Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_BLKDEV_H
3#define _LINUX_BLKDEV_H
4
5#include <linux/sched.h>
6#include <linux/sched/clock.h>
7
8#ifdef CONFIG_BLOCK
9
10#include <linux/major.h>
11#include <linux/genhd.h>
12#include <linux/list.h>
13#include <linux/llist.h>
14#include <linux/timer.h>
15#include <linux/workqueue.h>
16#include <linux/pagemap.h>
17#include <linux/backing-dev-defs.h>
18#include <linux/wait.h>
19#include <linux/mempool.h>
20#include <linux/pfn.h>
21#include <linux/bio.h>
22#include <linux/stringify.h>
23#include <linux/gfp.h>
24#include <linux/bsg.h>
25#include <linux/smp.h>
26#include <linux/rcupdate.h>
27#include <linux/percpu-refcount.h>
28#include <linux/scatterlist.h>
29#include <linux/blkzoned.h>
30#include <linux/seqlock.h>
31#include <linux/u64_stats_sync.h>
32
33struct module;
34struct scsi_ioctl_command;
35
36struct request_queue;
37struct elevator_queue;
38struct blk_trace;
39struct request;
40struct sg_io_hdr;
41struct bsg_job;
42struct blkcg_gq;
43struct blk_flush_queue;
44struct pr_ops;
45struct rq_wb;
46struct blk_queue_stats;
47struct blk_stat_callback;
48
49#define BLKDEV_MIN_RQ 4
50#define BLKDEV_MAX_RQ 128 /* Default maximum */
51
52/* Must be consistent with blk_mq_poll_stats_bkt() */
53#define BLK_MQ_POLL_STATS_BKTS 16
54
55/*
56 * Maximum number of blkcg policies allowed to be registered concurrently.
57 * Defined here to simplify include dependency.
58 */
59#define BLKCG_MAX_POLS 3
60
61typedef void (rq_end_io_fn)(struct request *, blk_status_t);
62
63#define BLK_RL_SYNCFULL (1U << 0)
64#define BLK_RL_ASYNCFULL (1U << 1)
65
66struct request_list {
67 struct request_queue *q; /* the queue this rl belongs to */
68#ifdef CONFIG_BLK_CGROUP
69 struct blkcg_gq *blkg; /* blkg this request pool belongs to */
70#endif
71 /*
72 * count[], starved[], and wait[] are indexed by
73 * BLK_RW_SYNC/BLK_RW_ASYNC
74 */
75 int count[2];
76 int starved[2];
77 mempool_t *rq_pool;
78 wait_queue_head_t wait[2];
79 unsigned int flags;
80};
81
82/*
83 * request flags */
84typedef __u32 __bitwise req_flags_t;
85
86/* elevator knows about this request */
87#define RQF_SORTED ((__force req_flags_t)(1 << 0))
88/* drive already may have started this one */
89#define RQF_STARTED ((__force req_flags_t)(1 << 1))
90/* uses tagged queueing */
91#define RQF_QUEUED ((__force req_flags_t)(1 << 2))
92/* may not be passed by ioscheduler */
93#define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
94/* request for flush sequence */
95#define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
96/* merge of different types, fail separately */
97#define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
98/* track inflight for MQ */
99#define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
100/* don't call prep for this one */
101#define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
102/* set for "ide_preempt" requests and also for requests for which the SCSI
103 "quiesce" state must be ignored. */
104#define RQF_PREEMPT ((__force req_flags_t)(1 << 8))
105/* contains copies of user pages */
106#define RQF_COPY_USER ((__force req_flags_t)(1 << 9))
107/* vaguely specified driver internal error. Ignored by the block layer */
108#define RQF_FAILED ((__force req_flags_t)(1 << 10))
109/* don't warn about errors */
110#define RQF_QUIET ((__force req_flags_t)(1 << 11))
111/* elevator private data attached */
112#define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
113/* account I/O stat */
114#define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
115/* request came from our alloc pool */
116#define RQF_ALLOCED ((__force req_flags_t)(1 << 14))
117/* runtime pm request */
118#define RQF_PM ((__force req_flags_t)(1 << 15))
119/* on IO scheduler merge hash */
120#define RQF_HASHED ((__force req_flags_t)(1 << 16))
121/* IO stats tracking on */
122#define RQF_STATS ((__force req_flags_t)(1 << 17))
123/* Look at ->special_vec for the actual data payload instead of the
124 bio chain. */
125#define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
126/* The per-zone write lock is held for this request */
127#define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19))
128/* timeout is expired */
129#define RQF_MQ_TIMEOUT_EXPIRED ((__force req_flags_t)(1 << 20))
130/* already slept for hybrid poll */
131#define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 21))
132
133/* flags that prevent us from merging requests: */
134#define RQF_NOMERGE_FLAGS \
135 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
136
137/*
138 * Try to put the fields that are referenced together in the same cacheline.
139 *
140 * If you modify this structure, make sure to update blk_rq_init() and
141 * especially blk_mq_rq_ctx_init() to take care of the added fields.
142 */
143struct request {
144 struct request_queue *q;
145 struct blk_mq_ctx *mq_ctx;
146
147 int cpu;
148 unsigned int cmd_flags; /* op and common flags */
149 req_flags_t rq_flags;
150
151 int internal_tag;
152
153 /* the following two fields are internal, NEVER access directly */
154 unsigned int __data_len; /* total data len */
155 int tag;
156 sector_t __sector; /* sector cursor */
157
158 struct bio *bio;
159 struct bio *biotail;
160
161 struct list_head queuelist;
162
163 /*
164 * The hash is used inside the scheduler, and killed once the
165 * request reaches the dispatch list. The ipi_list is only used
166 * to queue the request for softirq completion, which is long
167 * after the request has been unhashed (and even removed from
168 * the dispatch list).
169 */
170 union {
171 struct hlist_node hash; /* merge hash */
172 struct list_head ipi_list;
173 };
174
175 /*
176 * The rb_node is only used inside the io scheduler, requests
177 * are pruned when moved to the dispatch queue. So let the
178 * completion_data share space with the rb_node.
179 */
180 union {
181 struct rb_node rb_node; /* sort/lookup */
182 struct bio_vec special_vec;
183 void *completion_data;
184 int error_count; /* for legacy drivers, don't use */
185 };
186
187 /*
188 * Three pointers are available for the IO schedulers, if they need
189 * more they have to dynamically allocate it. Flush requests are
190 * never put on the IO scheduler. So let the flush fields share
191 * space with the elevator data.
192 */
193 union {
194 struct {
195 struct io_cq *icq;
196 void *priv[2];
197 } elv;
198
199 struct {
200 unsigned int seq;
201 struct list_head list;
202 rq_end_io_fn *saved_end_io;
203 } flush;
204 };
205
206 struct gendisk *rq_disk;
207 struct hd_struct *part;
208 unsigned long start_time;
209 struct blk_issue_stat issue_stat;
210 /* Number of scatter-gather DMA addr+len pairs after
211 * physical address coalescing is performed.
212 */
213 unsigned short nr_phys_segments;
214
215#if defined(CONFIG_BLK_DEV_INTEGRITY)
216 unsigned short nr_integrity_segments;
217#endif
218
219 unsigned short write_hint;
220 unsigned short ioprio;
221
222 unsigned int timeout;
223
224 void *special; /* opaque pointer available for LLD use */
225
226 unsigned int extra_len; /* length of alignment and padding */
227
228 /*
229 * On blk-mq, the lower bits of ->gstate (generation number and
230 * state) carry the MQ_RQ_* state value and the upper bits the
231 * generation number which is monotonically incremented and used to
232 * distinguish the reuse instances.
233 *
234 * ->gstate_seq allows updates to ->gstate and other fields
235 * (currently ->deadline) during request start to be read
236 * atomically from the timeout path, so that it can operate on a
237 * coherent set of information.
238 */
239 seqcount_t gstate_seq;
240 u64 gstate;
241
242 /*
243 * ->aborted_gstate is used by the timeout to claim a specific
244 * recycle instance of this request. See blk_mq_timeout_work().
245 */
246 struct u64_stats_sync aborted_gstate_sync;
247 u64 aborted_gstate;
248
249 /* access through blk_rq_set_deadline, blk_rq_deadline */
250 unsigned long __deadline;
251
252 struct list_head timeout_list;
253
254 union {
255 struct __call_single_data csd;
256 u64 fifo_time;
257 };
258
259 /*
260 * completion callback.
261 */
262 rq_end_io_fn *end_io;
263 void *end_io_data;
264
265 /* for bidi */
266 struct request *next_rq;
267
268#ifdef CONFIG_BLK_CGROUP
269 struct request_list *rl; /* rl this rq is alloced from */
270 unsigned long long start_time_ns;
271 unsigned long long io_start_time_ns; /* when passed to hardware */
272#endif
273};
274
275static inline bool blk_op_is_scsi(unsigned int op)
276{
277 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
278}
279
280static inline bool blk_op_is_private(unsigned int op)
281{
282 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
283}
284
285static inline bool blk_rq_is_scsi(struct request *rq)
286{
287 return blk_op_is_scsi(req_op(rq));
288}
289
290static inline bool blk_rq_is_private(struct request *rq)
291{
292 return blk_op_is_private(req_op(rq));
293}
294
295static inline bool blk_rq_is_passthrough(struct request *rq)
296{
297 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
298}
299
300static inline bool bio_is_passthrough(struct bio *bio)
301{
302 unsigned op = bio_op(bio);
303
304 return blk_op_is_scsi(op) || blk_op_is_private(op);
305}
306
307static inline unsigned short req_get_ioprio(struct request *req)
308{
309 return req->ioprio;
310}
311
312#include <linux/elevator.h>
313
314struct blk_queue_ctx;
315
316typedef void (request_fn_proc) (struct request_queue *q);
317typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
318typedef bool (poll_q_fn) (struct request_queue *q, blk_qc_t);
319typedef int (prep_rq_fn) (struct request_queue *, struct request *);
320typedef void (unprep_rq_fn) (struct request_queue *, struct request *);
321
322struct bio_vec;
323typedef void (softirq_done_fn)(struct request *);
324typedef int (dma_drain_needed_fn)(struct request *);
325typedef int (lld_busy_fn) (struct request_queue *q);
326typedef int (bsg_job_fn) (struct bsg_job *);
327typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t);
328typedef void (exit_rq_fn)(struct request_queue *, struct request *);
329
330enum blk_eh_timer_return {
331 BLK_EH_NOT_HANDLED,
332 BLK_EH_HANDLED,
333 BLK_EH_RESET_TIMER,
334};
335
336typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *);
337
338enum blk_queue_state {
339 Queue_down,
340 Queue_up,
341};
342
343struct blk_queue_tag {
344 struct request **tag_index; /* map of busy tags */
345 unsigned long *tag_map; /* bit map of free/busy tags */
346 int max_depth; /* what we will send to device */
347 int real_max_depth; /* what the array can hold */
348 atomic_t refcnt; /* map can be shared */
349 int alloc_policy; /* tag allocation policy */
350 int next_tag; /* next tag */
351};
352#define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
353#define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
354
355#define BLK_SCSI_MAX_CMDS (256)
356#define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
357
358/*
359 * Zoned block device models (zoned limit).
360 */
361enum blk_zoned_model {
362 BLK_ZONED_NONE, /* Regular block device */
363 BLK_ZONED_HA, /* Host-aware zoned block device */
364 BLK_ZONED_HM, /* Host-managed zoned block device */
365};
366
367struct queue_limits {
368 unsigned long bounce_pfn;
369 unsigned long seg_boundary_mask;
370 unsigned long virt_boundary_mask;
371
372 unsigned int max_hw_sectors;
373 unsigned int max_dev_sectors;
374 unsigned int chunk_sectors;
375 unsigned int max_sectors;
376 unsigned int max_segment_size;
377 unsigned int physical_block_size;
378 unsigned int alignment_offset;
379 unsigned int io_min;
380 unsigned int io_opt;
381 unsigned int max_discard_sectors;
382 unsigned int max_hw_discard_sectors;
383 unsigned int max_write_same_sectors;
384 unsigned int max_write_zeroes_sectors;
385 unsigned int discard_granularity;
386 unsigned int discard_alignment;
387
388 unsigned short logical_block_size;
389 unsigned short max_segments;
390 unsigned short max_integrity_segments;
391 unsigned short max_discard_segments;
392
393 unsigned char misaligned;
394 unsigned char discard_misaligned;
395 unsigned char cluster;
396 unsigned char raid_partial_stripes_expensive;
397 enum blk_zoned_model zoned;
398};
399
400#ifdef CONFIG_BLK_DEV_ZONED
401
402struct blk_zone_report_hdr {
403 unsigned int nr_zones;
404 u8 padding[60];
405};
406
407extern int blkdev_report_zones(struct block_device *bdev,
408 sector_t sector, struct blk_zone *zones,
409 unsigned int *nr_zones, gfp_t gfp_mask);
410extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
411 sector_t nr_sectors, gfp_t gfp_mask);
412
413extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
414 unsigned int cmd, unsigned long arg);
415extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
416 unsigned int cmd, unsigned long arg);
417
418#else /* CONFIG_BLK_DEV_ZONED */
419
420static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
421 fmode_t mode, unsigned int cmd,
422 unsigned long arg)
423{
424 return -ENOTTY;
425}
426
427static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
428 fmode_t mode, unsigned int cmd,
429 unsigned long arg)
430{
431 return -ENOTTY;
432}
433
434#endif /* CONFIG_BLK_DEV_ZONED */
435
436struct request_queue {
437 /*
438 * Together with queue_head for cacheline sharing
439 */
440 struct list_head queue_head;
441 struct request *last_merge;
442 struct elevator_queue *elevator;
443 int nr_rqs[2]; /* # allocated [a]sync rqs */
444 int nr_rqs_elvpriv; /* # allocated rqs w/ elvpriv */
445
446 atomic_t shared_hctx_restart;
447
448 struct blk_queue_stats *stats;
449 struct rq_wb *rq_wb;
450
451 /*
452 * If blkcg is not used, @q->root_rl serves all requests. If blkcg
453 * is used, root blkg allocates from @q->root_rl and all other
454 * blkgs from their own blkg->rl. Which one to use should be
455 * determined using bio_request_list().
456 */
457 struct request_list root_rl;
458
459 request_fn_proc *request_fn;
460 make_request_fn *make_request_fn;
461 poll_q_fn *poll_fn;
462 prep_rq_fn *prep_rq_fn;
463 unprep_rq_fn *unprep_rq_fn;
464 softirq_done_fn *softirq_done_fn;
465 rq_timed_out_fn *rq_timed_out_fn;
466 dma_drain_needed_fn *dma_drain_needed;
467 lld_busy_fn *lld_busy_fn;
468 /* Called just after a request is allocated */
469 init_rq_fn *init_rq_fn;
470 /* Called just before a request is freed */
471 exit_rq_fn *exit_rq_fn;
472 /* Called from inside blk_get_request() */
473 void (*initialize_rq_fn)(struct request *rq);
474
475 const struct blk_mq_ops *mq_ops;
476
477 unsigned int *mq_map;
478
479 /* sw queues */
480 struct blk_mq_ctx __percpu *queue_ctx;
481 unsigned int nr_queues;
482
483 unsigned int queue_depth;
484
485 /* hw dispatch queues */
486 struct blk_mq_hw_ctx **queue_hw_ctx;
487 unsigned int nr_hw_queues;
488
489 /*
490 * Dispatch queue sorting
491 */
492 sector_t end_sector;
493 struct request *boundary_rq;
494
495 /*
496 * Delayed queue handling
497 */
498 struct delayed_work delay_work;
499
500 struct backing_dev_info *backing_dev_info;
501
502 /*
503 * The queue owner gets to use this for whatever they like.
504 * ll_rw_blk doesn't touch it.
505 */
506 void *queuedata;
507
508 /*
509 * various queue flags, see QUEUE_* below
510 */
511 unsigned long queue_flags;
512
513 /*
514 * ida allocated id for this queue. Used to index queues from
515 * ioctx.
516 */
517 int id;
518
519 /*
520 * queue needs bounce pages for pages above this limit
521 */
522 gfp_t bounce_gfp;
523
524 /*
525 * protects queue structures from reentrancy. ->__queue_lock should
526 * _never_ be used directly, it is queue private. always use
527 * ->queue_lock.
528 */
529 spinlock_t __queue_lock;
530 spinlock_t *queue_lock;
531
532 /*
533 * queue kobject
534 */
535 struct kobject kobj;
536
537 /*
538 * mq queue kobject
539 */
540 struct kobject mq_kobj;
541
542#ifdef CONFIG_BLK_DEV_INTEGRITY
543 struct blk_integrity integrity;
544#endif /* CONFIG_BLK_DEV_INTEGRITY */
545
546#ifdef CONFIG_PM
547 struct device *dev;
548 int rpm_status;
549 unsigned int nr_pending;
550#endif
551
552 /*
553 * queue settings
554 */
555 unsigned long nr_requests; /* Max # of requests */
556 unsigned int nr_congestion_on;
557 unsigned int nr_congestion_off;
558 unsigned int nr_batching;
559
560 unsigned int dma_drain_size;
561 void *dma_drain_buffer;
562 unsigned int dma_pad_mask;
563 unsigned int dma_alignment;
564
565 struct blk_queue_tag *queue_tags;
566 struct list_head tag_busy_list;
567
568 unsigned int nr_sorted;
569 unsigned int in_flight[2];
570
571 /*
572 * Number of active block driver functions for which blk_drain_queue()
573 * must wait. Must be incremented around functions that unlock the
574 * queue_lock internally, e.g. scsi_request_fn().
575 */
576 unsigned int request_fn_active;
577
578 unsigned int rq_timeout;
579 int poll_nsec;
580
581 struct blk_stat_callback *poll_cb;
582 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS];
583
584 struct timer_list timeout;
585 struct work_struct timeout_work;
586 struct list_head timeout_list;
587
588 struct list_head icq_list;
589#ifdef CONFIG_BLK_CGROUP
590 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
591 struct blkcg_gq *root_blkg;
592 struct list_head blkg_list;
593#endif
594
595 struct queue_limits limits;
596
597 /*
598 * Zoned block device information for request dispatch control.
599 * nr_zones is the total number of zones of the device. This is always
600 * 0 for regular block devices. seq_zones_bitmap is a bitmap of nr_zones
601 * bits which indicates if a zone is conventional (bit clear) or
602 * sequential (bit set). seq_zones_wlock is a bitmap of nr_zones
603 * bits which indicates if a zone is write locked, that is, if a write
604 * request targeting the zone was dispatched. All three fields are
605 * initialized by the low level device driver (e.g. scsi/sd.c).
606 * Stacking drivers (device mappers) may or may not initialize
607 * these fields.
608 */
609 unsigned int nr_zones;
610 unsigned long *seq_zones_bitmap;
611 unsigned long *seq_zones_wlock;
612
613 /*
614 * sg stuff
615 */
616 unsigned int sg_timeout;
617 unsigned int sg_reserved_size;
618 int node;
619#ifdef CONFIG_BLK_DEV_IO_TRACE
620 struct blk_trace *blk_trace;
621 struct mutex blk_trace_mutex;
622#endif
623 /*
624 * for flush operations
625 */
626 struct blk_flush_queue *fq;
627
628 struct list_head requeue_list;
629 spinlock_t requeue_lock;
630 struct delayed_work requeue_work;
631
632 struct mutex sysfs_lock;
633
634 int bypass_depth;
635 atomic_t mq_freeze_depth;
636
637#if defined(CONFIG_BLK_DEV_BSG)
638 bsg_job_fn *bsg_job_fn;
639 struct bsg_class_device bsg_dev;
640#endif
641
642#ifdef CONFIG_BLK_DEV_THROTTLING
643 /* Throttle data */
644 struct throtl_data *td;
645#endif
646 struct rcu_head rcu_head;
647 wait_queue_head_t mq_freeze_wq;
648 struct percpu_ref q_usage_counter;
649 struct list_head all_q_node;
650
651 struct blk_mq_tag_set *tag_set;
652 struct list_head tag_set_list;
653 struct bio_set *bio_split;
654
655#ifdef CONFIG_BLK_DEBUG_FS
656 struct dentry *debugfs_dir;
657 struct dentry *sched_debugfs_dir;
658#endif
659
660 bool mq_sysfs_init_done;
661
662 size_t cmd_size;
663 void *rq_alloc_data;
664
665 struct work_struct release_work;
666
667#define BLK_MAX_WRITE_HINTS 5
668 u64 write_hints[BLK_MAX_WRITE_HINTS];
669};
670
671#define QUEUE_FLAG_QUEUED 0 /* uses generic tag queueing */
672#define QUEUE_FLAG_STOPPED 1 /* queue is stopped */
673#define QUEUE_FLAG_DYING 2 /* queue being torn down */
674#define QUEUE_FLAG_BYPASS 3 /* act as dumb FIFO queue */
675#define QUEUE_FLAG_BIDI 4 /* queue supports bidi requests */
676#define QUEUE_FLAG_NOMERGES 5 /* disable merge attempts */
677#define QUEUE_FLAG_SAME_COMP 6 /* complete on same CPU-group */
678#define QUEUE_FLAG_FAIL_IO 7 /* fake timeout */
679#define QUEUE_FLAG_NONROT 9 /* non-rotational device (SSD) */
680#define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
681#define QUEUE_FLAG_IO_STAT 10 /* do IO stats */
682#define QUEUE_FLAG_DISCARD 11 /* supports DISCARD */
683#define QUEUE_FLAG_NOXMERGES 12 /* No extended merges */
684#define QUEUE_FLAG_ADD_RANDOM 13 /* Contributes to random pool */
685#define QUEUE_FLAG_SECERASE 14 /* supports secure erase */
686#define QUEUE_FLAG_SAME_FORCE 15 /* force complete on same CPU */
687#define QUEUE_FLAG_DEAD 16 /* queue tear-down finished */
688#define QUEUE_FLAG_INIT_DONE 17 /* queue is initialized */
689#define QUEUE_FLAG_NO_SG_MERGE 18 /* don't attempt to merge SG segments*/
690#define QUEUE_FLAG_POLL 19 /* IO polling enabled if set */
691#define QUEUE_FLAG_WC 20 /* Write back caching */
692#define QUEUE_FLAG_FUA 21 /* device supports FUA writes */
693#define QUEUE_FLAG_FLUSH_NQ 22 /* flush not queueuable */
694#define QUEUE_FLAG_DAX 23 /* device supports DAX */
695#define QUEUE_FLAG_STATS 24 /* track rq completion times */
696#define QUEUE_FLAG_POLL_STATS 25 /* collecting stats for hybrid polling */
697#define QUEUE_FLAG_REGISTERED 26 /* queue has been registered to a disk */
698#define QUEUE_FLAG_SCSI_PASSTHROUGH 27 /* queue supports SCSI commands */
699#define QUEUE_FLAG_QUIESCED 28 /* queue has been quiesced */
700#define QUEUE_FLAG_PREEMPT_ONLY 29 /* only process REQ_PREEMPT requests */
701
702#define QUEUE_FLAG_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
703 (1 << QUEUE_FLAG_SAME_COMP) | \
704 (1 << QUEUE_FLAG_ADD_RANDOM))
705
706#define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
707 (1 << QUEUE_FLAG_SAME_COMP) | \
708 (1 << QUEUE_FLAG_POLL))
709
710/*
711 * @q->queue_lock is set while a queue is being initialized. Since we know
712 * that no other threads access the queue object before @q->queue_lock has
713 * been set, it is safe to manipulate queue flags without holding the
714 * queue_lock if @q->queue_lock == NULL. See also blk_alloc_queue_node() and
715 * blk_init_allocated_queue().
716 */
717static inline void queue_lockdep_assert_held(struct request_queue *q)
718{
719 if (q->queue_lock)
720 lockdep_assert_held(q->queue_lock);
721}
722
723static inline void queue_flag_set_unlocked(unsigned int flag,
724 struct request_queue *q)
725{
726 __set_bit(flag, &q->queue_flags);
727}
728
729static inline int queue_flag_test_and_clear(unsigned int flag,
730 struct request_queue *q)
731{
732 queue_lockdep_assert_held(q);
733
734 if (test_bit(flag, &q->queue_flags)) {
735 __clear_bit(flag, &q->queue_flags);
736 return 1;
737 }
738
739 return 0;
740}
741
742static inline int queue_flag_test_and_set(unsigned int flag,
743 struct request_queue *q)
744{
745 queue_lockdep_assert_held(q);
746
747 if (!test_bit(flag, &q->queue_flags)) {
748 __set_bit(flag, &q->queue_flags);
749 return 0;
750 }
751
752 return 1;
753}
754
755static inline void queue_flag_set(unsigned int flag, struct request_queue *q)
756{
757 queue_lockdep_assert_held(q);
758 __set_bit(flag, &q->queue_flags);
759}
760
761static inline void queue_flag_clear_unlocked(unsigned int flag,
762 struct request_queue *q)
763{
764 __clear_bit(flag, &q->queue_flags);
765}
766
767static inline int queue_in_flight(struct request_queue *q)
768{
769 return q->in_flight[0] + q->in_flight[1];
770}
771
772static inline void queue_flag_clear(unsigned int flag, struct request_queue *q)
773{
774 queue_lockdep_assert_held(q);
775 __clear_bit(flag, &q->queue_flags);
776}
777
778#define blk_queue_tagged(q) test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags)
779#define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
780#define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
781#define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
782#define blk_queue_bypass(q) test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags)
783#define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
784#define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
785#define blk_queue_noxmerges(q) \
786 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
787#define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
788#define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
789#define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
790#define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
791#define blk_queue_secure_erase(q) \
792 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
793#define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
794#define blk_queue_scsi_passthrough(q) \
795 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
796
797#define blk_noretry_request(rq) \
798 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
799 REQ_FAILFAST_DRIVER))
800#define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
801#define blk_queue_preempt_only(q) \
802 test_bit(QUEUE_FLAG_PREEMPT_ONLY, &(q)->queue_flags)
803
804extern int blk_set_preempt_only(struct request_queue *q);
805extern void blk_clear_preempt_only(struct request_queue *q);
806
807static inline bool blk_account_rq(struct request *rq)
808{
809 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
810}
811
812#define blk_rq_cpu_valid(rq) ((rq)->cpu != -1)
813#define blk_bidi_rq(rq) ((rq)->next_rq != NULL)
814/* rq->queuelist of dequeued request must be list_empty() */
815#define blk_queued_rq(rq) (!list_empty(&(rq)->queuelist))
816
817#define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
818
819#define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
820
821/*
822 * Driver can handle struct request, if it either has an old style
823 * request_fn defined, or is blk-mq based.
824 */
825static inline bool queue_is_rq_based(struct request_queue *q)
826{
827 return q->request_fn || q->mq_ops;
828}
829
830static inline unsigned int blk_queue_cluster(struct request_queue *q)
831{
832 return q->limits.cluster;
833}
834
835static inline enum blk_zoned_model
836blk_queue_zoned_model(struct request_queue *q)
837{
838 return q->limits.zoned;
839}
840
841static inline bool blk_queue_is_zoned(struct request_queue *q)
842{
843 switch (blk_queue_zoned_model(q)) {
844 case BLK_ZONED_HA:
845 case BLK_ZONED_HM:
846 return true;
847 default:
848 return false;
849 }
850}
851
852static inline unsigned int blk_queue_zone_sectors(struct request_queue *q)
853{
854 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
855}
856
857static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
858{
859 return q->nr_zones;
860}
861
862static inline unsigned int blk_queue_zone_no(struct request_queue *q,
863 sector_t sector)
864{
865 if (!blk_queue_is_zoned(q))
866 return 0;
867 return sector >> ilog2(q->limits.chunk_sectors);
868}
869
870static inline bool blk_queue_zone_is_seq(struct request_queue *q,
871 sector_t sector)
872{
873 if (!blk_queue_is_zoned(q) || !q->seq_zones_bitmap)
874 return false;
875 return test_bit(blk_queue_zone_no(q, sector), q->seq_zones_bitmap);
876}
877
878static inline bool rq_is_sync(struct request *rq)
879{
880 return op_is_sync(rq->cmd_flags);
881}
882
883static inline bool blk_rl_full(struct request_list *rl, bool sync)
884{
885 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
886
887 return rl->flags & flag;
888}
889
890static inline void blk_set_rl_full(struct request_list *rl, bool sync)
891{
892 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
893
894 rl->flags |= flag;
895}
896
897static inline void blk_clear_rl_full(struct request_list *rl, bool sync)
898{
899 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
900
901 rl->flags &= ~flag;
902}
903
904static inline bool rq_mergeable(struct request *rq)
905{
906 if (blk_rq_is_passthrough(rq))
907 return false;
908
909 if (req_op(rq) == REQ_OP_FLUSH)
910 return false;
911
912 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
913 return false;
914
915 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
916 return false;
917 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
918 return false;
919
920 return true;
921}
922
923static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
924{
925 if (bio_page(a) == bio_page(b) &&
926 bio_offset(a) == bio_offset(b))
927 return true;
928
929 return false;
930}
931
932static inline unsigned int blk_queue_depth(struct request_queue *q)
933{
934 if (q->queue_depth)
935 return q->queue_depth;
936
937 return q->nr_requests;
938}
939
940/*
941 * q->prep_rq_fn return values
942 */
943enum {
944 BLKPREP_OK, /* serve it */
945 BLKPREP_KILL, /* fatal error, kill, return -EIO */
946 BLKPREP_DEFER, /* leave on queue */
947 BLKPREP_INVALID, /* invalid command, kill, return -EREMOTEIO */
948};
949
950extern unsigned long blk_max_low_pfn, blk_max_pfn;
951
952/*
953 * standard bounce addresses:
954 *
955 * BLK_BOUNCE_HIGH : bounce all highmem pages
956 * BLK_BOUNCE_ANY : don't bounce anything
957 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary
958 */
959
960#if BITS_PER_LONG == 32
961#define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT)
962#else
963#define BLK_BOUNCE_HIGH -1ULL
964#endif
965#define BLK_BOUNCE_ANY (-1ULL)
966#define BLK_BOUNCE_ISA (DMA_BIT_MASK(24))
967
968/*
969 * default timeout for SG_IO if none specified
970 */
971#define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
972#define BLK_MIN_SG_TIMEOUT (7 * HZ)
973
974struct rq_map_data {
975 struct page **pages;
976 int page_order;
977 int nr_entries;
978 unsigned long offset;
979 int null_mapped;
980 int from_user;
981};
982
983struct req_iterator {
984 struct bvec_iter iter;
985 struct bio *bio;
986};
987
988/* This should not be used directly - use rq_for_each_segment */
989#define for_each_bio(_bio) \
990 for (; _bio; _bio = _bio->bi_next)
991#define __rq_for_each_bio(_bio, rq) \
992 if ((rq->bio)) \
993 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
994
995#define rq_for_each_segment(bvl, _rq, _iter) \
996 __rq_for_each_bio(_iter.bio, _rq) \
997 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
998
999#define rq_iter_last(bvec, _iter) \
1000 (_iter.bio->bi_next == NULL && \
1001 bio_iter_last(bvec, _iter.iter))
1002
1003#ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1004# error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
1005#endif
1006#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1007extern void rq_flush_dcache_pages(struct request *rq);
1008#else
1009static inline void rq_flush_dcache_pages(struct request *rq)
1010{
1011}
1012#endif
1013
1014extern int blk_register_queue(struct gendisk *disk);
1015extern void blk_unregister_queue(struct gendisk *disk);
1016extern blk_qc_t generic_make_request(struct bio *bio);
1017extern blk_qc_t direct_make_request(struct bio *bio);
1018extern void blk_rq_init(struct request_queue *q, struct request *rq);
1019extern void blk_init_request_from_bio(struct request *req, struct bio *bio);
1020extern void blk_put_request(struct request *);
1021extern void __blk_put_request(struct request_queue *, struct request *);
1022extern struct request *blk_get_request_flags(struct request_queue *,
1023 unsigned int op,
1024 blk_mq_req_flags_t flags);
1025extern struct request *blk_get_request(struct request_queue *, unsigned int op,
1026 gfp_t gfp_mask);
1027extern void blk_requeue_request(struct request_queue *, struct request *);
1028extern int blk_lld_busy(struct request_queue *q);
1029extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1030 struct bio_set *bs, gfp_t gfp_mask,
1031 int (*bio_ctr)(struct bio *, struct bio *, void *),
1032 void *data);
1033extern void blk_rq_unprep_clone(struct request *rq);
1034extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
1035 struct request *rq);
1036extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
1037extern void blk_delay_queue(struct request_queue *, unsigned long);
1038extern void blk_queue_split(struct request_queue *, struct bio **);
1039extern void blk_recount_segments(struct request_queue *, struct bio *);
1040extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
1041extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
1042 unsigned int, void __user *);
1043extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
1044 unsigned int, void __user *);
1045extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
1046 struct scsi_ioctl_command __user *);
1047
1048extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
1049extern void blk_queue_exit(struct request_queue *q);
1050extern void blk_start_queue(struct request_queue *q);
1051extern void blk_start_queue_async(struct request_queue *q);
1052extern void blk_stop_queue(struct request_queue *q);
1053extern void blk_sync_queue(struct request_queue *q);
1054extern void __blk_stop_queue(struct request_queue *q);
1055extern void __blk_run_queue(struct request_queue *q);
1056extern void __blk_run_queue_uncond(struct request_queue *q);
1057extern void blk_run_queue(struct request_queue *);
1058extern void blk_run_queue_async(struct request_queue *q);
1059extern int blk_rq_map_user(struct request_queue *, struct request *,
1060 struct rq_map_data *, void __user *, unsigned long,
1061 gfp_t);
1062extern int blk_rq_unmap_user(struct bio *);
1063extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
1064extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
1065 struct rq_map_data *, const struct iov_iter *,
1066 gfp_t);
1067extern void blk_execute_rq(struct request_queue *, struct gendisk *,
1068 struct request *, int);
1069extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
1070 struct request *, int, rq_end_io_fn *);
1071
1072int blk_status_to_errno(blk_status_t status);
1073blk_status_t errno_to_blk_status(int errno);
1074
1075bool blk_poll(struct request_queue *q, blk_qc_t cookie);
1076
1077static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
1078{
1079 return bdev->bd_disk->queue; /* this is never NULL */
1080}
1081
1082/*
1083 * blk_rq_pos() : the current sector
1084 * blk_rq_bytes() : bytes left in the entire request
1085 * blk_rq_cur_bytes() : bytes left in the current segment
1086 * blk_rq_err_bytes() : bytes left till the next error boundary
1087 * blk_rq_sectors() : sectors left in the entire request
1088 * blk_rq_cur_sectors() : sectors left in the current segment
1089 */
1090static inline sector_t blk_rq_pos(const struct request *rq)
1091{
1092 return rq->__sector;
1093}
1094
1095static inline unsigned int blk_rq_bytes(const struct request *rq)
1096{
1097 return rq->__data_len;
1098}
1099
1100static inline int blk_rq_cur_bytes(const struct request *rq)
1101{
1102 return rq->bio ? bio_cur_bytes(rq->bio) : 0;
1103}
1104
1105extern unsigned int blk_rq_err_bytes(const struct request *rq);
1106
1107static inline unsigned int blk_rq_sectors(const struct request *rq)
1108{
1109 return blk_rq_bytes(rq) >> 9;
1110}
1111
1112static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1113{
1114 return blk_rq_cur_bytes(rq) >> 9;
1115}
1116
1117static inline unsigned int blk_rq_zone_no(struct request *rq)
1118{
1119 return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
1120}
1121
1122static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1123{
1124 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
1125}
1126
1127/*
1128 * Some commands like WRITE SAME have a payload or data transfer size which
1129 * is different from the size of the request. Any driver that supports such
1130 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1131 * calculate the data transfer size.
1132 */
1133static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1134{
1135 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1136 return rq->special_vec.bv_len;
1137 return blk_rq_bytes(rq);
1138}
1139
1140static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1141 int op)
1142{
1143 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1144 return min(q->limits.max_discard_sectors, UINT_MAX >> 9);
1145
1146 if (unlikely(op == REQ_OP_WRITE_SAME))
1147 return q->limits.max_write_same_sectors;
1148
1149 if (unlikely(op == REQ_OP_WRITE_ZEROES))
1150 return q->limits.max_write_zeroes_sectors;
1151
1152 return q->limits.max_sectors;
1153}
1154
1155/*
1156 * Return maximum size of a request at given offset. Only valid for
1157 * file system requests.
1158 */
1159static inline unsigned int blk_max_size_offset(struct request_queue *q,
1160 sector_t offset)
1161{
1162 if (!q->limits.chunk_sectors)
1163 return q->limits.max_sectors;
1164
1165 return q->limits.chunk_sectors -
1166 (offset & (q->limits.chunk_sectors - 1));
1167}
1168
1169static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1170 sector_t offset)
1171{
1172 struct request_queue *q = rq->q;
1173
1174 if (blk_rq_is_passthrough(rq))
1175 return q->limits.max_hw_sectors;
1176
1177 if (!q->limits.chunk_sectors ||
1178 req_op(rq) == REQ_OP_DISCARD ||
1179 req_op(rq) == REQ_OP_SECURE_ERASE)
1180 return blk_queue_get_max_sectors(q, req_op(rq));
1181
1182 return min(blk_max_size_offset(q, offset),
1183 blk_queue_get_max_sectors(q, req_op(rq)));
1184}
1185
1186static inline unsigned int blk_rq_count_bios(struct request *rq)
1187{
1188 unsigned int nr_bios = 0;
1189 struct bio *bio;
1190
1191 __rq_for_each_bio(bio, rq)
1192 nr_bios++;
1193
1194 return nr_bios;
1195}
1196
1197/*
1198 * Request issue related functions.
1199 */
1200extern struct request *blk_peek_request(struct request_queue *q);
1201extern void blk_start_request(struct request *rq);
1202extern struct request *blk_fetch_request(struct request_queue *q);
1203
1204void blk_steal_bios(struct bio_list *list, struct request *rq);
1205
1206/*
1207 * Request completion related functions.
1208 *
1209 * blk_update_request() completes given number of bytes and updates
1210 * the request without completing it.
1211 *
1212 * blk_end_request() and friends. __blk_end_request() must be called
1213 * with the request queue spinlock acquired.
1214 *
1215 * Several drivers define their own end_request and call
1216 * blk_end_request() for parts of the original function.
1217 * This prevents code duplication in drivers.
1218 */
1219extern bool blk_update_request(struct request *rq, blk_status_t error,
1220 unsigned int nr_bytes);
1221extern void blk_finish_request(struct request *rq, blk_status_t error);
1222extern bool blk_end_request(struct request *rq, blk_status_t error,
1223 unsigned int nr_bytes);
1224extern void blk_end_request_all(struct request *rq, blk_status_t error);
1225extern bool __blk_end_request(struct request *rq, blk_status_t error,
1226 unsigned int nr_bytes);
1227extern void __blk_end_request_all(struct request *rq, blk_status_t error);
1228extern bool __blk_end_request_cur(struct request *rq, blk_status_t error);
1229
1230extern void blk_complete_request(struct request *);
1231extern void __blk_complete_request(struct request *);
1232extern void blk_abort_request(struct request *);
1233extern void blk_unprep_request(struct request *);
1234
1235/*
1236 * Access functions for manipulating queue properties
1237 */
1238extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn,
1239 spinlock_t *lock, int node_id);
1240extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *);
1241extern int blk_init_allocated_queue(struct request_queue *);
1242extern void blk_cleanup_queue(struct request_queue *);
1243extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1244extern void blk_queue_bounce_limit(struct request_queue *, u64);
1245extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1246extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1247extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1248extern void blk_queue_max_discard_segments(struct request_queue *,
1249 unsigned short);
1250extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1251extern void blk_queue_max_discard_sectors(struct request_queue *q,
1252 unsigned int max_discard_sectors);
1253extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1254 unsigned int max_write_same_sectors);
1255extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1256 unsigned int max_write_same_sectors);
1257extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
1258extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1259extern void blk_queue_alignment_offset(struct request_queue *q,
1260 unsigned int alignment);
1261extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1262extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1263extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1264extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1265extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1266extern void blk_set_default_limits(struct queue_limits *lim);
1267extern void blk_set_stacking_limits(struct queue_limits *lim);
1268extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1269 sector_t offset);
1270extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1271 sector_t offset);
1272extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1273 sector_t offset);
1274extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1275extern void blk_queue_dma_pad(struct request_queue *, unsigned int);
1276extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1277extern int blk_queue_dma_drain(struct request_queue *q,
1278 dma_drain_needed_fn *dma_drain_needed,
1279 void *buf, unsigned int size);
1280extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn);
1281extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1282extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1283extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn);
1284extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn);
1285extern void blk_queue_dma_alignment(struct request_queue *, int);
1286extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1287extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *);
1288extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *);
1289extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1290extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable);
1291extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1292
1293/*
1294 * Number of physical segments as sent to the device.
1295 *
1296 * Normally this is the number of discontiguous data segments sent by the
1297 * submitter. But for data-less command like discard we might have no
1298 * actual data segments submitted, but the driver might have to add it's
1299 * own special payload. In that case we still return 1 here so that this
1300 * special payload will be mapped.
1301 */
1302static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1303{
1304 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1305 return 1;
1306 return rq->nr_phys_segments;
1307}
1308
1309/*
1310 * Number of discard segments (or ranges) the driver needs to fill in.
1311 * Each discard bio merged into a request is counted as one segment.
1312 */
1313static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1314{
1315 return max_t(unsigned short, rq->nr_phys_segments, 1);
1316}
1317
1318extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1319extern void blk_dump_rq_flags(struct request *, char *);
1320extern long nr_blockdev_pages(void);
1321
1322bool __must_check blk_get_queue(struct request_queue *);
1323struct request_queue *blk_alloc_queue(gfp_t);
1324struct request_queue *blk_alloc_queue_node(gfp_t, int);
1325extern void blk_put_queue(struct request_queue *);
1326extern void blk_set_queue_dying(struct request_queue *);
1327
1328/*
1329 * block layer runtime pm functions
1330 */
1331#ifdef CONFIG_PM
1332extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev);
1333extern int blk_pre_runtime_suspend(struct request_queue *q);
1334extern void blk_post_runtime_suspend(struct request_queue *q, int err);
1335extern void blk_pre_runtime_resume(struct request_queue *q);
1336extern void blk_post_runtime_resume(struct request_queue *q, int err);
1337extern void blk_set_runtime_active(struct request_queue *q);
1338#else
1339static inline void blk_pm_runtime_init(struct request_queue *q,
1340 struct device *dev) {}
1341static inline int blk_pre_runtime_suspend(struct request_queue *q)
1342{
1343 return -ENOSYS;
1344}
1345static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {}
1346static inline void blk_pre_runtime_resume(struct request_queue *q) {}
1347static inline void blk_post_runtime_resume(struct request_queue *q, int err) {}
1348static inline void blk_set_runtime_active(struct request_queue *q) {}
1349#endif
1350
1351/*
1352 * blk_plug permits building a queue of related requests by holding the I/O
1353 * fragments for a short period. This allows merging of sequential requests
1354 * into single larger request. As the requests are moved from a per-task list to
1355 * the device's request_queue in a batch, this results in improved scalability
1356 * as the lock contention for request_queue lock is reduced.
1357 *
1358 * It is ok not to disable preemption when adding the request to the plug list
1359 * or when attempting a merge, because blk_schedule_flush_list() will only flush
1360 * the plug list when the task sleeps by itself. For details, please see
1361 * schedule() where blk_schedule_flush_plug() is called.
1362 */
1363struct blk_plug {
1364 struct list_head list; /* requests */
1365 struct list_head mq_list; /* blk-mq requests */
1366 struct list_head cb_list; /* md requires an unplug callback */
1367};
1368#define BLK_MAX_REQUEST_COUNT 16
1369#define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1370
1371struct blk_plug_cb;
1372typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1373struct blk_plug_cb {
1374 struct list_head list;
1375 blk_plug_cb_fn callback;
1376 void *data;
1377};
1378extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1379 void *data, int size);
1380extern void blk_start_plug(struct blk_plug *);
1381extern void blk_finish_plug(struct blk_plug *);
1382extern void blk_flush_plug_list(struct blk_plug *, bool);
1383
1384static inline void blk_flush_plug(struct task_struct *tsk)
1385{
1386 struct blk_plug *plug = tsk->plug;
1387
1388 if (plug)
1389 blk_flush_plug_list(plug, false);
1390}
1391
1392static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1393{
1394 struct blk_plug *plug = tsk->plug;
1395
1396 if (plug)
1397 blk_flush_plug_list(plug, true);
1398}
1399
1400static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1401{
1402 struct blk_plug *plug = tsk->plug;
1403
1404 return plug &&
1405 (!list_empty(&plug->list) ||
1406 !list_empty(&plug->mq_list) ||
1407 !list_empty(&plug->cb_list));
1408}
1409
1410/*
1411 * tag stuff
1412 */
1413extern int blk_queue_start_tag(struct request_queue *, struct request *);
1414extern struct request *blk_queue_find_tag(struct request_queue *, int);
1415extern void blk_queue_end_tag(struct request_queue *, struct request *);
1416extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int);
1417extern void blk_queue_free_tags(struct request_queue *);
1418extern int blk_queue_resize_tags(struct request_queue *, int);
1419extern void blk_queue_invalidate_tags(struct request_queue *);
1420extern struct blk_queue_tag *blk_init_tags(int, int);
1421extern void blk_free_tags(struct blk_queue_tag *);
1422
1423static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt,
1424 int tag)
1425{
1426 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
1427 return NULL;
1428 return bqt->tag_index[tag];
1429}
1430
1431extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1432extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1433 sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1434
1435#define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */
1436
1437extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1438 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1439extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1440 sector_t nr_sects, gfp_t gfp_mask, int flags,
1441 struct bio **biop);
1442
1443#define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1444#define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1445
1446extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1447 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1448 unsigned flags);
1449extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1450 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1451
1452static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1453 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1454{
1455 return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - 9),
1456 nr_blocks << (sb->s_blocksize_bits - 9),
1457 gfp_mask, flags);
1458}
1459static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1460 sector_t nr_blocks, gfp_t gfp_mask)
1461{
1462 return blkdev_issue_zeroout(sb->s_bdev,
1463 block << (sb->s_blocksize_bits - 9),
1464 nr_blocks << (sb->s_blocksize_bits - 9),
1465 gfp_mask, 0);
1466}
1467
1468extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1469
1470enum blk_default_limits {
1471 BLK_MAX_SEGMENTS = 128,
1472 BLK_SAFE_MAX_SECTORS = 255,
1473 BLK_DEF_MAX_SECTORS = 2560,
1474 BLK_MAX_SEGMENT_SIZE = 65536,
1475 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1476};
1477
1478#define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist)
1479
1480static inline unsigned long queue_segment_boundary(struct request_queue *q)
1481{
1482 return q->limits.seg_boundary_mask;
1483}
1484
1485static inline unsigned long queue_virt_boundary(struct request_queue *q)
1486{
1487 return q->limits.virt_boundary_mask;
1488}
1489
1490static inline unsigned int queue_max_sectors(struct request_queue *q)
1491{
1492 return q->limits.max_sectors;
1493}
1494
1495static inline unsigned int queue_max_hw_sectors(struct request_queue *q)
1496{
1497 return q->limits.max_hw_sectors;
1498}
1499
1500static inline unsigned short queue_max_segments(struct request_queue *q)
1501{
1502 return q->limits.max_segments;
1503}
1504
1505static inline unsigned short queue_max_discard_segments(struct request_queue *q)
1506{
1507 return q->limits.max_discard_segments;
1508}
1509
1510static inline unsigned int queue_max_segment_size(struct request_queue *q)
1511{
1512 return q->limits.max_segment_size;
1513}
1514
1515static inline unsigned short queue_logical_block_size(struct request_queue *q)
1516{
1517 int retval = 512;
1518
1519 if (q && q->limits.logical_block_size)
1520 retval = q->limits.logical_block_size;
1521
1522 return retval;
1523}
1524
1525static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
1526{
1527 return queue_logical_block_size(bdev_get_queue(bdev));
1528}
1529
1530static inline unsigned int queue_physical_block_size(struct request_queue *q)
1531{
1532 return q->limits.physical_block_size;
1533}
1534
1535static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1536{
1537 return queue_physical_block_size(bdev_get_queue(bdev));
1538}
1539
1540static inline unsigned int queue_io_min(struct request_queue *q)
1541{
1542 return q->limits.io_min;
1543}
1544
1545static inline int bdev_io_min(struct block_device *bdev)
1546{
1547 return queue_io_min(bdev_get_queue(bdev));
1548}
1549
1550static inline unsigned int queue_io_opt(struct request_queue *q)
1551{
1552 return q->limits.io_opt;
1553}
1554
1555static inline int bdev_io_opt(struct block_device *bdev)
1556{
1557 return queue_io_opt(bdev_get_queue(bdev));
1558}
1559
1560static inline int queue_alignment_offset(struct request_queue *q)
1561{
1562 if (q->limits.misaligned)
1563 return -1;
1564
1565 return q->limits.alignment_offset;
1566}
1567
1568static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1569{
1570 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1571 unsigned int alignment = sector_div(sector, granularity >> 9) << 9;
1572
1573 return (granularity + lim->alignment_offset - alignment) % granularity;
1574}
1575
1576static inline int bdev_alignment_offset(struct block_device *bdev)
1577{
1578 struct request_queue *q = bdev_get_queue(bdev);
1579
1580 if (q->limits.misaligned)
1581 return -1;
1582
1583 if (bdev != bdev->bd_contains)
1584 return bdev->bd_part->alignment_offset;
1585
1586 return q->limits.alignment_offset;
1587}
1588
1589static inline int queue_discard_alignment(struct request_queue *q)
1590{
1591 if (q->limits.discard_misaligned)
1592 return -1;
1593
1594 return q->limits.discard_alignment;
1595}
1596
1597static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1598{
1599 unsigned int alignment, granularity, offset;
1600
1601 if (!lim->max_discard_sectors)
1602 return 0;
1603
1604 /* Why are these in bytes, not sectors? */
1605 alignment = lim->discard_alignment >> 9;
1606 granularity = lim->discard_granularity >> 9;
1607 if (!granularity)
1608 return 0;
1609
1610 /* Offset of the partition start in 'granularity' sectors */
1611 offset = sector_div(sector, granularity);
1612
1613 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
1614 offset = (granularity + alignment - offset) % granularity;
1615
1616 /* Turn it back into bytes, gaah */
1617 return offset << 9;
1618}
1619
1620static inline int bdev_discard_alignment(struct block_device *bdev)
1621{
1622 struct request_queue *q = bdev_get_queue(bdev);
1623
1624 if (bdev != bdev->bd_contains)
1625 return bdev->bd_part->discard_alignment;
1626
1627 return q->limits.discard_alignment;
1628}
1629
1630static inline unsigned int bdev_write_same(struct block_device *bdev)
1631{
1632 struct request_queue *q = bdev_get_queue(bdev);
1633
1634 if (q)
1635 return q->limits.max_write_same_sectors;
1636
1637 return 0;
1638}
1639
1640static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1641{
1642 struct request_queue *q = bdev_get_queue(bdev);
1643
1644 if (q)
1645 return q->limits.max_write_zeroes_sectors;
1646
1647 return 0;
1648}
1649
1650static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1651{
1652 struct request_queue *q = bdev_get_queue(bdev);
1653
1654 if (q)
1655 return blk_queue_zoned_model(q);
1656
1657 return BLK_ZONED_NONE;
1658}
1659
1660static inline bool bdev_is_zoned(struct block_device *bdev)
1661{
1662 struct request_queue *q = bdev_get_queue(bdev);
1663
1664 if (q)
1665 return blk_queue_is_zoned(q);
1666
1667 return false;
1668}
1669
1670static inline unsigned int bdev_zone_sectors(struct block_device *bdev)
1671{
1672 struct request_queue *q = bdev_get_queue(bdev);
1673
1674 if (q)
1675 return blk_queue_zone_sectors(q);
1676 return 0;
1677}
1678
1679static inline unsigned int bdev_nr_zones(struct block_device *bdev)
1680{
1681 struct request_queue *q = bdev_get_queue(bdev);
1682
1683 if (q)
1684 return blk_queue_nr_zones(q);
1685 return 0;
1686}
1687
1688static inline int queue_dma_alignment(struct request_queue *q)
1689{
1690 return q ? q->dma_alignment : 511;
1691}
1692
1693static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1694 unsigned int len)
1695{
1696 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1697 return !(addr & alignment) && !(len & alignment);
1698}
1699
1700/* assumes size > 256 */
1701static inline unsigned int blksize_bits(unsigned int size)
1702{
1703 unsigned int bits = 8;
1704 do {
1705 bits++;
1706 size >>= 1;
1707 } while (size > 256);
1708 return bits;
1709}
1710
1711static inline unsigned int block_size(struct block_device *bdev)
1712{
1713 return bdev->bd_block_size;
1714}
1715
1716static inline bool queue_flush_queueable(struct request_queue *q)
1717{
1718 return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
1719}
1720
1721typedef struct {struct page *v;} Sector;
1722
1723unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1724
1725static inline void put_dev_sector(Sector p)
1726{
1727 put_page(p.v);
1728}
1729
1730static inline bool __bvec_gap_to_prev(struct request_queue *q,
1731 struct bio_vec *bprv, unsigned int offset)
1732{
1733 return offset ||
1734 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
1735}
1736
1737/*
1738 * Check if adding a bio_vec after bprv with offset would create a gap in
1739 * the SG list. Most drivers don't care about this, but some do.
1740 */
1741static inline bool bvec_gap_to_prev(struct request_queue *q,
1742 struct bio_vec *bprv, unsigned int offset)
1743{
1744 if (!queue_virt_boundary(q))
1745 return false;
1746 return __bvec_gap_to_prev(q, bprv, offset);
1747}
1748
1749/*
1750 * Check if the two bvecs from two bios can be merged to one segment.
1751 * If yes, no need to check gap between the two bios since the 1st bio
1752 * and the 1st bvec in the 2nd bio can be handled in one segment.
1753 */
1754static inline bool bios_segs_mergeable(struct request_queue *q,
1755 struct bio *prev, struct bio_vec *prev_last_bv,
1756 struct bio_vec *next_first_bv)
1757{
1758 if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv))
1759 return false;
1760 if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv))
1761 return false;
1762 if (prev->bi_seg_back_size + next_first_bv->bv_len >
1763 queue_max_segment_size(q))
1764 return false;
1765 return true;
1766}
1767
1768static inline bool bio_will_gap(struct request_queue *q,
1769 struct request *prev_rq,
1770 struct bio *prev,
1771 struct bio *next)
1772{
1773 if (bio_has_data(prev) && queue_virt_boundary(q)) {
1774 struct bio_vec pb, nb;
1775
1776 /*
1777 * don't merge if the 1st bio starts with non-zero
1778 * offset, otherwise it is quite difficult to respect
1779 * sg gap limit. We work hard to merge a huge number of small
1780 * single bios in case of mkfs.
1781 */
1782 if (prev_rq)
1783 bio_get_first_bvec(prev_rq->bio, &pb);
1784 else
1785 bio_get_first_bvec(prev, &pb);
1786 if (pb.bv_offset)
1787 return true;
1788
1789 /*
1790 * We don't need to worry about the situation that the
1791 * merged segment ends in unaligned virt boundary:
1792 *
1793 * - if 'pb' ends aligned, the merged segment ends aligned
1794 * - if 'pb' ends unaligned, the next bio must include
1795 * one single bvec of 'nb', otherwise the 'nb' can't
1796 * merge with 'pb'
1797 */
1798 bio_get_last_bvec(prev, &pb);
1799 bio_get_first_bvec(next, &nb);
1800
1801 if (!bios_segs_mergeable(q, prev, &pb, &nb))
1802 return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
1803 }
1804
1805 return false;
1806}
1807
1808static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
1809{
1810 return bio_will_gap(req->q, req, req->biotail, bio);
1811}
1812
1813static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
1814{
1815 return bio_will_gap(req->q, NULL, bio, req->bio);
1816}
1817
1818int kblockd_schedule_work(struct work_struct *work);
1819int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1820int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1821
1822#ifdef CONFIG_BLK_CGROUP
1823/*
1824 * This should not be using sched_clock(). A real patch is in progress
1825 * to fix this up, until that is in place we need to disable preemption
1826 * around sched_clock() in this function and set_io_start_time_ns().
1827 */
1828static inline void set_start_time_ns(struct request *req)
1829{
1830 preempt_disable();
1831 req->start_time_ns = sched_clock();
1832 preempt_enable();
1833}
1834
1835static inline void set_io_start_time_ns(struct request *req)
1836{
1837 preempt_disable();
1838 req->io_start_time_ns = sched_clock();
1839 preempt_enable();
1840}
1841
1842static inline uint64_t rq_start_time_ns(struct request *req)
1843{
1844 return req->start_time_ns;
1845}
1846
1847static inline uint64_t rq_io_start_time_ns(struct request *req)
1848{
1849 return req->io_start_time_ns;
1850}
1851#else
1852static inline void set_start_time_ns(struct request *req) {}
1853static inline void set_io_start_time_ns(struct request *req) {}
1854static inline uint64_t rq_start_time_ns(struct request *req)
1855{
1856 return 0;
1857}
1858static inline uint64_t rq_io_start_time_ns(struct request *req)
1859{
1860 return 0;
1861}
1862#endif
1863
1864#define MODULE_ALIAS_BLOCKDEV(major,minor) \
1865 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1866#define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1867 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1868
1869#if defined(CONFIG_BLK_DEV_INTEGRITY)
1870
1871enum blk_integrity_flags {
1872 BLK_INTEGRITY_VERIFY = 1 << 0,
1873 BLK_INTEGRITY_GENERATE = 1 << 1,
1874 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2,
1875 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3,
1876};
1877
1878struct blk_integrity_iter {
1879 void *prot_buf;
1880 void *data_buf;
1881 sector_t seed;
1882 unsigned int data_size;
1883 unsigned short interval;
1884 const char *disk_name;
1885};
1886
1887typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1888
1889struct blk_integrity_profile {
1890 integrity_processing_fn *generate_fn;
1891 integrity_processing_fn *verify_fn;
1892 const char *name;
1893};
1894
1895extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1896extern void blk_integrity_unregister(struct gendisk *);
1897extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1898extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1899 struct scatterlist *);
1900extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1901extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1902 struct request *);
1903extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1904 struct bio *);
1905
1906static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1907{
1908 struct blk_integrity *bi = &disk->queue->integrity;
1909
1910 if (!bi->profile)
1911 return NULL;
1912
1913 return bi;
1914}
1915
1916static inline
1917struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1918{
1919 return blk_get_integrity(bdev->bd_disk);
1920}
1921
1922static inline bool blk_integrity_rq(struct request *rq)
1923{
1924 return rq->cmd_flags & REQ_INTEGRITY;
1925}
1926
1927static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1928 unsigned int segs)
1929{
1930 q->limits.max_integrity_segments = segs;
1931}
1932
1933static inline unsigned short
1934queue_max_integrity_segments(struct request_queue *q)
1935{
1936 return q->limits.max_integrity_segments;
1937}
1938
1939static inline bool integrity_req_gap_back_merge(struct request *req,
1940 struct bio *next)
1941{
1942 struct bio_integrity_payload *bip = bio_integrity(req->bio);
1943 struct bio_integrity_payload *bip_next = bio_integrity(next);
1944
1945 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1946 bip_next->bip_vec[0].bv_offset);
1947}
1948
1949static inline bool integrity_req_gap_front_merge(struct request *req,
1950 struct bio *bio)
1951{
1952 struct bio_integrity_payload *bip = bio_integrity(bio);
1953 struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
1954
1955 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1956 bip_next->bip_vec[0].bv_offset);
1957}
1958
1959#else /* CONFIG_BLK_DEV_INTEGRITY */
1960
1961struct bio;
1962struct block_device;
1963struct gendisk;
1964struct blk_integrity;
1965
1966static inline int blk_integrity_rq(struct request *rq)
1967{
1968 return 0;
1969}
1970static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1971 struct bio *b)
1972{
1973 return 0;
1974}
1975static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1976 struct bio *b,
1977 struct scatterlist *s)
1978{
1979 return 0;
1980}
1981static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1982{
1983 return NULL;
1984}
1985static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1986{
1987 return NULL;
1988}
1989static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1990{
1991 return 0;
1992}
1993static inline void blk_integrity_register(struct gendisk *d,
1994 struct blk_integrity *b)
1995{
1996}
1997static inline void blk_integrity_unregister(struct gendisk *d)
1998{
1999}
2000static inline void blk_queue_max_integrity_segments(struct request_queue *q,
2001 unsigned int segs)
2002{
2003}
2004static inline unsigned short queue_max_integrity_segments(struct request_queue *q)
2005{
2006 return 0;
2007}
2008static inline bool blk_integrity_merge_rq(struct request_queue *rq,
2009 struct request *r1,
2010 struct request *r2)
2011{
2012 return true;
2013}
2014static inline bool blk_integrity_merge_bio(struct request_queue *rq,
2015 struct request *r,
2016 struct bio *b)
2017{
2018 return true;
2019}
2020
2021static inline bool integrity_req_gap_back_merge(struct request *req,
2022 struct bio *next)
2023{
2024 return false;
2025}
2026static inline bool integrity_req_gap_front_merge(struct request *req,
2027 struct bio *bio)
2028{
2029 return false;
2030}
2031
2032#endif /* CONFIG_BLK_DEV_INTEGRITY */
2033
2034struct block_device_operations {
2035 int (*open) (struct block_device *, fmode_t);
2036 void (*release) (struct gendisk *, fmode_t);
2037 int (*rw_page)(struct block_device *, sector_t, struct page *, bool);
2038 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
2039 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
2040 unsigned int (*check_events) (struct gendisk *disk,
2041 unsigned int clearing);
2042 /* ->media_changed() is DEPRECATED, use ->check_events() instead */
2043 int (*media_changed) (struct gendisk *);
2044 void (*unlock_native_capacity) (struct gendisk *);
2045 int (*revalidate_disk) (struct gendisk *);
2046 int (*getgeo)(struct block_device *, struct hd_geometry *);
2047 /* this callback is with swap_lock and sometimes page table lock held */
2048 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
2049 struct module *owner;
2050 const struct pr_ops *pr_ops;
2051};
2052
2053extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
2054 unsigned long);
2055extern int bdev_read_page(struct block_device *, sector_t, struct page *);
2056extern int bdev_write_page(struct block_device *, sector_t, struct page *,
2057 struct writeback_control *);
2058
2059#ifdef CONFIG_BLK_DEV_ZONED
2060bool blk_req_needs_zone_write_lock(struct request *rq);
2061void __blk_req_zone_write_lock(struct request *rq);
2062void __blk_req_zone_write_unlock(struct request *rq);
2063
2064static inline void blk_req_zone_write_lock(struct request *rq)
2065{
2066 if (blk_req_needs_zone_write_lock(rq))
2067 __blk_req_zone_write_lock(rq);
2068}
2069
2070static inline void blk_req_zone_write_unlock(struct request *rq)
2071{
2072 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
2073 __blk_req_zone_write_unlock(rq);
2074}
2075
2076static inline bool blk_req_zone_is_write_locked(struct request *rq)
2077{
2078 return rq->q->seq_zones_wlock &&
2079 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
2080}
2081
2082static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
2083{
2084 if (!blk_req_needs_zone_write_lock(rq))
2085 return true;
2086 return !blk_req_zone_is_write_locked(rq);
2087}
2088#else
2089static inline bool blk_req_needs_zone_write_lock(struct request *rq)
2090{
2091 return false;
2092}
2093
2094static inline void blk_req_zone_write_lock(struct request *rq)
2095{
2096}
2097
2098static inline void blk_req_zone_write_unlock(struct request *rq)
2099{
2100}
2101static inline bool blk_req_zone_is_write_locked(struct request *rq)
2102{
2103 return false;
2104}
2105
2106static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
2107{
2108 return true;
2109}
2110#endif /* CONFIG_BLK_DEV_ZONED */
2111
2112#else /* CONFIG_BLOCK */
2113
2114struct block_device;
2115
2116/*
2117 * stubs for when the block layer is configured out
2118 */
2119#define buffer_heads_over_limit 0
2120
2121static inline long nr_blockdev_pages(void)
2122{
2123 return 0;
2124}
2125
2126struct blk_plug {
2127};
2128
2129static inline void blk_start_plug(struct blk_plug *plug)
2130{
2131}
2132
2133static inline void blk_finish_plug(struct blk_plug *plug)
2134{
2135}
2136
2137static inline void blk_flush_plug(struct task_struct *task)
2138{
2139}
2140
2141static inline void blk_schedule_flush_plug(struct task_struct *task)
2142{
2143}
2144
2145
2146static inline bool blk_needs_flush_plug(struct task_struct *tsk)
2147{
2148 return false;
2149}
2150
2151static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
2152 sector_t *error_sector)
2153{
2154 return 0;
2155}
2156
2157#endif /* CONFIG_BLOCK */
2158
2159#endif