irq_restore(flags);
2542}
2543EXPORT_SYMBOL(__dev_kfree_skb_irq);
2544
2545void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2546{
2547 if (in_irq() || irqs_disabled())
2548 __dev_kfree_skb_irq(skb, reason);
2549 else
2550 dev_kfree_skb(skb);
2551}
2552EXPORT_SYMBOL(__dev_kfree_skb_any);
2553
2554
2555/**
2556 * netif_device_detach - mark device as removed
2557 * @dev: network device
2558 *
2559 * Mark device as removed from system and therefore no longer available.
2560 */
2561void netif_device_detach(struct net_device *dev)
2562{
2563 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2564 netif_running(dev)) {
2565 netif_tx_stop_all_queues(dev);
2566 }
2567}
2568EXPORT_SYMBOL(netif_device_detach);
2569
2570/**
2571 * netif_device_attach - mark device as attached
2572 * @dev: network device
2573 *
2574 * Mark device as attached from system and restart if needed.
2575 */
2576void netif_device_attach(struct net_device *dev)
2577{
2578 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2579 netif_running(dev)) {
2580 netif_tx_wake_all_queues(dev);
2581 __netdev_watchdog_up(dev);
2582 }
2583}
2584EXPORT_SYMBOL(netif_device_attach);
2585
2586/*
2587 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2588 * to be used as a distribution range.
2589 */
2590u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2591 unsigned int num_tx_queues)
2592{
2593 u32 hash;
2594 u16 qoffset = 0;
2595 u16 qcount = num_tx_queues;
2596
2597 if (skb_rx_queue_recorded(skb)) {
2598 hash = skb_get_rx_queue(skb);
2599 while (unlikely(hash >= num_tx_queues))
2600 hash -= num_tx_queues;
2601 return hash;
2602 }
2603
2604 if (dev->num_tc) {
2605 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2606
2607 qoffset = dev->tc_to_txq[tc].offset;
2608 qcount = dev->tc_to_txq[tc].count;
2609 }
2610
2611 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2612}
2613EXPORT_SYMBOL(__skb_tx_hash);
2614
2615static void skb_warn_bad_offload(const struct sk_buff *skb)
2616{
2617 static const netdev_features_t null_features;
2618 struct net_device *dev = skb->dev;
2619 const char *name = "";
2620
2621 if (!net_ratelimit())
2622 return;
2623
2624 if (dev) {
2625 if (dev->dev.parent)
2626 name = dev_driver_string(dev->dev.parent);
2627 else
2628 name = netdev_name(dev);
2629 }
2630 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2631 "gso_type=%d ip_summed=%d\n",
2632 name, dev ? &dev->features : &null_features,
2633 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2634 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2635 skb_shinfo(skb)->gso_type, skb->ip_summed);
2636}
2637
2638/*
2639 * Invalidate hardware checksum when packet is to be mangled, and
2640 * complete checksum manually on outgoing path.
2641 */
2642int skb_checksum_help(struct sk_buff *skb)
2643{
2644 __wsum csum;
2645 int ret = 0, offset;
2646
2647 if (skb->ip_summed == CHECKSUM_COMPLETE)
2648 goto out_set_summed;
2649
2650 if (unlikely(skb_shinfo(skb)->gso_size)) {
2651 skb_warn_bad_offload(skb);
2652 return -EINVAL;
2653 }
2654
2655 /* Before computing a checksum, we should make sure no frag could
2656 * be modified by an external entity : checksum could be wrong.
2657 */
2658 if (skb_has_shared_frag(skb)) {
2659 ret = __skb_linearize(skb);
2660 if (ret)
2661 goto out;
2662 }
2663
2664 offset = skb_checksum_start_offset(skb);
2665 BUG_ON(offset >= skb_headlen(skb));
2666 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2667
2668 offset += skb->csum_offset;
2669 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2670
2671 if (skb_cloned(skb) &&
2672 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2673 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2674 if (ret)
2675 goto out;
2676 }
2677
2678 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2679out_set_summed:
2680 skb->ip_summed = CHECKSUM_NONE;
2681out:
2682 return ret;
2683}
2684EXPORT_SYMBOL(skb_checksum_help);
2685
2686int skb_crc32c_csum_help(struct sk_buff *skb)
2687{
2688 __le32 crc32c_csum;
2689 int ret = 0, offset, start;
2690
2691 if (skb->ip_summed != CHECKSUM_PARTIAL)
2692 goto out;
2693
2694 if (unlikely(skb_is_gso(skb)))
2695 goto out;
2696
2697 /* Before computing a checksum, we should make sure no frag could
2698 * be modified by an external entity : checksum could be wrong.
2699 */
2700 if (unlikely(skb_has_shared_frag(skb))) {
2701 ret = __skb_linearize(skb);
2702 if (ret)
2703 goto out;
2704 }
2705 start = skb_checksum_start_offset(skb);
2706 offset = start + offsetof(struct sctphdr, checksum);
2707 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2708 ret = -EINVAL;
2709 goto out;
2710 }
2711 if (skb_cloned(skb) &&
2712 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2713 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2714 if (ret)
2715 goto out;
2716 }
2717 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2718 skb->len - start, ~(__u32)0,
2719 crc32c_csum_stub));
2720 *(__le32 *)(skb->data + offset) = crc32c_csum;
2721 skb->ip_summed = CHECKSUM_NONE;
2722 skb->csum_not_inet = 0;
2723out:
2724 return ret;
2725}
2726
2727__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2728{
2729 __be16 type = skb->protocol;
2730
2731 /* Tunnel gso handlers can set protocol to ethernet. */
2732 if (type == htons(ETH_P_TEB)) {
2733 struct ethhdr *eth;
2734
2735 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2736 return 0;
2737
2738 eth = (struct ethhdr *)skb_mac_header(skb);
2739 type = eth->h_proto;
2740 }
2741
2742 return __vlan_get_protocol(skb, type, depth);
2743}
2744
2745/**
2746 * skb_mac_gso_segment - mac layer segmentation handler.
2747 * @skb: buffer to segment
2748 * @features: features for the output path (see dev->features)
2749 */
2750struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2751 netdev_features_t features)
2752{
2753 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2754 struct packet_offload *ptype;
2755 int vlan_depth = skb->mac_len;
2756 __be16 type = skb_network_protocol(skb, &vlan_depth);
2757
2758 if (unlikely(!type))
2759 return ERR_PTR(-EINVAL);
2760
2761 __skb_pull(skb, vlan_depth);
2762
2763 rcu_read_lock();
2764 list_for_each_entry_rcu(ptype, &offload_base, list) {
2765 if (ptype->type == type && ptype->callbacks.gso_segment) {
2766 segs = ptype->callbacks.gso_segment(skb, features);
2767 break;
2768 }
2769 }
2770 rcu_read_unlock();
2771
2772 __skb_push(skb, skb->data - skb_mac_header(skb));
2773
2774 return segs;
2775}
2776EXPORT_SYMBOL(skb_mac_gso_segment);
2777
2778
2779/* openvswitch calls this on rx path, so we need a different check.
2780 */
2781static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2782{
2783 if (tx_path)
2784 return skb->ip_summed != CHECKSUM_PARTIAL &&
2785 skb->ip_summed != CHECKSUM_UNNECESSARY;
2786
2787 return skb->ip_summed == CHECKSUM_NONE;
2788}
2789
2790/**
2791 * __skb_gso_segment - Perform segmentation on skb.
2792 * @skb: buffer to segment
2793 * @features: features for the output path (see dev->features)
2794 * @tx_path: whether it is called in TX path
2795 *
2796 * This function segments the given skb and returns a list of segments.
2797 *
2798 * It may return NULL if the skb requires no segmentation. This is
2799 * only possible when GSO is used for verifying header integrity.
2800 *
2801 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2802 */
2803struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2804 netdev_features_t features, bool tx_path)
2805{
2806 struct sk_buff *segs;
2807
2808 if (unlikely(skb_needs_check(skb, tx_path))) {
2809 int err;
2810
2811 /* We're going to init ->check field in TCP or UDP header */
2812 err = skb_cow_head(skb, 0);
2813 if (err < 0)
2814 return ERR_PTR(err);
2815 }
2816
2817 /* Only report GSO partial support if it will enable us to
2818 * support segmentation on this frame without needing additional
2819 * work.
2820 */
2821 if (features & NETIF_F_GSO_PARTIAL) {
2822 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2823 struct net_device *dev = skb->dev;
2824
2825 partial_features |= dev->features & dev->gso_partial_features;
2826 if (!skb_gso_ok(skb, features | partial_features))
2827 features &= ~NETIF_F_GSO_PARTIAL;
2828 }
2829
2830 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2831 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2832
2833 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2834 SKB_GSO_CB(skb)->encap_level = 0;
2835
2836 skb_reset_mac_header(skb);
2837 skb_reset_mac_len(skb);
2838
2839 segs = skb_mac_gso_segment(skb, features);
2840
2841 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2842 skb_warn_bad_offload(skb);
2843
2844 return segs;
2845}
2846EXPORT_SYMBOL(__skb_gso_segment);
2847
2848/* Take action when hardware reception checksum errors are detected. */
2849#ifdef CONFIG_BUG
2850void netdev_rx_csum_fault(struct net_device *dev)
2851{
2852 if (net_ratelimit()) {
2853 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2854 dump_stack();
2855 }
2856}
2857EXPORT_SYMBOL(netdev_rx_csum_fault);
2858#endif
2859
2860/* Actually, we should eliminate this check as soon as we know, that:
2861 * 1. IOMMU is present and allows to map all the memory.
2862 * 2. No high memory really exists on this machine.
2863 */
2864
2865static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2866{
2867#ifdef CONFIG_HIGHMEM
2868 int i;
2869
2870 if (!(dev->features & NETIF_F_HIGHDMA)) {
2871 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2872 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2873
2874 if (PageHighMem(skb_frag_page(frag)))
2875 return 1;
2876 }
2877 }
2878
2879 if (PCI_DMA_BUS_IS_PHYS) {
2880 struct device *pdev = dev->dev.parent;
2881
2882 if (!pdev)
2883 return 0;
2884 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2885 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2886 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2887
2888 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2889 return 1;
2890 }
2891 }
2892#endif
2893 return 0;
2894}
2895
2896/* If MPLS offload request, verify we are testing hardware MPLS features
2897 * instead of standard features for the netdev.
2898 */
2899#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2900static netdev_features_t net_mpls_features(struct sk_buff *skb,
2901 netdev_features_t features,
2902 __be16 type)
2903{
2904 if (eth_p_mpls(type))
2905 features &= skb->dev->mpls_features;
2906
2907 return features;
2908}
2909#else
2910static netdev_features_t net_mpls_features(struct sk_buff *skb,
2911 netdev_features_t features,
2912 __be16 type)
2913{
2914 return features;
2915}
2916#endif
2917
2918static netdev_features_t harmonize_features(struct sk_buff *skb,
2919 netdev_features_t features)
2920{
2921 int tmp;
2922 __be16 type;
2923
2924 type = skb_network_protocol(skb, &tmp);
2925 features = net_mpls_features(skb, features, type);
2926
2927 if (skb->ip_summed != CHECKSUM_NONE &&
2928 !can_checksum_protocol(features, type)) {
2929 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2930 }
2931 if (illegal_highdma(skb->dev, skb))
2932 features &= ~NETIF_F_SG;
2933
2934 return features;
2935}
2936
2937netdev_features_t passthru_features_check(struct sk_buff *skb,
2938 struct net_device *dev,
2939 netdev_features_t features)
2940{
2941 return features;
2942}
2943EXPORT_SYMBOL(passthru_features_check);
2944
2945static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2946 struct net_device *dev,
2947 netdev_features_t features)
2948{
2949 return vlan_features_check(skb, features);
2950}
2951
2952static netdev_features_t gso_features_check(const struct sk_buff *skb,
2953 struct net_device *dev,
2954 netdev_features_t features)
2955{
2956 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2957
2958 if (gso_segs > dev->gso_max_segs)
2959 return features & ~NETIF_F_GSO_MASK;
2960
2961 /* Support for GSO partial features requires software
2962 * intervention before we can actually process the packets
2963 * so we need to strip support for any partial features now
2964 * and we can pull them back in after we have partially
2965 * segmented the frame.
2966 */
2967 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2968 features &= ~dev->gso_partial_features;
2969
2970 /* Make sure to clear the IPv4 ID mangling feature if the
2971 * IPv4 header has the potential to be fragmented.
2972 */
2973 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2974 struct iphdr *iph = skb->encapsulation ?
2975 inner_ip_hdr(skb) : ip_hdr(skb);
2976
2977 if (!(iph->frag_off & htons(IP_DF)))
2978 features &= ~NETIF_F_TSO_MANGLEID;
2979 }
2980
2981 return features;
2982}
2983
2984netdev_features_t netif_skb_features(struct sk_buff *skb)
2985{
2986 struct net_device *dev = skb->dev;
2987 netdev_features_t features = dev->features;
2988
2989 if (skb_is_gso(skb))
2990 features = gso_features_check(skb, dev, features);
2991
2992 /* If encapsulation offload request, verify we are testing
2993 * hardware encapsulation features instead of standard
2994 * features for the netdev
2995 */
2996 if (skb->encapsulation)
2997 features &= dev->hw_enc_features;
2998
2999 if (skb_vlan_tagged(skb))
3000 features = netdev_intersect_features(features,
3001 dev->vlan_features |
3002 NETIF_F_HW_VLAN_CTAG_TX |
3003 NETIF_F_HW_VLAN_STAG_TX);
3004
3005 if (dev->netdev_ops->ndo_features_check)
3006 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3007 features);
3008 else
3009 features &= dflt_features_check(skb, dev, features);
3010
3011 return harmonize_features(skb, features);
3012}
3013EXPORT_SYMBOL(netif_skb_features);
3014
3015static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3016 struct netdev_queue *txq, bool more)
3017{
3018 unsigned int len;
3019 int rc;
3020
3021 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3022 dev_queue_xmit_nit(skb, dev);
3023
3024 len = skb->len;
3025 trace_net_dev_start_xmit(skb, dev);
3026 rc = netdev_start_xmit(skb, dev, txq, more);
3027 trace_net_dev_xmit(skb, rc, dev, len);
3028
3029 return rc;
3030}
3031
3032struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3033 struct netdev_queue *txq, int *ret)
3034{
3035 struct sk_buff *skb = first;
3036 int rc = NETDEV_TX_OK;
3037
3038 while (skb) {
3039 struct sk_buff *next = skb->next;
3040
3041 skb->next = NULL;
3042 rc = xmit_one(skb, dev, txq, next != NULL);
3043 if (unlikely(!dev_xmit_complete(rc))) {
3044 skb->next = next;
3045 goto out;
3046 }
3047
3048 skb = next;
3049 if (netif_xmit_stopped(txq) && skb) {
3050 rc = NETDEV_TX_BUSY;
3051 break;
3052 }
3053 }
3054
3055out:
3056 *ret = rc;
3057 return skb;
3058}
3059
3060static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3061 netdev_features_t features)
3062{
3063 if (skb_vlan_tag_present(skb) &&
3064 !vlan_hw_offload_capable(features, skb->vlan_proto))
3065 skb = __vlan_hwaccel_push_inside(skb);
3066 return skb;
3067}
3068
3069int skb_csum_hwoffload_help(struct sk_buff *skb,
3070 const netdev_features_t features)
3071{
3072 if (unlikely(skb->csum_not_inet))
3073 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3074 skb_crc32c_csum_help(skb);
3075
3076 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3077}
3078EXPORT_SYMBOL(skb_csum_hwoffload_help);
3079
3080static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3081{
3082 netdev_features_t features;
3083
3084 features = netif_skb_features(skb);
3085 skb = validate_xmit_vlan(skb, features);
3086 if (unlikely(!skb))
3087 goto out_null;
3088
3089 if (netif_needs_gso(skb, features)) {
3090 struct sk_buff *segs;
3091
3092 segs = skb_gso_segment(skb, features);
3093 if (IS_ERR(segs)) {
3094 goto out_kfree_skb;
3095 } else if (segs) {
3096 consume_skb(skb);
3097 skb = segs;
3098 }
3099 } else {
3100 if (skb_needs_linearize(skb, features) &&
3101 __skb_linearize(skb))
3102 goto out_kfree_skb;
3103
3104 /* If packet is not checksummed and device does not
3105 * support checksumming for this protocol, complete
3106 * checksumming here.
3107 */
3108 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3109 if (skb->encapsulation)
3110 skb_set_inner_transport_header(skb,
3111 skb_checksum_start_offset(skb));
3112 else
3113 skb_set_transport_header(skb,
3114 skb_checksum_start_offset(skb));
3115 if (skb_csum_hwoffload_help(skb, features))
3116 goto out_kfree_skb;
3117 }
3118 }
3119
3120 skb = validate_xmit_xfrm(skb, features, again);
3121
3122 return skb;
3123
3124out_kfree_skb:
3125 kfree_skb(skb);
3126out_null:
3127 atomic_long_inc(&dev->tx_dropped);
3128 return NULL;
3129}
3130
3131struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3132{
3133 struct sk_buff *next, *head = NULL, *tail;
3134
3135 for (; skb != NULL; skb = next) {
3136 next = skb->next;
3137 skb->next = NULL;
3138
3139 /* in case skb wont be segmented, point to itself */
3140 skb->prev = skb;
3141
3142 skb = validate_xmit_skb(skb, dev, again);
3143 if (!skb)
3144 continue;
3145
3146 if (!head)
3147 head = skb;
3148 else
3149 tail->next = skb;
3150 /* If skb was segmented, skb->prev points to
3151 * the last segment. If not, it still contains skb.
3152 */
3153 tail = skb->prev;
3154 }
3155 return head;
3156}
3157EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3158
3159static void qdisc_pkt_len_init(struct sk_buff *skb)
3160{
3161 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3162
3163 qdisc_skb_cb(skb)->pkt_len = skb->len;
3164
3165 /* To get more precise estimation of bytes sent on wire,
3166 * we add to pkt_len the headers size of all segments
3167 */
3168 if (shinfo->gso_size) {
3169 unsigned int hdr_len;
3170 u16 gso_segs = shinfo->gso_segs;
3171
3172 /* mac layer + network layer */
3173 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3174
3175 /* + transport layer */
3176 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3177 const struct tcphdr *th;
3178 struct tcphdr _tcphdr;
3179
3180 th = skb_header_pointer(skb, skb_transport_offset(skb),
3181 sizeof(_tcphdr), &_tcphdr);
3182 if (likely(th))
3183 hdr_len += __tcp_hdrlen(th);
3184 } else {
3185 struct udphdr _udphdr;
3186
3187 if (skb_header_pointer(skb, skb_transport_offset(skb),
3188 sizeof(_udphdr), &_udphdr))
3189 hdr_len += sizeof(struct udphdr);
3190 }
3191
3192 if (shinfo->gso_type & SKB_GSO_DODGY)
3193 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3194 shinfo->gso_size);
3195
3196 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3197 }
3198}
3199
3200static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3201 struct net_device *dev,
3202 struct netdev_queue *txq)
3203{
3204 spinlock_t *root_lock = qdisc_lock(q);
3205 struct sk_buff *to_free = NULL;
3206 bool contended;
3207 int rc;
3208
3209 qdisc_calculate_pkt_len(skb, q);
3210
3211 if (q->flags & TCQ_F_NOLOCK) {
3212 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3213 __qdisc_drop(skb, &to_free);
3214 rc = NET_XMIT_DROP;
3215 } else {
3216 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3217 __qdisc_run(q);
3218 }
3219
3220 if (unlikely(to_free))
3221 kfree_skb_list(to_free);
3222 return rc;
3223 }
3224
3225 /*
3226 * Heuristic to force contended enqueues to serialize on a
3227 * separate lock before trying to get qdisc main lock.
3228 * This permits qdisc->running owner to get the lock more
3229 * often and dequeue packets faster.
3230 */
3231 contended = qdisc_is_running(q);
3232 if (unlikely(contended))
3233 spin_lock(&q->busylock);
3234
3235 spin_lock(root_lock);
3236 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3237 __qdisc_drop(skb, &to_free);
3238 rc = NET_XMIT_DROP;
3239 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3240 qdisc_run_begin(q)) {
3241 /*
3242 * This is a work-conserving queue; there are no old skbs
3243 * waiting to be sent out; and the qdisc is not running -
3244 * xmit the skb directly.
3245 */
3246
3247 qdisc_bstats_update(q, skb);
3248
3249 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3250 if (unlikely(contended)) {
3251 spin_unlock(&q->busylock);
3252 contended = false;
3253 }
3254 __qdisc_run(q);
3255 }
3256
3257 qdisc_run_end(q);
3258 rc = NET_XMIT_SUCCESS;
3259 } else {
3260 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3261 if (qdisc_run_begin(q)) {
3262 if (unlikely(contended)) {
3263 spin_unlock(&q->busylock);
3264 contended = false;
3265 }
3266 __qdisc_run(q);
3267 qdisc_run_end(q);
3268 }
3269 }
3270 spin_unlock(root_lock);
3271 if (unlikely(to_free))
3272 kfree_skb_list(to_free);
3273 if (unlikely(contended))
3274 spin_unlock(&q->busylock);
3275 return rc;
3276}
3277
3278#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3279static void skb_update_prio(struct sk_buff *skb)
3280{
3281 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3282
3283 if (!skb->priority && skb->sk && map) {
3284 unsigned int prioidx =
3285 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3286
3287 if (prioidx < map->priomap_len)
3288 skb->priority = map->priomap[prioidx];
3289 }
3290}
3291#else
3292#define skb_update_prio(skb)
3293#endif
3294
3295DEFINE_PER_CPU(int, xmit_recursion);
3296EXPORT_SYMBOL(xmit_recursion);
3297
3298/**
3299 * dev_loopback_xmit - loop back @skb
3300 * @net: network namespace this loopback is happening in
3301 * @sk: sk needed to be a netfilter okfn
3302 * @skb: buffer to transmit
3303 */
3304int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3305{
3306 skb_reset_mac_header(skb);
3307 __skb_pull(skb, skb_network_offset(skb));
3308 skb->pkt_type = PACKET_LOOPBACK;
3309 skb->ip_summed = CHECKSUM_UNNECESSARY;
3310 WARN_ON(!skb_dst(skb));
3311 skb_dst_force(skb);
3312 netif_rx_ni(skb);
3313 return 0;
3314}
3315EXPORT_SYMBOL(dev_loopback_xmit);
3316
3317#ifdef CONFIG_NET_EGRESS
3318static struct sk_buff *
3319sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3320{
3321 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3322 struct tcf_result cl_res;
3323
3324 if (!miniq)
3325 return skb;
3326
3327 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3328 mini_qdisc_bstats_cpu_update(miniq, skb);
3329
3330 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3331 case TC_ACT_OK:
3332 case TC_ACT_RECLASSIFY:
3333 skb->tc_index = TC_H_MIN(cl_res.classid);
3334 break;
3335 case TC_ACT_SHOT:
3336 mini_qdisc_qstats_cpu_drop(miniq);
3337 *ret = NET_XMIT_DROP;
3338 kfree_skb(skb);
3339 return NULL;
3340 case TC_ACT_STOLEN:
3341 case TC_ACT_QUEUED:
3342 case TC_ACT_TRAP:
3343 *ret = NET_XMIT_SUCCESS;
3344 consume_skb(skb);
3345 return NULL;
3346 case TC_ACT_REDIRECT:
3347 /* No need to push/pop skb's mac_header here on egress! */
3348 skb_do_redirect(skb);
3349 *ret = NET_XMIT_SUCCESS;
3350 return NULL;
3351 default:
3352 break;
3353 }
3354
3355 return skb;
3356}
3357#endif /* CONFIG_NET_EGRESS */
3358
3359static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3360{
3361#ifdef CONFIG_XPS
3362 struct xps_dev_maps *dev_maps;
3363 struct xps_map *map;
3364 int queue_index = -1;
3365
3366 rcu_read_lock();
3367 dev_maps = rcu_dereference(dev->xps_maps);
3368 if (dev_maps) {
3369 unsigned int tci = skb->sender_cpu - 1;
3370
3371 if (dev->num_tc) {
3372 tci *= dev->num_tc;
3373 tci += netdev_get_prio_tc_map(dev, skb->priority);
3374 }
3375
3376 map = rcu_dereference(dev_maps->cpu_map[tci]);
3377 if (map) {
3378 if (map->len == 1)
3379 queue_index = map->queues[0];
3380 else
3381 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3382 map->len)];
3383 if (unlikely(queue_index >= dev->real_num_tx_queues))
3384 queue_index = -1;
3385 }
3386 }
3387 rcu_read_unlock();
3388
3389 return queue_index;
3390#else
3391 return -1;
3392#endif
3393}
3394
3395static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3396{
3397 struct sock *sk = skb->sk;
3398 int queue_index = sk_tx_queue_get(sk);
3399
3400 if (queue_index < 0 || skb->ooo_okay ||
3401 queue_index >= dev->real_num_tx_queues) {
3402 int new_index = get_xps_queue(dev, skb);
3403
3404 if (new_index < 0)
3405 new_index = skb_tx_hash(dev, skb);
3406
3407 if (queue_index != new_index && sk &&
3408 sk_fullsock(sk) &&
3409 rcu_access_pointer(sk->sk_dst_cache))
3410 sk_tx_queue_set(sk, new_index);
3411
3412 queue_index = new_index;
3413 }
3414
3415 return queue_index;
3416}
3417
3418struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3419 struct sk_buff *skb,
3420 void *accel_priv)
3421{
3422 int queue_index = 0;
3423
3424#ifdef CONFIG_XPS
3425 u32 sender_cpu = skb->sender_cpu - 1;
3426
3427 if (sender_cpu >= (u32)NR_CPUS)
3428 skb->sender_cpu = raw_smp_processor_id() + 1;
3429#endif
3430
3431 if (dev->real_num_tx_queues != 1) {
3432 const struct net_device_ops *ops = dev->netdev_ops;
3433
3434 if (ops->ndo_select_queue)
3435 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3436 __netdev_pick_tx);
3437 else
3438 queue_index = __netdev_pick_tx(dev, skb);
3439
3440 queue_index = netdev_cap_txqueue(dev, queue_index);
3441 }
3442
3443 skb_set_queue_mapping(skb, queue_index);
3444 return netdev_get_tx_queue(dev, queue_index);
3445}
3446
3447/**
3448 * __dev_queue_xmit - transmit a buffer
3449 * @skb: buffer to transmit
3450 * @accel_priv: private data used for L2 forwarding offload
3451 *
3452 * Queue a buffer for transmission to a network device. The caller must
3453 * have set the device and priority and built the buffer before calling
3454 * this function. The function can be called from an interrupt.
3455 *
3456 * A negative errno code is returned on a failure. A success does not
3457 * guarantee the frame will be transmitted as it may be dropped due
3458 * to congestion or traffic shaping.
3459 *
3460 * -----------------------------------------------------------------------------------
3461 * I notice this method can also return errors from the queue disciplines,
3462 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3463 * be positive.
3464 *
3465 * Regardless of the return value, the skb is consumed, so it is currently
3466 * difficult to retry a send to this method. (You can bump the ref count
3467 * before sending to hold a reference for retry if you are careful.)
3468 *
3469 * When calling this method, interrupts MUST be enabled. This is because
3470 * the BH enable code must have IRQs enabled so that it will not deadlock.
3471 * --BLG
3472 */
3473static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3474{
3475 struct net_device *dev = skb->dev;
3476 struct netdev_queue *txq;
3477 struct Qdisc *q;
3478 int rc = -ENOMEM;
3479 bool again = false;
3480
3481 skb_reset_mac_header(skb);
3482
3483 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3484 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3485
3486 /* Disable soft irqs for various locks below. Also
3487 * stops preemption for RCU.
3488 */
3489 rcu_read_lock_bh();
3490
3491 skb_update_prio(skb);
3492
3493 qdisc_pkt_len_init(skb);
3494#ifdef CONFIG_NET_CLS_ACT
3495 skb->tc_at_ingress = 0;
3496# ifdef CONFIG_NET_EGRESS
3497 if (static_key_false(&egress_needed)) {
3498 skb = sch_handle_egress(skb, &rc, dev);
3499 if (!skb)
3500 goto out;
3501 }
3502# endif
3503#endif
3504 /* If device/qdisc don't need skb->dst, release it right now while
3505 * its hot in this cpu cache.
3506 */
3507 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3508 skb_dst_drop(skb);
3509 else
3510 skb_dst_force(skb);
3511
3512 txq = netdev_pick_tx(dev, skb, accel_priv);
3513 q = rcu_dereference_bh(txq->qdisc);
3514
3515 trace_net_dev_queue(skb);
3516 if (q->enqueue) {
3517 rc = __dev_xmit_skb(skb, q, dev, txq);
3518 goto out;
3519 }
3520
3521 /* The device has no queue. Common case for software devices:
3522 * loopback, all the sorts of tunnels...
3523
3524 * Really, it is unlikely that netif_tx_lock protection is necessary
3525 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3526 * counters.)
3527 * However, it is possible, that they rely on protection
3528 * made by us here.
3529
3530 * Check this and shot the lock. It is not prone from deadlocks.
3531 *Either shot noqueue qdisc, it is even simpler 8)
3532 */
3533 if (dev->flags & IFF_UP) {
3534 int cpu = smp_processor_id(); /* ok because BHs are off */
3535
3536 if (txq->xmit_lock_owner != cpu) {
3537 if (unlikely(__this_cpu_read(xmit_recursion) >
3538 XMIT_RECURSION_LIMIT))
3539 goto recursion_alert;
3540
3541 skb = validate_xmit_skb(skb, dev, &again);
3542 if (!skb)
3543 goto out;
3544
3545 HARD_TX_LOCK(dev, txq, cpu);
3546
3547 if (!netif_xmit_stopped(txq)) {
3548 __this_cpu_inc(xmit_recursion);
3549 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3550 __this_cpu_dec(xmit_recursion);
3551 if (dev_xmit_complete(rc)) {
3552 HARD_TX_UNLOCK(dev, txq);
3553 goto out;
3554 }
3555 }
3556 HARD_TX_UNLOCK(dev, txq);
3557 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3558 dev->name);
3559 } else {
3560 /* Recursion is detected! It is possible,
3561 * unfortunately
3562 */
3563recursion_alert:
3564 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3565 dev->name);
3566 }
3567 }
3568
3569 rc = -ENETDOWN;
3570 rcu_read_unlock_bh();
3571
3572 atomic_long_inc(&dev->tx_dropped);
3573 kfree_skb_list(skb);
3574 return rc;
3575out:
3576 rcu_read_unlock_bh();
3577 return rc;
3578}
3579
3580int dev_queue_xmit(struct sk_buff *skb)
3581{
3582 return __dev_queue_xmit(skb, NULL);
3583}
3584EXPORT_SYMBOL(dev_queue_xmit);
3585
3586int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3587{
3588 return __dev_queue_xmit(skb, accel_priv);
3589}
3590EXPORT_SYMBOL(dev_queue_xmit_accel);
3591
3592
3593/*************************************************************************
3594 * Receiver routines
3595 *************************************************************************/
3596
3597int netdev_max_backlog __read_mostly = 1000;
3598EXPORT_SYMBOL(netdev_max_backlog);
3599
3600int netdev_tstamp_prequeue __read_mostly = 1;
3601int netdev_budget __read_mostly = 300;
3602unsigned int __read_mostly netdev_budget_usecs = 2000;
3603int weight_p __read_mostly = 64; /* old backlog weight */
3604int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3605int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3606int dev_rx_weight __read_mostly = 64;
3607int dev_tx_weight __read_mostly = 64;
3608
3609/* Called with irq disabled */
3610static inline void ____napi_schedule(struct softnet_data *sd,
3611 struct napi_struct *napi)
3612{
3613 list_add_tail(&napi->poll_list, &sd->poll_list);
3614 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3615}
3616
3617#ifdef CONFIG_RPS
3618
3619/* One global table that all flow-based protocols share. */
3620struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3621EXPORT_SYMBOL(rps_sock_flow_table);
3622u32 rps_cpu_mask __read_mostly;
3623EXPORT_SYMBOL(rps_cpu_mask);
3624
3625struct static_key rps_needed __read_mostly;
3626EXPORT_SYMBOL(rps_needed);
3627struct static_key rfs_needed __read_mostly;
3628EXPORT_SYMBOL(rfs_needed);
3629
3630static struct rps_dev_flow *
3631set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3632 struct rps_dev_flow *rflow, u16 next_cpu)
3633{
3634 if (next_cpu < nr_cpu_ids) {
3635#ifdef CONFIG_RFS_ACCEL
3636 struct netdev_rx_queue *rxqueue;
3637 struct rps_dev_flow_table *flow_table;
3638 struct rps_dev_flow *old_rflow;
3639 u32 flow_id;
3640 u16 rxq_index;
3641 int rc;
3642
3643 /* Should we steer this flow to a different hardware queue? */
3644 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3645 !(dev->features & NETIF_F_NTUPLE))
3646 goto out;
3647 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3648 if (rxq_index == skb_get_rx_queue(skb))
3649 goto out;
3650
3651 rxqueue = dev->_rx + rxq_index;
3652 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3653 if (!flow_table)
3654 goto out;
3655 flow_id = skb_get_hash(skb) & flow_table->mask;
3656 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3657 rxq_index, flow_id);
3658 if (rc < 0)
3659 goto out;
3660 old_rflow = rflow;
3661 rflow = &flow_table->flows[flow_id];
3662 rflow->filter = rc;
3663 if (old_rflow->filter == rflow->filter)
3664 old_rflow->filter = RPS_NO_FILTER;
3665 out:
3666#endif
3667 rflow->last_qtail =
3668 per_cpu(softnet_data, next_cpu).input_queue_head;
3669 }
3670
3671 rflow->cpu = next_cpu;
3672 return rflow;
3673}
3674
3675/*
3676 * get_rps_cpu is called from netif_receive_skb and returns the target
3677 * CPU from the RPS map of the receiving queue for a given skb.
3678 * rcu_read_lock must be held on entry.
3679 */
3680static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3681 struct rps_dev_flow **rflowp)
3682{
3683 const struct rps_sock_flow_table *sock_flow_table;
3684 struct netdev_rx_queue *rxqueue = dev->_rx;
3685 struct rps_dev_flow_table *flow_table;
3686 struct rps_map *map;
3687 int cpu = -1;
3688 u32 tcpu;
3689 u32 hash;
3690
3691 if (skb_rx_queue_recorded(skb)) {
3692 u16 index = skb_get_rx_queue(skb);
3693
3694 if (unlikely(index >= dev->real_num_rx_queues)) {
3695 WARN_ONCE(dev->real_num_rx_queues > 1,
3696 "%s received packet on queue %u, but number "
3697 "of RX queues is %u\n",
3698 dev->name, index, dev->real_num_rx_queues);
3699 goto done;
3700 }
3701 rxqueue += index;
3702 }
3703
3704 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3705
3706 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3707 map = rcu_dereference(rxqueue->rps_map);
3708 if (!flow_table && !map)
3709 goto done;
3710
3711 skb_reset_network_header(skb);
3712 hash = skb_get_hash(skb);
3713 if (!hash)
3714 goto done;
3715
3716 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3717 if (flow_table && sock_flow_table) {
3718 struct rps_dev_flow *rflow;
3719 u32 next_cpu;
3720 u32 ident;
3721
3722 /* First check into global flow table if there is a match */
3723 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3724 if ((ident ^ hash) & ~rps_cpu_mask)
3725 goto try_rps;
3726
3727 next_cpu = ident & rps_cpu_mask;
3728
3729 /* OK, now we know there is a match,
3730 * we can look at the local (per receive queue) flow table
3731 */
3732 rflow = &flow_table->flows[hash & flow_table->mask];
3733 tcpu = rflow->cpu;
3734
3735 /*
3736 * If the desired CPU (where last recvmsg was done) is
3737 * different from current CPU (one in the rx-queue flow
3738 * table entry), switch if one of the following holds:
3739 * - Current CPU is unset (>= nr_cpu_ids).
3740 * - Current CPU is offline.
3741 * - The current CPU's queue tail has advanced beyond the
3742 * last packet that was enqueued using this table entry.
3743 * This guarantees that all previous packets for the flow
3744 * have been dequeued, thus preserving in order delivery.
3745 */
3746 if (unlikely(tcpu != next_cpu) &&
3747 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3748 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3749 rflow->last_qtail)) >= 0)) {
3750 tcpu = next_cpu;
3751 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3752 }
3753
3754 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3755 *rflowp = rflow;
3756 cpu = tcpu;
3757 goto done;
3758 }
3759 }
3760
3761try_rps:
3762
3763 if (map) {
3764 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3765 if (cpu_online(tcpu)) {
3766 cpu = tcpu;
3767 goto done;
3768 }
3769 }
3770
3771done:
3772 return cpu;
3773}
3774
3775#ifdef CONFIG_RFS_ACCEL
3776
3777/**
3778 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3779 * @dev: Device on which the filter was set
3780 * @rxq_index: RX queue index
3781 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3782 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3783 *
3784 * Drivers that implement ndo_rx_flow_steer() should periodically call
3785 * this function for each installed filter and remove the filters for
3786 * which it returns %true.
3787 */
3788bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3789 u32 flow_id, u16 filter_id)
3790{
3791 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3792 struct rps_dev_flow_table *flow_table;
3793 struct rps_dev_flow *rflow;
3794 bool expire = true;
3795 unsigned int cpu;
3796
3797 rcu_read_lock();
3798 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3799 if (flow_table && flow_id <= flow_table->mask) {
3800 rflow = &flow_table->flows[flow_id];
3801 cpu = READ_ONCE(rflow->cpu);
3802 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3803 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3804 rflow->last_qtail) <
3805 (int)(10 * flow_table->mask)))
3806 expire = false;
3807 }
3808 rcu_read_unlock();
3809 return expire;
3810}
3811EXPORT_SYMBOL(rps_may_expire_flow);
3812
3813#endif /* CONFIG_RFS_ACCEL */
3814
3815/* Called from hardirq (IPI) context */
3816static void rps_trigger_softirq(void *data)
3817{
3818 struct softnet_data *sd = data;
3819
3820 ____napi_schedule(sd, &sd->backlog);
3821 sd->received_rps++;
3822}
3823
3824#endif /* CONFIG_RPS */
3825
3826/*
3827 * Check if this softnet_data structure is another cpu one
3828 * If yes, queue it to our IPI list and return 1
3829 * If no, return 0
3830 */
3831static int rps_ipi_queued(struct softnet_data *sd)
3832{
3833#ifdef CONFIG_RPS
3834 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3835
3836 if (sd != mysd) {
3837 sd->rps_ipi_next = mysd->rps_ipi_list;
3838 mysd->rps_ipi_list = sd;
3839
3840 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3841 return 1;
3842 }
3843#endif /* CONFIG_RPS */
3844 return 0;
3845}
3846
3847#ifdef CONFIG_NET_FLOW_LIMIT
3848int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3849#endif
3850
3851static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3852{
3853#ifdef CONFIG_NET_FLOW_LIMIT
3854 struct sd_flow_limit *fl;
3855 struct softnet_data *sd;
3856 unsigned int old_flow, new_flow;
3857
3858 if (qlen < (netdev_max_backlog >> 1))
3859 return false;
3860
3861 sd = this_cpu_ptr(&softnet_data);
3862
3863 rcu_read_lock();
3864 fl = rcu_dereference(sd->flow_limit);
3865 if (fl) {
3866 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3867 old_flow = fl->history[fl->history_head];
3868 fl->history[fl->history_head] = new_flow;
3869
3870 fl->history_head++;
3871 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3872
3873 if (likely(fl->buckets[old_flow]))
3874 fl->buckets[old_flow]--;
3875
3876 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3877 fl->count++;
3878 rcu_read_unlock();
3879 return true;
3880 }
3881 }
3882 rcu_read_unlock();
3883#endif
3884 return false;
3885}
3886
3887/*
3888 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3889 * queue (may be a remote CPU queue).
3890 */
3891static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3892 unsigned int *qtail)
3893{
3894 struct softnet_data *sd;
3895 unsigned long flags;
3896 unsigned int qlen;
3897
3898 sd = &per_cpu(softnet_data, cpu);
3899
3900 local_irq_save(flags);
3901
3902 rps_lock(sd);
3903 if (!netif_running(skb->dev))
3904 goto drop;
3905 qlen = skb_queue_len(&sd->input_pkt_queue);
3906 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3907 if (qlen) {
3908enqueue:
3909 __skb_queue_tail(&sd->input_pkt_queue, skb);
3910 input_queue_tail_incr_save(sd, qtail);
3911 rps_unlock(sd);
3912 local_irq_restore(flags);
3913 return NET_RX_SUCCESS;
3914 }
3915
3916 /* Schedule NAPI for backlog device
3917 * We can use non atomic operation since we own the queue lock
3918 */
3919 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3920 if (!rps_ipi_queued(sd))
3921 ____napi_schedule(sd, &sd->backlog);
3922 }
3923 goto enqueue;
3924 }
3925
3926drop:
3927 sd->dropped++;
3928 rps_unlock(sd);
3929
3930 local_irq_restore(flags);
3931
3932 atomic_long_inc(&skb->dev->rx_dropped);
3933 kfree_skb(skb);
3934 return NET_RX_DROP;
3935}
3936
3937static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
3938{
3939 struct net_device *dev = skb->dev;
3940 struct netdev_rx_queue *rxqueue;
3941
3942 rxqueue = dev->_rx;
3943
3944 if (skb_rx_queue_recorded(skb)) {
3945 u16 index = skb_get_rx_queue(skb);
3946
3947 if (unlikely(index >= dev->real_num_rx_queues)) {
3948 WARN_ONCE(dev->real_num_rx_queues > 1,
3949 "%s received packet on queue %u, but number "
3950 "of RX queues is %u\n",
3951 dev->name, index, dev->real_num_rx_queues);
3952
3953 return rxqueue; /* Return first rxqueue */
3954 }
3955 rxqueue += index;
3956 }
3957 return rxqueue;
3958}
3959
3960static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3961 struct bpf_prog *xdp_prog)
3962{
3963 struct netdev_rx_queue *rxqueue;
3964 u32 metalen, act = XDP_DROP;
3965 struct xdp_buff xdp;
3966 void *orig_data;
3967 int hlen, off;
3968 u32 mac_len;
3969
3970 /* Reinjected packets coming from act_mirred or similar should
3971 * not get XDP generic processing.
3972 */
3973 if (skb_cloned(skb))
3974 return XDP_PASS;
3975
3976 /* XDP packets must be linear and must have sufficient headroom
3977 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3978 * native XDP provides, thus we need to do it here as well.
3979 */
3980 if (skb_is_nonlinear(skb) ||
3981 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3982 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3983 int troom = skb->tail + skb->data_len - skb->end;
3984
3985 /* In case we have to go down the path and also linearize,
3986 * then lets do the pskb_expand_head() work just once here.
3987 */
3988 if (pskb_expand_head(skb,
3989 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3990 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3991 goto do_drop;
3992 if (skb_linearize(skb))
3993 goto do_drop;
3994 }
3995
3996 /* The XDP program wants to see the packet starting at the MAC
3997 * header.
3998 */
3999 mac_len = skb->data - skb_mac_header(skb);
4000 hlen = skb_headlen(skb) + mac_len;
4001 xdp.data = skb->data - mac_len;
4002 xdp.data_meta = xdp.data;
4003 xdp.data_end = xdp.data + hlen;
4004 xdp.data_hard_start = skb->data - skb_headroom(skb);
4005 orig_data = xdp.data;
4006
4007 rxqueue = netif_get_rxqueue(skb);
4008 xdp.rxq = &rxqueue->xdp_rxq;
4009
4010 act = bpf_prog_run_xdp(xdp_prog, &xdp);
4011
4012 off = xdp.data - orig_data;
4013 if (off > 0)
4014 __skb_pull(skb, off);
4015 else if (off < 0)
4016 __skb_push(skb, -off);
4017 skb->mac_header += off;
4018
4019 switch (act) {
4020 case XDP_REDIRECT:
4021 case XDP_TX:
4022 __skb_push(skb, mac_len);
4023 break;
4024 case XDP_PASS:
4025 metalen = xdp.data - xdp.data_meta;
4026 if (metalen)
4027 skb_metadata_set(skb, metalen);
4028 break;
4029 default:
4030 bpf_warn_invalid_xdp_action(act);
4031 /* fall through */
4032 case XDP_ABORTED:
4033 trace_xdp_exception(skb->dev, xdp_prog, act);
4034 /* fall through */
4035 case XDP_DROP:
4036 do_drop:
4037 kfree_skb(skb);
4038 break;
4039 }
4040
4041 return act;
4042}
4043
4044/* When doing generic XDP we have to bypass the qdisc layer and the
4045 * network taps in order to match in-driver-XDP behavior.
4046 */
4047void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4048{
4049 struct net_device *dev = skb->dev;
4050 struct netdev_queue *txq;
4051 bool free_skb = true;
4052 int cpu, rc;
4053
4054 txq = netdev_pick_tx(dev, skb, NULL);
4055 cpu = smp_processor_id();
4056 HARD_TX_LOCK(dev, txq, cpu);
4057 if (!netif_xmit_stopped(txq)) {
4058 rc = netdev_start_xmit(skb, dev, txq, 0);
4059 if (dev_xmit_complete(rc))
4060 free_skb = false;
4061 }
4062 HARD_TX_UNLOCK(dev, txq);
4063 if (free_skb) {
4064 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4065 kfree_skb(skb);
4066 }
4067}
4068EXPORT_SYMBOL_GPL(generic_xdp_tx);
4069
4070static struct static_key generic_xdp_needed __read_mostly;
4071
4072int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4073{
4074 if (xdp_prog) {
4075 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4076 int err;
4077
4078 if (act != XDP_PASS) {
4079 switch (act) {
4080 case XDP_REDIRECT:
4081 err = xdp_do_generic_redirect(skb->dev, skb,
4082 xdp_prog);
4083 if (err)
4084 goto out_redir;
4085 /* fallthru to submit skb */
4086 case XDP_TX:
4087 generic_xdp_tx(skb, xdp_prog);
4088 break;
4089 }
4090 return XDP_DROP;
4091 }
4092 }
4093 return XDP_PASS;
4094out_redir:
4095 kfree_skb(skb);
4096 return XDP_DROP;
4097}
4098EXPORT_SYMBOL_GPL(do_xdp_generic);
4099
4100static int netif_rx_internal(struct sk_buff *skb)
4101{
4102 int ret;
4103
4104 net_timestamp_check(netdev_tstamp_prequeue, skb);
4105
4106 trace_netif_rx(skb);
4107
4108 if (static_key_false(&generic_xdp_needed)) {
4109 int ret;
4110
4111 preempt_disable();
4112 rcu_read_lock();
4113 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4114 rcu_read_unlock();
4115 preempt_enable();
4116
4117 /* Consider XDP consuming the packet a success from
4118 * the netdev point of view we do not want to count
4119 * this as an error.
4120 */
4121 if (ret != XDP_PASS)
4122 return NET_RX_SUCCESS;
4123 }
4124
4125#ifdef CONFIG_RPS
4126 if (static_key_false(&rps_needed)) {
4127 struct rps_dev_flow voidflow, *rflow = &voidflow;
4128 int cpu;
4129
4130 preempt_disable();
4131 rcu_read_lock();
4132
4133 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4134 if (cpu < 0)
4135 cpu = smp_processor_id();
4136
4137 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4138
4139 rcu_read_unlock();
4140 preempt_enable();
4141 } else
4142#endif
4143 {
4144 unsigned int qtail;
4145
4146 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4147 put_cpu();
4148 }
4149 return ret;
4150}
4151
4152/**
4153 * netif_rx - post buffer to the network code
4154 * @skb: buffer to post
4155 *
4156 * This function receives a packet from a device driver and queues it for
4157 * the upper (protocol) levels to process. It always succeeds. The buffer
4158 * may be dropped during processing for congestion control or by the
4159 * protocol layers.
4160 *
4161 * return values:
4162 * NET_RX_SUCCESS (no congestion)
4163 * NET_RX_DROP (packet was dropped)
4164 *
4165 */
4166
4167int netif_rx(struct sk_buff *skb)
4168{
4169 trace_netif_rx_entry(skb);
4170
4171 return netif_rx_internal(skb);
4172}
4173EXPORT_SYMBOL(netif_rx);
4174
4175int netif_rx_ni(struct sk_buff *skb)
4176{
4177 int err;
4178
4179 trace_netif_rx_ni_entry(skb);
4180
4181 preempt_disable();
4182 err = netif_rx_internal(skb);
4183 if (local_softirq_pending())
4184 do_softirq();
4185 preempt_enable();
4186
4187 return err;
4188}
4189EXPORT_SYMBOL(netif_rx_ni);
4190
4191static __latent_entropy void net_tx_action(struct softirq_action *h)
4192{
4193 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4194
4195 if (sd->completion_queue) {
4196 struct sk_buff *clist;
4197
4198 local_irq_disable();
4199 clist = sd->completion_queue;
4200 sd->completion_queue = NULL;
4201 local_irq_enable();
4202
4203 while (clist) {
4204 struct sk_buff *skb = clist;
4205
4206 clist = clist->next;
4207
4208 WARN_ON(refcount_read(&skb->users));
4209 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4210 trace_consume_skb(skb);
4211 else
4212 trace_kfree_skb(skb, net_tx_action);
4213
4214 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4215 __kfree_skb(skb);
4216 else
4217 __kfree_skb_defer(skb);
4218 }
4219
4220 __kfree_skb_flush();
4221 }
4222
4223 if (sd->output_queue) {
4224 struct Qdisc *head;
4225
4226 local_irq_disable();
4227 head = sd->output_queue;
4228 sd->output_queue = NULL;
4229 sd->output_queue_tailp = &sd->output_queue;
4230 local_irq_enable();
4231
4232 while (head) {
4233 struct Qdisc *q = head;
4234 spinlock_t *root_lock = NULL;
4235
4236 head = head->next_sched;
4237
4238 if (!(q->flags & TCQ_F_NOLOCK)) {
4239 root_lock = qdisc_lock(q);
4240 spin_lock(root_lock);
4241 }
4242 /* We need to make sure head->next_sched is read
4243 * before clearing __QDISC_STATE_SCHED
4244 */
4245 smp_mb__before_atomic();
4246 clear_bit(__QDISC_STATE_SCHED, &q->state);
4247 qdisc_run(q);
4248 if (root_lock)
4249 spin_unlock(root_lock);
4250 }
4251 }
4252
4253 xfrm_dev_backlog(sd);
4254}
4255
4256#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4257/* This hook is defined here for ATM LANE */
4258int (*br_fdb_test_addr_hook)(struct net_device *dev,
4259 unsigned char *addr) __read_mostly;
4260EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4261#endif
4262
4263static inline struct sk_buff *
4264sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4265 struct net_device *orig_dev)
4266{
4267#ifdef CONFIG_NET_CLS_ACT
4268 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4269 struct tcf_result cl_res;
4270
4271 /* If there's at least one ingress present somewhere (so
4272 * we get here via enabled static key), remaining devices
4273 * that are not configured with an ingress qdisc will bail
4274 * out here.
4275 */
4276 if (!miniq)
4277 return skb;
4278
4279 if (*pt_prev) {
4280 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4281 *pt_prev = NULL;
4282 }
4283
4284 qdisc_skb_cb(skb)->pkt_len = skb->len;
4285 skb->tc_at_ingress = 1;
4286 mini_qdisc_bstats_cpu_update(miniq, skb);
4287
4288 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4289 case TC_ACT_OK:
4290 case TC_ACT_RECLASSIFY:
4291 skb->tc_index = TC_H_MIN(cl_res.classid);
4292 break;
4293 case TC_ACT_SHOT:
4294 mini_qdisc_qstats_cpu_drop(miniq);
4295 kfree_skb(skb);
4296 return NULL;
4297 case TC_ACT_STOLEN:
4298 case TC_ACT_QUEUED:
4299 case TC_ACT_TRAP:
4300 consume_skb(skb);
4301 return NULL;
4302 case TC_ACT_REDIRECT:
4303 /* skb_mac_header check was done by cls/act_bpf, so
4304 * we can safely push the L2 header back before
4305 * redirecting to another netdev
4306 */
4307 __skb_push(skb, skb->mac_len);
4308 skb_do_redirect(skb);
4309 return NULL;
4310 default:
4311 break;
4312 }
4313#endif /* CONFIG_NET_CLS_ACT */
4314 return skb;
4315}
4316
4317/**
4318 * netdev_is_rx_handler_busy - check if receive handler is registered
4319 * @dev: device to check
4320 *
4321 * Check if a receive handler is already registered for a given device.
4322 * Return true if there one.
4323 *
4324 * The caller must hold the rtnl_mutex.
4325 */
4326bool netdev_is_rx_handler_busy(struct net_device *dev)
4327{
4328 ASSERT_RTNL();
4329 return dev && rtnl_dereference(dev->rx_handler);
4330}
4331EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4332
4333/**
4334 * netdev_rx_handler_register - register receive handler
4335 * @dev: device to register a handler for
4336 * @rx_handler: receive handler to register
4337 * @rx_handler_data: data pointer that is used by rx handler
4338 *
4339 * Register a receive handler for a device. This handler will then be
4340 * called from __netif_receive_skb. A negative errno code is returned
4341 * on a failure.
4342 *
4343 * The caller must hold the rtnl_mutex.
4344 *
4345 * For a general description of rx_handler, see enum rx_handler_result.
4346 */
4347int netdev_rx_handler_register(struct net_device *dev,
4348 rx_handler_func_t *rx_handler,
4349 void *rx_handler_data)
4350{
4351 if (netdev_is_rx_handler_busy(dev))
4352 return -EBUSY;
4353
4354 /* Note: rx_handler_data must be set before rx_handler */
4355 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4356 rcu_assign_pointer(dev->rx_handler, rx_handler);
4357
4358 return 0;
4359}
4360EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4361
4362/**
4363 * netdev_rx_handler_unregister - unregister receive handler
4364 * @dev: device to unregister a handler from
4365 *
4366 * Unregister a receive handler from a device.
4367 *
4368 * The caller must hold the rtnl_mutex.
4369 */
4370void netdev_rx_handler_unregister(struct net_device *dev)
4371{
4372
4373 ASSERT_RTNL();
4374 RCU_INIT_POINTER(dev->rx_handler, NULL);
4375 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4376 * section has a guarantee to see a non NULL rx_handler_data
4377 * as well.
4378 */
4379 synchronize_net();
4380 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4381}
4382EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4383
4384/*
4385 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4386 * the special handling of PFMEMALLOC skbs.
4387 */
4388static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4389{
4390 switch (skb->protocol) {
4391 case htons(ETH_P_ARP):
4392 case htons(ETH_P_IP):
4393 case htons(ETH_P_IPV6):
4394 case htons(ETH_P_8021Q):
4395 case htons(ETH_P_8021AD):
4396 return true;
4397 default:
4398 return false;
4399 }
4400}
4401
4402static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4403 int *ret, struct net_device *orig_dev)
4404{
4405#ifdef CONFIG_NETFILTER_INGRESS
4406 if (nf_hook_ingress_active(skb)) {
4407 int ingress_retval;
4408
4409 if (*pt_prev) {
4410 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4411 *pt_prev = NULL;
4412 }
4413
4414 rcu_read_lock();
4415 ingress_retval = nf_hook_ingress(skb);
4416 rcu_read_unlock();
4417 return ingress_retval;
4418 }
4419#endif /* CONFIG_NETFILTER_INGRESS */
4420 return 0;
4421}
4422
4423static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4424{
4425 struct packet_type *ptype, *pt_prev;
4426 rx_handler_func_t *rx_handler;
4427 struct net_device *orig_dev;
4428 bool deliver_exact = false;
4429 int ret = NET_RX_DROP;
4430 __be16 type;
4431
4432 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4433
4434 trace_netif_receive_skb(skb);
4435
4436 orig_dev = skb->dev;
4437
4438 skb_reset_network_header(skb);
4439 if (!skb_transport_header_was_set(skb))
4440 skb_reset_transport_header(skb);
4441 skb_reset_mac_len(skb);
4442
4443 pt_prev = NULL;
4444
4445another_round:
4446 skb->skb_iif = skb->dev->ifindex;
4447
4448 __this_cpu_inc(softnet_data.processed);
4449
4450 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4451 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4452 skb = skb_vlan_untag(skb);
4453 if (unlikely(!skb))
4454 goto out;
4455 }
4456
4457 if (skb_skip_tc_classify(skb))
4458 goto skip_classify;
4459
4460 if (pfmemalloc)
4461 goto skip_taps;
4462
4463 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4464 if (pt_prev)
4465 ret = deliver_skb(skb, pt_prev, orig_dev);
4466 pt_prev = ptype;
4467 }
4468
4469 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4470 if (pt_prev)
4471 ret = deliver_skb(skb, pt_prev, orig_dev);
4472 pt_prev = ptype;
4473 }
4474
4475skip_taps:
4476#ifdef CONFIG_NET_INGRESS
4477 if (static_key_false(&ingress_needed)) {
4478 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4479 if (!skb)
4480 goto out;
4481
4482 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4483 goto out;
4484 }
4485#endif
4486 skb_reset_tc(skb);
4487skip_classify:
4488 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4489 goto drop;
4490
4491 if (skb_vlan_tag_present(skb)) {
4492 if (pt_prev) {
4493 ret = deliver_skb(skb, pt_prev, orig_dev);
4494 pt_prev = NULL;
4495 }
4496 if (vlan_do_receive(&skb))
4497 goto another_round;
4498 else if (unlikely(!skb))
4499 goto out;
4500 }
4501
4502 rx_handler = rcu_dereference(skb->dev->rx_handler);
4503 if (rx_handler) {
4504 if (pt_prev) {
4505 ret = deliver_skb(skb, pt_prev, orig_dev);
4506 pt_prev = NULL;
4507 }
4508 switch (rx_handler(&skb)) {
4509 case RX_HANDLER_CONSUMED:
4510 ret = NET_RX_SUCCESS;
4511 goto out;
4512 case RX_HANDLER_ANOTHER:
4513 goto another_round;
4514 case RX_HANDLER_EXACT:
4515 deliver_exact = true;
4516 case RX_HANDLER_PASS:
4517 break;
4518 default:
4519 BUG();
4520 }
4521 }
4522
4523 if (unlikely(skb_vlan_tag_present(skb))) {
4524 if (skb_vlan_tag_get_id(skb))
4525 skb->pkt_type = PACKET_OTHERHOST;
4526 /* Note: we might in the future use prio bits
4527 * and set skb->priority like in vlan_do_receive()
4528 * For the time being, just ignore Priority Code Point
4529 */
4530 skb->vlan_tci = 0;
4531 }
4532
4533 type = skb->protocol;
4534
4535 /* deliver only exact match when indicated */
4536 if (likely(!deliver_exact)) {
4537 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4538 &ptype_base[ntohs(type) &
4539 PTYPE_HASH_MASK]);
4540 }
4541
4542 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4543 &orig_dev->ptype_specific);
4544
4545 if (unlikely(skb->dev != orig_dev)) {
4546 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4547 &skb->dev->ptype_specific);
4548 }
4549
4550 if (pt_prev) {
4551 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4552 goto drop;
4553 else
4554 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4555 } else {
4556drop:
4557 if (!deliver_exact)
4558 atomic_long_inc(&skb->dev->rx_dropped);
4559 else
4560 atomic_long_inc(&skb->dev->rx_nohandler);
4561 kfree_skb(skb);
4562 /* Jamal, now you will not able to escape explaining
4563 * me how you were going to use this. :-)
4564 */
4565 ret = NET_RX_DROP;
4566 }
4567
4568out:
4569 return ret;
4570}
4571
4572/**
4573 * netif_receive_skb_core - special purpose version of netif_receive_skb
4574 * @skb: buffer to process
4575 *
4576 * More direct receive version of netif_receive_skb(). It should
4577 * only be used by callers that have a need to skip RPS and Generic XDP.
4578 * Caller must also take care of handling if (page_is_)pfmemalloc.
4579 *
4580 * This function may only be called from softirq context and interrupts
4581 * should be enabled.
4582 *
4583 * Return values (usually ignored):
4584 * NET_RX_SUCCESS: no congestion
4585 * NET_RX_DROP: packet was dropped
4586 */
4587int netif_receive_skb_core(struct sk_buff *skb)
4588{
4589 int ret;
4590
4591 rcu_read_lock();
4592 ret = __netif_receive_skb_core(skb, false);
4593 rcu_read_unlock();
4594
4595 return ret;
4596}
4597EXPORT_SYMBOL(netif_receive_skb_core);
4598
4599static int __netif_receive_skb(struct sk_buff *skb)
4600{
4601 int ret;
4602
4603 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4604 unsigned int noreclaim_flag;
4605
4606 /*
4607 * PFMEMALLOC skbs are special, they should
4608 * - be delivered to SOCK_MEMALLOC sockets only
4609 * - stay away from userspace
4610 * - have bounded memory usage
4611 *
4612 * Use PF_MEMALLOC as this saves us from propagating the allocation
4613 * context down to all allocation sites.
4614 */
4615 noreclaim_flag = memalloc_noreclaim_save();
4616 ret = __netif_receive_skb_core(skb, true);
4617 memalloc_noreclaim_restore(noreclaim_flag);
4618 } else
4619 ret = __netif_receive_skb_core(skb, false);
4620
4621 return ret;
4622}
4623
4624static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4625{
4626 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4627 struct bpf_prog *new = xdp->prog;
4628 int ret = 0;
4629
4630 switch (xdp->command) {
4631 case XDP_SETUP_PROG:
4632 rcu_assign_pointer(dev->xdp_prog, new);
4633 if (old)
4634 bpf_prog_put(old);
4635
4636 if (old && !new) {
4637 static_key_slow_dec(&generic_xdp_needed);
4638 } else if (new && !old) {
4639 static_key_slow_inc(&generic_xdp_needed);
4640 dev_disable_lro(dev);
4641 dev_disable_gro_hw(dev);
4642 }
4643 break;
4644
4645 case XDP_QUERY_PROG:
4646 xdp->prog_attached = !!old;
4647 xdp->prog_id = old ? old->aux->id : 0;
4648 break;
4649
4650 default:
4651 ret = -EINVAL;
4652 break;
4653 }
4654
4655 return ret;
4656}
4657
4658static int netif_receive_skb_internal(struct sk_buff *skb)
4659{
4660 int ret;
4661
4662 net_timestamp_check(netdev_tstamp_prequeue, skb);
4663
4664 if (skb_defer_rx_timestamp(skb))
4665 return NET_RX_SUCCESS;
4666
4667 if (static_key_false(&generic_xdp_needed)) {
4668 int ret;
4669
4670 preempt_disable();
4671 rcu_read_lock();
4672 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4673 rcu_read_unlock();
4674 preempt_enable();
4675
4676 if (ret != XDP_PASS)
4677 return NET_RX_DROP;
4678 }
4679
4680 rcu_read_lock();
4681#ifdef CONFIG_RPS
4682 if (static_key_false(&rps_needed)) {
4683 struct rps_dev_flow voidflow, *rflow = &voidflow;
4684 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4685
4686 if (cpu >= 0) {
4687 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4688 rcu_read_unlock();
4689 return ret;
4690 }
4691 }
4692#endif
4693 ret = __netif_receive_skb(skb);
4694 rcu_read_unlock();
4695 return ret;
4696}
4697
4698/**
4699 * netif_receive_skb - process receive buffer from network
4700 * @skb: buffer to process
4701 *
4702 * netif_receive_skb() is the main receive data processing function.
4703 * It always succeeds. The buffer may be dropped during processing
4704 * for congestion control or by the protocol layers.
4705 *
4706 * This function may only be called from softirq context and interrupts
4707 * should be enabled.
4708 *
4709 * Return values (usually ignored):
4710 * NET_RX_SUCCESS: no congestion
4711 * NET_RX_DROP: packet was dropped
4712 */
4713int netif_receive_skb(struct sk_buff *skb)
4714{
4715 trace_netif_receive_skb_entry(skb);
4716
4717 return netif_receive_skb_internal(skb);
4718}
4719EXPORT_SYMBOL(netif_receive_skb);
4720
4721DEFINE_PER_CPU(struct work_struct, flush_works);
4722
4723/* Network device is going away, flush any packets still pending */
4724static void flush_backlog(struct work_struct *work)
4725{
4726 struct sk_buff *skb, *tmp;
4727 struct softnet_data *sd;
4728
4729 local_bh_disable();
4730 sd = this_cpu_ptr(&softnet_data);
4731
4732 local_irq_disable();
4733 rps_lock(sd);
4734 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4735 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4736 __skb_unlink(skb, &sd->input_pkt_queue);
4737 kfree_skb(skb);
4738 input_queue_head_incr(sd);
4739 }
4740 }
4741 rps_unlock(sd);
4742 local_irq_enable();
4743
4744 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4745 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4746 __skb_unlink(skb, &sd->process_queue);
4747 kfree_skb(skb);
4748 input_queue_head_incr(sd);
4749 }
4750 }
4751 local_bh_enable();
4752}
4753
4754static void flush_all_backlogs(void)
4755{
4756 unsigned int cpu;
4757
4758 get_online_cpus();
4759
4760 for_each_online_cpu(cpu)
4761 queue_work_on(cpu, system_highpri_wq,
4762 per_cpu_ptr(&flush_works, cpu));
4763
4764 for_each_online_cpu(cpu)
4765 flush_work(per_cpu_ptr(&flush_works, cpu));
4766
4767 put_online_cpus();
4768}
4769
4770static int napi_gro_complete(struct sk_buff *skb)
4771{
4772 struct packet_offload *ptype;
4773 __be16 type = skb->protocol;
4774 struct list_head *head = &offload_base;
4775 int err = -ENOENT;
4776
4777 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4778
4779 if (NAPI_GRO_CB(skb)->count == 1) {
4780 skb_shinfo(skb)->gso_size = 0;
4781 goto out;
4782 }
4783
4784 rcu_read_lock();
4785 list_for_each_entry_rcu(ptype, head, list) {
4786 if (ptype->type != type || !ptype->callbacks.gro_complete)
4787 continue;
4788
4789 err = ptype->callbacks.gro_complete(skb, 0);
4790 break;
4791 }
4792 rcu_read_unlock();
4793
4794 if (err) {
4795 WARN_ON(&ptype->list == head);
4796 kfree_skb(skb);
4797 return NET_RX_SUCCESS;
4798 }
4799
4800out:
4801 return netif_receive_skb_internal(skb);
4802}
4803
4804/* napi->gro_list contains packets ordered by age.
4805 * youngest packets at the head of it.
4806 * Complete skbs in reverse order to reduce latencies.
4807 */
4808void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4809{
4810 struct sk_buff *skb, *prev = NULL;
4811
4812 /* scan list and build reverse chain */
4813 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4814 skb->prev = prev;
4815 prev = skb;
4816 }
4817
4818 for (skb = prev; skb; skb = prev) {
4819 skb->next = NULL;
4820
4821 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4822 return;
4823
4824 prev = skb->prev;
4825 napi_gro_complete(skb);
4826 napi->gro_count--;
4827 }
4828
4829 napi->gro_list = NULL;
4830}
4831EXPORT_SYMBOL(napi_gro_flush);
4832
4833static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4834{
4835 struct sk_buff *p;
4836 unsigned int maclen = skb->dev->hard_header_len;
4837 u32 hash = skb_get_hash_raw(skb);
4838
4839 for (p = napi->gro_list; p; p = p->next) {
4840 unsigned long diffs;
4841
4842 NAPI_GRO_CB(p)->flush = 0;
4843
4844 if (hash != skb_get_hash_raw(p)) {
4845 NAPI_GRO_CB(p)->same_flow = 0;
4846 continue;
4847 }
4848
4849 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4850 diffs |= p->vlan_tci ^ skb->vlan_tci;
4851 diffs |= skb_metadata_dst_cmp(p, skb);
4852 diffs |= skb_metadata_differs(p, skb);
4853 if (maclen == ETH_HLEN)
4854 diffs |= compare_ether_header(skb_mac_header(p),
4855 skb_mac_header(skb));
4856 else if (!diffs)
4857 diffs = memcmp(skb_mac_header(p),
4858 skb_mac_header(skb),
4859 maclen);
4860 NAPI_GRO_CB(p)->same_flow = !diffs;
4861 }
4862}
4863
4864static void skb_gro_reset_offset(struct sk_buff *skb)
4865{
4866 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4867 const skb_frag_t *frag0 = &pinfo->frags[0];
4868
4869 NAPI_GRO_CB(skb)->data_offset = 0;
4870 NAPI_GRO_CB(skb)->frag0 = NULL;
4871 NAPI_GRO_CB(skb)->frag0_len = 0;
4872
4873 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4874 pinfo->nr_frags &&
4875 !PageHighMem(skb_frag_page(frag0))) {
4876 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4877 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4878 skb_frag_size(frag0),
4879 skb->end - skb->tail);
4880 }
4881}
4882
4883static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4884{
4885 struct skb_shared_info *pinfo = skb_shinfo(skb);
4886
4887 BUG_ON(skb->end - skb->tail < grow);
4888
4889 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4890
4891 skb->data_len -= grow;
4892 skb->tail += grow;
4893
4894 pinfo->frags[0].page_offset += grow;
4895 skb_frag_size_sub(&pinfo->frags[0], grow);
4896
4897 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4898 skb_frag_unref(skb, 0);
4899 memmove(pinfo->frags, pinfo->frags + 1,
4900 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4901 }
4902}
4903
4904static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4905{
4906 struct sk_buff **pp = NULL;
4907 struct packet_offload *ptype;
4908 __be16 type = skb->protocol;
4909 struct list_head *head = &offload_base;
4910 int same_flow;
4911 enum gro_result ret;
4912 int grow;
4913
4914 if (netif_elide_gro(skb->dev))
4915 goto normal;
4916
4917 gro_list_prepare(napi, skb);
4918
4919 rcu_read_lock();
4920 list_for_each_entry_rcu(ptype, head, list) {
4921 if (ptype->type != type || !ptype->callbacks.gro_receive)
4922 continue;
4923
4924 skb_set_network_header(skb, skb_gro_offset(skb));
4925 skb_reset_mac_len(skb);
4926 NAPI_GRO_CB(skb)->same_flow = 0;
4927 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4928 NAPI_GRO_CB(skb)->free = 0;
4929 NAPI_GRO_CB(skb)->encap_mark = 0;
4930 NAPI_GRO_CB(skb)->recursion_counter = 0;
4931 NAPI_GRO_CB(skb)->is_fou = 0;
4932 NAPI_GRO_CB(skb)->is_atomic = 1;
4933 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4934
4935 /* Setup for GRO checksum validation */
4936 switch (skb->ip_summed) {
4937 case CHECKSUM_COMPLETE:
4938 NAPI_GRO_CB(skb)->csum = skb->csum;
4939 NAPI_GRO_CB(skb)->csum_valid = 1;
4940 NAPI_GRO_CB(skb)->csum_cnt = 0;
4941 break;
4942 case CHECKSUM_UNNECESSARY:
4943 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4944 NAPI_GRO_CB(skb)->csum_valid = 0;
4945 break;
4946 default:
4947 NAPI_GRO_CB(skb)->csum_cnt = 0;
4948 NAPI_GRO_CB(skb)->csum_valid = 0;
4949 }
4950
4951 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4952 break;
4953 }
4954 rcu_read_unlock();
4955
4956 if (&ptype->list == head)
4957 goto normal;
4958
4959 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4960 ret = GRO_CONSUMED;
4961 goto ok;
4962 }
4963
4964 same_flow = NAPI_GRO_CB(skb)->same_flow;
4965 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4966
4967 if (pp) {
4968 struct sk_buff *nskb = *pp;
4969
4970 *pp = nskb->next;
4971 nskb->next = NULL;
4972 napi_gro_complete(nskb);
4973 napi->gro_count--;
4974 }
4975
4976 if (same_flow)
4977 goto ok;
4978
4979 if (NAPI_GRO_CB(skb)->flush)
4980 goto normal;
4981
4982 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4983 struct sk_buff *nskb = napi->gro_list;
4984
4985 /* locate the end of the list to select the 'oldest' flow */
4986 while (nskb->next) {
4987 pp = &nskb->next;
4988 nskb = *pp;
4989 }
4990 *pp = NULL;
4991 nskb->next = NULL;
4992 napi_gro_complete(nskb);
4993 } else {
4994 napi->gro_count++;
4995 }
4996 NAPI_GRO_CB(skb)->count = 1;
4997 NAPI_GRO_CB(skb)->age = jiffies;
4998 NAPI_GRO_CB(skb)->last = skb;
4999 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5000 skb->next = napi->gro_list;
5001 napi->gro_list = skb;
5002 ret = GRO_HELD;
5003
5004pull:
5005 grow = skb_gro_offset(skb) - skb_headlen(skb);
5006 if (grow > 0)
5007 gro_pull_from_frag0(skb, grow);
5008ok:
5009 return ret;
5010
5011normal:
5012 ret = GRO_NORMAL;
5013 goto pull;
5014}
5015
5016struct packet_offload *gro_find_receive_by_type(__be16 type)
5017{
5018 struct list_head *offload_head = &offload_base;
5019 struct packet_offload *ptype;
5020
5021 list_for_each_entry_rcu(ptype, offload_head, list) {
5022 if (ptype->type != type || !ptype->callbacks.gro_receive)
5023 continue;
5024 return ptype;
5025 }
5026 return NULL;
5027}
5028EXPORT_SYMBOL(gro_find_receive_by_type);
5029
5030struct packet_offload *gro_find_complete_by_type(__be16 type)
5031{
5032 struct list_head *offload_head = &offload_base;
5033 struct packet_offload *ptype;
5034
5035 list_for_each_entry_rcu(ptype, offload_head, list) {
5036 if (ptype->type != type || !ptype->callbacks.gro_complete)
5037 continue;
5038 return ptype;
5039 }
5040 return NULL;
5041}
5042EXPORT_SYMBOL(gro_find_complete_by_type);
5043
5044static void napi_skb_free_stolen_head(struct sk_buff *skb)
5045{
5046 skb_dst_drop(skb);
5047 secpath_reset(skb);
5048 kmem_cache_free(skbuff_head_cache, skb);
5049}
5050
5051static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5052{
5053 switch (ret) {
5054 case GRO_NORMAL:
5055 if (netif_receive_skb_internal(skb))
5056 ret = GRO_DROP;
5057 break;
5058
5059 case GRO_DROP:
5060 kfree_skb(skb);
5061 break;
5062
5063 case GRO_MERGED_FREE:
5064 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5065 napi_skb_free_stolen_head(skb);
5066 else
5067 __kfree_skb(skb);
5068 break;
5069
5070 case GRO_HELD:
5071 case GRO_MERGED:
5072 case GRO_CONSUMED:
5073 break;
5074 }
5075
5076 return ret;
5077}
5078
5079gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5080{
5081 skb_mark_napi_id(skb, napi);
5082 trace_napi_gro_receive_entry(skb);
5083
5084 skb_gro_reset_offset(skb);
5085
5086 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5087}
5088EXPORT_SYMBOL(napi_gro_receive);
5089
5090static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5091{
5092 if (unlikely(skb->pfmemalloc)) {
5093 consume_skb(skb);
5094 return;
5095 }
5096 __skb_pull(skb, skb_headlen(skb));
5097 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5098 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5099 skb->vlan_tci = 0;
5100 skb->dev = napi->dev;
5101 skb->skb_iif = 0;
5102 skb->encapsulation = 0;
5103 skb_shinfo(skb)->gso_type = 0;
5104 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5105 secpath_reset(skb);
5106
5107 napi->skb = skb;
5108}
5109
5110struct sk_buff *napi_get_frags(struct napi_struct *napi)
5111{
5112 struct sk_buff *skb = napi->skb;
5113
5114 if (!skb) {
5115 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5116 if (skb) {
5117 napi->skb = skb;
5118 skb_mark_napi_id(skb, napi);
5119 }
5120 }
5121 return skb;
5122}
5123EXPORT_SYMBOL(napi_get_frags);
5124
5125static gro_result_t napi_frags_finish(struct napi_struct *napi,
5126 struct sk_buff *skb,
5127 gro_result_t ret)
5128{
5129 switch (ret) {
5130 case GRO_NORMAL:
5131 case GRO_HELD:
5132 __skb_push(skb, ETH_HLEN);
5133 skb->protocol = eth_type_trans(skb, skb->dev);
5134 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5135 ret = GRO_DROP;
5136 break;
5137
5138 case GRO_DROP:
5139 napi_reuse_skb(napi, skb);
5140 break;
5141
5142 case GRO_MERGED_FREE:
5143 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5144 napi_skb_free_stolen_head(skb);
5145 else
5146 napi_reuse_skb(napi, skb);
5147 break;
5148
5149 case GRO_MERGED:
5150 case GRO_CONSUMED:
5151 break;
5152 }
5153
5154 return ret;
5155}
5156
5157/* Upper GRO stack assumes network header starts at gro_offset=0
5158 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5159 * We copy ethernet header into skb->data to have a common layout.
5160 */
5161static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5162{
5163 struct sk_buff *skb = napi->skb;
5164 const struct ethhdr *eth;
5165 unsigned int hlen = sizeof(*eth);
5166
5167 napi->skb = NULL;
5168
5169 skb_reset_mac_header(skb);
5170 skb_gro_reset_offset(skb);
5171
5172 eth = skb_gro_header_fast(skb, 0);
5173 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5174 eth = skb_gro_header_slow(skb, hlen, 0);
5175 if (unlikely(!eth)) {
5176 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5177 __func__, napi->dev->name);
5178 napi_reuse_skb(napi, skb);
5179 return NULL;
5180 }
5181 } else {
5182 gro_pull_from_frag0(skb, hlen);
5183 NAPI_GRO_CB(skb)->frag0 += hlen;
5184 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5185 }
5186 __skb_pull(skb, hlen);
5187
5188 /*
5189 * This works because the only protocols we care about don't require
5190 * special handling.
5191 * We'll fix it up properly in napi_frags_finish()
5192 */
5193 skb->protocol = eth->h_proto;
5194
5195 return skb;
5196}
5197
5198gro_result_t napi_gro_frags(struct napi_struct *napi)
5199{
5200 struct sk_buff *skb = napi_frags_skb(napi);
5201
5202 if (!skb)
5203 return GRO_DROP;
5204
5205 trace_napi_gro_frags_entry(skb);
5206
5207 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5208}
5209EXPORT_SYMBOL(napi_gro_frags);
5210
5211/* Compute the checksum from gro_offset and return the folded value
5212 * after adding in any pseudo checksum.
5213 */
5214__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5215{
5216 __wsum wsum;
5217 __sum16 sum;
5218
5219 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5220
5221 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5222 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5223 if (likely(!sum)) {
5224 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5225 !skb->csum_complete_sw)
5226 netdev_rx_csum_fault(skb->dev);
5227 }
5228
5229 NAPI_GRO_CB(skb)->csum = wsum;
5230 NAPI_GRO_CB(skb)->csum_valid = 1;
5231
5232 return sum;
5233}
5234EXPORT_SYMBOL(__skb_gro_checksum_complete);
5235
5236static void net_rps_send_ipi(struct softnet_data *remsd)
5237{
5238#ifdef CONFIG_RPS
5239 while (remsd) {
5240 struct softnet_data *next = remsd->rps_ipi_next;
5241
5242 if (cpu_online(remsd->cpu))
5243 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5244 remsd = next;
5245 }
5246#endif
5247}
5248
5249/*
5250 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5251 * Note: called with local irq disabled, but exits with local irq enabled.
5252 */
5253static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5254{
5255#ifdef CONFIG_RPS
5256 struct softnet_data *remsd = sd->rps_ipi_list;
5257
5258 if (remsd) {
5259 sd->rps_ipi_list = NULL;
5260
5261 local_irq_enable();
5262
5263 /* Send pending IPI's to kick RPS processing on remote cpus. */
5264 net_rps_send_ipi(remsd);
5265 } else
5266#endif
5267 local_irq_enable();
5268}
5269
5270static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5271{
5272#ifdef CONFIG_RPS
5273 return sd->rps_ipi_list != NULL;
5274#else
5275 return false;
5276#endif
5277}
5278
5279static int process_backlog(struct napi_struct *napi, int quota)
5280{
5281 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5282 bool again = true;
5283 int work = 0;
5284
5285 /* Check if we have pending ipi, its better to send them now,
5286 * not waiting net_rx_action() end.
5287 */
5288 if (sd_has_rps_ipi_waiting(sd)) {
5289 local_irq_disable();
5290 net_rps_action_and_irq_enable(sd);
5291 }
5292
5293 napi->weight = dev_rx_weight;
5294 while (again) {
5295 struct sk_buff *skb;
5296
5297 while ((skb = __skb_dequeue(&sd->process_queue))) {
5298 rcu_read_lock();
5299 __netif_receive_skb(skb);
5300 rcu_read_unlock();
5301 input_queue_head_incr(sd);
5302 if (++work >= quota)
5303 return work;
5304
5305 }
5306
5307 local_irq_disable();
5308 rps_lock(sd);
5309 if (skb_queue_empty(&sd->input_pkt_queue)) {
5310 /*
5311 * Inline a custom version of __napi_complete().
5312 * only current cpu owns and manipulates this napi,
5313 * and NAPI_STATE_SCHED is the only possible flag set
5314 * on backlog.
5315 * We can use a plain write instead of clear_bit(),
5316 * and we dont need an smp_mb() memory barrier.
5317 */
5318 napi->state = 0;
5319 again = false;
5320 } else {
5321 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5322 &sd->process_queue);
5323 }
5324 rps_unlock(sd);
5325 local_irq_enable();
5326 }
5327
5328 return work;
5329}
5330
5331/**
5332 * __napi_schedule - schedule for receive
5333 * @n: entry to schedule
5334 *
5335 * The entry's receive function will be scheduled to run.
5336 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5337 */
5338void __napi_schedule(struct napi_struct *n)
5339{
5340 unsigned long flags;
5341
5342 local_irq_save(flags);
5343 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5344 local_irq_restore(flags);
5345}
5346EXPORT_SYMBOL(__napi_schedule);
5347
5348/**
5349 * napi_schedule_prep - check if napi can be scheduled
5350 * @n: napi context
5351 *
5352 * Test if NAPI routine is already running, and if not mark
5353 * it as running. This is used as a condition variable
5354 * insure only one NAPI poll instance runs. We also make
5355 * sure there is no pending NAPI disable.
5356 */
5357bool napi_schedule_prep(struct napi_struct *n)
5358{
5359 unsigned long val, new;
5360
5361 do {
5362 val = READ_ONCE(n->state);
5363 if (unlikely(val & NAPIF_STATE_DISABLE))
5364 return false;
5365 new = val | NAPIF_STATE_SCHED;
5366
5367 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5368 * This was suggested by Alexander Duyck, as compiler
5369 * emits better code than :
5370 * if (val & NAPIF_STATE_SCHED)
5371 * new |= NAPIF_STATE_MISSED;
5372 */
5373 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5374 NAPIF_STATE_MISSED;
5375 } while (cmpxchg(&n->state, val, new) != val);
5376
5377 return !(val & NAPIF_STATE_SCHED);
5378}
5379EXPORT_SYMBOL(napi_schedule_prep);
5380
5381/**
5382 * __napi_schedule_irqoff - schedule for receive
5383 * @n: entry to schedule
5384 *
5385 * Variant of __napi_schedule() assuming hard irqs are masked
5386 */
5387void __napi_schedule_irqoff(struct napi_struct *n)
5388{
5389 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5390}
5391EXPORT_SYMBOL(__napi_schedule_irqoff);
5392
5393bool napi_complete_done(struct napi_struct *n, int work_done)
5394{
5395 unsigned long flags, val, new;
5396
5397 /*
5398 * 1) Don't let napi dequeue from the cpu poll list
5399 * just in case its running on a different cpu.
5400 * 2) If we are busy polling, do nothing here, we have
5401 * the guarantee we will be called later.
5402 */
5403 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5404 NAPIF_STATE_IN_BUSY_POLL)))
5405 return false;
5406
5407 if (n->gro_list) {
5408 unsigned long timeout = 0;
5409
5410 if (work_done)
5411 timeout = n->dev->gro_flush_timeout;
5412
5413 if (timeout)
5414 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5415 HRTIMER_MODE_REL_PINNED);
5416 else
5417 napi_gro_flush(n, false);
5418 }
5419 if (unlikely(!list_empty(&n->poll_list))) {
5420 /* If n->poll_list is not empty, we need to mask irqs */
5421 local_irq_save(flags);
5422 list_del_init(&n->poll_list);
5423 local_irq_restore(flags);
5424 }
5425
5426 do {
5427 val = READ_ONCE(n->state);
5428
5429 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5430
5431 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5432
5433 /* If STATE_MISSED was set, leave STATE_SCHED set,
5434 * because we will call napi->poll() one more time.
5435 * This C code was suggested by Alexander Duyck to help gcc.
5436 */
5437 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5438 NAPIF_STATE_SCHED;
5439 } while (cmpxchg(&n->state, val, new) != val);
5440
5441 if (unlikely(val & NAPIF_STATE_MISSED)) {
5442 __napi_schedule(n);
5443 return false;
5444 }
5445
5446 return true;
5447}
5448EXPORT_SYMBOL(napi_complete_done);
5449
5450/* must be called under rcu_read_lock(), as we dont take a reference */
5451static struct napi_struct *napi_by_id(unsigned int napi_id)
5452{
5453 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5454 struct napi_struct *napi;
5455
5456 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5457 if (napi->napi_id == napi_id)
5458 return napi;
5459
5460 return NULL;
5461}
5462
5463#if defined(CONFIG_NET_RX_BUSY_POLL)
5464
5465#define BUSY_POLL_BUDGET 8
5466
5467static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5468{
5469 int rc;
5470
5471 /* Busy polling means there is a high chance device driver hard irq
5472 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5473 * set in napi_schedule_prep().
5474 * Since we are about to call napi->poll() once more, we can safely
5475 * clear NAPI_STATE_MISSED.
5476 *
5477 * Note: x86 could use a single "lock and ..." instruction
5478 * to perform these two clear_bit()
5479 */
5480 clear_bit(NAPI_STATE_MISSED, &napi->state);
5481 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5482
5483 local_bh_disable();
5484
5485 /* All we really want here is to re-enable device interrupts.
5486 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5487 */
5488 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5489 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5490 netpoll_poll_unlock(have_poll_lock);
5491 if (rc == BUSY_POLL_BUDGET)
5492 __napi_schedule(napi);
5493 local_bh_enable();
5494}
5495
5496void napi_busy_loop(unsigned int napi_id,
5497 bool (*loop_end)(void *, unsigned long),
5498 void *loop_end_arg)
5499{
5500 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5501 int (*napi_poll)(struct napi_struct *napi, int budget);
5502 void *have_poll_lock = NULL;
5503 struct napi_struct *napi;
5504
5505restart:
5506 napi_poll = NULL;
5507
5508 rcu_read_lock();
5509
5510 napi = napi_by_id(napi_id);
5511 if (!napi)
5512 goto out;
5513
5514 preempt_disable();
5515 for (;;) {
5516 int work = 0;
5517
5518 local_bh_disable();
5519 if (!napi_poll) {
5520 unsigned long val = READ_ONCE(napi->state);
5521
5522 /* If multiple threads are competing for this napi,
5523 * we avoid dirtying napi->state as much as we can.
5524 */
5525 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5526 NAPIF_STATE_IN_BUSY_POLL))
5527 goto count;
5528 if (cmpxchg(&napi->state, val,
5529 val | NAPIF_STATE_IN_BUSY_POLL |
5530 NAPIF_STATE_SCHED) != val)
5531 goto count;
5532 have_poll_lock = netpoll_poll_lock(napi);
5533 napi_poll = napi->poll;
5534 }
5535 work = napi_poll(napi, BUSY_POLL_BUDGET);
5536 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5537count:
5538 if (work > 0)
5539 __NET_ADD_STATS(dev_net(napi->dev),
5540 LINUX_MIB_BUSYPOLLRXPACKETS, work);
5541 local_bh_enable();
5542
5543 if (!loop_end || loop_end(loop_end_arg, start_time))
5544 break;
5545
5546 if (unlikely(need_resched())) {
5547 if (napi_poll)
5548 busy_poll_stop(napi, have_poll_lock);
5549 preempt_enable();
5550 rcu_read_unlock();
5551 cond_resched();
5552 if (loop_end(loop_end_arg, start_time))
5553 return;
5554 goto restart;
5555 }
5556 cpu_relax();
5557 }
5558 if (napi_poll)
5559 busy_poll_stop(napi, have_poll_lock);
5560 preempt_enable();
5561out:
5562 rcu_read_unlock();
5563}
5564EXPORT_SYMBOL(napi_busy_loop);
5565
5566#endif /* CONFIG_NET_RX_BUSY_POLL */
5567
5568static void napi_hash_add(struct napi_struct *napi)
5569{
5570 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5571 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5572 return;
5573
5574 spin_lock(&napi_hash_lock);
5575
5576 /* 0..NR_CPUS range is reserved for sender_cpu use */
5577 do {
5578 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5579 napi_gen_id = MIN_NAPI_ID;
5580 } while (napi_by_id(napi_gen_id));
5581 napi->napi_id = napi_gen_id;
5582
5583 hlist_add_head_rcu(&napi->napi_hash_node,
5584 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5585
5586 spin_unlock(&napi_hash_lock);
5587}
5588
5589/* Warning : caller is responsible to make sure rcu grace period
5590 * is respected before freeing memory containing @napi
5591 */
5592bool napi_hash_del(struct napi_struct *napi)
5593{
5594 bool rcu_sync_needed = false;
5595
5596 spin_lock(&napi_hash_lock);
5597
5598 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5599 rcu_sync_needed = true;
5600 hlist_del_rcu(&napi->napi_hash_node);
5601 }
5602 spin_unlock(&napi_hash_lock);
5603 return rcu_sync_needed;
5604}
5605EXPORT_SYMBOL_GPL(napi_hash_del);
5606
5607static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5608{
5609 struct napi_struct *napi;
5610
5611 napi = container_of(timer, struct napi_struct, timer);
5612
5613 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5614 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5615 */
5616 if (napi->gro_list && !napi_disable_pending(napi) &&
5617 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5618 __napi_schedule_irqoff(napi);
5619
5620 return HRTIMER_NORESTART;
5621}
5622
5623void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5624 int (*poll)(struct napi_struct *, int), int weight)
5625{
5626 INIT_LIST_HEAD(&napi->poll_list);
5627 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5628 napi->timer.function = napi_watchdog;
5629 napi->gro_count = 0;
5630 napi->gro_list = NULL;
5631 napi->skb = NULL;
5632 napi->poll = poll;
5633 if (weight > NAPI_POLL_WEIGHT)
5634 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5635 weight, dev->name);
5636 napi->weight = weight;
5637 list_add(&napi->dev_list, &dev->napi_list);
5638 napi->dev = dev;
5639#ifdef CONFIG_NETPOLL
5640 napi->poll_owner = -1;
5641#endif
5642 set_bit(NAPI_STATE_SCHED, &napi->state);
5643 napi_hash_add(napi);
5644}
5645EXPORT_SYMBOL(netif_napi_add);
5646
5647void napi_disable(struct napi_struct *n)
5648{
5649 might_sleep();
5650 set_bit(NAPI_STATE_DISABLE, &n->state);
5651
5652 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5653 msleep(1);
5654 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5655 msleep(1);
5656
5657 hrtimer_cancel(&n->timer);
5658
5659 clear_bit(NAPI_STATE_DISABLE, &n->state);
5660}
5661EXPORT_SYMBOL(napi_disable);
5662
5663/* Must be called in process context */
5664void netif_napi_del(struct napi_struct *napi)
5665{
5666 might_sleep();
5667 if (napi_hash_del(napi))
5668 synchronize_net();
5669 list_del_init(&napi->dev_list);
5670 napi_free_frags(napi);
5671
5672 kfree_skb_list(napi->gro_list);
5673 napi->gro_list = NULL;
5674 napi->gro_count = 0;
5675}
5676EXPORT_SYMBOL(netif_napi_del);
5677
5678static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5679{
5680 void *have;
5681 int work, weight;
5682
5683 list_del_init(&n->poll_list);
5684
5685 have = netpoll_poll_lock(n);
5686
5687 weight = n->weight;
5688
5689 /* This NAPI_STATE_SCHED test is for avoiding a race
5690 * with netpoll's poll_napi(). Only the entity which
5691 * obtains the lock and sees NAPI_STATE_SCHED set will
5692 * actually make the ->poll() call. Therefore we avoid
5693 * accidentally calling ->poll() when NAPI is not scheduled.
5694 */
5695 work = 0;
5696 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5697 work = n->poll(n, weight);
5698 trace_napi_poll(n, work, weight);
5699 }
5700
5701 WARN_ON_ONCE(work > weight);
5702
5703 if (likely(work < weight))
5704 goto out_unlock;
5705
5706 /* Drivers must not modify the NAPI state if they
5707 * consume the entire weight. In such cases this code
5708 * still "owns" the NAPI instance and therefore can
5709 * move the instance around on the list at-will.
5710 */
5711 if (unlikely(napi_disable_pending(n))) {
5712 napi_complete(n);
5713 goto out_unlock;
5714 }
5715
5716 if (n->gro_list) {
5717 /* flush too old packets
5718 * If HZ < 1000, flush all packets.
5719 */
5720 napi_gro_flush(n, HZ >= 1000);
5721 }
5722
5723 /* Some drivers may have called napi_schedule
5724 * prior to exhausting their budget.
5725 */
5726 if (unlikely(!list_empty(&n->poll_list))) {
5727 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5728 n->dev ? n->dev->name : "backlog");
5729 goto out_unlock;
5730 }
5731
5732 list_add_tail(&n->poll_list, repoll);
5733
5734out_unlock:
5735 netpoll_poll_unlock(have);
5736
5737 return work;
5738}
5739
5740static __latent_entropy void net_rx_action(struct softirq_action *h)
5741{
5742 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5743 unsigned long time_limit = jiffies +
5744 usecs_to_jiffies(netdev_budget_usecs);
5745 int budget = netdev_budget;
5746 LIST_HEAD(list);
5747 LIST_HEAD(repoll);
5748
5749 local_irq_disable();
5750 list_splice_init(&sd->poll_list, &list);
5751 local_irq_enable();
5752
5753 for (;;) {
5754 struct napi_struct *n;
5755
5756 if (list_empty(&list)) {
5757 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5758 goto out;
5759 break;
5760 }
5761
5762 n = list_first_entry(&list, struct napi_struct, poll_list);
5763 budget -= napi_poll(n, &repoll);
5764
5765 /* If softirq window is exhausted then punt.
5766 * Allow this to run for 2 jiffies since which will allow
5767 * an average latency of 1.5/HZ.
5768 */
5769 if (unlikely(budget <= 0 ||
5770 time_after_eq(jiffies, time_limit))) {
5771 sd->time_squeeze++;
5772 break;
5773 }
5774 }
5775
5776 local_irq_disable();
5777
5778 list_splice_tail_init(&sd->poll_list, &list);
5779 list_splice_tail(&repoll, &list);
5780 list_splice(&list, &sd->poll_list);
5781 if (!list_empty(&sd->poll_list))
5782 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5783
5784 net_rps_action_and_irq_enable(sd);
5785out:
5786 __kfree_skb_flush();
5787}
5788
5789struct netdev_adjacent {
5790 struct net_device *dev;
5791
5792 /* upper master flag, there can only be one master device per list */
5793 bool master;
5794
5795 /* counter for the number of times this device was added to us */
5796 u16 ref_nr;
5797
5798 /* private field for the users */
5799 void *private;
5800
5801 struct list_head list;
5802 struct rcu_head rcu;
5803};
5804
5805static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5806 struct list_head *adj_list)
5807{
5808 struct netdev_adjacent *adj;
5809
5810 list_for_each_entry(adj, adj_list, list) {
5811 if (adj->dev == adj_dev)
5812 return adj;
5813 }
5814 return NULL;
5815}
5816
5817static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5818{
5819 struct net_device *dev = data;
5820
5821 return upper_dev == dev;
5822}
5823
5824/**
5825 * netdev_has_upper_dev - Check if device is linked to an upper device
5826 * @dev: device
5827 * @upper_dev: upper device to check
5828 *
5829 * Find out if a device is linked to specified upper device and return true
5830 * in case it is. Note that this checks only immediate upper device,
5831 * not through a complete stack of devices. The caller must hold the RTNL lock.
5832 */
5833bool netdev_has_upper_dev(struct net_device *dev,
5834 struct net_device *upper_dev)
5835{
5836 ASSERT_RTNL();
5837
5838 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5839 upper_dev);
5840}
5841EXPORT_SYMBOL(netdev_has_upper_dev);
5842
5843/**
5844 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5845 * @dev: device
5846 * @upper_dev: upper device to check
5847 *
5848 * Find out if a device is linked to specified upper device and return true
5849 * in case it is. Note that this checks the entire upper device chain.
5850 * The caller must hold rcu lock.
5851 */
5852
5853bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5854 struct net_device *upper_dev)
5855{
5856 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5857 upper_dev);
5858}
5859EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5860
5861/**
5862 * netdev_has_any_upper_dev - Check if device is linked to some device
5863 * @dev: device
5864 *
5865 * Find out if a device is linked to an upper device and return true in case
5866 * it is. The caller must hold the RTNL lock.
5867 */
5868bool netdev_has_any_upper_dev(struct net_device *dev)
5869{
5870 ASSERT_RTNL();
5871
5872 return !list_empty(&dev->adj_list.upper);
5873}
5874EXPORT_SYMBOL(netdev_has_any_upper_dev);
5875
5876/**
5877 * netdev_master_upper_dev_get - Get master upper device
5878 * @dev: device
5879 *
5880 * Find a master upper device and return pointer to it or NULL in case
5881 * it's not there. The caller must hold the RTNL lock.
5882 */
5883struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5884{
5885 struct netdev_adjacent *upper;
5886
5887 ASSERT_RTNL();
5888
5889 if (list_empty(&dev->adj_list.upper))
5890 return NULL;
5891
5892 upper = list_first_entry(&dev->adj_list.upper,
5893 struct netdev_adjacent, list);
5894 if (likely(upper->master))
5895 return upper->dev;
5896 return NULL;
5897}
5898EXPORT_SYMBOL(netdev_master_upper_dev_get);
5899
5900/**
5901 * netdev_has_any_lower_dev - Check if device is linked to some device
5902 * @dev: device
5903 *
5904 * Find out if a device is linked to a lower device and return true in case
5905 * it is. The caller must hold the RTNL lock.
5906 */
5907static bool netdev_has_any_lower_dev(struct net_device *dev)
5908{
5909 ASSERT_RTNL();
5910
5911 return !list_empty(&dev->adj_list.lower);
5912}
5913
5914void *netdev_adjacent_get_private(struct list_head *adj_list)
5915{
5916 struct netdev_adjacent *adj;
5917
5918 adj = list_entry(adj_list, struct netdev_adjacent, list);
5919
5920 return adj->private;
5921}
5922EXPORT_SYMBOL(netdev_adjacent_get_private);
5923
5924/**
5925 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5926 * @dev: device
5927 * @iter: list_head ** of the current position
5928 *
5929 * Gets the next device from the dev's upper list, starting from iter
5930 * position. The caller must hold RCU read lock.
5931 */
5932struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5933 struct list_head **iter)
5934{
5935 struct netdev_adjacent *upper;
5936
5937 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5938
5939 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5940
5941 if (&upper->list == &dev->adj_list.upper)
5942 return NULL;
5943
5944 *iter = &upper->list;
5945
5946 return upper->dev;
5947}
5948EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5949
5950static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5951 struct list_head **iter)
5952{
5953 struct netdev_adjacent *upper;
5954
5955 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5956
5957 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5958
5959 if (&upper->list == &dev->adj_list.upper)
5960 return NULL;
5961
5962 *iter = &upper->list;
5963
5964 return upper->dev;
5965}
5966
5967int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5968 int (*fn)(struct net_device *dev,
5969 void *data),
5970 void *data)
5971{
5972 struct net_device *udev;
5973 struct list_head *iter;
5974 int ret;
5975
5976 for (iter = &dev->adj_list.upper,
5977 udev = netdev_next_upper_dev_rcu(dev, &iter);
5978 udev;
5979 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5980 /* first is the upper device itself */
5981 ret = fn(udev, data);
5982 if (ret)
5983 return ret;
5984
5985 /* then look at all of its upper devices */
5986 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5987 if (ret)
5988 return ret;
5989 }
5990
5991 return 0;
5992}
5993EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5994
5995/**
5996 * netdev_lower_get_next_private - Get the next ->private from the
5997 * lower neighbour list
5998 * @dev: device
5999 * @iter: list_head ** of the current position
6000 *
6001 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6002 * list, starting from iter position. The caller must hold either hold the
6003 * RTNL lock or its own locking that guarantees that the neighbour lower
6004 * list will remain unchanged.
6005 */
6006void *netdev_lower_get_next_private(struct net_device *dev,
6007 struct list_head **iter)
6008{
6009 struct netdev_adjacent *lower;
6010
6011 lower = list_entry(*iter, struct netdev_adjacent, list);
6012
6013 if (&lower->list == &dev->adj_list.lower)
6014 return NULL;
6015
6016 *iter = lower->list.next;
6017
6018 return lower->private;
6019}
6020EXPORT_SYMBOL(netdev_lower_get_next_private);
6021
6022/**
6023 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6024 * lower neighbour list, RCU
6025 * variant
6026 * @dev: device
6027 * @iter: list_head ** of the current position
6028 *
6029 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6030 * list, starting from iter position. The caller must hold RCU read lock.
6031 */
6032void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6033 struct list_head **iter)
6034{
6035 struct netdev_adjacent *lower;
6036
6037 WARN_ON_ONCE(!rcu_read_lock_held());
6038
6039 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6040
6041 if (&lower->list == &dev->adj_list.lower)
6042 return NULL;
6043
6044 *iter = &lower->list;
6045
6046 return lower->private;
6047}
6048EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6049
6050/**
6051 * netdev_lower_get_next - Get the next device from the lower neighbour
6052 * list
6053 * @dev: device
6054 * @iter: list_head ** of the current position
6055 *
6056 * Gets the next netdev_adjacent from the dev's lower neighbour
6057 * list, starting from iter position. The caller must hold RTNL lock or
6058 * its own locking that guarantees that the neighbour lower
6059 * list will remain unchanged.
6060 */
6061void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6062{
6063 struct netdev_adjacent *lower;
6064
6065 lower = list_entry(*iter, struct netdev_adjacent, list);
6066
6067 if (&lower->list == &dev->adj_list.lower)
6068 return NULL;
6069
6070 *iter = lower->list.next;
6071
6072 return lower->dev;
6073}
6074EXPORT_SYMBOL(netdev_lower_get_next);
6075
6076static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6077 struct list_head **iter)
6078{
6079 struct netdev_adjacent *lower;
6080
6081 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6082
6083 if (&lower->list == &dev->adj_list.lower)
6084 return NULL;
6085
6086 *iter = &lower->list;
6087
6088 return lower->dev;
6089}
6090
6091int netdev_walk_all_lower_dev(struct net_device *dev,
6092 int (*fn)(struct net_device *dev,
6093 void *data),
6094 void *data)
6095{
6096 struct net_device *ldev;
6097 struct list_head *iter;
6098 int ret;
6099
6100 for (iter = &dev->adj_list.lower,
6101 ldev = netdev_next_lower_dev(dev, &iter);
6102 ldev;
6103 ldev = netdev_next_lower_dev(dev, &iter)) {
6104 /* first is the lower device itself */
6105 ret = fn(ldev, data);
6106 if (ret)
6107 return ret;
6108
6109 /* then look at all of its lower devices */
6110 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6111 if (ret)
6112 return ret;
6113 }
6114
6115 return 0;
6116}
6117EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6118
6119static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6120 struct list_head **iter)
6121{
6122 struct netdev_adjacent *lower;
6123
6124 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6125 if (&lower->list == &dev->adj_list.lower)
6126 return NULL;
6127
6128 *iter = &lower->list;
6129
6130 return lower->dev;
6131}
6132
6133int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6134 int (*fn)(struct net_device *dev,
6135 void *data),
6136 void *data)
6137{
6138 struct net_device *ldev;
6139 struct list_head *iter;
6140 int ret;
6141
6142 for (iter = &dev->adj_list.lower,
6143 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6144 ldev;
6145 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6146 /* first is the lower device itself */
6147 ret = fn(ldev, data);
6148 if (ret)
6149 return ret;
6150
6151 /* then look at all of its lower devices */
6152 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6153 if (ret)
6154 return ret;
6155 }
6156
6157 return 0;
6158}
6159EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6160
6161/**
6162 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6163 * lower neighbour list, RCU
6164 * variant
6165 * @dev: device
6166 *
6167 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6168 * list. The caller must hold RCU read lock.
6169 */
6170void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6171{
6172 struct netdev_adjacent *lower;
6173
6174 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6175 struct netdev_adjacent, list);
6176 if (lower)
6177 return lower->private;
6178 return NULL;
6179}
6180EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6181
6182/**
6183 * netdev_master_upper_dev_get_rcu - Get master upper device
6184 * @dev: device
6185 *
6186 * Find a master upper device and return pointer to it or NULL in case
6187 * it's not there. The caller must hold the RCU read lock.
6188 */
6189struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6190{
6191 struct netdev_adjacent *upper;
6192
6193 upper = list_first_or_null_rcu(&dev->adj_list.upper,
6194 struct netdev_adjacent, list);
6195 if (upper && likely(upper->master))
6196 return upper->dev;
6197 return NULL;
6198}
6199EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6200
6201static int netdev_adjacent_sysfs_add(struct net_device *dev,
6202 struct net_device *adj_dev,
6203 struct list_head *dev_list)
6204{
6205 char linkname[IFNAMSIZ+7];
6206
6207 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6208 "upper_%s" : "lower_%s", adj_dev->name);
6209 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6210 linkname);
6211}
6212static void netdev_adjacent_sysfs_del(struct net_device *dev,
6213 char *name,
6214 struct list_head *dev_list)
6215{
6216 char linkname[IFNAMSIZ+7];
6217
6218 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6219 "upper_%s" : "lower_%s", name);
6220 sysfs_remove_link(&(dev->dev.kobj), linkname);
6221}
6222
6223static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6224 struct net_device *adj_dev,
6225 struct list_head *dev_list)
6226{
6227 return (dev_list == &dev->adj_list.upper ||
6228 dev_list == &dev->adj_list.lower) &&
6229 net_eq(dev_net(dev), dev_net(adj_dev));
6230}
6231
6232static int __netdev_adjacent_dev_insert(struct net_device *dev,
6233 struct net_device *adj_dev,
6234 struct list_head *dev_list,
6235 void *private, bool master)
6236{
6237 struct netdev_adjacent *adj;
6238 int ret;
6239
6240 adj = __netdev_find_adj(adj_dev, dev_list);
6241
6242 if (adj) {
6243 adj->ref_nr += 1;
6244 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6245 dev->name, adj_dev->name, adj->ref_nr);
6246
6247 return 0;
6248 }
6249
6250 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6251 if (!adj)
6252 return -ENOMEM;
6253
6254 adj->dev = adj_dev;
6255 adj->master = master;
6256 adj->ref_nr = 1;
6257 adj->private = private;
6258 dev_hold(adj_dev);
6259
6260 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6261 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6262
6263 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6264 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6265 if (ret)
6266 goto free_adj;
6267 }
6268
6269 /* Ensure that master link is always the first item in list. */
6270 if (master) {
6271 ret = sysfs_create_link(&(dev->dev.kobj),
6272 &(adj_dev->dev.kobj), "master");
6273 if (ret)
6274 goto remove_symlinks;
6275
6276 list_add_rcu(&adj->list, dev_list);
6277 } else {
6278 list_add_tail_rcu(&adj->list, dev_list);
6279 }
6280
6281 return 0;
6282
6283remove_symlinks:
6284 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6285 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6286free_adj:
6287 kfree(adj);
6288 dev_put(adj_dev);
6289
6290 return ret;
6291}
6292
6293static void __netdev_adjacent_dev_remove(struct net_device *dev,
6294 struct net_device *adj_dev,
6295 u16 ref_nr,
6296 struct list_head *dev_list)
6297{
6298 struct netdev_adjacent *adj;
6299
6300 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6301 dev->name, adj_dev->name, ref_nr);
6302
6303 adj = __netdev_find_adj(adj_dev, dev_list);
6304
6305 if (!adj) {
6306 pr_err("Adjacency does not exist for device %s from %s\n",
6307 dev->name, adj_dev->name);
6308 WARN_ON(1);
6309 return;
6310 }
6311
6312 if (adj->ref_nr > ref_nr) {
6313 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6314 dev->name, adj_dev->name, ref_nr,
6315 adj->ref_nr - ref_nr);
6316 adj->ref_nr -= ref_nr;
6317 return;
6318 }
6319
6320 if (adj->master)
6321 sysfs_remove_link(&(dev->dev.kobj), "master");
6322
6323 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6324 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6325
6326 list_del_rcu(&adj->list);
6327 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6328 adj_dev->name, dev->name, adj_dev->name);
6329 dev_put(adj_dev);
6330 kfree_rcu(adj, rcu);
6331}
6332
6333static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6334 struct net_device *upper_dev,
6335 struct list_head *up_list,
6336 struct list_head *down_list,
6337 void *private, bool master)
6338{
6339 int ret;
6340
6341 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6342 private, master);
6343 if (ret)
6344 return ret;
6345
6346 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6347 private, false);
6348 if (ret) {
6349 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6350 return ret;
6351 }
6352
6353 return 0;
6354}
6355
6356static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6357 struct net_device *upper_dev,
6358 u16 ref_nr,
6359 struct list_head *up_list,
6360 struct list_head *down_list)
6361{
6362 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6363 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6364}
6365
6366static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6367 struct net_device *upper_dev,
6368 void *private, bool master)
6369{
6370 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6371 &dev->adj_list.upper,
6372 &upper_dev->adj_list.lower,
6373 private, master);
6374}
6375
6376static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6377 struct net_device *upper_dev)
6378{
6379 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6380 &dev->adj_list.upper,
6381 &upper_dev->adj_list.lower);
6382}
6383
6384static int __netdev_upper_dev_link(struct net_device *dev,
6385 struct net_device *upper_dev, bool master,
6386 void *upper_priv, void *upper_info,
6387 struct netlink_ext_ack *extack)
6388{
6389 struct netdev_notifier_changeupper_info changeupper_info = {
6390 .info = {
6391 .dev = dev,
6392 .extack = extack,
6393 },
6394 .upper_dev = upper_dev,
6395 .master = master,
6396 .linking = true,
6397 .upper_info = upper_info,
6398 };
6399 int ret = 0;
6400
6401 ASSERT_RTNL();
6402
6403 if (dev == upper_dev)
6404 return -EBUSY;
6405
6406 /* To prevent loops, check if dev is not upper device to upper_dev. */
6407 if (netdev_has_upper_dev(upper_dev, dev))
6408 return -EBUSY;
6409
6410 if (netdev_has_upper_dev(dev, upper_dev))
6411 return -EEXIST;
6412
6413 if (master && netdev_master_upper_dev_get(dev))
6414 return -EBUSY;
6415
6416 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6417 &changeupper_info.info);
6418 ret = notifier_to_errno(ret);
6419 if (ret)
6420 return ret;
6421
6422 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6423 master);
6424 if (ret)
6425 return ret;
6426
6427 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6428 &changeupper_info.info);
6429 ret = notifier_to_errno(ret);
6430 if (ret)
6431 goto rollback;
6432
6433 return 0;
6434
6435rollback:
6436 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6437
6438 return ret;
6439}
6440
6441/**
6442 * netdev_upper_dev_link - Add a link to the upper device
6443 * @dev: device
6444 * @upper_dev: new upper device
6445 * @extack: netlink extended ack
6446 *
6447 * Adds a link to device which is upper to this one. The caller must hold
6448 * the RTNL lock. On a failure a negative errno code is returned.
6449 * On success the reference counts are adjusted and the function
6450 * returns zero.
6451 */
6452int netdev_upper_dev_link(struct net_device *dev,
6453 struct net_device *upper_dev,
6454 struct netlink_ext_ack *extack)
6455{
6456 return __netdev_upper_dev_link(dev, upper_dev, false,
6457 NULL, NULL, extack);
6458}
6459EXPORT_SYMBOL(netdev_upper_dev_link);
6460
6461/**
6462 * netdev_master_upper_dev_link - Add a master link to the upper device
6463 * @dev: device
6464 * @upper_dev: new upper device
6465 * @upper_priv: upper device private
6466 * @upper_info: upper info to be passed down via notifier
6467 * @extack: netlink extended ack
6468 *
6469 * Adds a link to device which is upper to this one. In this case, only
6470 * one master upper device can be linked, although other non-master devices
6471 * might be linked as well. The caller must hold the RTNL lock.
6472 * On a failure a negative errno code is returned. On success the reference
6473 * counts are adjusted and the function returns zero.
6474 */
6475int netdev_master_upper_dev_link(struct net_device *dev,
6476 struct net_device *upper_dev,
6477 void *upper_priv, void *upper_info,
6478 struct netlink_ext_ack *extack)
6479{
6480 return __netdev_upper_dev_link(dev, upper_dev, true,
6481 upper_priv, upper_info, extack);
6482}
6483EXPORT_SYMBOL(netdev_master_upper_dev_link);
6484
6485/**
6486 * netdev_upper_dev_unlink - Removes a link to upper device
6487 * @dev: device
6488 * @upper_dev: new upper device
6489 *
6490 * Removes a link to device which is upper to this one. The caller must hold
6491 * the RTNL lock.
6492 */
6493void netdev_upper_dev_unlink(struct net_device *dev,
6494 struct net_device *upper_dev)
6495{
6496 struct netdev_notifier_changeupper_info changeupper_info = {
6497 .info = {
6498 .dev = dev,
6499 },
6500 .upper_dev = upper_dev,
6501 .linking = false,
6502 };
6503
6504 ASSERT_RTNL();
6505
6506 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6507
6508 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6509 &changeupper_info.info);
6510
6511 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6512
6513 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6514 &changeupper_info.info);
6515}
6516EXPORT_SYMBOL(netdev_upper_dev_unlink);
6517
6518/**
6519 * netdev_bonding_info_change - Dispatch event about slave change
6520 * @dev: device
6521 * @bonding_info: info to dispatch
6522 *
6523 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6524 * The caller must hold the RTNL lock.
6525 */
6526void netdev_bonding_info_change(struct net_device *dev,
6527 struct netdev_bonding_info *bonding_info)
6528{
6529 struct netdev_notifier_bonding_info info = {
6530 .info.dev = dev,
6531 };
6532
6533 memcpy(&info.bonding_info, bonding_info,
6534 sizeof(struct netdev_bonding_info));
6535 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6536 &info.info);
6537}
6538EXPORT_SYMBOL(netdev_bonding_info_change);
6539
6540static void netdev_adjacent_add_links(struct net_device *dev)
6541{
6542 struct netdev_adjacent *iter;
6543
6544 struct net *net = dev_net(dev);
6545
6546 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6547 if (!net_eq(net, dev_net(iter->dev)))
6548 continue;
6549 netdev_adjacent_sysfs_add(iter->dev, dev,
6550 &iter->dev->adj_list.lower);
6551 netdev_adjacent_sysfs_add(dev, iter->dev,
6552 &dev->adj_list.upper);
6553 }
6554
6555 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6556 if (!net_eq(net, dev_net(iter->dev)))
6557 continue;
6558 netdev_adjacent_sysfs_add(iter->dev, dev,
6559 &iter->dev->adj_list.upper);
6560 netdev_adjacent_sysfs_add(dev, iter->dev,
6561 &dev->adj_list.lower);
6562 }
6563}
6564
6565static void netdev_adjacent_del_links(struct net_device *dev)
6566{
6567 struct netdev_adjacent *iter;
6568
6569 struct net *net = dev_net(dev);
6570
6571 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6572 if (!net_eq(net, dev_net(iter->dev)))
6573 continue;
6574 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6575 &iter->dev->adj_list.lower);
6576 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6577 &dev->adj_list.upper);
6578 }
6579
6580 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6581 if (!net_eq(net, dev_net(iter->dev)))
6582 continue;
6583 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6584 &iter->dev->adj_list.upper);
6585 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6586 &dev->adj_list.lower);
6587 }
6588}
6589
6590void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6591{
6592 struct netdev_adjacent *iter;
6593
6594 struct net *net = dev_net(dev);
6595
6596 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6597 if (!net_eq(net, dev_net(iter->dev)))
6598 continue;
6599 netdev_adjacent_sysfs_del(iter->dev, oldname,
6600 &iter->dev->adj_list.lower);
6601 netdev_adjacent_sysfs_add(iter->dev, dev,
6602 &iter->dev->adj_list.lower);
6603 }
6604
6605 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6606 if (!net_eq(net, dev_net(iter->dev)))
6607 continue;
6608 netdev_adjacent_sysfs_del(iter->dev, oldname,
6609 &iter->dev->adj_list.upper);
6610 netdev_adjacent_sysfs_add(iter->dev, dev,
6611 &iter->dev->adj_list.upper);
6612 }
6613}
6614
6615void *netdev_lower_dev_get_private(struct net_device *dev,
6616 struct net_device *lower_dev)
6617{
6618 struct netdev_adjacent *lower;
6619
6620 if (!lower_dev)
6621 return NULL;
6622 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6623 if (!lower)
6624 return NULL;
6625
6626 return lower->private;
6627}
6628EXPORT_SYMBOL(netdev_lower_dev_get_private);
6629
6630
6631int dev_get_nest_level(struct net_device *dev)
6632{
6633 struct net_device *lower = NULL;
6634 struct list_head *iter;
6635 int max_nest = -1;
6636 int nest;
6637
6638 ASSERT_RTNL();
6639
6640 netdev_for_each_lower_dev(dev, lower, iter) {
6641 nest = dev_get_nest_level(lower);
6642 if (max_nest < nest)
6643 max_nest = nest;
6644 }
6645
6646 return max_nest + 1;
6647}
6648EXPORT_SYMBOL(dev_get_nest_level);
6649
6650/**
6651 * netdev_lower_change - Dispatch event about lower device state change
6652 * @lower_dev: device
6653 * @lower_state_info: state to dispatch
6654 *
6655 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6656 * The caller must hold the RTNL lock.
6657 */
6658void netdev_lower_state_changed(struct net_device *lower_dev,
6659 void *lower_state_info)
6660{
6661 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6662 .info.dev = lower_dev,
6663 };
6664
6665 ASSERT_RTNL();
6666 changelowerstate_info.lower_state_info = lower_state_info;
6667 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6668 &changelowerstate_info.info);
6669}
6670EXPORT_SYMBOL(netdev_lower_state_changed);
6671
6672static void dev_change_rx_flags(struct net_device *dev, int flags)
6673{
6674 const struct net_device_ops *ops = dev->netdev_ops;
6675
6676 if (ops->ndo_change_rx_flags)
6677 ops->ndo_change_rx_flags(dev, flags);
6678}
6679
6680static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6681{
6682 unsigned int old_flags = dev->flags;
6683 kuid_t uid;
6684 kgid_t gid;
6685
6686 ASSERT_RTNL();
6687
6688 dev->flags |= IFF_PROMISC;
6689 dev->promiscuity += inc;
6690 if (dev->promiscuity == 0) {
6691 /*
6692 * Avoid overflow.
6693 * If inc causes overflow, untouch promisc and return error.
6694 */
6695 if (inc < 0)
6696 dev->flags &= ~IFF_PROMISC;
6697 else {
6698 dev->promiscuity -= inc;
6699 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6700 dev->name);
6701 return -EOVERFLOW;
6702 }
6703 }
6704 if (dev->flags != old_flags) {
6705 pr_info("device %s %s promiscuous mode\n",
6706 dev->name,
6707 dev->flags & IFF_PROMISC ? "entered" : "left");
6708 if (audit_enabled) {
6709 current_uid_gid(&uid, &gid);
6710 audit_log(current->audit_context, GFP_ATOMIC,
6711 AUDIT_ANOM_PROMISCUOUS,
6712 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6713 dev->name, (dev->flags & IFF_PROMISC),
6714 (old_flags & IFF_PROMISC),
6715 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6716 from_kuid(&init_user_ns, uid),
6717 from_kgid(&init_user_ns, gid),
6718 audit_get_sessionid(current));
6719 }
6720
6721 dev_change_rx_flags(dev, IFF_PROMISC);
6722 }
6723 if (notify)
6724 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6725 return 0;
6726}
6727
6728/**
6729 * dev_set_promiscuity - update promiscuity count on a device
6730 * @dev: device
6731 * @inc: modifier
6732 *
6733 * Add or remove promiscuity from a device. While the count in the device
6734 * remains above zero the interface remains promiscuous. Once it hits zero
6735 * the device reverts back to normal filtering operation. A negative inc
6736 * value is used to drop promiscuity on the device.
6737 * Return 0 if successful or a negative errno code on error.
6738 */
6739int dev_set_promiscuity(struct net_device *dev, int inc)
6740{
6741 unsigned int old_flags = dev->flags;
6742 int err;
6743
6744 err = __dev_set_promiscuity(dev, inc, true);
6745 if (err < 0)
6746 return err;
6747 if (dev->flags != old_flags)
6748 dev_set_rx_mode(dev);
6749 return err;
6750}
6751EXPORT_SYMBOL(dev_set_promiscuity);
6752
6753static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6754{
6755 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6756
6757 ASSERT_RTNL();
6758
6759 dev->flags |= IFF_ALLMULTI;
6760 dev->allmulti += inc;
6761 if (dev->allmulti == 0) {
6762 /*
6763 * Avoid overflow.
6764 * If inc causes overflow, untouch allmulti and return error.
6765 */
6766 if (inc < 0)
6767 dev->flags &= ~IFF_ALLMULTI;
6768 else {
6769 dev->allmulti -= inc;
6770 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6771 dev->name);
6772 return -EOVERFLOW;
6773 }
6774 }
6775 if (dev->flags ^ old_flags) {
6776 dev_change_rx_flags(dev, IFF_ALLMULTI);
6777 dev_set_rx_mode(dev);
6778 if (notify)
6779 __dev_notify_flags(dev, old_flags,
6780 dev->gflags ^ old_gflags);
6781 }
6782 return 0;
6783}
6784
6785/**
6786 * dev_set_allmulti - update allmulti count on a device
6787 * @dev: device
6788 * @inc: modifier
6789 *
6790 * Add or remove reception of all multicast frames to a device. While the
6791 * count in the device remains above zero the interface remains listening
6792 * to all interfaces. Once it hits zero the device reverts back to normal
6793 * filtering operation. A negative @inc value is used to drop the counter
6794 * when releasing a resource needing all multicasts.
6795 * Return 0 if successful or a negative errno code on error.
6796 */
6797
6798int dev_set_allmulti(struct net_device *dev, int inc)
6799{
6800 return __dev_set_allmulti(dev, inc, true);
6801}
6802EXPORT_SYMBOL(dev_set_allmulti);
6803
6804/*
6805 * Upload unicast and multicast address lists to device and
6806 * configure RX filtering. When the device doesn't support unicast
6807 * filtering it is put in promiscuous mode while unicast addresses
6808 * are present.
6809 */
6810void __dev_set_rx_mode(struct net_device *dev)
6811{
6812 const struct net_device_ops *ops = dev->netdev_ops;
6813
6814 /* dev_open will call this function so the list will stay sane. */
6815 if (!(dev->flags&IFF_UP))
6816 return;
6817
6818 if (!netif_device_present(dev))
6819 return;
6820
6821 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6822 /* Unicast addresses changes may only happen under the rtnl,
6823 * therefore calling __dev_set_promiscuity here is safe.
6824 */
6825 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6826 __dev_set_promiscuity(dev, 1, false);
6827 dev->uc_promisc = true;
6828 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6829 __dev_set_promiscuity(dev, -1, false);
6830 dev->uc_promisc = false;
6831 }
6832 }
6833
6834 if (ops->ndo_set_rx_mode)
6835 ops->ndo_set_rx_mode(dev);
6836}
6837
6838void dev_set_rx_mode(struct net_device *dev)
6839{
6840 netif_addr_lock_bh(dev);
6841 __dev_set_rx_mode(dev);
6842 netif_addr_unlock_bh(dev);
6843}
6844
6845/**
6846 * dev_get_flags - get flags reported to userspace
6847 * @dev: device
6848 *
6849 * Get the combination of flag bits exported through APIs to userspace.
6850 */
6851unsigned int dev_get_flags(const struct net_device *dev)
6852{
6853 unsigned int flags;
6854
6855 flags = (dev->flags & ~(IFF_PROMISC |
6856 IFF_ALLMULTI |
6857 IFF_RUNNING |
6858 IFF_LOWER_UP |
6859 IFF_DORMANT)) |
6860 (dev->gflags & (IFF_PROMISC |
6861 IFF_ALLMULTI));
6862
6863 if (netif_running(dev)) {
6864 if (netif_oper_up(dev))
6865 flags |= IFF_RUNNING;
6866 if (netif_carrier_ok(dev))
6867 flags |= IFF_LOWER_UP;
6868 if (netif_dormant(dev))
6869 flags |= IFF_DORMANT;
6870 }
6871
6872 return flags;
6873}
6874EXPORT_SYMBOL(dev_get_flags);
6875
6876int __dev_change_flags(struct net_device *dev, unsigned int flags)
6877{
6878 unsigned int old_flags = dev->flags;
6879 int ret;
6880
6881 ASSERT_RTNL();
6882
6883 /*
6884 * Set the flags on our device.
6885 */
6886
6887 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6888 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6889 IFF_AUTOMEDIA)) |
6890 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6891 IFF_ALLMULTI));
6892
6893 /*
6894 * Load in the correct multicast list now the flags have changed.
6895 */
6896
6897 if ((old_flags ^ flags) & IFF_MULTICAST)
6898 dev_change_rx_flags(dev, IFF_MULTICAST);
6899
6900 dev_set_rx_mode(dev);
6901
6902 /*
6903 * Have we downed the interface. We handle IFF_UP ourselves
6904 * according to user attempts to set it, rather than blindly
6905 * setting it.
6906 */
6907
6908 ret = 0;
6909 if ((old_flags ^ flags) & IFF_UP) {
6910 if (old_flags & IFF_UP)
6911 __dev_close(dev);
6912 else
6913 ret = __dev_open(dev);
6914 }
6915
6916 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6917 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6918 unsigned int old_flags = dev->flags;
6919
6920 dev->gflags ^= IFF_PROMISC;
6921
6922 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6923 if (dev->flags != old_flags)
6924 dev_set_rx_mode(dev);
6925 }
6926
6927 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6928 * is important. Some (broken) drivers set IFF_PROMISC, when
6929 * IFF_ALLMULTI is requested not asking us and not reporting.
6930 */
6931 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6932 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6933
6934 dev->gflags ^= IFF_ALLMULTI;
6935 __dev_set_allmulti(dev, inc, false);
6936 }
6937
6938 return ret;
6939}
6940
6941void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6942 unsigned int gchanges)
6943{
6944 unsigned int changes = dev->flags ^ old_flags;
6945
6946 if (gchanges)
6947 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6948
6949 if (changes & IFF_UP) {
6950 if (dev->flags & IFF_UP)
6951 call_netdevice_notifiers(NETDEV_UP, dev);
6952 else
6953 call_netdevice_notifiers(NETDEV_DOWN, dev);
6954 }
6955
6956 if (dev->flags & IFF_UP &&
6957 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6958 struct netdev_notifier_change_info change_info = {
6959 .info = {
6960 .dev = dev,
6961 },
6962 .flags_changed = changes,
6963 };
6964
6965 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
6966 }
6967}
6968
6969/**
6970 * dev_change_flags - change device settings
6971 * @dev: device
6972 * @flags: device state flags
6973 *
6974 * Change settings on device based state flags. The flags are
6975 * in the userspace exported format.
6976 */
6977int dev_change_flags(struct net_device *dev, unsigned int flags)
6978{
6979 int ret;
6980 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6981
6982 ret = __dev_change_flags(dev, flags);
6983 if (ret < 0)
6984 return ret;
6985
6986 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6987 __dev_notify_flags(dev, old_flags, changes);
6988 return ret;
6989}
6990EXPORT_SYMBOL(dev_change_flags);
6991
6992int __dev_set_mtu(struct net_device *dev, int new_mtu)
6993{
6994 const struct net_device_ops *ops = dev->netdev_ops;
6995
6996 if (ops->ndo_change_mtu)
6997 return ops->ndo_change_mtu(dev, new_mtu);
6998
6999 dev->mtu = new_mtu;
7000 return 0;
7001}
7002EXPORT_SYMBOL(__dev_set_mtu);
7003
7004/**
7005 * dev_set_mtu - Change maximum transfer unit
7006 * @dev: device
7007 * @new_mtu: new transfer unit
7008 *
7009 * Change the maximum transfer size of the network device.
7010 */
7011int dev_set_mtu(struct net_device *dev, int new_mtu)
7012{
7013 int err, orig_mtu;
7014
7015 if (new_mtu == dev->mtu)
7016 return 0;
7017
7018 /* MTU must be positive, and in range */
7019 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7020 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7021 dev->name, new_mtu, dev->min_mtu);
7022 return -EINVAL;
7023 }
7024
7025 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7026 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7027 dev->name, new_mtu, dev->max_mtu);
7028 return -EINVAL;
7029 }
7030
7031 if (!netif_device_present(dev))
7032 return -ENODEV;
7033
7034 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7035 err = notifier_to_errno(err);
7036 if (err)
7037 return err;
7038
7039 orig_mtu = dev->mtu;
7040 err = __dev_set_mtu(dev, new_mtu);
7041
7042 if (!err) {
7043 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7044 err = notifier_to_errno(err);
7045 if (err) {
7046 /* setting mtu back and notifying everyone again,
7047 * so that they have a chance to revert changes.
7048 */
7049 __dev_set_mtu(dev, orig_mtu);
7050 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7051 }
7052 }
7053 return err;
7054}
7055EXPORT_SYMBOL(dev_set_mtu);
7056
7057/**
7058 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7059 * @dev: device
7060 * @new_len: new tx queue length
7061 */
7062int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7063{
7064 unsigned int orig_len = dev->tx_queue_len;
7065 int res;
7066
7067 if (new_len != (unsigned int)new_len)
7068 return -ERANGE;
7069
7070 if (new_len != orig_len) {
7071 dev->tx_queue_len = new_len;
7072 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7073 res = notifier_to_errno(res);
7074 if (res) {
7075 netdev_err(dev,
7076 "refused to change device tx_queue_len\n");
7077 dev->tx_queue_len = orig_len;
7078 return res;
7079 }
7080 return dev_qdisc_change_tx_queue_len(dev);
7081 }
7082
7083 return 0;
7084}
7085
7086/**
7087 * dev_set_group - Change group this device belongs to
7088 * @dev: device
7089 * @new_group: group this device should belong to
7090 */
7091void dev_set_group(struct net_device *dev, int new_group)
7092{
7093 dev->group = new_group;
7094}
7095EXPORT_SYMBOL(dev_set_group);
7096
7097/**
7098 * dev_set_mac_address - Change Media Access Control Address
7099 * @dev: device
7100 * @sa: new address
7101 *
7102 * Change the hardware (MAC) address of the device
7103 */
7104int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7105{
7106 const struct net_device_ops *ops = dev->netdev_ops;
7107 int err;
7108
7109 if (!ops->ndo_set_mac_address)
7110 return -EOPNOTSUPP;
7111 if (sa->sa_family != dev->type)
7112 return -EINVAL;
7113 if (!netif_device_present(dev))
7114 return -ENODEV;
7115 err = ops->ndo_set_mac_address(dev, sa);
7116 if (err)
7117 return err;
7118 dev->addr_assign_type = NET_ADDR_SET;
7119 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7120 add_device_randomness(dev->dev_addr, dev->addr_len);
7121 return 0;
7122}
7123EXPORT_SYMBOL(dev_set_mac_address);
7124
7125/**
7126 * dev_change_carrier - Change device carrier
7127 * @dev: device
7128 * @new_carrier: new value
7129 *
7130 * Change device carrier
7131 */
7132int dev_change_carrier(struct net_device *dev, bool new_carrier)
7133{
7134 const struct net_device_ops *ops = dev->netdev_ops;
7135
7136 if (!ops->ndo_change_carrier)
7137 return -EOPNOTSUPP;
7138 if (!netif_device_present(dev))
7139 return -ENODEV;
7140 return ops->ndo_change_carrier(dev, new_carrier);
7141}
7142EXPORT_SYMBOL(dev_change_carrier);
7143
7144/**
7145 * dev_get_phys_port_id - Get device physical port ID
7146 * @dev: device
7147 * @ppid: port ID
7148 *
7149 * Get device physical port ID
7150 */
7151int dev_get_phys_port_id(struct net_device *dev,
7152 struct netdev_phys_item_id *ppid)
7153{
7154 const struct net_device_ops *ops = dev->netdev_ops;
7155
7156 if (!ops->ndo_get_phys_port_id)
7157 return -EOPNOTSUPP;
7158 return ops->ndo_get_phys_port_id(dev, ppid);
7159}
7160EXPORT_SYMBOL(dev_get_phys_port_id);
7161
7162/**
7163 * dev_get_phys_port_name - Get device physical port name
7164 * @dev: device
7165 * @name: port name
7166 * @len: limit of bytes to copy to name
7167 *
7168 * Get device physical port name
7169 */
7170int dev_get_phys_port_name(struct net_device *dev,
7171 char *name, size_t len)
7172{
7173 const struct net_device_ops *ops = dev->netdev_ops;
7174
7175 if (!ops->ndo_get_phys_port_name)
7176 return -EOPNOTSUPP;
7177 return ops->ndo_get_phys_port_name(dev, name, len);
7178}
7179EXPORT_SYMBOL(dev_get_phys_port_name);
7180
7181/**
7182 * dev_change_proto_down - update protocol port state information
7183 * @dev: device
7184 * @proto_down: new value
7185 *
7186 * This info can be used by switch drivers to set the phys state of the
7187 * port.
7188 */
7189int dev_change_proto_down(struct net_device *dev, bool proto_down)
7190{
7191 const struct net_device_ops *ops = dev->netdev_ops;
7192
7193 if (!ops->ndo_change_proto_down)
7194 return -EOPNOTSUPP;
7195 if (!netif_device_present(dev))
7196 return -ENODEV;
7197 return ops->ndo_change_proto_down(dev, proto_down);
7198}
7199EXPORT_SYMBOL(dev_change_proto_down);
7200
7201void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7202 struct netdev_bpf *xdp)
7203{
7204 memset(xdp, 0, sizeof(*xdp));
7205 xdp->command = XDP_QUERY_PROG;
7206
7207 /* Query must always succeed. */
7208 WARN_ON(bpf_op(dev, xdp) < 0);
7209}
7210
7211static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7212{
7213 struct netdev_bpf xdp;
7214
7215 __dev_xdp_query(dev, bpf_op, &xdp);
7216
7217 return xdp.prog_attached;
7218}
7219
7220static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7221 struct netlink_ext_ack *extack, u32 flags,
7222 struct bpf_prog *prog)
7223{
7224 struct netdev_bpf xdp;
7225
7226 memset(&xdp, 0, sizeof(xdp));
7227 if (flags & XDP_FLAGS_HW_MODE)
7228 xdp.command = XDP_SETUP_PROG_HW;
7229 else
7230 xdp.command = XDP_SETUP_PROG;
7231 xdp.extack = extack;
7232 xdp.flags = flags;
7233 xdp.prog = prog;
7234
7235 return bpf_op(dev, &xdp);
7236}
7237
7238static void dev_xdp_uninstall(struct net_device *dev)
7239{
7240 struct netdev_bpf xdp;
7241 bpf_op_t ndo_bpf;
7242
7243 /* Remove generic XDP */
7244 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7245
7246 /* Remove from the driver */
7247 ndo_bpf = dev->netdev_ops->ndo_bpf;
7248 if (!ndo_bpf)
7249 return;
7250
7251 __dev_xdp_query(dev, ndo_bpf, &xdp);
7252 if (xdp.prog_attached == XDP_ATTACHED_NONE)
7253 return;
7254
7255 /* Program removal should always succeed */
7256 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7257}
7258
7259/**
7260 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7261 * @dev: device
7262 * @extack: netlink extended ack
7263 * @fd: new program fd or negative value to clear
7264 * @flags: xdp-related flags
7265 *
7266 * Set or clear a bpf program for a device
7267 */
7268int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7269 int fd, u32 flags)
7270{
7271 const struct net_device_ops *ops = dev->netdev_ops;
7272 struct bpf_prog *prog = NULL;
7273 bpf_op_t bpf_op, bpf_chk;
7274 int err;
7275
7276 ASSERT_RTNL();
7277
7278 bpf_op = bpf_chk = ops->ndo_bpf;
7279 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7280 return -EOPNOTSUPP;
7281 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7282 bpf_op = generic_xdp_install;
7283 if (bpf_op == bpf_chk)
7284 bpf_chk = generic_xdp_install;
7285
7286 if (fd >= 0) {
7287 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7288 return -EEXIST;
7289 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7290 __dev_xdp_attached(dev, bpf_op))
7291 return -EBUSY;
7292
7293 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7294 bpf_op == ops->ndo_bpf);
7295 if (IS_ERR(prog))
7296 return PTR_ERR(prog);
7297
7298 if (!(flags & XDP_FLAGS_HW_MODE) &&
7299 bpf_prog_is_dev_bound(prog->aux)) {
7300 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7301 bpf_prog_put(prog);
7302 return -EINVAL;
7303 }
7304 }
7305
7306 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7307 if (err < 0 && prog)
7308 bpf_prog_put(prog);
7309
7310 return err;
7311}
7312
7313/**
7314 * dev_new_index - allocate an ifindex
7315 * @net: the applicable net namespace
7316 *
7317 * Returns a suitable unique value for a new device interface
7318 * number. The caller must hold the rtnl semaphore or the
7319 * dev_base_lock to be sure it remains unique.
7320 */
7321static int dev_new_index(struct net *net)
7322{
7323 int ifindex = net->ifindex;
7324
7325 for (;;) {
7326 if (++ifindex <= 0)
7327 ifindex = 1;
7328 if (!__dev_get_by_index(net, ifindex))
7329 return net->ifindex = ifindex;
7330 }
7331}
7332
7333/* Delayed registration/unregisteration */
7334static LIST_HEAD(net_todo_list);
7335DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7336
7337static void net_set_todo(struct net_device *dev)
7338{
7339 list_add_tail(&dev->todo_list, &net_todo_list);
7340 dev_net(dev)->dev_unreg_count++;
7341}
7342
7343static void rollback_registered_many(struct list_head *head)
7344{
7345 struct net_device *dev, *tmp;
7346 LIST_HEAD(close_head);
7347
7348 BUG_ON(dev_boot_phase);
7349 ASSERT_RTNL();
7350
7351 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7352 /* Some devices call without registering
7353 * for initialization unwind. Remove those
7354 * devices and proceed with the remaining.
7355 */
7356 if (dev->reg_state == NETREG_UNINITIALIZED) {
7357 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7358 dev->name, dev);
7359
7360 WARN_ON(1);
7361 list_del(&dev->unreg_list);
7362 continue;
7363 }
7364 dev->dismantle = true;
7365 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7366 }
7367
7368 /* If device is running, close it first. */
7369 list_for_each_entry(dev, head, unreg_list)
7370 list_add_tail(&dev->close_list, &close_head);
7371 dev_close_many(&close_head, true);
7372
7373 list_for_each_entry(dev, head, unreg_list) {
7374 /* And unlink it from device chain. */
7375 unlist_netdevice(dev);
7376
7377 dev->reg_state = NETREG_UNREGISTERING;
7378 }
7379 flush_all_backlogs();
7380
7381 synchronize_net();
7382
7383 list_for_each_entry(dev, head, unreg_list) {
7384 struct sk_buff *skb = NULL;
7385
7386 /* Shutdown queueing discipline. */
7387 dev_shutdown(dev);
7388
7389 dev_xdp_uninstall(dev);
7390
7391 /* Notify protocols, that we are about to destroy
7392 * this device. They should clean all the things.
7393 */
7394 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7395
7396 if (!dev->rtnl_link_ops ||
7397 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7398 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7399 GFP_KERNEL, NULL, 0);
7400
7401 /*
7402 * Flush the unicast and multicast chains
7403 */
7404 dev_uc_flush(dev);
7405 dev_mc_flush(dev);
7406
7407 if (dev->netdev_ops->ndo_uninit)
7408 dev->netdev_ops->ndo_uninit(dev);
7409
7410 if (skb)
7411 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7412
7413 /* Notifier chain MUST detach us all upper devices. */
7414 WARN_ON(netdev_has_any_upper_dev(dev));
7415 WARN_ON(netdev_has_any_lower_dev(dev));
7416
7417 /* Remove entries from kobject tree */
7418 netdev_unregister_kobject(dev);
7419#ifdef CONFIG_XPS
7420 /* Remove XPS queueing entries */
7421 netif_reset_xps_queues_gt(dev, 0);
7422#endif
7423 }
7424
7425 synchronize_net();
7426
7427 list_for_each_entry(dev, head, unreg_list)
7428 dev_put(dev);
7429}
7430
7431static void rollback_registered(struct net_device *dev)
7432{
7433 LIST_HEAD(single);
7434
7435 list_add(&dev->unreg_list, &single);
7436 rollback_registered_many(&single);
7437 list_del(&single);
7438}
7439
7440static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7441 struct net_device *upper, netdev_features_t features)
7442{
7443 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7444 netdev_features_t feature;
7445 int feature_bit;
7446
7447 for_each_netdev_feature(&upper_disables, feature_bit) {
7448 feature = __NETIF_F_BIT(feature_bit);
7449 if (!(upper->wanted_features & feature)
7450 && (features & feature)) {
7451 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7452 &feature, upper->name);
7453 features &= ~feature;
7454 }
7455 }
7456
7457 return features;
7458}
7459
7460static void netdev_sync_lower_features(struct net_device *upper,
7461 struct net_device *lower, netdev_features_t features)
7462{
7463 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7464 netdev_features_t feature;
7465 int feature_bit;
7466
7467 for_each_netdev_feature(&upper_disables, feature_bit) {
7468 feature = __NETIF_F_BIT(feature_bit);
7469 if (!(features & feature) && (lower->features & feature)) {
7470 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7471 &feature, lower->name);
7472 lower->wanted_features &= ~feature;
7473 netdev_update_features(lower);
7474
7475 if (unlikely(lower->features & feature))
7476 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7477 &feature, lower->name);
7478 }
7479 }
7480}
7481
7482static netdev_features_t netdev_fix_features(struct net_device *dev,
7483 netdev_features_t features)
7484{
7485 /* Fix illegal checksum combinations */
7486 if ((features & NETIF_F_HW_CSUM) &&
7487 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7488 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7489 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7490 }
7491
7492 /* TSO requires that SG is present as well. */
7493 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7494 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7495 features &= ~NETIF_F_ALL_TSO;
7496 }
7497
7498 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7499 !(features & NETIF_F_IP_CSUM)) {
7500 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7501 features &= ~NETIF_F_TSO;
7502 features &= ~NETIF_F_TSO_ECN;
7503 }
7504
7505 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7506 !(features & NETIF_F_IPV6_CSUM)) {
7507 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7508 features &= ~NETIF_F_TSO6;
7509 }
7510
7511 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7512 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7513 features &= ~NETIF_F_TSO_MANGLEID;
7514
7515 /* TSO ECN requires that TSO is present as well. */
7516 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7517 features &= ~NETIF_F_TSO_ECN;
7518
7519 /* Software GSO depends on SG. */
7520 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7521 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7522 features &= ~NETIF_F_GSO;
7523 }
7524
7525 /* GSO partial features require GSO partial be set */
7526 if ((features & dev->gso_partial_features) &&
7527 !(features & NETIF_F_GSO_PARTIAL)) {
7528 netdev_dbg(dev,
7529 "Dropping partially supported GSO features since no GSO partial.\n");
7530 features &= ~dev->gso_partial_features;
7531 }
7532
7533 if (!(features & NETIF_F_RXCSUM)) {
7534 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7535 * successfully merged by hardware must also have the
7536 * checksum verified by hardware. If the user does not
7537 * want to enable RXCSUM, logically, we should disable GRO_HW.
7538 */
7539 if (features & NETIF_F_GRO_HW) {
7540 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7541 features &= ~NETIF_F_GRO_HW;
7542 }
7543 }
7544
7545 return features;
7546}
7547
7548int __netdev_update_features(struct net_device *dev)
7549{
7550 struct net_device *upper, *lower;
7551 netdev_features_t features;
7552 struct list_head *iter;
7553 int err = -1;
7554
7555 ASSERT_RTNL();
7556
7557 features = netdev_get_wanted_features(dev);
7558
7559 if (dev->netdev_ops->ndo_fix_features)
7560 features = dev->netdev_ops->ndo_fix_features(dev, features);
7561
7562 /* driver might be less strict about feature dependencies */
7563 features = netdev_fix_features(dev, features);
7564
7565 /* some features can't be enabled if they're off an an upper device */
7566 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7567 features = netdev_sync_upper_features(dev, upper, features);
7568
7569 if (dev->features == features)
7570 goto sync_lower;
7571
7572 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7573 &dev->features, &features);
7574
7575 if (dev->netdev_ops->ndo_set_features)
7576 err = dev->netdev_ops->ndo_set_features(dev, features);
7577 else
7578 err = 0;
7579
7580 if (unlikely(err < 0)) {
7581 netdev_err(dev,
7582 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7583 err, &features, &dev->features);
7584 /* return non-0 since some features might have changed and
7585 * it's better to fire a spurious notification than miss it
7586 */
7587 return -1;
7588 }
7589
7590sync_lower:
7591 /* some features must be disabled on lower devices when disabled
7592 * on an upper device (think: bonding master or bridge)
7593 */
7594 netdev_for_each_lower_dev(dev, lower, iter)
7595 netdev_sync_lower_features(dev, lower, features);
7596
7597 if (!err) {
7598 netdev_features_t diff = features ^ dev->features;
7599
7600 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7601 /* udp_tunnel_{get,drop}_rx_info both need
7602 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7603 * device, or they won't do anything.
7604 * Thus we need to update dev->features
7605 * *before* calling udp_tunnel_get_rx_info,
7606 * but *after* calling udp_tunnel_drop_rx_info.
7607 */
7608 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7609 dev->features = features;
7610 udp_tunnel_get_rx_info(dev);
7611 } else {
7612 udp_tunnel_drop_rx_info(dev);
7613 }
7614 }
7615
7616 dev->features = features;
7617 }
7618
7619 return err < 0 ? 0 : 1;
7620}
7621
7622/**
7623 * netdev_update_features - recalculate device features
7624 * @dev: the device to check
7625 *
7626 * Recalculate dev->features set and send notifications if it
7627 * has changed. Should be called after driver or hardware dependent
7628 * conditions might have changed that influence the features.
7629 */
7630void netdev_update_features(struct net_device *dev)
7631{
7632 if (__netdev_update_features(dev))
7633 netdev_features_change(dev);
7634}
7635EXPORT_SYMBOL(netdev_update_features);
7636
7637/**
7638 * netdev_change_features - recalculate device features
7639 * @dev: the device to check
7640 *
7641 * Recalculate dev->features set and send notifications even
7642 * if they have not changed. Should be called instead of
7643 * netdev_update_features() if also dev->vlan_features might
7644 * have changed to allow the changes to be propagated to stacked
7645 * VLAN devices.
7646 */
7647void netdev_change_features(struct net_device *dev)
7648{
7649 __netdev_update_features(dev);
7650 netdev_features_change(dev);
7651}
7652EXPORT_SYMBOL(netdev_change_features);
7653
7654/**
7655 * netif_stacked_transfer_operstate - transfer operstate
7656 * @rootdev: the root or lower level device to transfer state from
7657 * @dev: the device to transfer operstate to
7658 *
7659 * Transfer operational state from root to device. This is normally
7660 * called when a stacking relationship exists between the root
7661 * device and the device(a leaf device).
7662 */
7663void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7664 struct net_device *dev)
7665{
7666 if (rootdev->operstate == IF_OPER_DORMANT)
7667 netif_dormant_on(dev);
7668 else
7669 netif_dormant_off(dev);
7670
7671 if (netif_carrier_ok(rootdev))
7672 netif_carrier_on(dev);
7673 else
7674 netif_carrier_off(dev);
7675}
7676EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7677
7678static int netif_alloc_rx_queues(struct net_device *dev)
7679{
7680 unsigned int i, count = dev->num_rx_queues;
7681 struct netdev_rx_queue *rx;
7682 size_t sz = count * sizeof(*rx);
7683 int err = 0;
7684
7685 BUG_ON(count < 1);
7686
7687 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7688 if (!rx)
7689 return -ENOMEM;
7690
7691 dev->_rx = rx;
7692
7693 for (i = 0; i < count; i++) {
7694 rx[i].dev = dev;
7695
7696 /* XDP RX-queue setup */
7697 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7698 if (err < 0)
7699 goto err_rxq_info;
7700 }
7701 return 0;
7702
7703err_rxq_info:
7704 /* Rollback successful reg's and free other resources */
7705 while (i--)
7706 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7707 kvfree(dev->_rx);
7708 dev->_rx = NULL;
7709 return err;
7710}
7711
7712static void netif_free_rx_queues(struct net_device *dev)
7713{
7714 unsigned int i, count = dev->num_rx_queues;
7715
7716 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7717 if (!dev->_rx)
7718 return;
7719
7720 for (i = 0; i < count; i++)
7721 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
7722
7723 kvfree(dev->_rx);
7724}
7725
7726static void netdev_init_one_queue(struct net_device *dev,
7727 struct netdev_queue *queue, void *_unused)
7728{
7729 /* Initialize queue lock */
7730 spin_lock_init(&queue->_xmit_lock);
7731 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7732 queue->xmit_lock_owner = -1;
7733 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7734 queue->dev = dev;
7735#ifdef CONFIG_BQL
7736 dql_init(&queue->dql, HZ);
7737#endif
7738}
7739
7740static void netif_free_tx_queues(struct net_device *dev)
7741{
7742 kvfree(dev->_tx);
7743}
7744
7745static int netif_alloc_netdev_queues(struct net_device *dev)
7746{
7747 unsigned int count = dev->num_tx_queues;
7748 struct netdev_queue *tx;
7749 size_t sz = count * sizeof(*tx);
7750
7751 if (count < 1 || count > 0xffff)
7752 return -EINVAL;
7753
7754 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7755 if (!tx)
7756 return -ENOMEM;
7757
7758 dev->_tx = tx;
7759
7760 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7761 spin_lock_init(&dev->tx_global_lock);
7762
7763 return 0;
7764}
7765
7766void netif_tx_stop_all_queues(struct net_device *dev)
7767{
7768 unsigned int i;
7769
7770 for (i = 0; i < dev->num_tx_queues; i++) {
7771 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7772
7773 netif_tx_stop_queue(txq);
7774 }
7775}
7776EXPORT_SYMBOL(netif_tx_stop_all_queues);
7777
7778/**
7779 * register_netdevice - register a network device
7780 * @dev: device to register
7781 *
7782 * Take a completed network device structure and add it to the kernel
7783 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7784 * chain. 0 is returned on success. A negative errno code is returned
7785 * on a failure to set up the device, or if the name is a duplicate.
7786 *
7787 * Callers must hold the rtnl semaphore. You may want
7788 * register_netdev() instead of this.
7789 *
7790 * BUGS:
7791 * The locking appears insufficient to guarantee two parallel registers
7792 * will not get the same name.
7793 */
7794
7795int register_netdevice(struct net_device *dev)
7796{
7797 int ret;
7798 struct net *net = dev_net(dev);
7799
7800 BUG_ON(dev_boot_phase);
7801 ASSERT_RTNL();
7802
7803 might_sleep();
7804
7805 /* When net_device's are persistent, this will be fatal. */
7806 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7807 BUG_ON(!net);
7808
7809 spin_lock_init(&dev->addr_list_lock);
7810 netdev_set_addr_lockdep_class(dev);
7811
7812 ret = dev_get_valid_name(net, dev, dev->name);
7813 if (ret < 0)
7814 goto out;
7815
7816 /* Init, if this function is available */
7817 if (dev->netdev_ops->ndo_init) {
7818 ret = dev->netdev_ops->ndo_init(dev);
7819 if (ret) {
7820 if (ret > 0)
7821 ret = -EIO;
7822 goto out;
7823 }
7824 }
7825
7826 if (((dev->hw_features | dev->features) &
7827 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7828 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7829 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7830 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7831 ret = -EINVAL;
7832 goto err_uninit;
7833 }
7834
7835 ret = -EBUSY;
7836 if (!dev->ifindex)
7837 dev->ifindex = dev_new_index(net);
7838 else if (__dev_get_by_index(net, dev->ifindex))
7839 goto err_uninit;
7840
7841 /* Transfer changeable features to wanted_features and enable
7842 * software offloads (GSO and GRO).
7843 */
7844 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7845 dev->features |= NETIF_F_SOFT_FEATURES;
7846
7847 if (dev->netdev_ops->ndo_udp_tunnel_add) {
7848 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7849 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7850 }
7851
7852 dev->wanted_features = dev->features & dev->hw_features;
7853
7854 if (!(dev->flags & IFF_LOOPBACK))
7855 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7856
7857 /* If IPv4 TCP segmentation offload is supported we should also
7858 * allow the device to enable segmenting the frame with the option
7859 * of ignoring a static IP ID value. This doesn't enable the
7860 * feature itself but allows the user to enable it later.
7861 */
7862 if (dev->hw_features & NETIF_F_TSO)
7863 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7864 if (dev->vlan_features & NETIF_F_TSO)
7865 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7866 if (dev->mpls_features & NETIF_F_TSO)
7867 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7868 if (dev->hw_enc_features & NETIF_F_TSO)
7869 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7870
7871 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7872 */
7873 dev->vlan_features |= NETIF_F_HIGHDMA;
7874
7875 /* Make NETIF_F_SG inheritable to tunnel devices.
7876 */
7877 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7878
7879 /* Make NETIF_F_SG inheritable to MPLS.
7880 */
7881 dev->mpls_features |= NETIF_F_SG;
7882
7883 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7884 ret = notifier_to_errno(ret);
7885 if (ret)
7886 goto err_uninit;
7887
7888 ret = netdev_register_kobject(dev);
7889 if (ret)
7890 goto err_uninit;
7891 dev->reg_state = NETREG_REGISTERED;
7892
7893 __netdev_update_features(dev);
7894
7895 /*
7896 * Default initial state at registry is that the
7897 * device is present.
7898 */
7899
7900 set_bit(__LINK_STATE_PRESENT, &dev->state);
7901
7902 linkwatch_init_dev(dev);
7903
7904 dev_init_scheduler(dev);
7905 dev_hold(dev);
7906 list_netdevice(dev);
7907 add_device_randomness(dev->dev_addr, dev->addr_len);
7908
7909 /* If the device has permanent device address, driver should
7910 * set dev_addr and also addr_assign_type should be set to
7911 * NET_ADDR_PERM (default value).
7912 */
7913 if (dev->addr_assign_type == NET_ADDR_PERM)
7914 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7915
7916 /* Notify protocols, that a new device appeared. */
7917 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7918 ret = notifier_to_errno(ret);
7919 if (ret) {
7920 rollback_registered(dev);
7921 dev->reg_state = NETREG_UNREGISTERED;
7922 }
7923 /*
7924 * Prevent userspace races by waiting until the network
7925 * device is fully setup before sending notifications.
7926 */
7927 if (!dev->rtnl_link_ops ||
7928 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7929 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7930
7931out:
7932 return ret;
7933
7934err_uninit:
7935 if (dev->netdev_ops->ndo_uninit)
7936 dev->netdev_ops->ndo_uninit(dev);
7937 if (dev->priv_destructor)
7938 dev->priv_destructor(dev);
7939 goto out;
7940}
7941EXPORT_SYMBOL(register_netdevice);
7942
7943/**
7944 * init_dummy_netdev - init a dummy network device for NAPI
7945 * @dev: device to init
7946 *
7947 * This takes a network device structure and initialize the minimum
7948 * amount of fields so it can be used to schedule NAPI polls without
7949 * registering a full blown interface. This is to be used by drivers
7950 * that need to tie several hardware interfaces to a single NAPI
7951 * poll scheduler due to HW limitations.
7952 */
7953int init_dummy_netdev(struct net_device *dev)
7954{
7955 /* Clear everything. Note we don't initialize spinlocks
7956 * are they aren't supposed to be taken by any of the
7957 * NAPI code and this dummy netdev is supposed to be
7958 * only ever used for NAPI polls
7959 */
7960 memset(dev, 0, sizeof(struct net_device));
7961
7962 /* make sure we BUG if trying to hit standard
7963 * register/unregister code path
7964 */
7965 dev->reg_state = NETREG_DUMMY;
7966
7967 /* NAPI wants this */
7968 INIT_LIST_HEAD(&dev->napi_list);
7969
7970 /* a dummy interface is started by default */
7971 set_bit(__LINK_STATE_PRESENT, &dev->state);
7972 set_bit(__LINK_STATE_START, &dev->state);
7973
7974 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7975 * because users of this 'device' dont need to change
7976 * its refcount.
7977 */
7978
7979 return 0;
7980}
7981EXPORT_SYMBOL_GPL(init_dummy_netdev);
7982
7983
7984/**
7985 * register_netdev - register a network device
7986 * @dev: device to register
7987 *
7988 * Take a completed network device structure and add it to the kernel
7989 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7990 * chain. 0 is returned on success. A negative errno code is returned
7991 * on a failure to set up the device, or if the name is a duplicate.
7992 *
7993 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7994 * and expands the device name if you passed a format string to
7995 * alloc_netdev.
7996 */
7997int register_netdev(struct net_device *dev)
7998{
7999 int err;
8000
8001 rtnl_lock();
8002 err = register_netdevice(dev);
8003 rtnl_unlock();
8004 return err;
8005}
8006EXPORT_SYMBOL(register_netdev);
8007
8008int netdev_refcnt_read(const struct net_device *dev)
8009{
8010 int i, refcnt = 0;
8011
8012 for_each_possible_cpu(i)
8013 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8014 return refcnt;
8015}
8016EXPORT_SYMBOL(netdev_refcnt_read);
8017
8018/**
8019 * netdev_wait_allrefs - wait until all references are gone.
8020 * @dev: target net_device
8021 *
8022 * This is called when unregistering network devices.
8023 *
8024 * Any protocol or device that holds a reference should register
8025 * for netdevice notification, and cleanup and put back the
8026 * reference if they receive an UNREGISTER event.
8027 * We can get stuck here if buggy protocols don't correctly
8028 * call dev_put.
8029 */
8030static void netdev_wait_allrefs(struct net_device *dev)
8031{
8032 unsigned long rebroadcast_time, warning_time;
8033 int refcnt;
8034
8035 linkwatch_forget_dev(dev);
8036
8037 rebroadcast_time = warning_time = jiffies;
8038 refcnt = netdev_refcnt_read(dev);
8039
8040 while (refcnt != 0) {
8041 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8042 rtnl_lock();
8043
8044 /* Rebroadcast unregister notification */
8045 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8046
8047 __rtnl_unlock();
8048 rcu_barrier();
8049 rtnl_lock();
8050
8051 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8052 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8053 &dev->state)) {
8054 /* We must not have linkwatch events
8055 * pending on unregister. If this
8056 * happens, we simply run the queue
8057 * unscheduled, resulting in a noop
8058 * for this device.
8059 */
8060 linkwatch_run_queue();
8061 }
8062
8063 __rtnl_unlock();
8064
8065 rebroadcast_time = jiffies;
8066 }
8067
8068 msleep(250);
8069
8070 refcnt = netdev_refcnt_read(dev);
8071
8072 if (time_after(jiffies, warning_time + 10 * HZ)) {
8073 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8074 dev->name, refcnt);
8075 warning_time = jiffies;
8076 }
8077 }
8078}
8079
8080/* The sequence is:
8081 *
8082 * rtnl_lock();
8083 * ...
8084 * register_netdevice(x1);
8085 * register_netdevice(x2);
8086 * ...
8087 * unregister_netdevice(y1);
8088 * unregister_netdevice(y2);
8089 * ...
8090 * rtnl_unlock();
8091 * free_netdev(y1);
8092 * free_netdev(y2);
8093 *
8094 * We are invoked by rtnl_unlock().
8095 * This allows us to deal with problems:
8096 * 1) We can delete sysfs objects which invoke hotplug
8097 * without deadlocking with linkwatch via keventd.
8098 * 2) Since we run with the RTNL semaphore not held, we can sleep
8099 * safely in order to wait for the netdev refcnt to drop to zero.
8100 *
8101 * We must not return until all unregister events added during
8102 * the interval the lock was held have been completed.
8103 */
8104void netdev_run_todo(void)
8105{
8106 struct list_head list;
8107
8108 /* Snapshot list, allow later requests */
8109 list_replace_init(&net_todo_list, &list);
8110
8111 __rtnl_unlock();
8112
8113
8114 /* Wait for rcu callbacks to finish before next phase */
8115 if (!list_empty(&list))
8116 rcu_barrier();
8117
8118 while (!list_empty(&list)) {
8119 struct net_device *dev
8120 = list_first_entry(&list, struct net_device, todo_list);
8121 list_del(&dev->todo_list);
8122
8123 rtnl_lock();
8124 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8125 __rtnl_unlock();
8126
8127 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8128 pr_err("network todo '%s' but state %d\n",
8129 dev->name, dev->reg_state);
8130 dump_stack();
8131 continue;
8132 }
8133
8134 dev->reg_state = NETREG_UNREGISTERED;
8135
8136 netdev_wait_allrefs(dev);
8137
8138 /* paranoia */
8139 BUG_ON(netdev_refcnt_read(dev));
8140 BUG_ON(!list_empty(&dev->ptype_all));
8141 BUG_ON(!list_empty(&dev->ptype_specific));
8142 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8143 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8144 WARN_ON(dev->dn_ptr);
8145
8146 if (dev->priv_destructor)
8147 dev->priv_destructor(dev);
8148 if (dev->needs_free_netdev)
8149 free_netdev(dev);
8150
8151 /* Report a network device has been unregistered */
8152 rtnl_lock();
8153 dev_net(dev)->dev_unreg_count--;
8154 __rtnl_unlock();
8155 wake_up(&netdev_unregistering_wq);
8156
8157 /* Free network device */
8158 kobject_put(&dev->dev.kobj);
8159 }
8160}
8161
8162/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8163 * all the same fields in the same order as net_device_stats, with only
8164 * the type differing, but rtnl_link_stats64 may have additional fields
8165 * at the end for newer counters.
8166 */
8167void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8168 const struct net_device_stats *netdev_stats)
8169{
8170#if BITS_PER_LONG == 64
8171 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8172 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8173 /* zero out counters that only exist in rtnl_link_stats64 */
8174 memset((char *)stats64 + sizeof(*netdev_stats), 0,
8175 sizeof(*stats64) - sizeof(*netdev_stats));
8176#else
8177 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8178 const unsigned long *src = (const unsigned long *)netdev_stats;
8179 u64 *dst = (u64 *)stats64;
8180
8181 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8182 for (i = 0; i < n; i++)
8183 dst[i] = src[i];
8184 /* zero out counters that only exist in rtnl_link_stats64 */
8185 memset((char *)stats64 + n * sizeof(u64), 0,
8186 sizeof(*stats64) - n * sizeof(u64));
8187#endif
8188}
8189EXPORT_SYMBOL(netdev_stats_to_stats64);
8190
8191/**
8192 * dev_get_stats - get network device statistics
8193 * @dev: device to get statistics from
8194 * @storage: place to store stats
8195 *
8196 * Get network statistics from device. Return @storage.
8197 * The device driver may provide its own method by setting
8198 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8199 * otherwise the internal statistics structure is used.
8200 */
8201struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8202 struct rtnl_link_stats64 *storage)
8203{
8204 const struct net_device_ops *ops = dev->netdev_ops;
8205
8206 if (ops->ndo_get_stats64) {
8207 memset(storage, 0, sizeof(*storage));
8208 ops->ndo_get_stats64(dev, storage);
8209 } else if (ops->ndo_get_stats) {
8210 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8211 } else {
8212 netdev_stats_to_stats64(storage, &dev->stats);
8213 }
8214 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8215 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8216 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8217 return storage;
8218}
8219EXPORT_SYMBOL(dev_get_stats);
8220
8221struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8222{
8223 struct netdev_queue *queue = dev_ingress_queue(dev);
8224
8225#ifdef CONFIG_NET_CLS_ACT
8226 if (queue)
8227 return queue;
8228 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8229 if (!queue)
8230 return NULL;
8231 netdev_init_one_queue(dev, queue, NULL);
8232 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8233 queue->qdisc_sleeping = &noop_qdisc;
8234 rcu_assign_pointer(dev->ingress_queue, queue);
8235#endif
8236 return queue;
8237}
8238
8239static const struct ethtool_ops default_ethtool_ops;
8240
8241void netdev_set_default_ethtool_ops(struct net_device *dev,
8242 const struct ethtool_ops *ops)
8243{
8244 if (dev->ethtool_ops == &default_ethtool_ops)
8245 dev->ethtool_ops = ops;
8246}
8247EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8248
8249void netdev_freemem(struct net_device *dev)
8250{
8251 char *addr = (char *)dev - dev->padded;
8252
8253 kvfree(addr);
8254}
8255
8256/**
8257 * alloc_netdev_mqs - allocate network device
8258 * @sizeof_priv: size of private data to allocate space for
8259 * @name: device name format string
8260 * @name_assign_type: origin of device name
8261 * @setup: callback to initialize device
8262 * @txqs: the number of TX subqueues to allocate
8263 * @rxqs: the number of RX subqueues to allocate
8264 *
8265 * Allocates a struct net_device with private data area for driver use
8266 * and performs basic initialization. Also allocates subqueue structs
8267 * for each queue on the device.
8268 */
8269struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8270 unsigned char name_assign_type,
8271 void (*setup)(struct net_device *),
8272 unsigned int txqs, unsigned int rxqs)
8273{
8274 struct net_device *dev;
8275 unsigned int alloc_size;
8276 struct net_device *p;
8277
8278 BUG_ON(strlen(name) >= sizeof(dev->name));
8279
8280 if (txqs < 1) {
8281 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8282 return NULL;
8283 }
8284
8285 if (rxqs < 1) {
8286 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8287 return NULL;
8288 }
8289
8290 alloc_size = sizeof(struct net_device);
8291 if (sizeof_priv) {
8292 /* ensure 32-byte alignment of private area */
8293 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8294 alloc_size += sizeof_priv;
8295 }
8296 /* ensure 32-byte alignment of whole construct */
8297 alloc_size += NETDEV_ALIGN - 1;
8298
8299 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8300 if (!p)
8301 return NULL;
8302
8303 dev = PTR_ALIGN(p, NETDEV_ALIGN);
8304 dev->padded = (char *)dev - (char *)p;
8305
8306 dev->pcpu_refcnt = alloc_percpu(int);
8307 if (!dev->pcpu_refcnt)
8308 goto free_dev;
8309
8310 if (dev_addr_init(dev))
8311 goto free_pcpu;
8312
8313 dev_mc_init(dev);
8314 dev_uc_init(dev);
8315
8316 dev_net_set(dev, &init_net);
8317
8318 dev->gso_max_size = GSO_MAX_SIZE;
8319 dev->gso_max_segs = GSO_MAX_SEGS;
8320
8321 INIT_LIST_HEAD(&dev->napi_list);
8322 INIT_LIST_HEAD(&dev->unreg_list);
8323 INIT_LIST_HEAD(&dev->close_list);
8324 INIT_LIST_HEAD(&dev->link_watch_list);
8325 INIT_LIST_HEAD(&dev->adj_list.upper);
8326 INIT_LIST_HEAD(&dev->adj_list.lower);
8327 INIT_LIST_HEAD(&dev->ptype_all);
8328 INIT_LIST_HEAD(&dev->ptype_specific);
8329#ifdef CONFIG_NET_SCHED
8330 hash_init(dev->qdisc_hash);
8331#endif
8332 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8333 setup(dev);
8334
8335 if (!dev->tx_queue_len) {
8336 dev->priv_flags |= IFF_NO_QUEUE;
8337 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8338 }
8339
8340 dev->num_tx_queues = txqs;
8341 dev->real_num_tx_queues = txqs;
8342 if (netif_alloc_netdev_queues(dev))
8343 goto free_all;
8344
8345 dev->num_rx_queues = rxqs;
8346 dev->real_num_rx_queues = rxqs;
8347 if (netif_alloc_rx_queues(dev))
8348 goto free_all;
8349
8350 strcpy(dev->name, name);
8351 dev->name_assign_type = name_assign_type;
8352 dev->group = INIT_NETDEV_GROUP;
8353 if (!dev->ethtool_ops)
8354 dev->ethtool_ops = &default_ethtool_ops;
8355
8356 nf_hook_ingress_init(dev);
8357
8358 return dev;
8359
8360free_all:
8361 free_netdev(dev);
8362 return NULL;
8363
8364free_pcpu:
8365 free_percpu(dev->pcpu_refcnt);
8366free_dev:
8367 netdev_freemem(dev);
8368 return NULL;
8369}
8370EXPORT_SYMBOL(alloc_netdev_mqs);
8371
8372/**
8373 * free_netdev - free network device
8374 * @dev: device
8375 *
8376 * This function does the last stage of destroying an allocated device
8377 * interface. The reference to the device object is released. If this
8378 * is the last reference then it will be freed.Must be called in process
8379 * context.
8380 */
8381void free_netdev(struct net_device *dev)
8382{
8383 struct napi_struct *p, *n;
8384
8385 might_sleep();
8386 netif_free_tx_queues(dev);
8387 netif_free_rx_queues(dev);
8388
8389 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8390
8391 /* Flush device addresses */
8392 dev_addr_flush(dev);
8393
8394 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8395 netif_napi_del(p);
8396
8397 free_percpu(dev->pcpu_refcnt);
8398 dev->pcpu_refcnt = NULL;
8399
8400 /* Compatibility with error handling in drivers */
8401 if (dev->reg_state == NETREG_UNINITIALIZED) {
8402 netdev_freemem(dev);
8403 return;
8404 }
8405
8406 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8407 dev->reg_state = NETREG_RELEASED;
8408
8409 /* will free via device release */
8410 put_device(&dev->dev);
8411}
8412EXPORT_SYMBOL(free_netdev);
8413
8414/**
8415 * synchronize_net - Synchronize with packet receive processing
8416 *
8417 * Wait for packets currently being received to be done.
8418 * Does not block later packets from starting.
8419 */
8420void synchronize_net(void)
8421{
8422 might_sleep();
8423 if (rtnl_is_locked())
8424 synchronize_rcu_expedited();
8425 else
8426 synchronize_rcu();
8427}
8428EXPORT_SYMBOL(synchronize_net);
8429
8430/**
8431 * unregister_netdevice_queue - remove device from the kernel
8432 * @dev: device
8433 * @head: list
8434 *
8435 * This function shuts down a device interface and removes it
8436 * from the kernel tables.
8437 * If head not NULL, device is queued to be unregistered later.
8438 *
8439 * Callers must hold the rtnl semaphore. You may want
8440 * unregister_netdev() instead of this.
8441 */
8442
8443void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8444{
8445 ASSERT_RTNL();
8446
8447 if (head) {
8448 list_move_tail(&dev->unreg_list, head);
8449 } else {
8450 rollback_registered(dev);
8451 /* Finish processing unregister after unlock */
8452 net_set_todo(dev);
8453 }
8454}
8455EXPORT_SYMBOL(unregister_netdevice_queue);
8456
8457/**
8458 * unregister_netdevice_many - unregister many devices
8459 * @head: list of devices
8460 *
8461 * Note: As most callers use a stack allocated list_head,
8462 * we force a list_del() to make sure stack wont be corrupted later.
8463 */
8464void unregister_netdevice_many(struct list_head *head)
8465{
8466 struct net_device *dev;
8467
8468 if (!list_empty(head)) {
8469 rollback_registered_many(head);
8470 list_for_each_entry(dev, head, unreg_list)
8471 net_set_todo(dev);
8472 list_del(head);
8473 }
8474}
8475EXPORT_SYMBOL(unregister_netdevice_many);
8476
8477/**
8478 * unregister_netdev - remove device from the kernel
8479 * @dev: device
8480 *
8481 * This function shuts down a device interface and removes it
8482 * from the kernel tables.
8483 *
8484 * This is just a wrapper for unregister_netdevice that takes
8485 * the rtnl semaphore. In general you want to use this and not
8486 * unregister_netdevice.
8487 */
8488void unregister_netdev(struct net_device *dev)
8489{
8490 rtnl_lock();
8491 unregister_netdevice(dev);
8492 rtnl_unlock();
8493}
8494EXPORT_SYMBOL(unregister_netdev);
8495
8496/**
8497 * dev_change_net_namespace - move device to different nethost namespace
8498 * @dev: device
8499 * @net: network namespace
8500 * @pat: If not NULL name pattern to try if the current device name
8501 * is already taken in the destination network namespace.
8502 *
8503 * This function shuts down a device interface and moves it
8504 * to a new network namespace. On success 0 is returned, on
8505 * a failure a netagive errno code is returned.
8506 *
8507 * Callers must hold the rtnl semaphore.
8508 */
8509
8510int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8511{
8512 int err, new_nsid, new_ifindex;
8513
8514 ASSERT_RTNL();
8515
8516 /* Don't allow namespace local devices to be moved. */
8517 err = -EINVAL;
8518 if (dev->features & NETIF_F_NETNS_LOCAL)
8519 goto out;
8520
8521 /* Ensure the device has been registrered */
8522 if (dev->reg_state != NETREG_REGISTERED)
8523 goto out;
8524
8525 /* Get out if there is nothing todo */
8526 err = 0;
8527 if (net_eq(dev_net(dev), net))
8528 goto out;
8529
8530 /* Pick the destination device name, and ensure
8531 * we can use it in the destination network namespace.
8532 */
8533 err = -EEXIST;
8534 if (__dev_get_by_name(net, dev->name)) {
8535 /* We get here if we can't use the current device name */
8536 if (!pat)
8537 goto out;
8538 if (dev_get_valid_name(net, dev, pat) < 0)
8539 goto out;
8540 }
8541
8542 /*
8543 * And now a mini version of register_netdevice unregister_netdevice.
8544 */
8545
8546 /* If device is running close it first. */
8547 dev_close(dev);
8548
8549 /* And unlink it from device chain */
8550 err = -ENODEV;
8551 unlist_netdevice(dev);
8552
8553 synchronize_net();
8554
8555 /* Shutdown queueing discipline. */
8556 dev_shutdown(dev);
8557
8558 /* Notify protocols, that we are about to destroy
8559 * this device. They should clean all the things.
8560 *
8561 * Note that dev->reg_state stays at NETREG_REGISTERED.
8562 * This is wanted because this way 8021q and macvlan know
8563 * the device is just moving and can keep their slaves up.
8564 */
8565 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8566 rcu_barrier();
8567 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8568
8569 new_nsid = peernet2id_alloc(dev_net(dev), net);
8570 /* If there is an ifindex conflict assign a new one */
8571 if (__dev_get_by_index(net, dev->ifindex))
8572 new_ifindex = dev_new_index(net);
8573 else
8574 new_ifindex = dev->ifindex;
8575
8576 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8577 new_ifindex);
8578
8579 /*
8580 * Flush the unicast and multicast chains
8581 */
8582 dev_uc_flush(dev);
8583 dev_mc_flush(dev);
8584
8585 /* Send a netdev-removed uevent to the old namespace */
8586 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8587 netdev_adjacent_del_links(dev);
8588
8589 /* Actually switch the network namespace */
8590 dev_net_set(dev, net);
8591 dev->ifindex = new_ifindex;
8592
8593 /* Send a netdev-add uevent to the new namespace */
8594 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8595 netdev_adjacent_add_links(dev);
8596
8597 /* Fixup kobjects */
8598 err = device_rename(&dev->dev, dev->name);
8599 WARN_ON(err);
8600
8601 /* Add the device back in the hashes */
8602 list_netdevice(dev);
8603
8604 /* Notify protocols, that a new device appeared. */
8605 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8606
8607 /*
8608 * Prevent userspace races by waiting until the network
8609 * device is fully setup before sending notifications.
8610 */
8611 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8612
8613 synchronize_net();
8614 err = 0;
8615out:
8616 return err;
8617}
8618EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8619
8620static int dev_cpu_dead(unsigned int oldcpu)
8621{
8622 struct sk_buff **list_skb;
8623 struct sk_buff *skb;
8624 unsigned int cpu;
8625 struct softnet_data *sd, *oldsd, *remsd = NULL;
8626
8627 local_irq_disable();
8628 cpu = smp_processor_id();
8629 sd = &per_cpu(softnet_data, cpu);
8630 oldsd = &per_cpu(softnet_data, oldcpu);
8631
8632 /* Find end of our completion_queue. */
8633 list_skb = &sd->completion_queue;
8634 while (*list_skb)
8635 list_skb = &(*list_skb)->next;
8636 /* Append completion queue from offline CPU. */
8637 *list_skb = oldsd->completion_queue;
8638 oldsd->completion_queue = NULL;
8639
8640 /* Append output queue from offline CPU. */
8641 if (oldsd->output_queue) {
8642 *sd->output_queue_tailp = oldsd->output_queue;
8643 sd->output_queue_tailp = oldsd->output_queue_tailp;
8644 oldsd->output_queue = NULL;
8645 oldsd->output_queue_tailp = &oldsd->output_queue;
8646 }
8647 /* Append NAPI poll list from offline CPU, with one exception :
8648 * process_backlog() must be called by cpu owning percpu backlog.
8649 * We properly handle process_queue & input_pkt_queue later.
8650 */
8651 while (!list_empty(&oldsd->poll_list)) {
8652 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8653 struct napi_struct,
8654 poll_list);
8655
8656 list_del_init(&napi->poll_list);
8657 if (napi->poll == process_backlog)
8658 napi->state = 0;
8659 else
8660 ____napi_schedule(sd, napi);
8661 }
8662
8663 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8664 local_irq_enable();
8665
8666#ifdef CONFIG_RPS
8667 remsd = oldsd->rps_ipi_list;
8668 oldsd->rps_ipi_list = NULL;
8669#endif
8670 /* send out pending IPI's on offline CPU */
8671 net_rps_send_ipi(remsd);
8672
8673 /* Process offline CPU's input_pkt_queue */
8674 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8675 netif_rx_ni(skb);
8676 input_queue_head_incr(oldsd);
8677 }
8678 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8679 netif_rx_ni(skb);
8680 input_queue_head_incr(oldsd);
8681 }
8682
8683 return 0;
8684}
8685
8686/**
8687 * netdev_increment_features - increment feature set by one
8688 * @all: current feature set
8689 * @one: new feature set
8690 * @mask: mask feature set
8691 *
8692 * Computes a new feature set after adding a device with feature set
8693 * @one to the master device with current feature set @all. Will not
8694 * enable anything that is off in @mask. Returns the new feature set.
8695 */
8696netdev_features_t netdev_increment_features(netdev_features_t all,
8697 netdev_features_t one, netdev_features_t mask)
8698{
8699 if (mask & NETIF_F_HW_CSUM)
8700 mask |= NETIF_F_CSUM_MASK;
8701 mask |= NETIF_F_VLAN_CHALLENGED;
8702
8703 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8704 all &= one | ~NETIF_F_ALL_FOR_ALL;
8705
8706 /* If one device supports hw checksumming, set for all. */
8707 if (all & NETIF_F_HW_CSUM)
8708 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8709
8710 return all;
8711}
8712EXPORT_SYMBOL(netdev_increment_features);
8713
8714static struct hlist_head * __net_init netdev_create_hash(void)
8715{
8716 int i;
8717 struct hlist_head *hash;
8718
8719 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8720 if (hash != NULL)
8721 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8722 INIT_HLIST_HEAD(&hash[i]);
8723
8724 return hash;
8725}
8726
8727/* Initialize per network namespace state */
8728static int __net_init netdev_init(struct net *net)
8729{
8730 if (net != &init_net)
8731 INIT_LIST_HEAD(&net->dev_base_head);
8732
8733 net->dev_name_head = netdev_create_hash();
8734 if (net->dev_name_head == NULL)
8735 goto err_name;
8736
8737 net->dev_index_head = netdev_create_hash();
8738 if (net->dev_index_head == NULL)
8739 goto err_idx;
8740
8741 return 0;
8742
8743err_idx:
8744 kfree(net->dev_name_head);
8745err_name:
8746 return -ENOMEM;
8747}
8748
8749/**
8750 * netdev_drivername - network driver for the device
8751 * @dev: network device
8752 *
8753 * Determine network driver for device.
8754 */
8755const char *netdev_drivername(const struct net_device *dev)
8756{
8757 const struct device_driver *driver;
8758 const struct device *parent;
8759 const char *empty = "";
8760
8761 parent = dev->dev.parent;
8762 if (!parent)
8763 return empty;
8764
8765 driver = parent->driver;
8766 if (driver && driver->name)
8767 return driver->name;
8768 return empty;
8769}
8770
8771static void __netdev_printk(const char *level, const struct net_device *dev,
8772 struct va_format *vaf)
8773{
8774 if (dev && dev->dev.parent) {
8775 dev_printk_emit(level[1] - '0',
8776 dev->dev.parent,
8777 "%s %s %s%s: %pV",
8778 dev_driver_string(dev->dev.parent),
8779 dev_name(dev->dev.parent),
8780 netdev_name(dev), netdev_reg_state(dev),
8781 vaf);
8782 } else if (dev) {
8783 printk("%s%s%s: %pV",
8784 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8785 } else {
8786 printk("%s(NULL net_device): %pV", level, vaf);
8787 }
8788}
8789
8790void netdev_printk(const char *level, const struct net_device *dev,
8791 const char *format, ...)
8792{
8793 struct va_format vaf;
8794 va_list args;
8795
8796 va_start(args, format);
8797
8798 vaf.fmt = format;
8799 vaf.va = &args;
8800
8801 __netdev_printk(level, dev, &vaf);
8802
8803 va_end(args);
8804}
8805EXPORT_SYMBOL(netdev_printk);
8806
8807#define define_netdev_printk_level(func, level) \
8808void func(const struct net_device *dev, const char *fmt, ...) \
8809{ \
8810 struct va_format vaf; \
8811 va_list args; \
8812 \
8813 va_start(args, fmt); \
8814 \
8815 vaf.fmt = fmt; \
8816 vaf.va = &args; \
8817 \
8818 __netdev_printk(level, dev, &vaf); \
8819 \
8820 va_end(args); \
8821} \
8822EXPORT_SYMBOL(func);
8823
8824define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8825define_netdev_printk_level(netdev_alert, KERN_ALERT);
8826define_netdev_printk_level(netdev_crit, KERN_CRIT);
8827define_netdev_printk_level(netdev_err, KERN_ERR);
8828define_netdev_printk_level(netdev_warn, KERN_WARNING);
8829define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8830define_netdev_printk_level(netdev_info, KERN_INFO);
8831
8832static void __net_exit netdev_exit(struct net *net)
8833{
8834 kfree(net->dev_name_head);
8835 kfree(net->dev_index_head);
8836 if (net != &init_net)
8837 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8838}
8839
8840static struct pernet_operations __net_initdata netdev_net_ops = {
8841 .init = netdev_init,
8842 .exit = netdev_exit,
8843};
8844
8845static void __net_exit default_device_exit(struct net *net)
8846{
8847 struct net_device *dev, *aux;
8848 /*
8849 * Push all migratable network devices back to the
8850 * initial network namespace
8851 */
8852 rtnl_lock();
8853 for_each_netdev_safe(net, dev, aux) {
8854 int err;
8855 char fb_name[IFNAMSIZ];
8856
8857 /* Ignore unmoveable devices (i.e. loopback) */
8858 if (dev->features & NETIF_F_NETNS_LOCAL)
8859 continue;
8860
8861 /* Leave virtual devices for the generic cleanup */
8862 if (dev->rtnl_link_ops)
8863 continue;
8864
8865 /* Push remaining network devices to init_net */
8866 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8867 err = dev_change_net_namespace(dev, &init_net, fb_name);
8868 if (err) {
8869 pr_emerg("%s: failed to move %s to init_net: %d\n",
8870 __func__, dev->name, err);
8871 BUG();
8872 }
8873 }
8874 rtnl_unlock();
8875}
8876
8877static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8878{
8879 /* Return with the rtnl_lock held when there are no network
8880 * devices unregistering in any network namespace in net_list.
8881 */
8882 struct net *net;
8883 bool unregistering;
8884 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8885
8886 add_wait_queue(&netdev_unregistering_wq, &wait);
8887 for (;;) {
8888 unregistering = false;
8889 rtnl_lock();
8890 list_for_each_entry(net, net_list, exit_list) {
8891 if (net->dev_unreg_count > 0) {
8892 unregistering = true;
8893 break;
8894 }
8895 }
8896 if (!unregistering)
8897 break;
8898 __rtnl_unlock();
8899
8900 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8901 }
8902 remove_wait_queue(&netdev_unregistering_wq, &wait);
8903}
8904
8905static void __net_exit default_device_exit_batch(struct list_head *net_list)
8906{
8907 /* At exit all network devices most be removed from a network
8908 * namespace. Do this in the reverse order of registration.
8909 * Do this across as many network namespaces as possible to
8910 * improve batching efficiency.
8911 */
8912 struct net_device *dev;
8913 struct net *net;
8914 LIST_HEAD(dev_kill_list);
8915
8916 /* To prevent network device cleanup code from dereferencing
8917 * loopback devices or network devices that have been freed
8918 * wait here for all pending unregistrations to complete,
8919 * before unregistring the loopback device and allowing the
8920 * network namespace be freed.
8921 *
8922 * The netdev todo list containing all network devices
8923 * unregistrations that happen in default_device_exit_batch
8924 * will run in the rtnl_unlock() at the end of
8925 * default_device_exit_batch.
8926 */
8927 rtnl_lock_unregistering(net_list);
8928 list_for_each_entry(net, net_list, exit_list) {
8929 for_each_netdev_reverse(net, dev) {
8930 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8931 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8932 else
8933 unregister_netdevice_queue(dev, &dev_kill_list);
8934 }
8935 }
8936 unregister_netdevice_many(&dev_kill_list);
8937 rtnl_unlock();
8938}
8939
8940static struct pernet_operations __net_initdata default_device_ops = {
8941 .exit = default_device_exit,
8942 .exit_batch = default_device_exit_batch,
8943};
8944
8945/*
8946 * Initialize the DEV module. At boot time this walks the device list and
8947 * unhooks any devices that fail to initialise (normally hardware not
8948 * present) and leaves us with a valid list of present and active devices.
8949 *
8950 */
8951
8952/*
8953 * This is called single threaded during boot, so no need
8954 * to take the rtnl semaphore.
8955 */
8956static int __init net_dev_init(void)
8957{
8958 int i, rc = -ENOMEM;
8959
8960 BUG_ON(!dev_boot_phase);
8961
8962 if (dev_proc_init())
8963 goto out;
8964
8965 if (netdev_kobject_init())
8966 goto out;
8967
8968 INIT_LIST_HEAD(&ptype_all);
8969 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8970 INIT_LIST_HEAD(&ptype_base[i]);
8971
8972 INIT_LIST_HEAD(&offload_base);
8973
8974 if (register_pernet_subsys(&netdev_net_ops))
8975 goto out;
8976
8977 /*
8978 * Initialise the packet receive queues.
8979 */
8980
8981 for_each_possible_cpu(i) {
8982 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8983 struct softnet_data *sd = &per_cpu(softnet_data, i);
8984
8985 INIT_WORK(flush, flush_backlog);
8986
8987 skb_queue_head_init(&sd->input_pkt_queue);
8988 skb_queue_head_init(&sd->process_queue);
8989#ifdef CONFIG_XFRM_OFFLOAD
8990 skb_queue_head_init(&sd->xfrm_backlog);
8991#endif
8992 INIT_LIST_HEAD(&sd->poll_list);
8993 sd->output_queue_tailp = &sd->output_queue;
8994#ifdef CONFIG_RPS
8995 sd->csd.func = rps_trigger_softirq;
8996 sd->csd.info = sd;
8997 sd->cpu = i;
8998#endif
8999
9000 sd->backlog.poll = process_backlog;
9001 sd->backlog.weight = weight_p;
9002 }
9003
9004 dev_boot_phase = 0;
9005
9006 /* The loopback device is special if any other network devices
9007 * is present in a network namespace the loopback device must
9008 * be present. Since we now dynamically allocate and free the
9009 * loopback device ensure this invariant is maintained by
9010 * keeping the loopback device as the first device on the
9011 * list of network devices. Ensuring the loopback devices
9012 * is the first device that appears and the last network device
9013 * that disappears.
9014 */
9015 if (register_pernet_device(&loopback_net_ops))
9016 goto out;
9017
9018 if (register_pernet_device(&default_device_ops))
9019 goto out;
9020
9021 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9022 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9023
9024 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9025 NULL, dev_cpu_dead);
9026 WARN_ON(rc < 0);
9027 rc = 0;
9028out:
9029 return rc;
9030}
9031
9032subsys_initcall(net_dev_init);