Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <linux/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/sched/mm.h>
85#include <linux/mutex.h>
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
95#include <linux/ethtool.h>
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
98#include <linux/bpf.h>
99#include <linux/bpf_trace.h>
100#include <net/net_namespace.h>
101#include <net/sock.h>
102#include <net/busy_poll.h>
103#include <linux/rtnetlink.h>
104#include <linux/stat.h>
105#include <net/dst.h>
106#include <net/dst_metadata.h>
107#include <net/pkt_sched.h>
108#include <net/pkt_cls.h>
109#include <net/checksum.h>
110#include <net/xfrm.h>
111#include <linux/highmem.h>
112#include <linux/init.h>
113#include <linux/module.h>
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
117#include <net/iw_handler.h>
118#include <asm/current.h>
119#include <linux/audit.h>
120#include <linux/dmaengine.h>
121#include <linux/err.h>
122#include <linux/ctype.h>
123#include <linux/if_arp.h>
124#include <linux/if_vlan.h>
125#include <linux/ip.h>
126#include <net/ip.h>
127#include <net/mpls.h>
128#include <linux/ipv6.h>
129#include <linux/in.h>
130#include <linux/jhash.h>
131#include <linux/random.h>
132#include <trace/events/napi.h>
133#include <trace/events/net.h>
134#include <trace/events/skb.h>
135#include <linux/pci.h>
136#include <linux/inetdevice.h>
137#include <linux/cpu_rmap.h>
138#include <linux/static_key.h>
139#include <linux/hashtable.h>
140#include <linux/vmalloc.h>
141#include <linux/if_macvlan.h>
142#include <linux/errqueue.h>
143#include <linux/hrtimer.h>
144#include <linux/netfilter_ingress.h>
145#include <linux/crash_dump.h>
146#include <linux/sctp.h>
147#include <net/udp_tunnel.h>
148#include <linux/net_namespace.h>
149
150#include "net-sysfs.h"
151
152/* Instead of increasing this, you should create a hash table. */
153#define MAX_GRO_SKBS 8
154
155/* This should be increased if a protocol with a bigger head is added. */
156#define GRO_MAX_HEAD (MAX_HEADER + 128)
157
158static DEFINE_SPINLOCK(ptype_lock);
159static DEFINE_SPINLOCK(offload_lock);
160struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161struct list_head ptype_all __read_mostly; /* Taps */
162static struct list_head offload_base __read_mostly;
163
164static int netif_rx_internal(struct sk_buff *skb);
165static int call_netdevice_notifiers_info(unsigned long val,
166 struct netdev_notifier_info *info);
167static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169/*
170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171 * semaphore.
172 *
173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
176 * dev_base_head list, and hold dev_base_lock for writing when they do the
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
188DEFINE_RWLOCK(dev_base_lock);
189EXPORT_SYMBOL(dev_base_lock);
190
191static DEFINE_MUTEX(ifalias_mutex);
192
193/* protects napi_hash addition/deletion and napi_gen_id */
194static DEFINE_SPINLOCK(napi_hash_lock);
195
196static unsigned int napi_gen_id = NR_CPUS;
197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199static seqcount_t devnet_rename_seq;
200
201static inline void dev_base_seq_inc(struct net *net)
202{
203 while (++net->dev_base_seq == 0)
204 ;
205}
206
207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208{
209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212}
213
214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215{
216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217}
218
219static inline void rps_lock(struct softnet_data *sd)
220{
221#ifdef CONFIG_RPS
222 spin_lock(&sd->input_pkt_queue.lock);
223#endif
224}
225
226static inline void rps_unlock(struct softnet_data *sd)
227{
228#ifdef CONFIG_RPS
229 spin_unlock(&sd->input_pkt_queue.lock);
230#endif
231}
232
233/* Device list insertion */
234static void list_netdevice(struct net_device *dev)
235{
236 struct net *net = dev_net(dev);
237
238 ASSERT_RTNL();
239
240 write_lock_bh(&dev_base_lock);
241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 hlist_add_head_rcu(&dev->index_hlist,
244 dev_index_hash(net, dev->ifindex));
245 write_unlock_bh(&dev_base_lock);
246
247 dev_base_seq_inc(net);
248}
249
250/* Device list removal
251 * caller must respect a RCU grace period before freeing/reusing dev
252 */
253static void unlist_netdevice(struct net_device *dev)
254{
255 ASSERT_RTNL();
256
257 /* Unlink dev from the device chain */
258 write_lock_bh(&dev_base_lock);
259 list_del_rcu(&dev->dev_list);
260 hlist_del_rcu(&dev->name_hlist);
261 hlist_del_rcu(&dev->index_hlist);
262 write_unlock_bh(&dev_base_lock);
263
264 dev_base_seq_inc(dev_net(dev));
265}
266
267/*
268 * Our notifier list
269 */
270
271static RAW_NOTIFIER_HEAD(netdev_chain);
272
273/*
274 * Device drivers call our routines to queue packets here. We empty the
275 * queue in the local softnet handler.
276 */
277
278DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279EXPORT_PER_CPU_SYMBOL(softnet_data);
280
281#ifdef CONFIG_LOCKDEP
282/*
283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284 * according to dev->type
285 */
286static const unsigned short netdev_lock_type[] = {
287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302
303static const char *const netdev_lock_name[] = {
304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319
320static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322
323static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324{
325 int i;
326
327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 if (netdev_lock_type[i] == dev_type)
329 return i;
330 /* the last key is used by default */
331 return ARRAY_SIZE(netdev_lock_type) - 1;
332}
333
334static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
336{
337 int i;
338
339 i = netdev_lock_pos(dev_type);
340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 netdev_lock_name[i]);
342}
343
344static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345{
346 int i;
347
348 i = netdev_lock_pos(dev->type);
349 lockdep_set_class_and_name(&dev->addr_list_lock,
350 &netdev_addr_lock_key[i],
351 netdev_lock_name[i]);
352}
353#else
354static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 unsigned short dev_type)
356{
357}
358static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359{
360}
361#endif
362
363/*******************************************************************************
364 *
365 * Protocol management and registration routines
366 *
367 *******************************************************************************/
368
369
370/*
371 * Add a protocol ID to the list. Now that the input handler is
372 * smarter we can dispense with all the messy stuff that used to be
373 * here.
374 *
375 * BEWARE!!! Protocol handlers, mangling input packets,
376 * MUST BE last in hash buckets and checking protocol handlers
377 * MUST start from promiscuous ptype_all chain in net_bh.
378 * It is true now, do not change it.
379 * Explanation follows: if protocol handler, mangling packet, will
380 * be the first on list, it is not able to sense, that packet
381 * is cloned and should be copied-on-write, so that it will
382 * change it and subsequent readers will get broken packet.
383 * --ANK (980803)
384 */
385
386static inline struct list_head *ptype_head(const struct packet_type *pt)
387{
388 if (pt->type == htons(ETH_P_ALL))
389 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 else
391 return pt->dev ? &pt->dev->ptype_specific :
392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393}
394
395/**
396 * dev_add_pack - add packet handler
397 * @pt: packet type declaration
398 *
399 * Add a protocol handler to the networking stack. The passed &packet_type
400 * is linked into kernel lists and may not be freed until it has been
401 * removed from the kernel lists.
402 *
403 * This call does not sleep therefore it can not
404 * guarantee all CPU's that are in middle of receiving packets
405 * will see the new packet type (until the next received packet).
406 */
407
408void dev_add_pack(struct packet_type *pt)
409{
410 struct list_head *head = ptype_head(pt);
411
412 spin_lock(&ptype_lock);
413 list_add_rcu(&pt->list, head);
414 spin_unlock(&ptype_lock);
415}
416EXPORT_SYMBOL(dev_add_pack);
417
418/**
419 * __dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
426 *
427 * The packet type might still be in use by receivers
428 * and must not be freed until after all the CPU's have gone
429 * through a quiescent state.
430 */
431void __dev_remove_pack(struct packet_type *pt)
432{
433 struct list_head *head = ptype_head(pt);
434 struct packet_type *pt1;
435
436 spin_lock(&ptype_lock);
437
438 list_for_each_entry(pt1, head, list) {
439 if (pt == pt1) {
440 list_del_rcu(&pt->list);
441 goto out;
442 }
443 }
444
445 pr_warn("dev_remove_pack: %p not found\n", pt);
446out:
447 spin_unlock(&ptype_lock);
448}
449EXPORT_SYMBOL(__dev_remove_pack);
450
451/**
452 * dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
454 *
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
458 * returns.
459 *
460 * This call sleeps to guarantee that no CPU is looking at the packet
461 * type after return.
462 */
463void dev_remove_pack(struct packet_type *pt)
464{
465 __dev_remove_pack(pt);
466
467 synchronize_net();
468}
469EXPORT_SYMBOL(dev_remove_pack);
470
471
472/**
473 * dev_add_offload - register offload handlers
474 * @po: protocol offload declaration
475 *
476 * Add protocol offload handlers to the networking stack. The passed
477 * &proto_offload is linked into kernel lists and may not be freed until
478 * it has been removed from the kernel lists.
479 *
480 * This call does not sleep therefore it can not
481 * guarantee all CPU's that are in middle of receiving packets
482 * will see the new offload handlers (until the next received packet).
483 */
484void dev_add_offload(struct packet_offload *po)
485{
486 struct packet_offload *elem;
487
488 spin_lock(&offload_lock);
489 list_for_each_entry(elem, &offload_base, list) {
490 if (po->priority < elem->priority)
491 break;
492 }
493 list_add_rcu(&po->list, elem->list.prev);
494 spin_unlock(&offload_lock);
495}
496EXPORT_SYMBOL(dev_add_offload);
497
498/**
499 * __dev_remove_offload - remove offload handler
500 * @po: packet offload declaration
501 *
502 * Remove a protocol offload handler that was previously added to the
503 * kernel offload handlers by dev_add_offload(). The passed &offload_type
504 * is removed from the kernel lists and can be freed or reused once this
505 * function returns.
506 *
507 * The packet type might still be in use by receivers
508 * and must not be freed until after all the CPU's have gone
509 * through a quiescent state.
510 */
511static void __dev_remove_offload(struct packet_offload *po)
512{
513 struct list_head *head = &offload_base;
514 struct packet_offload *po1;
515
516 spin_lock(&offload_lock);
517
518 list_for_each_entry(po1, head, list) {
519 if (po == po1) {
520 list_del_rcu(&po->list);
521 goto out;
522 }
523 }
524
525 pr_warn("dev_remove_offload: %p not found\n", po);
526out:
527 spin_unlock(&offload_lock);
528}
529
530/**
531 * dev_remove_offload - remove packet offload handler
532 * @po: packet offload declaration
533 *
534 * Remove a packet offload handler that was previously added to the kernel
535 * offload handlers by dev_add_offload(). The passed &offload_type is
536 * removed from the kernel lists and can be freed or reused once this
537 * function returns.
538 *
539 * This call sleeps to guarantee that no CPU is looking at the packet
540 * type after return.
541 */
542void dev_remove_offload(struct packet_offload *po)
543{
544 __dev_remove_offload(po);
545
546 synchronize_net();
547}
548EXPORT_SYMBOL(dev_remove_offload);
549
550/******************************************************************************
551 *
552 * Device Boot-time Settings Routines
553 *
554 ******************************************************************************/
555
556/* Boot time configuration table */
557static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559/**
560 * netdev_boot_setup_add - add new setup entry
561 * @name: name of the device
562 * @map: configured settings for the device
563 *
564 * Adds new setup entry to the dev_boot_setup list. The function
565 * returns 0 on error and 1 on success. This is a generic routine to
566 * all netdevices.
567 */
568static int netdev_boot_setup_add(char *name, struct ifmap *map)
569{
570 struct netdev_boot_setup *s;
571 int i;
572
573 s = dev_boot_setup;
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 memset(s[i].name, 0, sizeof(s[i].name));
577 strlcpy(s[i].name, name, IFNAMSIZ);
578 memcpy(&s[i].map, map, sizeof(s[i].map));
579 break;
580 }
581 }
582
583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584}
585
586/**
587 * netdev_boot_setup_check - check boot time settings
588 * @dev: the netdevice
589 *
590 * Check boot time settings for the device.
591 * The found settings are set for the device to be used
592 * later in the device probing.
593 * Returns 0 if no settings found, 1 if they are.
594 */
595int netdev_boot_setup_check(struct net_device *dev)
596{
597 struct netdev_boot_setup *s = dev_boot_setup;
598 int i;
599
600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 !strcmp(dev->name, s[i].name)) {
603 dev->irq = s[i].map.irq;
604 dev->base_addr = s[i].map.base_addr;
605 dev->mem_start = s[i].map.mem_start;
606 dev->mem_end = s[i].map.mem_end;
607 return 1;
608 }
609 }
610 return 0;
611}
612EXPORT_SYMBOL(netdev_boot_setup_check);
613
614
615/**
616 * netdev_boot_base - get address from boot time settings
617 * @prefix: prefix for network device
618 * @unit: id for network device
619 *
620 * Check boot time settings for the base address of device.
621 * The found settings are set for the device to be used
622 * later in the device probing.
623 * Returns 0 if no settings found.
624 */
625unsigned long netdev_boot_base(const char *prefix, int unit)
626{
627 const struct netdev_boot_setup *s = dev_boot_setup;
628 char name[IFNAMSIZ];
629 int i;
630
631 sprintf(name, "%s%d", prefix, unit);
632
633 /*
634 * If device already registered then return base of 1
635 * to indicate not to probe for this interface
636 */
637 if (__dev_get_by_name(&init_net, name))
638 return 1;
639
640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 if (!strcmp(name, s[i].name))
642 return s[i].map.base_addr;
643 return 0;
644}
645
646/*
647 * Saves at boot time configured settings for any netdevice.
648 */
649int __init netdev_boot_setup(char *str)
650{
651 int ints[5];
652 struct ifmap map;
653
654 str = get_options(str, ARRAY_SIZE(ints), ints);
655 if (!str || !*str)
656 return 0;
657
658 /* Save settings */
659 memset(&map, 0, sizeof(map));
660 if (ints[0] > 0)
661 map.irq = ints[1];
662 if (ints[0] > 1)
663 map.base_addr = ints[2];
664 if (ints[0] > 2)
665 map.mem_start = ints[3];
666 if (ints[0] > 3)
667 map.mem_end = ints[4];
668
669 /* Add new entry to the list */
670 return netdev_boot_setup_add(str, &map);
671}
672
673__setup("netdev=", netdev_boot_setup);
674
675/*******************************************************************************
676 *
677 * Device Interface Subroutines
678 *
679 *******************************************************************************/
680
681/**
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
684 *
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 */
688
689int dev_get_iflink(const struct net_device *dev)
690{
691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 return dev->netdev_ops->ndo_get_iflink(dev);
693
694 return dev->ifindex;
695}
696EXPORT_SYMBOL(dev_get_iflink);
697
698/**
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
701 * @skb: The packet.
702 *
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
706 */
707int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708{
709 struct ip_tunnel_info *info;
710
711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 return -EINVAL;
713
714 info = skb_tunnel_info_unclone(skb);
715 if (!info)
716 return -ENOMEM;
717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return -EINVAL;
719
720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721}
722EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
724/**
725 * __dev_get_by_name - find a device by its name
726 * @net: the applicable net namespace
727 * @name: name to find
728 *
729 * Find an interface by name. Must be called under RTNL semaphore
730 * or @dev_base_lock. If the name is found a pointer to the device
731 * is returned. If the name is not found then %NULL is returned. The
732 * reference counters are not incremented so the caller must be
733 * careful with locks.
734 */
735
736struct net_device *__dev_get_by_name(struct net *net, const char *name)
737{
738 struct net_device *dev;
739 struct hlist_head *head = dev_name_hash(net, name);
740
741 hlist_for_each_entry(dev, head, name_hlist)
742 if (!strncmp(dev->name, name, IFNAMSIZ))
743 return dev;
744
745 return NULL;
746}
747EXPORT_SYMBOL(__dev_get_by_name);
748
749/**
750 * dev_get_by_name_rcu - find a device by its name
751 * @net: the applicable net namespace
752 * @name: name to find
753 *
754 * Find an interface by name.
755 * If the name is found a pointer to the device is returned.
756 * If the name is not found then %NULL is returned.
757 * The reference counters are not incremented so the caller must be
758 * careful with locks. The caller must hold RCU lock.
759 */
760
761struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762{
763 struct net_device *dev;
764 struct hlist_head *head = dev_name_hash(net, name);
765
766 hlist_for_each_entry_rcu(dev, head, name_hlist)
767 if (!strncmp(dev->name, name, IFNAMSIZ))
768 return dev;
769
770 return NULL;
771}
772EXPORT_SYMBOL(dev_get_by_name_rcu);
773
774/**
775 * dev_get_by_name - find a device by its name
776 * @net: the applicable net namespace
777 * @name: name to find
778 *
779 * Find an interface by name. This can be called from any
780 * context and does its own locking. The returned handle has
781 * the usage count incremented and the caller must use dev_put() to
782 * release it when it is no longer needed. %NULL is returned if no
783 * matching device is found.
784 */
785
786struct net_device *dev_get_by_name(struct net *net, const char *name)
787{
788 struct net_device *dev;
789
790 rcu_read_lock();
791 dev = dev_get_by_name_rcu(net, name);
792 if (dev)
793 dev_hold(dev);
794 rcu_read_unlock();
795 return dev;
796}
797EXPORT_SYMBOL(dev_get_by_name);
798
799/**
800 * __dev_get_by_index - find a device by its ifindex
801 * @net: the applicable net namespace
802 * @ifindex: index of device
803 *
804 * Search for an interface by index. Returns %NULL if the device
805 * is not found or a pointer to the device. The device has not
806 * had its reference counter increased so the caller must be careful
807 * about locking. The caller must hold either the RTNL semaphore
808 * or @dev_base_lock.
809 */
810
811struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812{
813 struct net_device *dev;
814 struct hlist_head *head = dev_index_hash(net, ifindex);
815
816 hlist_for_each_entry(dev, head, index_hlist)
817 if (dev->ifindex == ifindex)
818 return dev;
819
820 return NULL;
821}
822EXPORT_SYMBOL(__dev_get_by_index);
823
824/**
825 * dev_get_by_index_rcu - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
828 *
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold RCU lock.
833 */
834
835struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836{
837 struct net_device *dev;
838 struct hlist_head *head = dev_index_hash(net, ifindex);
839
840 hlist_for_each_entry_rcu(dev, head, index_hlist)
841 if (dev->ifindex == ifindex)
842 return dev;
843
844 return NULL;
845}
846EXPORT_SYMBOL(dev_get_by_index_rcu);
847
848
849/**
850 * dev_get_by_index - find a device by its ifindex
851 * @net: the applicable net namespace
852 * @ifindex: index of device
853 *
854 * Search for an interface by index. Returns NULL if the device
855 * is not found or a pointer to the device. The device returned has
856 * had a reference added and the pointer is safe until the user calls
857 * dev_put to indicate they have finished with it.
858 */
859
860struct net_device *dev_get_by_index(struct net *net, int ifindex)
861{
862 struct net_device *dev;
863
864 rcu_read_lock();
865 dev = dev_get_by_index_rcu(net, ifindex);
866 if (dev)
867 dev_hold(dev);
868 rcu_read_unlock();
869 return dev;
870}
871EXPORT_SYMBOL(dev_get_by_index);
872
873/**
874 * dev_get_by_napi_id - find a device by napi_id
875 * @napi_id: ID of the NAPI struct
876 *
877 * Search for an interface by NAPI ID. Returns %NULL if the device
878 * is not found or a pointer to the device. The device has not had
879 * its reference counter increased so the caller must be careful
880 * about locking. The caller must hold RCU lock.
881 */
882
883struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884{
885 struct napi_struct *napi;
886
887 WARN_ON_ONCE(!rcu_read_lock_held());
888
889 if (napi_id < MIN_NAPI_ID)
890 return NULL;
891
892 napi = napi_by_id(napi_id);
893
894 return napi ? napi->dev : NULL;
895}
896EXPORT_SYMBOL(dev_get_by_napi_id);
897
898/**
899 * netdev_get_name - get a netdevice name, knowing its ifindex.
900 * @net: network namespace
901 * @name: a pointer to the buffer where the name will be stored.
902 * @ifindex: the ifindex of the interface to get the name from.
903 *
904 * The use of raw_seqcount_begin() and cond_resched() before
905 * retrying is required as we want to give the writers a chance
906 * to complete when CONFIG_PREEMPT is not set.
907 */
908int netdev_get_name(struct net *net, char *name, int ifindex)
909{
910 struct net_device *dev;
911 unsigned int seq;
912
913retry:
914 seq = raw_seqcount_begin(&devnet_rename_seq);
915 rcu_read_lock();
916 dev = dev_get_by_index_rcu(net, ifindex);
917 if (!dev) {
918 rcu_read_unlock();
919 return -ENODEV;
920 }
921
922 strcpy(name, dev->name);
923 rcu_read_unlock();
924 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 cond_resched();
926 goto retry;
927 }
928
929 return 0;
930}
931
932/**
933 * dev_getbyhwaddr_rcu - find a device by its hardware address
934 * @net: the applicable net namespace
935 * @type: media type of device
936 * @ha: hardware address
937 *
938 * Search for an interface by MAC address. Returns NULL if the device
939 * is not found or a pointer to the device.
940 * The caller must hold RCU or RTNL.
941 * The returned device has not had its ref count increased
942 * and the caller must therefore be careful about locking
943 *
944 */
945
946struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 const char *ha)
948{
949 struct net_device *dev;
950
951 for_each_netdev_rcu(net, dev)
952 if (dev->type == type &&
953 !memcmp(dev->dev_addr, ha, dev->addr_len))
954 return dev;
955
956 return NULL;
957}
958EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959
960struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961{
962 struct net_device *dev;
963
964 ASSERT_RTNL();
965 for_each_netdev(net, dev)
966 if (dev->type == type)
967 return dev;
968
969 return NULL;
970}
971EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972
973struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974{
975 struct net_device *dev, *ret = NULL;
976
977 rcu_read_lock();
978 for_each_netdev_rcu(net, dev)
979 if (dev->type == type) {
980 dev_hold(dev);
981 ret = dev;
982 break;
983 }
984 rcu_read_unlock();
985 return ret;
986}
987EXPORT_SYMBOL(dev_getfirstbyhwtype);
988
989/**
990 * __dev_get_by_flags - find any device with given flags
991 * @net: the applicable net namespace
992 * @if_flags: IFF_* values
993 * @mask: bitmask of bits in if_flags to check
994 *
995 * Search for any interface with the given flags. Returns NULL if a device
996 * is not found or a pointer to the device. Must be called inside
997 * rtnl_lock(), and result refcount is unchanged.
998 */
999
1000struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 unsigned short mask)
1002{
1003 struct net_device *dev, *ret;
1004
1005 ASSERT_RTNL();
1006
1007 ret = NULL;
1008 for_each_netdev(net, dev) {
1009 if (((dev->flags ^ if_flags) & mask) == 0) {
1010 ret = dev;
1011 break;
1012 }
1013 }
1014 return ret;
1015}
1016EXPORT_SYMBOL(__dev_get_by_flags);
1017
1018/**
1019 * dev_valid_name - check if name is okay for network device
1020 * @name: name string
1021 *
1022 * Network device names need to be valid file names to
1023 * to allow sysfs to work. We also disallow any kind of
1024 * whitespace.
1025 */
1026bool dev_valid_name(const char *name)
1027{
1028 if (*name == '\0')
1029 return false;
1030 if (strlen(name) >= IFNAMSIZ)
1031 return false;
1032 if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 return false;
1034
1035 while (*name) {
1036 if (*name == '/' || *name == ':' || isspace(*name))
1037 return false;
1038 name++;
1039 }
1040 return true;
1041}
1042EXPORT_SYMBOL(dev_valid_name);
1043
1044/**
1045 * __dev_alloc_name - allocate a name for a device
1046 * @net: network namespace to allocate the device name in
1047 * @name: name format string
1048 * @buf: scratch buffer and result name string
1049 *
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1054 * duplicates.
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1057 */
1058
1059static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060{
1061 int i = 0;
1062 const char *p;
1063 const int max_netdevices = 8*PAGE_SIZE;
1064 unsigned long *inuse;
1065 struct net_device *d;
1066
1067 if (!dev_valid_name(name))
1068 return -EINVAL;
1069
1070 p = strchr(name, '%');
1071 if (p) {
1072 /*
1073 * Verify the string as this thing may have come from
1074 * the user. There must be either one "%d" and no other "%"
1075 * characters.
1076 */
1077 if (p[1] != 'd' || strchr(p + 2, '%'))
1078 return -EINVAL;
1079
1080 /* Use one page as a bit array of possible slots */
1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082 if (!inuse)
1083 return -ENOMEM;
1084
1085 for_each_netdev(net, d) {
1086 if (!sscanf(d->name, name, &i))
1087 continue;
1088 if (i < 0 || i >= max_netdevices)
1089 continue;
1090
1091 /* avoid cases where sscanf is not exact inverse of printf */
1092 snprintf(buf, IFNAMSIZ, name, i);
1093 if (!strncmp(buf, d->name, IFNAMSIZ))
1094 set_bit(i, inuse);
1095 }
1096
1097 i = find_first_zero_bit(inuse, max_netdevices);
1098 free_page((unsigned long) inuse);
1099 }
1100
1101 snprintf(buf, IFNAMSIZ, name, i);
1102 if (!__dev_get_by_name(net, buf))
1103 return i;
1104
1105 /* It is possible to run out of possible slots
1106 * when the name is long and there isn't enough space left
1107 * for the digits, or if all bits are used.
1108 */
1109 return -ENFILE;
1110}
1111
1112static int dev_alloc_name_ns(struct net *net,
1113 struct net_device *dev,
1114 const char *name)
1115{
1116 char buf[IFNAMSIZ];
1117 int ret;
1118
1119 BUG_ON(!net);
1120 ret = __dev_alloc_name(net, name, buf);
1121 if (ret >= 0)
1122 strlcpy(dev->name, buf, IFNAMSIZ);
1123 return ret;
1124}
1125
1126/**
1127 * dev_alloc_name - allocate a name for a device
1128 * @dev: device
1129 * @name: name format string
1130 *
1131 * Passed a format string - eg "lt%d" it will try and find a suitable
1132 * id. It scans list of devices to build up a free map, then chooses
1133 * the first empty slot. The caller must hold the dev_base or rtnl lock
1134 * while allocating the name and adding the device in order to avoid
1135 * duplicates.
1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137 * Returns the number of the unit assigned or a negative errno code.
1138 */
1139
1140int dev_alloc_name(struct net_device *dev, const char *name)
1141{
1142 return dev_alloc_name_ns(dev_net(dev), dev, name);
1143}
1144EXPORT_SYMBOL(dev_alloc_name);
1145
1146int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 const char *name)
1148{
1149 BUG_ON(!net);
1150
1151 if (!dev_valid_name(name))
1152 return -EINVAL;
1153
1154 if (strchr(name, '%'))
1155 return dev_alloc_name_ns(net, dev, name);
1156 else if (__dev_get_by_name(net, name))
1157 return -EEXIST;
1158 else if (dev->name != name)
1159 strlcpy(dev->name, name, IFNAMSIZ);
1160
1161 return 0;
1162}
1163EXPORT_SYMBOL(dev_get_valid_name);
1164
1165/**
1166 * dev_change_name - change name of a device
1167 * @dev: device
1168 * @newname: name (or format string) must be at least IFNAMSIZ
1169 *
1170 * Change name of a device, can pass format strings "eth%d".
1171 * for wildcarding.
1172 */
1173int dev_change_name(struct net_device *dev, const char *newname)
1174{
1175 unsigned char old_assign_type;
1176 char oldname[IFNAMSIZ];
1177 int err = 0;
1178 int ret;
1179 struct net *net;
1180
1181 ASSERT_RTNL();
1182 BUG_ON(!dev_net(dev));
1183
1184 net = dev_net(dev);
1185 if (dev->flags & IFF_UP)
1186 return -EBUSY;
1187
1188 write_seqcount_begin(&devnet_rename_seq);
1189
1190 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191 write_seqcount_end(&devnet_rename_seq);
1192 return 0;
1193 }
1194
1195 memcpy(oldname, dev->name, IFNAMSIZ);
1196
1197 err = dev_get_valid_name(net, dev, newname);
1198 if (err < 0) {
1199 write_seqcount_end(&devnet_rename_seq);
1200 return err;
1201 }
1202
1203 if (oldname[0] && !strchr(oldname, '%'))
1204 netdev_info(dev, "renamed from %s\n", oldname);
1205
1206 old_assign_type = dev->name_assign_type;
1207 dev->name_assign_type = NET_NAME_RENAMED;
1208
1209rollback:
1210 ret = device_rename(&dev->dev, dev->name);
1211 if (ret) {
1212 memcpy(dev->name, oldname, IFNAMSIZ);
1213 dev->name_assign_type = old_assign_type;
1214 write_seqcount_end(&devnet_rename_seq);
1215 return ret;
1216 }
1217
1218 write_seqcount_end(&devnet_rename_seq);
1219
1220 netdev_adjacent_rename_links(dev, oldname);
1221
1222 write_lock_bh(&dev_base_lock);
1223 hlist_del_rcu(&dev->name_hlist);
1224 write_unlock_bh(&dev_base_lock);
1225
1226 synchronize_rcu();
1227
1228 write_lock_bh(&dev_base_lock);
1229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230 write_unlock_bh(&dev_base_lock);
1231
1232 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233 ret = notifier_to_errno(ret);
1234
1235 if (ret) {
1236 /* err >= 0 after dev_alloc_name() or stores the first errno */
1237 if (err >= 0) {
1238 err = ret;
1239 write_seqcount_begin(&devnet_rename_seq);
1240 memcpy(dev->name, oldname, IFNAMSIZ);
1241 memcpy(oldname, newname, IFNAMSIZ);
1242 dev->name_assign_type = old_assign_type;
1243 old_assign_type = NET_NAME_RENAMED;
1244 goto rollback;
1245 } else {
1246 pr_err("%s: name change rollback failed: %d\n",
1247 dev->name, ret);
1248 }
1249 }
1250
1251 return err;
1252}
1253
1254/**
1255 * dev_set_alias - change ifalias of a device
1256 * @dev: device
1257 * @alias: name up to IFALIASZ
1258 * @len: limit of bytes to copy from info
1259 *
1260 * Set ifalias for a device,
1261 */
1262int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263{
1264 struct dev_ifalias *new_alias = NULL;
1265
1266 if (len >= IFALIASZ)
1267 return -EINVAL;
1268
1269 if (len) {
1270 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271 if (!new_alias)
1272 return -ENOMEM;
1273
1274 memcpy(new_alias->ifalias, alias, len);
1275 new_alias->ifalias[len] = 0;
1276 }
1277
1278 mutex_lock(&ifalias_mutex);
1279 rcu_swap_protected(dev->ifalias, new_alias,
1280 mutex_is_locked(&ifalias_mutex));
1281 mutex_unlock(&ifalias_mutex);
1282
1283 if (new_alias)
1284 kfree_rcu(new_alias, rcuhead);
1285
1286 return len;
1287}
1288
1289/**
1290 * dev_get_alias - get ifalias of a device
1291 * @dev: device
1292 * @name: buffer to store name of ifalias
1293 * @len: size of buffer
1294 *
1295 * get ifalias for a device. Caller must make sure dev cannot go
1296 * away, e.g. rcu read lock or own a reference count to device.
1297 */
1298int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299{
1300 const struct dev_ifalias *alias;
1301 int ret = 0;
1302
1303 rcu_read_lock();
1304 alias = rcu_dereference(dev->ifalias);
1305 if (alias)
1306 ret = snprintf(name, len, "%s", alias->ifalias);
1307 rcu_read_unlock();
1308
1309 return ret;
1310}
1311
1312/**
1313 * netdev_features_change - device changes features
1314 * @dev: device to cause notification
1315 *
1316 * Called to indicate a device has changed features.
1317 */
1318void netdev_features_change(struct net_device *dev)
1319{
1320 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1321}
1322EXPORT_SYMBOL(netdev_features_change);
1323
1324/**
1325 * netdev_state_change - device changes state
1326 * @dev: device to cause notification
1327 *
1328 * Called to indicate a device has changed state. This function calls
1329 * the notifier chains for netdev_chain and sends a NEWLINK message
1330 * to the routing socket.
1331 */
1332void netdev_state_change(struct net_device *dev)
1333{
1334 if (dev->flags & IFF_UP) {
1335 struct netdev_notifier_change_info change_info = {
1336 .info.dev = dev,
1337 };
1338
1339 call_netdevice_notifiers_info(NETDEV_CHANGE,
1340 &change_info.info);
1341 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1342 }
1343}
1344EXPORT_SYMBOL(netdev_state_change);
1345
1346/**
1347 * netdev_notify_peers - notify network peers about existence of @dev
1348 * @dev: network device
1349 *
1350 * Generate traffic such that interested network peers are aware of
1351 * @dev, such as by generating a gratuitous ARP. This may be used when
1352 * a device wants to inform the rest of the network about some sort of
1353 * reconfiguration such as a failover event or virtual machine
1354 * migration.
1355 */
1356void netdev_notify_peers(struct net_device *dev)
1357{
1358 rtnl_lock();
1359 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361 rtnl_unlock();
1362}
1363EXPORT_SYMBOL(netdev_notify_peers);
1364
1365static int __dev_open(struct net_device *dev)
1366{
1367 const struct net_device_ops *ops = dev->netdev_ops;
1368 int ret;
1369
1370 ASSERT_RTNL();
1371
1372 if (!netif_device_present(dev))
1373 return -ENODEV;
1374
1375 /* Block netpoll from trying to do any rx path servicing.
1376 * If we don't do this there is a chance ndo_poll_controller
1377 * or ndo_poll may be running while we open the device
1378 */
1379 netpoll_poll_disable(dev);
1380
1381 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382 ret = notifier_to_errno(ret);
1383 if (ret)
1384 return ret;
1385
1386 set_bit(__LINK_STATE_START, &dev->state);
1387
1388 if (ops->ndo_validate_addr)
1389 ret = ops->ndo_validate_addr(dev);
1390
1391 if (!ret && ops->ndo_open)
1392 ret = ops->ndo_open(dev);
1393
1394 netpoll_poll_enable(dev);
1395
1396 if (ret)
1397 clear_bit(__LINK_STATE_START, &dev->state);
1398 else {
1399 dev->flags |= IFF_UP;
1400 dev_set_rx_mode(dev);
1401 dev_activate(dev);
1402 add_device_randomness(dev->dev_addr, dev->addr_len);
1403 }
1404
1405 return ret;
1406}
1407
1408/**
1409 * dev_open - prepare an interface for use.
1410 * @dev: device to open
1411 *
1412 * Takes a device from down to up state. The device's private open
1413 * function is invoked and then the multicast lists are loaded. Finally
1414 * the device is moved into the up state and a %NETDEV_UP message is
1415 * sent to the netdev notifier chain.
1416 *
1417 * Calling this function on an active interface is a nop. On a failure
1418 * a negative errno code is returned.
1419 */
1420int dev_open(struct net_device *dev)
1421{
1422 int ret;
1423
1424 if (dev->flags & IFF_UP)
1425 return 0;
1426
1427 ret = __dev_open(dev);
1428 if (ret < 0)
1429 return ret;
1430
1431 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432 call_netdevice_notifiers(NETDEV_UP, dev);
1433
1434 return ret;
1435}
1436EXPORT_SYMBOL(dev_open);
1437
1438static void __dev_close_many(struct list_head *head)
1439{
1440 struct net_device *dev;
1441
1442 ASSERT_RTNL();
1443 might_sleep();
1444
1445 list_for_each_entry(dev, head, close_list) {
1446 /* Temporarily disable netpoll until the interface is down */
1447 netpoll_poll_disable(dev);
1448
1449 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450
1451 clear_bit(__LINK_STATE_START, &dev->state);
1452
1453 /* Synchronize to scheduled poll. We cannot touch poll list, it
1454 * can be even on different cpu. So just clear netif_running().
1455 *
1456 * dev->stop() will invoke napi_disable() on all of it's
1457 * napi_struct instances on this device.
1458 */
1459 smp_mb__after_atomic(); /* Commit netif_running(). */
1460 }
1461
1462 dev_deactivate_many(head);
1463
1464 list_for_each_entry(dev, head, close_list) {
1465 const struct net_device_ops *ops = dev->netdev_ops;
1466
1467 /*
1468 * Call the device specific close. This cannot fail.
1469 * Only if device is UP
1470 *
1471 * We allow it to be called even after a DETACH hot-plug
1472 * event.
1473 */
1474 if (ops->ndo_stop)
1475 ops->ndo_stop(dev);
1476
1477 dev->flags &= ~IFF_UP;
1478 netpoll_poll_enable(dev);
1479 }
1480}
1481
1482static void __dev_close(struct net_device *dev)
1483{
1484 LIST_HEAD(single);
1485
1486 list_add(&dev->close_list, &single);
1487 __dev_close_many(&single);
1488 list_del(&single);
1489}
1490
1491void dev_close_many(struct list_head *head, bool unlink)
1492{
1493 struct net_device *dev, *tmp;
1494
1495 /* Remove the devices that don't need to be closed */
1496 list_for_each_entry_safe(dev, tmp, head, close_list)
1497 if (!(dev->flags & IFF_UP))
1498 list_del_init(&dev->close_list);
1499
1500 __dev_close_many(head);
1501
1502 list_for_each_entry_safe(dev, tmp, head, close_list) {
1503 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504 call_netdevice_notifiers(NETDEV_DOWN, dev);
1505 if (unlink)
1506 list_del_init(&dev->close_list);
1507 }
1508}
1509EXPORT_SYMBOL(dev_close_many);
1510
1511/**
1512 * dev_close - shutdown an interface.
1513 * @dev: device to shutdown
1514 *
1515 * This function moves an active device into down state. A
1516 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518 * chain.
1519 */
1520void dev_close(struct net_device *dev)
1521{
1522 if (dev->flags & IFF_UP) {
1523 LIST_HEAD(single);
1524
1525 list_add(&dev->close_list, &single);
1526 dev_close_many(&single, true);
1527 list_del(&single);
1528 }
1529}
1530EXPORT_SYMBOL(dev_close);
1531
1532
1533/**
1534 * dev_disable_lro - disable Large Receive Offload on a device
1535 * @dev: device
1536 *
1537 * Disable Large Receive Offload (LRO) on a net device. Must be
1538 * called under RTNL. This is needed if received packets may be
1539 * forwarded to another interface.
1540 */
1541void dev_disable_lro(struct net_device *dev)
1542{
1543 struct net_device *lower_dev;
1544 struct list_head *iter;
1545
1546 dev->wanted_features &= ~NETIF_F_LRO;
1547 netdev_update_features(dev);
1548
1549 if (unlikely(dev->features & NETIF_F_LRO))
1550 netdev_WARN(dev, "failed to disable LRO!\n");
1551
1552 netdev_for_each_lower_dev(dev, lower_dev, iter)
1553 dev_disable_lro(lower_dev);
1554}
1555EXPORT_SYMBOL(dev_disable_lro);
1556
1557/**
1558 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559 * @dev: device
1560 *
1561 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1562 * called under RTNL. This is needed if Generic XDP is installed on
1563 * the device.
1564 */
1565static void dev_disable_gro_hw(struct net_device *dev)
1566{
1567 dev->wanted_features &= ~NETIF_F_GRO_HW;
1568 netdev_update_features(dev);
1569
1570 if (unlikely(dev->features & NETIF_F_GRO_HW))
1571 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1572}
1573
1574static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1575 struct net_device *dev)
1576{
1577 struct netdev_notifier_info info = {
1578 .dev = dev,
1579 };
1580
1581 return nb->notifier_call(nb, val, &info);
1582}
1583
1584static int dev_boot_phase = 1;
1585
1586/**
1587 * register_netdevice_notifier - register a network notifier block
1588 * @nb: notifier
1589 *
1590 * Register a notifier to be called when network device events occur.
1591 * The notifier passed is linked into the kernel structures and must
1592 * not be reused until it has been unregistered. A negative errno code
1593 * is returned on a failure.
1594 *
1595 * When registered all registration and up events are replayed
1596 * to the new notifier to allow device to have a race free
1597 * view of the network device list.
1598 */
1599
1600int register_netdevice_notifier(struct notifier_block *nb)
1601{
1602 struct net_device *dev;
1603 struct net_device *last;
1604 struct net *net;
1605 int err;
1606
1607 rtnl_lock();
1608 err = raw_notifier_chain_register(&netdev_chain, nb);
1609 if (err)
1610 goto unlock;
1611 if (dev_boot_phase)
1612 goto unlock;
1613 for_each_net(net) {
1614 for_each_netdev(net, dev) {
1615 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1616 err = notifier_to_errno(err);
1617 if (err)
1618 goto rollback;
1619
1620 if (!(dev->flags & IFF_UP))
1621 continue;
1622
1623 call_netdevice_notifier(nb, NETDEV_UP, dev);
1624 }
1625 }
1626
1627unlock:
1628 rtnl_unlock();
1629 return err;
1630
1631rollback:
1632 last = dev;
1633 for_each_net(net) {
1634 for_each_netdev(net, dev) {
1635 if (dev == last)
1636 goto outroll;
1637
1638 if (dev->flags & IFF_UP) {
1639 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1640 dev);
1641 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1642 }
1643 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1644 }
1645 }
1646
1647outroll:
1648 raw_notifier_chain_unregister(&netdev_chain, nb);
1649 goto unlock;
1650}
1651EXPORT_SYMBOL(register_netdevice_notifier);
1652
1653/**
1654 * unregister_netdevice_notifier - unregister a network notifier block
1655 * @nb: notifier
1656 *
1657 * Unregister a notifier previously registered by
1658 * register_netdevice_notifier(). The notifier is unlinked into the
1659 * kernel structures and may then be reused. A negative errno code
1660 * is returned on a failure.
1661 *
1662 * After unregistering unregister and down device events are synthesized
1663 * for all devices on the device list to the removed notifier to remove
1664 * the need for special case cleanup code.
1665 */
1666
1667int unregister_netdevice_notifier(struct notifier_block *nb)
1668{
1669 struct net_device *dev;
1670 struct net *net;
1671 int err;
1672
1673 rtnl_lock();
1674 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1675 if (err)
1676 goto unlock;
1677
1678 for_each_net(net) {
1679 for_each_netdev(net, dev) {
1680 if (dev->flags & IFF_UP) {
1681 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1682 dev);
1683 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1684 }
1685 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1686 }
1687 }
1688unlock:
1689 rtnl_unlock();
1690 return err;
1691}
1692EXPORT_SYMBOL(unregister_netdevice_notifier);
1693
1694/**
1695 * call_netdevice_notifiers_info - call all network notifier blocks
1696 * @val: value passed unmodified to notifier function
1697 * @info: notifier information data
1698 *
1699 * Call all network notifier blocks. Parameters and return value
1700 * are as for raw_notifier_call_chain().
1701 */
1702
1703static int call_netdevice_notifiers_info(unsigned long val,
1704 struct netdev_notifier_info *info)
1705{
1706 ASSERT_RTNL();
1707 return raw_notifier_call_chain(&netdev_chain, val, info);
1708}
1709
1710/**
1711 * call_netdevice_notifiers - call all network notifier blocks
1712 * @val: value passed unmodified to notifier function
1713 * @dev: net_device pointer passed unmodified to notifier function
1714 *
1715 * Call all network notifier blocks. Parameters and return value
1716 * are as for raw_notifier_call_chain().
1717 */
1718
1719int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1720{
1721 struct netdev_notifier_info info = {
1722 .dev = dev,
1723 };
1724
1725 return call_netdevice_notifiers_info(val, &info);
1726}
1727EXPORT_SYMBOL(call_netdevice_notifiers);
1728
1729#ifdef CONFIG_NET_INGRESS
1730static struct static_key ingress_needed __read_mostly;
1731
1732void net_inc_ingress_queue(void)
1733{
1734 static_key_slow_inc(&ingress_needed);
1735}
1736EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1737
1738void net_dec_ingress_queue(void)
1739{
1740 static_key_slow_dec(&ingress_needed);
1741}
1742EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1743#endif
1744
1745#ifdef CONFIG_NET_EGRESS
1746static struct static_key egress_needed __read_mostly;
1747
1748void net_inc_egress_queue(void)
1749{
1750 static_key_slow_inc(&egress_needed);
1751}
1752EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1753
1754void net_dec_egress_queue(void)
1755{
1756 static_key_slow_dec(&egress_needed);
1757}
1758EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1759#endif
1760
1761static struct static_key netstamp_needed __read_mostly;
1762#ifdef HAVE_JUMP_LABEL
1763static atomic_t netstamp_needed_deferred;
1764static atomic_t netstamp_wanted;
1765static void netstamp_clear(struct work_struct *work)
1766{
1767 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1768 int wanted;
1769
1770 wanted = atomic_add_return(deferred, &netstamp_wanted);
1771 if (wanted > 0)
1772 static_key_enable(&netstamp_needed);
1773 else
1774 static_key_disable(&netstamp_needed);
1775}
1776static DECLARE_WORK(netstamp_work, netstamp_clear);
1777#endif
1778
1779void net_enable_timestamp(void)
1780{
1781#ifdef HAVE_JUMP_LABEL
1782 int wanted;
1783
1784 while (1) {
1785 wanted = atomic_read(&netstamp_wanted);
1786 if (wanted <= 0)
1787 break;
1788 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1789 return;
1790 }
1791 atomic_inc(&netstamp_needed_deferred);
1792 schedule_work(&netstamp_work);
1793#else
1794 static_key_slow_inc(&netstamp_needed);
1795#endif
1796}
1797EXPORT_SYMBOL(net_enable_timestamp);
1798
1799void net_disable_timestamp(void)
1800{
1801#ifdef HAVE_JUMP_LABEL
1802 int wanted;
1803
1804 while (1) {
1805 wanted = atomic_read(&netstamp_wanted);
1806 if (wanted <= 1)
1807 break;
1808 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1809 return;
1810 }
1811 atomic_dec(&netstamp_needed_deferred);
1812 schedule_work(&netstamp_work);
1813#else
1814 static_key_slow_dec(&netstamp_needed);
1815#endif
1816}
1817EXPORT_SYMBOL(net_disable_timestamp);
1818
1819static inline void net_timestamp_set(struct sk_buff *skb)
1820{
1821 skb->tstamp = 0;
1822 if (static_key_false(&netstamp_needed))
1823 __net_timestamp(skb);
1824}
1825
1826#define net_timestamp_check(COND, SKB) \
1827 if (static_key_false(&netstamp_needed)) { \
1828 if ((COND) && !(SKB)->tstamp) \
1829 __net_timestamp(SKB); \
1830 } \
1831
1832bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1833{
1834 unsigned int len;
1835
1836 if (!(dev->flags & IFF_UP))
1837 return false;
1838
1839 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1840 if (skb->len <= len)
1841 return true;
1842
1843 /* if TSO is enabled, we don't care about the length as the packet
1844 * could be forwarded without being segmented before
1845 */
1846 if (skb_is_gso(skb))
1847 return true;
1848
1849 return false;
1850}
1851EXPORT_SYMBOL_GPL(is_skb_forwardable);
1852
1853int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1854{
1855 int ret = ____dev_forward_skb(dev, skb);
1856
1857 if (likely(!ret)) {
1858 skb->protocol = eth_type_trans(skb, dev);
1859 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1860 }
1861
1862 return ret;
1863}
1864EXPORT_SYMBOL_GPL(__dev_forward_skb);
1865
1866/**
1867 * dev_forward_skb - loopback an skb to another netif
1868 *
1869 * @dev: destination network device
1870 * @skb: buffer to forward
1871 *
1872 * return values:
1873 * NET_RX_SUCCESS (no congestion)
1874 * NET_RX_DROP (packet was dropped, but freed)
1875 *
1876 * dev_forward_skb can be used for injecting an skb from the
1877 * start_xmit function of one device into the receive queue
1878 * of another device.
1879 *
1880 * The receiving device may be in another namespace, so
1881 * we have to clear all information in the skb that could
1882 * impact namespace isolation.
1883 */
1884int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1885{
1886 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1887}
1888EXPORT_SYMBOL_GPL(dev_forward_skb);
1889
1890static inline int deliver_skb(struct sk_buff *skb,
1891 struct packet_type *pt_prev,
1892 struct net_device *orig_dev)
1893{
1894 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1895 return -ENOMEM;
1896 refcount_inc(&skb->users);
1897 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1898}
1899
1900static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1901 struct packet_type **pt,
1902 struct net_device *orig_dev,
1903 __be16 type,
1904 struct list_head *ptype_list)
1905{
1906 struct packet_type *ptype, *pt_prev = *pt;
1907
1908 list_for_each_entry_rcu(ptype, ptype_list, list) {
1909 if (ptype->type != type)
1910 continue;
1911 if (pt_prev)
1912 deliver_skb(skb, pt_prev, orig_dev);
1913 pt_prev = ptype;
1914 }
1915 *pt = pt_prev;
1916}
1917
1918static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1919{
1920 if (!ptype->af_packet_priv || !skb->sk)
1921 return false;
1922
1923 if (ptype->id_match)
1924 return ptype->id_match(ptype, skb->sk);
1925 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1926 return true;
1927
1928 return false;
1929}
1930
1931/*
1932 * Support routine. Sends outgoing frames to any network
1933 * taps currently in use.
1934 */
1935
1936void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1937{
1938 struct packet_type *ptype;
1939 struct sk_buff *skb2 = NULL;
1940 struct packet_type *pt_prev = NULL;
1941 struct list_head *ptype_list = &ptype_all;
1942
1943 rcu_read_lock();
1944again:
1945 list_for_each_entry_rcu(ptype, ptype_list, list) {
1946 /* Never send packets back to the socket
1947 * they originated from - MvS (miquels@drinkel.ow.org)
1948 */
1949 if (skb_loop_sk(ptype, skb))
1950 continue;
1951
1952 if (pt_prev) {
1953 deliver_skb(skb2, pt_prev, skb->dev);
1954 pt_prev = ptype;
1955 continue;
1956 }
1957
1958 /* need to clone skb, done only once */
1959 skb2 = skb_clone(skb, GFP_ATOMIC);
1960 if (!skb2)
1961 goto out_unlock;
1962
1963 net_timestamp_set(skb2);
1964
1965 /* skb->nh should be correctly
1966 * set by sender, so that the second statement is
1967 * just protection against buggy protocols.
1968 */
1969 skb_reset_mac_header(skb2);
1970
1971 if (skb_network_header(skb2) < skb2->data ||
1972 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1973 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1974 ntohs(skb2->protocol),
1975 dev->name);
1976 skb_reset_network_header(skb2);
1977 }
1978
1979 skb2->transport_header = skb2->network_header;
1980 skb2->pkt_type = PACKET_OUTGOING;
1981 pt_prev = ptype;
1982 }
1983
1984 if (ptype_list == &ptype_all) {
1985 ptype_list = &dev->ptype_all;
1986 goto again;
1987 }
1988out_unlock:
1989 if (pt_prev) {
1990 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1991 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1992 else
1993 kfree_skb(skb2);
1994 }
1995 rcu_read_unlock();
1996}
1997EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1998
1999/**
2000 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2001 * @dev: Network device
2002 * @txq: number of queues available
2003 *
2004 * If real_num_tx_queues is changed the tc mappings may no longer be
2005 * valid. To resolve this verify the tc mapping remains valid and if
2006 * not NULL the mapping. With no priorities mapping to this
2007 * offset/count pair it will no longer be used. In the worst case TC0
2008 * is invalid nothing can be done so disable priority mappings. If is
2009 * expected that drivers will fix this mapping if they can before
2010 * calling netif_set_real_num_tx_queues.
2011 */
2012static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2013{
2014 int i;
2015 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2016
2017 /* If TC0 is invalidated disable TC mapping */
2018 if (tc->offset + tc->count > txq) {
2019 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2020 dev->num_tc = 0;
2021 return;
2022 }
2023
2024 /* Invalidated prio to tc mappings set to TC0 */
2025 for (i = 1; i < TC_BITMASK + 1; i++) {
2026 int q = netdev_get_prio_tc_map(dev, i);
2027
2028 tc = &dev->tc_to_txq[q];
2029 if (tc->offset + tc->count > txq) {
2030 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2031 i, q);
2032 netdev_set_prio_tc_map(dev, i, 0);
2033 }
2034 }
2035}
2036
2037int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2038{
2039 if (dev->num_tc) {
2040 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2041 int i;
2042
2043 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2044 if ((txq - tc->offset) < tc->count)
2045 return i;
2046 }
2047
2048 return -1;
2049 }
2050
2051 return 0;
2052}
2053EXPORT_SYMBOL(netdev_txq_to_tc);
2054
2055#ifdef CONFIG_XPS
2056static DEFINE_MUTEX(xps_map_mutex);
2057#define xmap_dereference(P) \
2058 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2059
2060static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2061 int tci, u16 index)
2062{
2063 struct xps_map *map = NULL;
2064 int pos;
2065
2066 if (dev_maps)
2067 map = xmap_dereference(dev_maps->cpu_map[tci]);
2068 if (!map)
2069 return false;
2070
2071 for (pos = map->len; pos--;) {
2072 if (map->queues[pos] != index)
2073 continue;
2074
2075 if (map->len > 1) {
2076 map->queues[pos] = map->queues[--map->len];
2077 break;
2078 }
2079
2080 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2081 kfree_rcu(map, rcu);
2082 return false;
2083 }
2084
2085 return true;
2086}
2087
2088static bool remove_xps_queue_cpu(struct net_device *dev,
2089 struct xps_dev_maps *dev_maps,
2090 int cpu, u16 offset, u16 count)
2091{
2092 int num_tc = dev->num_tc ? : 1;
2093 bool active = false;
2094 int tci;
2095
2096 for (tci = cpu * num_tc; num_tc--; tci++) {
2097 int i, j;
2098
2099 for (i = count, j = offset; i--; j++) {
2100 if (!remove_xps_queue(dev_maps, cpu, j))
2101 break;
2102 }
2103
2104 active |= i < 0;
2105 }
2106
2107 return active;
2108}
2109
2110static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2111 u16 count)
2112{
2113 struct xps_dev_maps *dev_maps;
2114 int cpu, i;
2115 bool active = false;
2116
2117 mutex_lock(&xps_map_mutex);
2118 dev_maps = xmap_dereference(dev->xps_maps);
2119
2120 if (!dev_maps)
2121 goto out_no_maps;
2122
2123 for_each_possible_cpu(cpu)
2124 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2125 offset, count);
2126
2127 if (!active) {
2128 RCU_INIT_POINTER(dev->xps_maps, NULL);
2129 kfree_rcu(dev_maps, rcu);
2130 }
2131
2132 for (i = offset + (count - 1); count--; i--)
2133 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2134 NUMA_NO_NODE);
2135
2136out_no_maps:
2137 mutex_unlock(&xps_map_mutex);
2138}
2139
2140static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2141{
2142 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2143}
2144
2145static struct xps_map *expand_xps_map(struct xps_map *map,
2146 int cpu, u16 index)
2147{
2148 struct xps_map *new_map;
2149 int alloc_len = XPS_MIN_MAP_ALLOC;
2150 int i, pos;
2151
2152 for (pos = 0; map && pos < map->len; pos++) {
2153 if (map->queues[pos] != index)
2154 continue;
2155 return map;
2156 }
2157
2158 /* Need to add queue to this CPU's existing map */
2159 if (map) {
2160 if (pos < map->alloc_len)
2161 return map;
2162
2163 alloc_len = map->alloc_len * 2;
2164 }
2165
2166 /* Need to allocate new map to store queue on this CPU's map */
2167 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2168 cpu_to_node(cpu));
2169 if (!new_map)
2170 return NULL;
2171
2172 for (i = 0; i < pos; i++)
2173 new_map->queues[i] = map->queues[i];
2174 new_map->alloc_len = alloc_len;
2175 new_map->len = pos;
2176
2177 return new_map;
2178}
2179
2180int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2181 u16 index)
2182{
2183 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2184 int i, cpu, tci, numa_node_id = -2;
2185 int maps_sz, num_tc = 1, tc = 0;
2186 struct xps_map *map, *new_map;
2187 bool active = false;
2188
2189 if (dev->num_tc) {
2190 num_tc = dev->num_tc;
2191 tc = netdev_txq_to_tc(dev, index);
2192 if (tc < 0)
2193 return -EINVAL;
2194 }
2195
2196 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2197 if (maps_sz < L1_CACHE_BYTES)
2198 maps_sz = L1_CACHE_BYTES;
2199
2200 mutex_lock(&xps_map_mutex);
2201
2202 dev_maps = xmap_dereference(dev->xps_maps);
2203
2204 /* allocate memory for queue storage */
2205 for_each_cpu_and(cpu, cpu_online_mask, mask) {
2206 if (!new_dev_maps)
2207 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2208 if (!new_dev_maps) {
2209 mutex_unlock(&xps_map_mutex);
2210 return -ENOMEM;
2211 }
2212
2213 tci = cpu * num_tc + tc;
2214 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2215 NULL;
2216
2217 map = expand_xps_map(map, cpu, index);
2218 if (!map)
2219 goto error;
2220
2221 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2222 }
2223
2224 if (!new_dev_maps)
2225 goto out_no_new_maps;
2226
2227 for_each_possible_cpu(cpu) {
2228 /* copy maps belonging to foreign traffic classes */
2229 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2230 /* fill in the new device map from the old device map */
2231 map = xmap_dereference(dev_maps->cpu_map[tci]);
2232 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2233 }
2234
2235 /* We need to explicitly update tci as prevous loop
2236 * could break out early if dev_maps is NULL.
2237 */
2238 tci = cpu * num_tc + tc;
2239
2240 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2241 /* add queue to CPU maps */
2242 int pos = 0;
2243
2244 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2245 while ((pos < map->len) && (map->queues[pos] != index))
2246 pos++;
2247
2248 if (pos == map->len)
2249 map->queues[map->len++] = index;
2250#ifdef CONFIG_NUMA
2251 if (numa_node_id == -2)
2252 numa_node_id = cpu_to_node(cpu);
2253 else if (numa_node_id != cpu_to_node(cpu))
2254 numa_node_id = -1;
2255#endif
2256 } else if (dev_maps) {
2257 /* fill in the new device map from the old device map */
2258 map = xmap_dereference(dev_maps->cpu_map[tci]);
2259 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2260 }
2261
2262 /* copy maps belonging to foreign traffic classes */
2263 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2264 /* fill in the new device map from the old device map */
2265 map = xmap_dereference(dev_maps->cpu_map[tci]);
2266 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2267 }
2268 }
2269
2270 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2271
2272 /* Cleanup old maps */
2273 if (!dev_maps)
2274 goto out_no_old_maps;
2275
2276 for_each_possible_cpu(cpu) {
2277 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2278 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2279 map = xmap_dereference(dev_maps->cpu_map[tci]);
2280 if (map && map != new_map)
2281 kfree_rcu(map, rcu);
2282 }
2283 }
2284
2285 kfree_rcu(dev_maps, rcu);
2286
2287out_no_old_maps:
2288 dev_maps = new_dev_maps;
2289 active = true;
2290
2291out_no_new_maps:
2292 /* update Tx queue numa node */
2293 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2294 (numa_node_id >= 0) ? numa_node_id :
2295 NUMA_NO_NODE);
2296
2297 if (!dev_maps)
2298 goto out_no_maps;
2299
2300 /* removes queue from unused CPUs */
2301 for_each_possible_cpu(cpu) {
2302 for (i = tc, tci = cpu * num_tc; i--; tci++)
2303 active |= remove_xps_queue(dev_maps, tci, index);
2304 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2305 active |= remove_xps_queue(dev_maps, tci, index);
2306 for (i = num_tc - tc, tci++; --i; tci++)
2307 active |= remove_xps_queue(dev_maps, tci, index);
2308 }
2309
2310 /* free map if not active */
2311 if (!active) {
2312 RCU_INIT_POINTER(dev->xps_maps, NULL);
2313 kfree_rcu(dev_maps, rcu);
2314 }
2315
2316out_no_maps:
2317 mutex_unlock(&xps_map_mutex);
2318
2319 return 0;
2320error:
2321 /* remove any maps that we added */
2322 for_each_possible_cpu(cpu) {
2323 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2324 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2325 map = dev_maps ?
2326 xmap_dereference(dev_maps->cpu_map[tci]) :
2327 NULL;
2328 if (new_map && new_map != map)
2329 kfree(new_map);
2330 }
2331 }
2332
2333 mutex_unlock(&xps_map_mutex);
2334
2335 kfree(new_dev_maps);
2336 return -ENOMEM;
2337}
2338EXPORT_SYMBOL(netif_set_xps_queue);
2339
2340#endif
2341void netdev_reset_tc(struct net_device *dev)
2342{
2343#ifdef CONFIG_XPS
2344 netif_reset_xps_queues_gt(dev, 0);
2345#endif
2346 dev->num_tc = 0;
2347 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2348 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2349}
2350EXPORT_SYMBOL(netdev_reset_tc);
2351
2352int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2353{
2354 if (tc >= dev->num_tc)
2355 return -EINVAL;
2356
2357#ifdef CONFIG_XPS
2358 netif_reset_xps_queues(dev, offset, count);
2359#endif
2360 dev->tc_to_txq[tc].count = count;
2361 dev->tc_to_txq[tc].offset = offset;
2362 return 0;
2363}
2364EXPORT_SYMBOL(netdev_set_tc_queue);
2365
2366int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2367{
2368 if (num_tc > TC_MAX_QUEUE)
2369 return -EINVAL;
2370
2371#ifdef CONFIG_XPS
2372 netif_reset_xps_queues_gt(dev, 0);
2373#endif
2374 dev->num_tc = num_tc;
2375 return 0;
2376}
2377EXPORT_SYMBOL(netdev_set_num_tc);
2378
2379/*
2380 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2381 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2382 */
2383int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2384{
2385 int rc;
2386
2387 if (txq < 1 || txq > dev->num_tx_queues)
2388 return -EINVAL;
2389
2390 if (dev->reg_state == NETREG_REGISTERED ||
2391 dev->reg_state == NETREG_UNREGISTERING) {
2392 ASSERT_RTNL();
2393
2394 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2395 txq);
2396 if (rc)
2397 return rc;
2398
2399 if (dev->num_tc)
2400 netif_setup_tc(dev, txq);
2401
2402 if (txq < dev->real_num_tx_queues) {
2403 qdisc_reset_all_tx_gt(dev, txq);
2404#ifdef CONFIG_XPS
2405 netif_reset_xps_queues_gt(dev, txq);
2406#endif
2407 }
2408 }
2409
2410 dev->real_num_tx_queues = txq;
2411 return 0;
2412}
2413EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2414
2415#ifdef CONFIG_SYSFS
2416/**
2417 * netif_set_real_num_rx_queues - set actual number of RX queues used
2418 * @dev: Network device
2419 * @rxq: Actual number of RX queues
2420 *
2421 * This must be called either with the rtnl_lock held or before
2422 * registration of the net device. Returns 0 on success, or a
2423 * negative error code. If called before registration, it always
2424 * succeeds.
2425 */
2426int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2427{
2428 int rc;
2429
2430 if (rxq < 1 || rxq > dev->num_rx_queues)
2431 return -EINVAL;
2432
2433 if (dev->reg_state == NETREG_REGISTERED) {
2434 ASSERT_RTNL();
2435
2436 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2437 rxq);
2438 if (rc)
2439 return rc;
2440 }
2441
2442 dev->real_num_rx_queues = rxq;
2443 return 0;
2444}
2445EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2446#endif
2447
2448/**
2449 * netif_get_num_default_rss_queues - default number of RSS queues
2450 *
2451 * This routine should set an upper limit on the number of RSS queues
2452 * used by default by multiqueue devices.
2453 */
2454int netif_get_num_default_rss_queues(void)
2455{
2456 return is_kdump_kernel() ?
2457 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2458}
2459EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2460
2461static void __netif_reschedule(struct Qdisc *q)
2462{
2463 struct softnet_data *sd;
2464 unsigned long flags;
2465
2466 local_irq_save(flags);
2467 sd = this_cpu_ptr(&softnet_data);
2468 q->next_sched = NULL;
2469 *sd->output_queue_tailp = q;
2470 sd->output_queue_tailp = &q->next_sched;
2471 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2472 local_irq_restore(flags);
2473}
2474
2475void __netif_schedule(struct Qdisc *q)
2476{
2477 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2478 __netif_reschedule(q);
2479}
2480EXPORT_SYMBOL(__netif_schedule);
2481
2482struct dev_kfree_skb_cb {
2483 enum skb_free_reason reason;
2484};
2485
2486static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2487{
2488 return (struct dev_kfree_skb_cb *)skb->cb;
2489}
2490
2491void netif_schedule_queue(struct netdev_queue *txq)
2492{
2493 rcu_read_lock();
2494 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2495 struct Qdisc *q = rcu_dereference(txq->qdisc);
2496
2497 __netif_schedule(q);
2498 }
2499 rcu_read_unlock();
2500}
2501EXPORT_SYMBOL(netif_schedule_queue);
2502
2503void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2504{
2505 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2506 struct Qdisc *q;
2507
2508 rcu_read_lock();
2509 q = rcu_dereference(dev_queue->qdisc);
2510 __netif_schedule(q);
2511 rcu_read_unlock();
2512 }
2513}
2514EXPORT_SYMBOL(netif_tx_wake_queue);
2515
2516void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2517{
2518 unsigned long flags;
2519
2520 if (unlikely(!skb))
2521 return;
2522
2523 if (likely(refcount_read(&skb->users) == 1)) {
2524 smp_rmb();
2525 refcount_set(&skb->users, 0);
2526 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2527 return;
2528 }
2529 get_kfree_skb_cb(skb)->reason = reason;
2530 local_irq_save(flags);
2531 skb->next = __this_cpu_read(softnet_data.completion_queue);
2532 __this_cpu_write(softnet_data.completion_queue, skb);
2533 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2534 local_irq_restore(flags);
2535}
2536EXPORT_SYMBOL(__dev_kfree_skb_irq);
2537
2538void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2539{
2540 if (in_irq() || irqs_disabled())
2541 __dev_kfree_skb_irq(skb, reason);
2542 else
2543 dev_kfree_skb(skb);
2544}
2545EXPORT_SYMBOL(__dev_kfree_skb_any);
2546
2547
2548/**
2549 * netif_device_detach - mark device as removed
2550 * @dev: network device
2551 *
2552 * Mark device as removed from system and therefore no longer available.
2553 */
2554void netif_device_detach(struct net_device *dev)
2555{
2556 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2557 netif_running(dev)) {
2558 netif_tx_stop_all_queues(dev);
2559 }
2560}
2561EXPORT_SYMBOL(netif_device_detach);
2562
2563/**
2564 * netif_device_attach - mark device as attached
2565 * @dev: network device
2566 *
2567 * Mark device as attached from system and restart if needed.
2568 */
2569void netif_device_attach(struct net_device *dev)
2570{
2571 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2572 netif_running(dev)) {
2573 netif_tx_wake_all_queues(dev);
2574 __netdev_watchdog_up(dev);
2575 }
2576}
2577EXPORT_SYMBOL(netif_device_attach);
2578
2579/*
2580 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2581 * to be used as a distribution range.
2582 */
2583u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2584 unsigned int num_tx_queues)
2585{
2586 u32 hash;
2587 u16 qoffset = 0;
2588 u16 qcount = num_tx_queues;
2589
2590 if (skb_rx_queue_recorded(skb)) {
2591 hash = skb_get_rx_queue(skb);
2592 while (unlikely(hash >= num_tx_queues))
2593 hash -= num_tx_queues;
2594 return hash;
2595 }
2596
2597 if (dev->num_tc) {
2598 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2599
2600 qoffset = dev->tc_to_txq[tc].offset;
2601 qcount = dev->tc_to_txq[tc].count;
2602 }
2603
2604 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2605}
2606EXPORT_SYMBOL(__skb_tx_hash);
2607
2608static void skb_warn_bad_offload(const struct sk_buff *skb)
2609{
2610 static const netdev_features_t null_features;
2611 struct net_device *dev = skb->dev;
2612 const char *name = "";
2613
2614 if (!net_ratelimit())
2615 return;
2616
2617 if (dev) {
2618 if (dev->dev.parent)
2619 name = dev_driver_string(dev->dev.parent);
2620 else
2621 name = netdev_name(dev);
2622 }
2623 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2624 "gso_type=%d ip_summed=%d\n",
2625 name, dev ? &dev->features : &null_features,
2626 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2627 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2628 skb_shinfo(skb)->gso_type, skb->ip_summed);
2629}
2630
2631/*
2632 * Invalidate hardware checksum when packet is to be mangled, and
2633 * complete checksum manually on outgoing path.
2634 */
2635int skb_checksum_help(struct sk_buff *skb)
2636{
2637 __wsum csum;
2638 int ret = 0, offset;
2639
2640 if (skb->ip_summed == CHECKSUM_COMPLETE)
2641 goto out_set_summed;
2642
2643 if (unlikely(skb_shinfo(skb)->gso_size)) {
2644 skb_warn_bad_offload(skb);
2645 return -EINVAL;
2646 }
2647
2648 /* Before computing a checksum, we should make sure no frag could
2649 * be modified by an external entity : checksum could be wrong.
2650 */
2651 if (skb_has_shared_frag(skb)) {
2652 ret = __skb_linearize(skb);
2653 if (ret)
2654 goto out;
2655 }
2656
2657 offset = skb_checksum_start_offset(skb);
2658 BUG_ON(offset >= skb_headlen(skb));
2659 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2660
2661 offset += skb->csum_offset;
2662 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2663
2664 if (skb_cloned(skb) &&
2665 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2666 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2667 if (ret)
2668 goto out;
2669 }
2670
2671 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2672out_set_summed:
2673 skb->ip_summed = CHECKSUM_NONE;
2674out:
2675 return ret;
2676}
2677EXPORT_SYMBOL(skb_checksum_help);
2678
2679int skb_crc32c_csum_help(struct sk_buff *skb)
2680{
2681 __le32 crc32c_csum;
2682 int ret = 0, offset, start;
2683
2684 if (skb->ip_summed != CHECKSUM_PARTIAL)
2685 goto out;
2686
2687 if (unlikely(skb_is_gso(skb)))
2688 goto out;
2689
2690 /* Before computing a checksum, we should make sure no frag could
2691 * be modified by an external entity : checksum could be wrong.
2692 */
2693 if (unlikely(skb_has_shared_frag(skb))) {
2694 ret = __skb_linearize(skb);
2695 if (ret)
2696 goto out;
2697 }
2698 start = skb_checksum_start_offset(skb);
2699 offset = start + offsetof(struct sctphdr, checksum);
2700 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2701 ret = -EINVAL;
2702 goto out;
2703 }
2704 if (skb_cloned(skb) &&
2705 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2706 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2707 if (ret)
2708 goto out;
2709 }
2710 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2711 skb->len - start, ~(__u32)0,
2712 crc32c_csum_stub));
2713 *(__le32 *)(skb->data + offset) = crc32c_csum;
2714 skb->ip_summed = CHECKSUM_NONE;
2715 skb->csum_not_inet = 0;
2716out:
2717 return ret;
2718}
2719
2720__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2721{
2722 __be16 type = skb->protocol;
2723
2724 /* Tunnel gso handlers can set protocol to ethernet. */
2725 if (type == htons(ETH_P_TEB)) {
2726 struct ethhdr *eth;
2727
2728 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2729 return 0;
2730
2731 eth = (struct ethhdr *)skb_mac_header(skb);
2732 type = eth->h_proto;
2733 }
2734
2735 return __vlan_get_protocol(skb, type, depth);
2736}
2737
2738/**
2739 * skb_mac_gso_segment - mac layer segmentation handler.
2740 * @skb: buffer to segment
2741 * @features: features for the output path (see dev->features)
2742 */
2743struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2744 netdev_features_t features)
2745{
2746 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2747 struct packet_offload *ptype;
2748 int vlan_depth = skb->mac_len;
2749 __be16 type = skb_network_protocol(skb, &vlan_depth);
2750
2751 if (unlikely(!type))
2752 return ERR_PTR(-EINVAL);
2753
2754 __skb_pull(skb, vlan_depth);
2755
2756 rcu_read_lock();
2757 list_for_each_entry_rcu(ptype, &offload_base, list) {
2758 if (ptype->type == type && ptype->callbacks.gso_segment) {
2759 segs = ptype->callbacks.gso_segment(skb, features);
2760 break;
2761 }
2762 }
2763 rcu_read_unlock();
2764
2765 __skb_push(skb, skb->data - skb_mac_header(skb));
2766
2767 return segs;
2768}
2769EXPORT_SYMBOL(skb_mac_gso_segment);
2770
2771
2772/* openvswitch calls this on rx path, so we need a different check.
2773 */
2774static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2775{
2776 if (tx_path)
2777 return skb->ip_summed != CHECKSUM_PARTIAL &&
2778 skb->ip_summed != CHECKSUM_UNNECESSARY;
2779
2780 return skb->ip_summed == CHECKSUM_NONE;
2781}
2782
2783/**
2784 * __skb_gso_segment - Perform segmentation on skb.
2785 * @skb: buffer to segment
2786 * @features: features for the output path (see dev->features)
2787 * @tx_path: whether it is called in TX path
2788 *
2789 * This function segments the given skb and returns a list of segments.
2790 *
2791 * It may return NULL if the skb requires no segmentation. This is
2792 * only possible when GSO is used for verifying header integrity.
2793 *
2794 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2795 */
2796struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2797 netdev_features_t features, bool tx_path)
2798{
2799 struct sk_buff *segs;
2800
2801 if (unlikely(skb_needs_check(skb, tx_path))) {
2802 int err;
2803
2804 /* We're going to init ->check field in TCP or UDP header */
2805 err = skb_cow_head(skb, 0);
2806 if (err < 0)
2807 return ERR_PTR(err);
2808 }
2809
2810 /* Only report GSO partial support if it will enable us to
2811 * support segmentation on this frame without needing additional
2812 * work.
2813 */
2814 if (features & NETIF_F_GSO_PARTIAL) {
2815 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2816 struct net_device *dev = skb->dev;
2817
2818 partial_features |= dev->features & dev->gso_partial_features;
2819 if (!skb_gso_ok(skb, features | partial_features))
2820 features &= ~NETIF_F_GSO_PARTIAL;
2821 }
2822
2823 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2824 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2825
2826 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2827 SKB_GSO_CB(skb)->encap_level = 0;
2828
2829 skb_reset_mac_header(skb);
2830 skb_reset_mac_len(skb);
2831
2832 segs = skb_mac_gso_segment(skb, features);
2833
2834 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2835 skb_warn_bad_offload(skb);
2836
2837 return segs;
2838}
2839EXPORT_SYMBOL(__skb_gso_segment);
2840
2841/* Take action when hardware reception checksum errors are detected. */
2842#ifdef CONFIG_BUG
2843void netdev_rx_csum_fault(struct net_device *dev)
2844{
2845 if (net_ratelimit()) {
2846 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2847 dump_stack();
2848 }
2849}
2850EXPORT_SYMBOL(netdev_rx_csum_fault);
2851#endif
2852
2853/* Actually, we should eliminate this check as soon as we know, that:
2854 * 1. IOMMU is present and allows to map all the memory.
2855 * 2. No high memory really exists on this machine.
2856 */
2857
2858static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2859{
2860#ifdef CONFIG_HIGHMEM
2861 int i;
2862
2863 if (!(dev->features & NETIF_F_HIGHDMA)) {
2864 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2865 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2866
2867 if (PageHighMem(skb_frag_page(frag)))
2868 return 1;
2869 }
2870 }
2871
2872 if (PCI_DMA_BUS_IS_PHYS) {
2873 struct device *pdev = dev->dev.parent;
2874
2875 if (!pdev)
2876 return 0;
2877 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2878 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2879 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2880
2881 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2882 return 1;
2883 }
2884 }
2885#endif
2886 return 0;
2887}
2888
2889/* If MPLS offload request, verify we are testing hardware MPLS features
2890 * instead of standard features for the netdev.
2891 */
2892#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2893static netdev_features_t net_mpls_features(struct sk_buff *skb,
2894 netdev_features_t features,
2895 __be16 type)
2896{
2897 if (eth_p_mpls(type))
2898 features &= skb->dev->mpls_features;
2899
2900 return features;
2901}
2902#else
2903static netdev_features_t net_mpls_features(struct sk_buff *skb,
2904 netdev_features_t features,
2905 __be16 type)
2906{
2907 return features;
2908}
2909#endif
2910
2911static netdev_features_t harmonize_features(struct sk_buff *skb,
2912 netdev_features_t features)
2913{
2914 int tmp;
2915 __be16 type;
2916
2917 type = skb_network_protocol(skb, &tmp);
2918 features = net_mpls_features(skb, features, type);
2919
2920 if (skb->ip_summed != CHECKSUM_NONE &&
2921 !can_checksum_protocol(features, type)) {
2922 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2923 }
2924 if (illegal_highdma(skb->dev, skb))
2925 features &= ~NETIF_F_SG;
2926
2927 return features;
2928}
2929
2930netdev_features_t passthru_features_check(struct sk_buff *skb,
2931 struct net_device *dev,
2932 netdev_features_t features)
2933{
2934 return features;
2935}
2936EXPORT_SYMBOL(passthru_features_check);
2937
2938static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2939 struct net_device *dev,
2940 netdev_features_t features)
2941{
2942 return vlan_features_check(skb, features);
2943}
2944
2945static netdev_features_t gso_features_check(const struct sk_buff *skb,
2946 struct net_device *dev,
2947 netdev_features_t features)
2948{
2949 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2950
2951 if (gso_segs > dev->gso_max_segs)
2952 return features & ~NETIF_F_GSO_MASK;
2953
2954 /* Support for GSO partial features requires software
2955 * intervention before we can actually process the packets
2956 * so we need to strip support for any partial features now
2957 * and we can pull them back in after we have partially
2958 * segmented the frame.
2959 */
2960 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2961 features &= ~dev->gso_partial_features;
2962
2963 /* Make sure to clear the IPv4 ID mangling feature if the
2964 * IPv4 header has the potential to be fragmented.
2965 */
2966 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2967 struct iphdr *iph = skb->encapsulation ?
2968 inner_ip_hdr(skb) : ip_hdr(skb);
2969
2970 if (!(iph->frag_off & htons(IP_DF)))
2971 features &= ~NETIF_F_TSO_MANGLEID;
2972 }
2973
2974 return features;
2975}
2976
2977netdev_features_t netif_skb_features(struct sk_buff *skb)
2978{
2979 struct net_device *dev = skb->dev;
2980 netdev_features_t features = dev->features;
2981
2982 if (skb_is_gso(skb))
2983 features = gso_features_check(skb, dev, features);
2984
2985 /* If encapsulation offload request, verify we are testing
2986 * hardware encapsulation features instead of standard
2987 * features for the netdev
2988 */
2989 if (skb->encapsulation)
2990 features &= dev->hw_enc_features;
2991
2992 if (skb_vlan_tagged(skb))
2993 features = netdev_intersect_features(features,
2994 dev->vlan_features |
2995 NETIF_F_HW_VLAN_CTAG_TX |
2996 NETIF_F_HW_VLAN_STAG_TX);
2997
2998 if (dev->netdev_ops->ndo_features_check)
2999 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3000 features);
3001 else
3002 features &= dflt_features_check(skb, dev, features);
3003
3004 return harmonize_features(skb, features);
3005}
3006EXPORT_SYMBOL(netif_skb_features);
3007
3008static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3009 struct netdev_queue *txq, bool more)
3010{
3011 unsigned int len;
3012 int rc;
3013
3014 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3015 dev_queue_xmit_nit(skb, dev);
3016
3017 len = skb->len;
3018 trace_net_dev_start_xmit(skb, dev);
3019 rc = netdev_start_xmit(skb, dev, txq, more);
3020 trace_net_dev_xmit(skb, rc, dev, len);
3021
3022 return rc;
3023}
3024
3025struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3026 struct netdev_queue *txq, int *ret)
3027{
3028 struct sk_buff *skb = first;
3029 int rc = NETDEV_TX_OK;
3030
3031 while (skb) {
3032 struct sk_buff *next = skb->next;
3033
3034 skb->next = NULL;
3035 rc = xmit_one(skb, dev, txq, next != NULL);
3036 if (unlikely(!dev_xmit_complete(rc))) {
3037 skb->next = next;
3038 goto out;
3039 }
3040
3041 skb = next;
3042 if (netif_xmit_stopped(txq) && skb) {
3043 rc = NETDEV_TX_BUSY;
3044 break;
3045 }
3046 }
3047
3048out:
3049 *ret = rc;
3050 return skb;
3051}
3052
3053static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3054 netdev_features_t features)
3055{
3056 if (skb_vlan_tag_present(skb) &&
3057 !vlan_hw_offload_capable(features, skb->vlan_proto))
3058 skb = __vlan_hwaccel_push_inside(skb);
3059 return skb;
3060}
3061
3062int skb_csum_hwoffload_help(struct sk_buff *skb,
3063 const netdev_features_t features)
3064{
3065 if (unlikely(skb->csum_not_inet))
3066 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3067 skb_crc32c_csum_help(skb);
3068
3069 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3070}
3071EXPORT_SYMBOL(skb_csum_hwoffload_help);
3072
3073static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3074{
3075 netdev_features_t features;
3076
3077 features = netif_skb_features(skb);
3078 skb = validate_xmit_vlan(skb, features);
3079 if (unlikely(!skb))
3080 goto out_null;
3081
3082 if (netif_needs_gso(skb, features)) {
3083 struct sk_buff *segs;
3084
3085 segs = skb_gso_segment(skb, features);
3086 if (IS_ERR(segs)) {
3087 goto out_kfree_skb;
3088 } else if (segs) {
3089 consume_skb(skb);
3090 skb = segs;
3091 }
3092 } else {
3093 if (skb_needs_linearize(skb, features) &&
3094 __skb_linearize(skb))
3095 goto out_kfree_skb;
3096
3097 /* If packet is not checksummed and device does not
3098 * support checksumming for this protocol, complete
3099 * checksumming here.
3100 */
3101 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3102 if (skb->encapsulation)
3103 skb_set_inner_transport_header(skb,
3104 skb_checksum_start_offset(skb));
3105 else
3106 skb_set_transport_header(skb,
3107 skb_checksum_start_offset(skb));
3108 if (skb_csum_hwoffload_help(skb, features))
3109 goto out_kfree_skb;
3110 }
3111 }
3112
3113 skb = validate_xmit_xfrm(skb, features, again);
3114
3115 return skb;
3116
3117out_kfree_skb:
3118 kfree_skb(skb);
3119out_null:
3120 atomic_long_inc(&dev->tx_dropped);
3121 return NULL;
3122}
3123
3124struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3125{
3126 struct sk_buff *next, *head = NULL, *tail;
3127
3128 for (; skb != NULL; skb = next) {
3129 next = skb->next;
3130 skb->next = NULL;
3131
3132 /* in case skb wont be segmented, point to itself */
3133 skb->prev = skb;
3134
3135 skb = validate_xmit_skb(skb, dev, again);
3136 if (!skb)
3137 continue;
3138
3139 if (!head)
3140 head = skb;
3141 else
3142 tail->next = skb;
3143 /* If skb was segmented, skb->prev points to
3144 * the last segment. If not, it still contains skb.
3145 */
3146 tail = skb->prev;
3147 }
3148 return head;
3149}
3150EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3151
3152static void qdisc_pkt_len_init(struct sk_buff *skb)
3153{
3154 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3155
3156 qdisc_skb_cb(skb)->pkt_len = skb->len;
3157
3158 /* To get more precise estimation of bytes sent on wire,
3159 * we add to pkt_len the headers size of all segments
3160 */
3161 if (shinfo->gso_size) {
3162 unsigned int hdr_len;
3163 u16 gso_segs = shinfo->gso_segs;
3164
3165 /* mac layer + network layer */
3166 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3167
3168 /* + transport layer */
3169 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3170 const struct tcphdr *th;
3171 struct tcphdr _tcphdr;
3172
3173 th = skb_header_pointer(skb, skb_transport_offset(skb),
3174 sizeof(_tcphdr), &_tcphdr);
3175 if (likely(th))
3176 hdr_len += __tcp_hdrlen(th);
3177 } else {
3178 struct udphdr _udphdr;
3179
3180 if (skb_header_pointer(skb, skb_transport_offset(skb),
3181 sizeof(_udphdr), &_udphdr))
3182 hdr_len += sizeof(struct udphdr);
3183 }
3184
3185 if (shinfo->gso_type & SKB_GSO_DODGY)
3186 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3187 shinfo->gso_size);
3188
3189 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3190 }
3191}
3192
3193static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3194 struct net_device *dev,
3195 struct netdev_queue *txq)
3196{
3197 spinlock_t *root_lock = qdisc_lock(q);
3198 struct sk_buff *to_free = NULL;
3199 bool contended;
3200 int rc;
3201
3202 qdisc_calculate_pkt_len(skb, q);
3203
3204 if (q->flags & TCQ_F_NOLOCK) {
3205 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3206 __qdisc_drop(skb, &to_free);
3207 rc = NET_XMIT_DROP;
3208 } else {
3209 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3210 __qdisc_run(q);
3211 }
3212
3213 if (unlikely(to_free))
3214 kfree_skb_list(to_free);
3215 return rc;
3216 }
3217
3218 /*
3219 * Heuristic to force contended enqueues to serialize on a
3220 * separate lock before trying to get qdisc main lock.
3221 * This permits qdisc->running owner to get the lock more
3222 * often and dequeue packets faster.
3223 */
3224 contended = qdisc_is_running(q);
3225 if (unlikely(contended))
3226 spin_lock(&q->busylock);
3227
3228 spin_lock(root_lock);
3229 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3230 __qdisc_drop(skb, &to_free);
3231 rc = NET_XMIT_DROP;
3232 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3233 qdisc_run_begin(q)) {
3234 /*
3235 * This is a work-conserving queue; there are no old skbs
3236 * waiting to be sent out; and the qdisc is not running -
3237 * xmit the skb directly.
3238 */
3239
3240 qdisc_bstats_update(q, skb);
3241
3242 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3243 if (unlikely(contended)) {
3244 spin_unlock(&q->busylock);
3245 contended = false;
3246 }
3247 __qdisc_run(q);
3248 }
3249
3250 qdisc_run_end(q);
3251 rc = NET_XMIT_SUCCESS;
3252 } else {
3253 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3254 if (qdisc_run_begin(q)) {
3255 if (unlikely(contended)) {
3256 spin_unlock(&q->busylock);
3257 contended = false;
3258 }
3259 __qdisc_run(q);
3260 qdisc_run_end(q);
3261 }
3262 }
3263 spin_unlock(root_lock);
3264 if (unlikely(to_free))
3265 kfree_skb_list(to_free);
3266 if (unlikely(contended))
3267 spin_unlock(&q->busylock);
3268 return rc;
3269}
3270
3271#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3272static void skb_update_prio(struct sk_buff *skb)
3273{
3274 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3275
3276 if (!skb->priority && skb->sk && map) {
3277 unsigned int prioidx =
3278 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3279
3280 if (prioidx < map->priomap_len)
3281 skb->priority = map->priomap[prioidx];
3282 }
3283}
3284#else
3285#define skb_update_prio(skb)
3286#endif
3287
3288DEFINE_PER_CPU(int, xmit_recursion);
3289EXPORT_SYMBOL(xmit_recursion);
3290
3291/**
3292 * dev_loopback_xmit - loop back @skb
3293 * @net: network namespace this loopback is happening in
3294 * @sk: sk needed to be a netfilter okfn
3295 * @skb: buffer to transmit
3296 */
3297int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3298{
3299 skb_reset_mac_header(skb);
3300 __skb_pull(skb, skb_network_offset(skb));
3301 skb->pkt_type = PACKET_LOOPBACK;
3302 skb->ip_summed = CHECKSUM_UNNECESSARY;
3303 WARN_ON(!skb_dst(skb));
3304 skb_dst_force(skb);
3305 netif_rx_ni(skb);
3306 return 0;
3307}
3308EXPORT_SYMBOL(dev_loopback_xmit);
3309
3310#ifdef CONFIG_NET_EGRESS
3311static struct sk_buff *
3312sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3313{
3314 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3315 struct tcf_result cl_res;
3316
3317 if (!miniq)
3318 return skb;
3319
3320 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3321 mini_qdisc_bstats_cpu_update(miniq, skb);
3322
3323 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3324 case TC_ACT_OK:
3325 case TC_ACT_RECLASSIFY:
3326 skb->tc_index = TC_H_MIN(cl_res.classid);
3327 break;
3328 case TC_ACT_SHOT:
3329 mini_qdisc_qstats_cpu_drop(miniq);
3330 *ret = NET_XMIT_DROP;
3331 kfree_skb(skb);
3332 return NULL;
3333 case TC_ACT_STOLEN:
3334 case TC_ACT_QUEUED:
3335 case TC_ACT_TRAP:
3336 *ret = NET_XMIT_SUCCESS;
3337 consume_skb(skb);
3338 return NULL;
3339 case TC_ACT_REDIRECT:
3340 /* No need to push/pop skb's mac_header here on egress! */
3341 skb_do_redirect(skb);
3342 *ret = NET_XMIT_SUCCESS;
3343 return NULL;
3344 default:
3345 break;
3346 }
3347
3348 return skb;
3349}
3350#endif /* CONFIG_NET_EGRESS */
3351
3352static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3353{
3354#ifdef CONFIG_XPS
3355 struct xps_dev_maps *dev_maps;
3356 struct xps_map *map;
3357 int queue_index = -1;
3358
3359 rcu_read_lock();
3360 dev_maps = rcu_dereference(dev->xps_maps);
3361 if (dev_maps) {
3362 unsigned int tci = skb->sender_cpu - 1;
3363
3364 if (dev->num_tc) {
3365 tci *= dev->num_tc;
3366 tci += netdev_get_prio_tc_map(dev, skb->priority);
3367 }
3368
3369 map = rcu_dereference(dev_maps->cpu_map[tci]);
3370 if (map) {
3371 if (map->len == 1)
3372 queue_index = map->queues[0];
3373 else
3374 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3375 map->len)];
3376 if (unlikely(queue_index >= dev->real_num_tx_queues))
3377 queue_index = -1;
3378 }
3379 }
3380 rcu_read_unlock();
3381
3382 return queue_index;
3383#else
3384 return -1;
3385#endif
3386}
3387
3388static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3389{
3390 struct sock *sk = skb->sk;
3391 int queue_index = sk_tx_queue_get(sk);
3392
3393 if (queue_index < 0 || skb->ooo_okay ||
3394 queue_index >= dev->real_num_tx_queues) {
3395 int new_index = get_xps_queue(dev, skb);
3396
3397 if (new_index < 0)
3398 new_index = skb_tx_hash(dev, skb);
3399
3400 if (queue_index != new_index && sk &&
3401 sk_fullsock(sk) &&
3402 rcu_access_pointer(sk->sk_dst_cache))
3403 sk_tx_queue_set(sk, new_index);
3404
3405 queue_index = new_index;
3406 }
3407
3408 return queue_index;
3409}
3410
3411struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3412 struct sk_buff *skb,
3413 void *accel_priv)
3414{
3415 int queue_index = 0;
3416
3417#ifdef CONFIG_XPS
3418 u32 sender_cpu = skb->sender_cpu - 1;
3419
3420 if (sender_cpu >= (u32)NR_CPUS)
3421 skb->sender_cpu = raw_smp_processor_id() + 1;
3422#endif
3423
3424 if (dev->real_num_tx_queues != 1) {
3425 const struct net_device_ops *ops = dev->netdev_ops;
3426
3427 if (ops->ndo_select_queue)
3428 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3429 __netdev_pick_tx);
3430 else
3431 queue_index = __netdev_pick_tx(dev, skb);
3432
3433 queue_index = netdev_cap_txqueue(dev, queue_index);
3434 }
3435
3436 skb_set_queue_mapping(skb, queue_index);
3437 return netdev_get_tx_queue(dev, queue_index);
3438}
3439
3440/**
3441 * __dev_queue_xmit - transmit a buffer
3442 * @skb: buffer to transmit
3443 * @accel_priv: private data used for L2 forwarding offload
3444 *
3445 * Queue a buffer for transmission to a network device. The caller must
3446 * have set the device and priority and built the buffer before calling
3447 * this function. The function can be called from an interrupt.
3448 *
3449 * A negative errno code is returned on a failure. A success does not
3450 * guarantee the frame will be transmitted as it may be dropped due
3451 * to congestion or traffic shaping.
3452 *
3453 * -----------------------------------------------------------------------------------
3454 * I notice this method can also return errors from the queue disciplines,
3455 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3456 * be positive.
3457 *
3458 * Regardless of the return value, the skb is consumed, so it is currently
3459 * difficult to retry a send to this method. (You can bump the ref count
3460 * before sending to hold a reference for retry if you are careful.)
3461 *
3462 * When calling this method, interrupts MUST be enabled. This is because
3463 * the BH enable code must have IRQs enabled so that it will not deadlock.
3464 * --BLG
3465 */
3466static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3467{
3468 struct net_device *dev = skb->dev;
3469 struct netdev_queue *txq;
3470 struct Qdisc *q;
3471 int rc = -ENOMEM;
3472 bool again = false;
3473
3474 skb_reset_mac_header(skb);
3475
3476 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3477 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3478
3479 /* Disable soft irqs for various locks below. Also
3480 * stops preemption for RCU.
3481 */
3482 rcu_read_lock_bh();
3483
3484 skb_update_prio(skb);
3485
3486 qdisc_pkt_len_init(skb);
3487#ifdef CONFIG_NET_CLS_ACT
3488 skb->tc_at_ingress = 0;
3489# ifdef CONFIG_NET_EGRESS
3490 if (static_key_false(&egress_needed)) {
3491 skb = sch_handle_egress(skb, &rc, dev);
3492 if (!skb)
3493 goto out;
3494 }
3495# endif
3496#endif
3497 /* If device/qdisc don't need skb->dst, release it right now while
3498 * its hot in this cpu cache.
3499 */
3500 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3501 skb_dst_drop(skb);
3502 else
3503 skb_dst_force(skb);
3504
3505 txq = netdev_pick_tx(dev, skb, accel_priv);
3506 q = rcu_dereference_bh(txq->qdisc);
3507
3508 trace_net_dev_queue(skb);
3509 if (q->enqueue) {
3510 rc = __dev_xmit_skb(skb, q, dev, txq);
3511 goto out;
3512 }
3513
3514 /* The device has no queue. Common case for software devices:
3515 * loopback, all the sorts of tunnels...
3516
3517 * Really, it is unlikely that netif_tx_lock protection is necessary
3518 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3519 * counters.)
3520 * However, it is possible, that they rely on protection
3521 * made by us here.
3522
3523 * Check this and shot the lock. It is not prone from deadlocks.
3524 *Either shot noqueue qdisc, it is even simpler 8)
3525 */
3526 if (dev->flags & IFF_UP) {
3527 int cpu = smp_processor_id(); /* ok because BHs are off */
3528
3529 if (txq->xmit_lock_owner != cpu) {
3530 if (unlikely(__this_cpu_read(xmit_recursion) >
3531 XMIT_RECURSION_LIMIT))
3532 goto recursion_alert;
3533
3534 skb = validate_xmit_skb(skb, dev, &again);
3535 if (!skb)
3536 goto out;
3537
3538 HARD_TX_LOCK(dev, txq, cpu);
3539
3540 if (!netif_xmit_stopped(txq)) {
3541 __this_cpu_inc(xmit_recursion);
3542 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3543 __this_cpu_dec(xmit_recursion);
3544 if (dev_xmit_complete(rc)) {
3545 HARD_TX_UNLOCK(dev, txq);
3546 goto out;
3547 }
3548 }
3549 HARD_TX_UNLOCK(dev, txq);
3550 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3551 dev->name);
3552 } else {
3553 /* Recursion is detected! It is possible,
3554 * unfortunately
3555 */
3556recursion_alert:
3557 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3558 dev->name);
3559 }
3560 }
3561
3562 rc = -ENETDOWN;
3563 rcu_read_unlock_bh();
3564
3565 atomic_long_inc(&dev->tx_dropped);
3566 kfree_skb_list(skb);
3567 return rc;
3568out:
3569 rcu_read_unlock_bh();
3570 return rc;
3571}
3572
3573int dev_queue_xmit(struct sk_buff *skb)
3574{
3575 return __dev_queue_xmit(skb, NULL);
3576}
3577EXPORT_SYMBOL(dev_queue_xmit);
3578
3579int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3580{
3581 return __dev_queue_xmit(skb, accel_priv);
3582}
3583EXPORT_SYMBOL(dev_queue_xmit_accel);
3584
3585
3586/*************************************************************************
3587 * Receiver routines
3588 *************************************************************************/
3589
3590int netdev_max_backlog __read_mostly = 1000;
3591EXPORT_SYMBOL(netdev_max_backlog);
3592
3593int netdev_tstamp_prequeue __read_mostly = 1;
3594int netdev_budget __read_mostly = 300;
3595unsigned int __read_mostly netdev_budget_usecs = 2000;
3596int weight_p __read_mostly = 64; /* old backlog weight */
3597int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3598int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3599int dev_rx_weight __read_mostly = 64;
3600int dev_tx_weight __read_mostly = 64;
3601
3602/* Called with irq disabled */
3603static inline void ____napi_schedule(struct softnet_data *sd,
3604 struct napi_struct *napi)
3605{
3606 list_add_tail(&napi->poll_list, &sd->poll_list);
3607 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3608}
3609
3610#ifdef CONFIG_RPS
3611
3612/* One global table that all flow-based protocols share. */
3613struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3614EXPORT_SYMBOL(rps_sock_flow_table);
3615u32 rps_cpu_mask __read_mostly;
3616EXPORT_SYMBOL(rps_cpu_mask);
3617
3618struct static_key rps_needed __read_mostly;
3619EXPORT_SYMBOL(rps_needed);
3620struct static_key rfs_needed __read_mostly;
3621EXPORT_SYMBOL(rfs_needed);
3622
3623static struct rps_dev_flow *
3624set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3625 struct rps_dev_flow *rflow, u16 next_cpu)
3626{
3627 if (next_cpu < nr_cpu_ids) {
3628#ifdef CONFIG_RFS_ACCEL
3629 struct netdev_rx_queue *rxqueue;
3630 struct rps_dev_flow_table *flow_table;
3631 struct rps_dev_flow *old_rflow;
3632 u32 flow_id;
3633 u16 rxq_index;
3634 int rc;
3635
3636 /* Should we steer this flow to a different hardware queue? */
3637 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3638 !(dev->features & NETIF_F_NTUPLE))
3639 goto out;
3640 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3641 if (rxq_index == skb_get_rx_queue(skb))
3642 goto out;
3643
3644 rxqueue = dev->_rx + rxq_index;
3645 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3646 if (!flow_table)
3647 goto out;
3648 flow_id = skb_get_hash(skb) & flow_table->mask;
3649 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3650 rxq_index, flow_id);
3651 if (rc < 0)
3652 goto out;
3653 old_rflow = rflow;
3654 rflow = &flow_table->flows[flow_id];
3655 rflow->filter = rc;
3656 if (old_rflow->filter == rflow->filter)
3657 old_rflow->filter = RPS_NO_FILTER;
3658 out:
3659#endif
3660 rflow->last_qtail =
3661 per_cpu(softnet_data, next_cpu).input_queue_head;
3662 }
3663
3664 rflow->cpu = next_cpu;
3665 return rflow;
3666}
3667
3668/*
3669 * get_rps_cpu is called from netif_receive_skb and returns the target
3670 * CPU from the RPS map of the receiving queue for a given skb.
3671 * rcu_read_lock must be held on entry.
3672 */
3673static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3674 struct rps_dev_flow **rflowp)
3675{
3676 const struct rps_sock_flow_table *sock_flow_table;
3677 struct netdev_rx_queue *rxqueue = dev->_rx;
3678 struct rps_dev_flow_table *flow_table;
3679 struct rps_map *map;
3680 int cpu = -1;
3681 u32 tcpu;
3682 u32 hash;
3683
3684 if (skb_rx_queue_recorded(skb)) {
3685 u16 index = skb_get_rx_queue(skb);
3686
3687 if (unlikely(index >= dev->real_num_rx_queues)) {
3688 WARN_ONCE(dev->real_num_rx_queues > 1,
3689 "%s received packet on queue %u, but number "
3690 "of RX queues is %u\n",
3691 dev->name, index, dev->real_num_rx_queues);
3692 goto done;
3693 }
3694 rxqueue += index;
3695 }
3696
3697 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3698
3699 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3700 map = rcu_dereference(rxqueue->rps_map);
3701 if (!flow_table && !map)
3702 goto done;
3703
3704 skb_reset_network_header(skb);
3705 hash = skb_get_hash(skb);
3706 if (!hash)
3707 goto done;
3708
3709 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3710 if (flow_table && sock_flow_table) {
3711 struct rps_dev_flow *rflow;
3712 u32 next_cpu;
3713 u32 ident;
3714
3715 /* First check into global flow table if there is a match */
3716 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3717 if ((ident ^ hash) & ~rps_cpu_mask)
3718 goto try_rps;
3719
3720 next_cpu = ident & rps_cpu_mask;
3721
3722 /* OK, now we know there is a match,
3723 * we can look at the local (per receive queue) flow table
3724 */
3725 rflow = &flow_table->flows[hash & flow_table->mask];
3726 tcpu = rflow->cpu;
3727
3728 /*
3729 * If the desired CPU (where last recvmsg was done) is
3730 * different from current CPU (one in the rx-queue flow
3731 * table entry), switch if one of the following holds:
3732 * - Current CPU is unset (>= nr_cpu_ids).
3733 * - Current CPU is offline.
3734 * - The current CPU's queue tail has advanced beyond the
3735 * last packet that was enqueued using this table entry.
3736 * This guarantees that all previous packets for the flow
3737 * have been dequeued, thus preserving in order delivery.
3738 */
3739 if (unlikely(tcpu != next_cpu) &&
3740 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3741 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3742 rflow->last_qtail)) >= 0)) {
3743 tcpu = next_cpu;
3744 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3745 }
3746
3747 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3748 *rflowp = rflow;
3749 cpu = tcpu;
3750 goto done;
3751 }
3752 }
3753
3754try_rps:
3755
3756 if (map) {
3757 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3758 if (cpu_online(tcpu)) {
3759 cpu = tcpu;
3760 goto done;
3761 }
3762 }
3763
3764done:
3765 return cpu;
3766}
3767
3768#ifdef CONFIG_RFS_ACCEL
3769
3770/**
3771 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3772 * @dev: Device on which the filter was set
3773 * @rxq_index: RX queue index
3774 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3775 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3776 *
3777 * Drivers that implement ndo_rx_flow_steer() should periodically call
3778 * this function for each installed filter and remove the filters for
3779 * which it returns %true.
3780 */
3781bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3782 u32 flow_id, u16 filter_id)
3783{
3784 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3785 struct rps_dev_flow_table *flow_table;
3786 struct rps_dev_flow *rflow;
3787 bool expire = true;
3788 unsigned int cpu;
3789
3790 rcu_read_lock();
3791 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3792 if (flow_table && flow_id <= flow_table->mask) {
3793 rflow = &flow_table->flows[flow_id];
3794 cpu = READ_ONCE(rflow->cpu);
3795 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3796 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3797 rflow->last_qtail) <
3798 (int)(10 * flow_table->mask)))
3799 expire = false;
3800 }
3801 rcu_read_unlock();
3802 return expire;
3803}
3804EXPORT_SYMBOL(rps_may_expire_flow);
3805
3806#endif /* CONFIG_RFS_ACCEL */
3807
3808/* Called from hardirq (IPI) context */
3809static void rps_trigger_softirq(void *data)
3810{
3811 struct softnet_data *sd = data;
3812
3813 ____napi_schedule(sd, &sd->backlog);
3814 sd->received_rps++;
3815}
3816
3817#endif /* CONFIG_RPS */
3818
3819/*
3820 * Check if this softnet_data structure is another cpu one
3821 * If yes, queue it to our IPI list and return 1
3822 * If no, return 0
3823 */
3824static int rps_ipi_queued(struct softnet_data *sd)
3825{
3826#ifdef CONFIG_RPS
3827 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3828
3829 if (sd != mysd) {
3830 sd->rps_ipi_next = mysd->rps_ipi_list;
3831 mysd->rps_ipi_list = sd;
3832
3833 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3834 return 1;
3835 }
3836#endif /* CONFIG_RPS */
3837 return 0;
3838}
3839
3840#ifdef CONFIG_NET_FLOW_LIMIT
3841int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3842#endif
3843
3844static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3845{
3846#ifdef CONFIG_NET_FLOW_LIMIT
3847 struct sd_flow_limit *fl;
3848 struct softnet_data *sd;
3849 unsigned int old_flow, new_flow;
3850
3851 if (qlen < (netdev_max_backlog >> 1))
3852 return false;
3853
3854 sd = this_cpu_ptr(&softnet_data);
3855
3856 rcu_read_lock();
3857 fl = rcu_dereference(sd->flow_limit);
3858 if (fl) {
3859 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3860 old_flow = fl->history[fl->history_head];
3861 fl->history[fl->history_head] = new_flow;
3862
3863 fl->history_head++;
3864 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3865
3866 if (likely(fl->buckets[old_flow]))
3867 fl->buckets[old_flow]--;
3868
3869 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3870 fl->count++;
3871 rcu_read_unlock();
3872 return true;
3873 }
3874 }
3875 rcu_read_unlock();
3876#endif
3877 return false;
3878}
3879
3880/*
3881 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3882 * queue (may be a remote CPU queue).
3883 */
3884static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3885 unsigned int *qtail)
3886{
3887 struct softnet_data *sd;
3888 unsigned long flags;
3889 unsigned int qlen;
3890
3891 sd = &per_cpu(softnet_data, cpu);
3892
3893 local_irq_save(flags);
3894
3895 rps_lock(sd);
3896 if (!netif_running(skb->dev))
3897 goto drop;
3898 qlen = skb_queue_len(&sd->input_pkt_queue);
3899 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3900 if (qlen) {
3901enqueue:
3902 __skb_queue_tail(&sd->input_pkt_queue, skb);
3903 input_queue_tail_incr_save(sd, qtail);
3904 rps_unlock(sd);
3905 local_irq_restore(flags);
3906 return NET_RX_SUCCESS;
3907 }
3908
3909 /* Schedule NAPI for backlog device
3910 * We can use non atomic operation since we own the queue lock
3911 */
3912 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3913 if (!rps_ipi_queued(sd))
3914 ____napi_schedule(sd, &sd->backlog);
3915 }
3916 goto enqueue;
3917 }
3918
3919drop:
3920 sd->dropped++;
3921 rps_unlock(sd);
3922
3923 local_irq_restore(flags);
3924
3925 atomic_long_inc(&skb->dev->rx_dropped);
3926 kfree_skb(skb);
3927 return NET_RX_DROP;
3928}
3929
3930static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
3931{
3932 struct net_device *dev = skb->dev;
3933 struct netdev_rx_queue *rxqueue;
3934
3935 rxqueue = dev->_rx;
3936
3937 if (skb_rx_queue_recorded(skb)) {
3938 u16 index = skb_get_rx_queue(skb);
3939
3940 if (unlikely(index >= dev->real_num_rx_queues)) {
3941 WARN_ONCE(dev->real_num_rx_queues > 1,
3942 "%s received packet on queue %u, but number "
3943 "of RX queues is %u\n",
3944 dev->name, index, dev->real_num_rx_queues);
3945
3946 return rxqueue; /* Return first rxqueue */
3947 }
3948 rxqueue += index;
3949 }
3950 return rxqueue;
3951}
3952
3953static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3954 struct bpf_prog *xdp_prog)
3955{
3956 struct netdev_rx_queue *rxqueue;
3957 u32 metalen, act = XDP_DROP;
3958 struct xdp_buff xdp;
3959 void *orig_data;
3960 int hlen, off;
3961 u32 mac_len;
3962
3963 /* Reinjected packets coming from act_mirred or similar should
3964 * not get XDP generic processing.
3965 */
3966 if (skb_cloned(skb))
3967 return XDP_PASS;
3968
3969 /* XDP packets must be linear and must have sufficient headroom
3970 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3971 * native XDP provides, thus we need to do it here as well.
3972 */
3973 if (skb_is_nonlinear(skb) ||
3974 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3975 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3976 int troom = skb->tail + skb->data_len - skb->end;
3977
3978 /* In case we have to go down the path and also linearize,
3979 * then lets do the pskb_expand_head() work just once here.
3980 */
3981 if (pskb_expand_head(skb,
3982 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3983 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3984 goto do_drop;
3985 if (skb_linearize(skb))
3986 goto do_drop;
3987 }
3988
3989 /* The XDP program wants to see the packet starting at the MAC
3990 * header.
3991 */
3992 mac_len = skb->data - skb_mac_header(skb);
3993 hlen = skb_headlen(skb) + mac_len;
3994 xdp.data = skb->data - mac_len;
3995 xdp.data_meta = xdp.data;
3996 xdp.data_end = xdp.data + hlen;
3997 xdp.data_hard_start = skb->data - skb_headroom(skb);
3998 orig_data = xdp.data;
3999
4000 rxqueue = netif_get_rxqueue(skb);
4001 xdp.rxq = &rxqueue->xdp_rxq;
4002
4003 act = bpf_prog_run_xdp(xdp_prog, &xdp);
4004
4005 off = xdp.data - orig_data;
4006 if (off > 0)
4007 __skb_pull(skb, off);
4008 else if (off < 0)
4009 __skb_push(skb, -off);
4010 skb->mac_header += off;
4011
4012 switch (act) {
4013 case XDP_REDIRECT:
4014 case XDP_TX:
4015 __skb_push(skb, mac_len);
4016 break;
4017 case XDP_PASS:
4018 metalen = xdp.data - xdp.data_meta;
4019 if (metalen)
4020 skb_metadata_set(skb, metalen);
4021 break;
4022 default:
4023 bpf_warn_invalid_xdp_action(act);
4024 /* fall through */
4025 case XDP_ABORTED:
4026 trace_xdp_exception(skb->dev, xdp_prog, act);
4027 /* fall through */
4028 case XDP_DROP:
4029 do_drop:
4030 kfree_skb(skb);
4031 break;
4032 }
4033
4034 return act;
4035}
4036
4037/* When doing generic XDP we have to bypass the qdisc layer and the
4038 * network taps in order to match in-driver-XDP behavior.
4039 */
4040void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4041{
4042 struct net_device *dev = skb->dev;
4043 struct netdev_queue *txq;
4044 bool free_skb = true;
4045 int cpu, rc;
4046
4047 txq = netdev_pick_tx(dev, skb, NULL);
4048 cpu = smp_processor_id();
4049 HARD_TX_LOCK(dev, txq, cpu);
4050 if (!netif_xmit_stopped(txq)) {
4051 rc = netdev_start_xmit(skb, dev, txq, 0);
4052 if (dev_xmit_complete(rc))
4053 free_skb = false;
4054 }
4055 HARD_TX_UNLOCK(dev, txq);
4056 if (free_skb) {
4057 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4058 kfree_skb(skb);
4059 }
4060}
4061EXPORT_SYMBOL_GPL(generic_xdp_tx);
4062
4063static struct static_key generic_xdp_needed __read_mostly;
4064
4065int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4066{
4067 if (xdp_prog) {
4068 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4069 int err;
4070
4071 if (act != XDP_PASS) {
4072 switch (act) {
4073 case XDP_REDIRECT:
4074 err = xdp_do_generic_redirect(skb->dev, skb,
4075 xdp_prog);
4076 if (err)
4077 goto out_redir;
4078 /* fallthru to submit skb */
4079 case XDP_TX:
4080 generic_xdp_tx(skb, xdp_prog);
4081 break;
4082 }
4083 return XDP_DROP;
4084 }
4085 }
4086 return XDP_PASS;
4087out_redir:
4088 kfree_skb(skb);
4089 return XDP_DROP;
4090}
4091EXPORT_SYMBOL_GPL(do_xdp_generic);
4092
4093static int netif_rx_internal(struct sk_buff *skb)
4094{
4095 int ret;
4096
4097 net_timestamp_check(netdev_tstamp_prequeue, skb);
4098
4099 trace_netif_rx(skb);
4100
4101 if (static_key_false(&generic_xdp_needed)) {
4102 int ret;
4103
4104 preempt_disable();
4105 rcu_read_lock();
4106 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4107 rcu_read_unlock();
4108 preempt_enable();
4109
4110 /* Consider XDP consuming the packet a success from
4111 * the netdev point of view we do not want to count
4112 * this as an error.
4113 */
4114 if (ret != XDP_PASS)
4115 return NET_RX_SUCCESS;
4116 }
4117
4118#ifdef CONFIG_RPS
4119 if (static_key_false(&rps_needed)) {
4120 struct rps_dev_flow voidflow, *rflow = &voidflow;
4121 int cpu;
4122
4123 preempt_disable();
4124 rcu_read_lock();
4125
4126 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4127 if (cpu < 0)
4128 cpu = smp_processor_id();
4129
4130 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4131
4132 rcu_read_unlock();
4133 preempt_enable();
4134 } else
4135#endif
4136 {
4137 unsigned int qtail;
4138
4139 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4140 put_cpu();
4141 }
4142 return ret;
4143}
4144
4145/**
4146 * netif_rx - post buffer to the network code
4147 * @skb: buffer to post
4148 *
4149 * This function receives a packet from a device driver and queues it for
4150 * the upper (protocol) levels to process. It always succeeds. The buffer
4151 * may be dropped during processing for congestion control or by the
4152 * protocol layers.
4153 *
4154 * return values:
4155 * NET_RX_SUCCESS (no congestion)
4156 * NET_RX_DROP (packet was dropped)
4157 *
4158 */
4159
4160int netif_rx(struct sk_buff *skb)
4161{
4162 trace_netif_rx_entry(skb);
4163
4164 return netif_rx_internal(skb);
4165}
4166EXPORT_SYMBOL(netif_rx);
4167
4168int netif_rx_ni(struct sk_buff *skb)
4169{
4170 int err;
4171
4172 trace_netif_rx_ni_entry(skb);
4173
4174 preempt_disable();
4175 err = netif_rx_internal(skb);
4176 if (local_softirq_pending())
4177 do_softirq();
4178 preempt_enable();
4179
4180 return err;
4181}
4182EXPORT_SYMBOL(netif_rx_ni);
4183
4184static __latent_entropy void net_tx_action(struct softirq_action *h)
4185{
4186 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4187
4188 if (sd->completion_queue) {
4189 struct sk_buff *clist;
4190
4191 local_irq_disable();
4192 clist = sd->completion_queue;
4193 sd->completion_queue = NULL;
4194 local_irq_enable();
4195
4196 while (clist) {
4197 struct sk_buff *skb = clist;
4198
4199 clist = clist->next;
4200
4201 WARN_ON(refcount_read(&skb->users));
4202 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4203 trace_consume_skb(skb);
4204 else
4205 trace_kfree_skb(skb, net_tx_action);
4206
4207 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4208 __kfree_skb(skb);
4209 else
4210 __kfree_skb_defer(skb);
4211 }
4212
4213 __kfree_skb_flush();
4214 }
4215
4216 if (sd->output_queue) {
4217 struct Qdisc *head;
4218
4219 local_irq_disable();
4220 head = sd->output_queue;
4221 sd->output_queue = NULL;
4222 sd->output_queue_tailp = &sd->output_queue;
4223 local_irq_enable();
4224
4225 while (head) {
4226 struct Qdisc *q = head;
4227 spinlock_t *root_lock = NULL;
4228
4229 head = head->next_sched;
4230
4231 if (!(q->flags & TCQ_F_NOLOCK)) {
4232 root_lock = qdisc_lock(q);
4233 spin_lock(root_lock);
4234 }
4235 /* We need to make sure head->next_sched is read
4236 * before clearing __QDISC_STATE_SCHED
4237 */
4238 smp_mb__before_atomic();
4239 clear_bit(__QDISC_STATE_SCHED, &q->state);
4240 qdisc_run(q);
4241 if (root_lock)
4242 spin_unlock(root_lock);
4243 }
4244 }
4245
4246 xfrm_dev_backlog(sd);
4247}
4248
4249#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4250/* This hook is defined here for ATM LANE */
4251int (*br_fdb_test_addr_hook)(struct net_device *dev,
4252 unsigned char *addr) __read_mostly;
4253EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4254#endif
4255
4256static inline struct sk_buff *
4257sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4258 struct net_device *orig_dev)
4259{
4260#ifdef CONFIG_NET_CLS_ACT
4261 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4262 struct tcf_result cl_res;
4263
4264 /* If there's at least one ingress present somewhere (so
4265 * we get here via enabled static key), remaining devices
4266 * that are not configured with an ingress qdisc will bail
4267 * out here.
4268 */
4269 if (!miniq)
4270 return skb;
4271
4272 if (*pt_prev) {
4273 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4274 *pt_prev = NULL;
4275 }
4276
4277 qdisc_skb_cb(skb)->pkt_len = skb->len;
4278 skb->tc_at_ingress = 1;
4279 mini_qdisc_bstats_cpu_update(miniq, skb);
4280
4281 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4282 case TC_ACT_OK:
4283 case TC_ACT_RECLASSIFY:
4284 skb->tc_index = TC_H_MIN(cl_res.classid);
4285 break;
4286 case TC_ACT_SHOT:
4287 mini_qdisc_qstats_cpu_drop(miniq);
4288 kfree_skb(skb);
4289 return NULL;
4290 case TC_ACT_STOLEN:
4291 case TC_ACT_QUEUED:
4292 case TC_ACT_TRAP:
4293 consume_skb(skb);
4294 return NULL;
4295 case TC_ACT_REDIRECT:
4296 /* skb_mac_header check was done by cls/act_bpf, so
4297 * we can safely push the L2 header back before
4298 * redirecting to another netdev
4299 */
4300 __skb_push(skb, skb->mac_len);
4301 skb_do_redirect(skb);
4302 return NULL;
4303 default:
4304 break;
4305 }
4306#endif /* CONFIG_NET_CLS_ACT */
4307 return skb;
4308}
4309
4310/**
4311 * netdev_is_rx_handler_busy - check if receive handler is registered
4312 * @dev: device to check
4313 *
4314 * Check if a receive handler is already registered for a given device.
4315 * Return true if there one.
4316 *
4317 * The caller must hold the rtnl_mutex.
4318 */
4319bool netdev_is_rx_handler_busy(struct net_device *dev)
4320{
4321 ASSERT_RTNL();
4322 return dev && rtnl_dereference(dev->rx_handler);
4323}
4324EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4325
4326/**
4327 * netdev_rx_handler_register - register receive handler
4328 * @dev: device to register a handler for
4329 * @rx_handler: receive handler to register
4330 * @rx_handler_data: data pointer that is used by rx handler
4331 *
4332 * Register a receive handler for a device. This handler will then be
4333 * called from __netif_receive_skb. A negative errno code is returned
4334 * on a failure.
4335 *
4336 * The caller must hold the rtnl_mutex.
4337 *
4338 * For a general description of rx_handler, see enum rx_handler_result.
4339 */
4340int netdev_rx_handler_register(struct net_device *dev,
4341 rx_handler_func_t *rx_handler,
4342 void *rx_handler_data)
4343{
4344 if (netdev_is_rx_handler_busy(dev))
4345 return -EBUSY;
4346
4347 /* Note: rx_handler_data must be set before rx_handler */
4348 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4349 rcu_assign_pointer(dev->rx_handler, rx_handler);
4350
4351 return 0;
4352}
4353EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4354
4355/**
4356 * netdev_rx_handler_unregister - unregister receive handler
4357 * @dev: device to unregister a handler from
4358 *
4359 * Unregister a receive handler from a device.
4360 *
4361 * The caller must hold the rtnl_mutex.
4362 */
4363void netdev_rx_handler_unregister(struct net_device *dev)
4364{
4365
4366 ASSERT_RTNL();
4367 RCU_INIT_POINTER(dev->rx_handler, NULL);
4368 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4369 * section has a guarantee to see a non NULL rx_handler_data
4370 * as well.
4371 */
4372 synchronize_net();
4373 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4374}
4375EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4376
4377/*
4378 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4379 * the special handling of PFMEMALLOC skbs.
4380 */
4381static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4382{
4383 switch (skb->protocol) {
4384 case htons(ETH_P_ARP):
4385 case htons(ETH_P_IP):
4386 case htons(ETH_P_IPV6):
4387 case htons(ETH_P_8021Q):
4388 case htons(ETH_P_8021AD):
4389 return true;
4390 default:
4391 return false;
4392 }
4393}
4394
4395static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4396 int *ret, struct net_device *orig_dev)
4397{
4398#ifdef CONFIG_NETFILTER_INGRESS
4399 if (nf_hook_ingress_active(skb)) {
4400 int ingress_retval;
4401
4402 if (*pt_prev) {
4403 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4404 *pt_prev = NULL;
4405 }
4406
4407 rcu_read_lock();
4408 ingress_retval = nf_hook_ingress(skb);
4409 rcu_read_unlock();
4410 return ingress_retval;
4411 }
4412#endif /* CONFIG_NETFILTER_INGRESS */
4413 return 0;
4414}
4415
4416static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4417{
4418 struct packet_type *ptype, *pt_prev;
4419 rx_handler_func_t *rx_handler;
4420 struct net_device *orig_dev;
4421 bool deliver_exact = false;
4422 int ret = NET_RX_DROP;
4423 __be16 type;
4424
4425 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4426
4427 trace_netif_receive_skb(skb);
4428
4429 orig_dev = skb->dev;
4430
4431 skb_reset_network_header(skb);
4432 if (!skb_transport_header_was_set(skb))
4433 skb_reset_transport_header(skb);
4434 skb_reset_mac_len(skb);
4435
4436 pt_prev = NULL;
4437
4438another_round:
4439 skb->skb_iif = skb->dev->ifindex;
4440
4441 __this_cpu_inc(softnet_data.processed);
4442
4443 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4444 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4445 skb = skb_vlan_untag(skb);
4446 if (unlikely(!skb))
4447 goto out;
4448 }
4449
4450 if (skb_skip_tc_classify(skb))
4451 goto skip_classify;
4452
4453 if (pfmemalloc)
4454 goto skip_taps;
4455
4456 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4457 if (pt_prev)
4458 ret = deliver_skb(skb, pt_prev, orig_dev);
4459 pt_prev = ptype;
4460 }
4461
4462 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4463 if (pt_prev)
4464 ret = deliver_skb(skb, pt_prev, orig_dev);
4465 pt_prev = ptype;
4466 }
4467
4468skip_taps:
4469#ifdef CONFIG_NET_INGRESS
4470 if (static_key_false(&ingress_needed)) {
4471 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4472 if (!skb)
4473 goto out;
4474
4475 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4476 goto out;
4477 }
4478#endif
4479 skb_reset_tc(skb);
4480skip_classify:
4481 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4482 goto drop;
4483
4484 if (skb_vlan_tag_present(skb)) {
4485 if (pt_prev) {
4486 ret = deliver_skb(skb, pt_prev, orig_dev);
4487 pt_prev = NULL;
4488 }
4489 if (vlan_do_receive(&skb))
4490 goto another_round;
4491 else if (unlikely(!skb))
4492 goto out;
4493 }
4494
4495 rx_handler = rcu_dereference(skb->dev->rx_handler);
4496 if (rx_handler) {
4497 if (pt_prev) {
4498 ret = deliver_skb(skb, pt_prev, orig_dev);
4499 pt_prev = NULL;
4500 }
4501 switch (rx_handler(&skb)) {
4502 case RX_HANDLER_CONSUMED:
4503 ret = NET_RX_SUCCESS;
4504 goto out;
4505 case RX_HANDLER_ANOTHER:
4506 goto another_round;
4507 case RX_HANDLER_EXACT:
4508 deliver_exact = true;
4509 case RX_HANDLER_PASS:
4510 break;
4511 default:
4512 BUG();
4513 }
4514 }
4515
4516 if (unlikely(skb_vlan_tag_present(skb))) {
4517 if (skb_vlan_tag_get_id(skb))
4518 skb->pkt_type = PACKET_OTHERHOST;
4519 /* Note: we might in the future use prio bits
4520 * and set skb->priority like in vlan_do_receive()
4521 * For the time being, just ignore Priority Code Point
4522 */
4523 skb->vlan_tci = 0;
4524 }
4525
4526 type = skb->protocol;
4527
4528 /* deliver only exact match when indicated */
4529 if (likely(!deliver_exact)) {
4530 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4531 &ptype_base[ntohs(type) &
4532 PTYPE_HASH_MASK]);
4533 }
4534
4535 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4536 &orig_dev->ptype_specific);
4537
4538 if (unlikely(skb->dev != orig_dev)) {
4539 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4540 &skb->dev->ptype_specific);
4541 }
4542
4543 if (pt_prev) {
4544 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4545 goto drop;
4546 else
4547 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4548 } else {
4549drop:
4550 if (!deliver_exact)
4551 atomic_long_inc(&skb->dev->rx_dropped);
4552 else
4553 atomic_long_inc(&skb->dev->rx_nohandler);
4554 kfree_skb(skb);
4555 /* Jamal, now you will not able to escape explaining
4556 * me how you were going to use this. :-)
4557 */
4558 ret = NET_RX_DROP;
4559 }
4560
4561out:
4562 return ret;
4563}
4564
4565/**
4566 * netif_receive_skb_core - special purpose version of netif_receive_skb
4567 * @skb: buffer to process
4568 *
4569 * More direct receive version of netif_receive_skb(). It should
4570 * only be used by callers that have a need to skip RPS and Generic XDP.
4571 * Caller must also take care of handling if (page_is_)pfmemalloc.
4572 *
4573 * This function may only be called from softirq context and interrupts
4574 * should be enabled.
4575 *
4576 * Return values (usually ignored):
4577 * NET_RX_SUCCESS: no congestion
4578 * NET_RX_DROP: packet was dropped
4579 */
4580int netif_receive_skb_core(struct sk_buff *skb)
4581{
4582 int ret;
4583
4584 rcu_read_lock();
4585 ret = __netif_receive_skb_core(skb, false);
4586 rcu_read_unlock();
4587
4588 return ret;
4589}
4590EXPORT_SYMBOL(netif_receive_skb_core);
4591
4592static int __netif_receive_skb(struct sk_buff *skb)
4593{
4594 int ret;
4595
4596 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4597 unsigned int noreclaim_flag;
4598
4599 /*
4600 * PFMEMALLOC skbs are special, they should
4601 * - be delivered to SOCK_MEMALLOC sockets only
4602 * - stay away from userspace
4603 * - have bounded memory usage
4604 *
4605 * Use PF_MEMALLOC as this saves us from propagating the allocation
4606 * context down to all allocation sites.
4607 */
4608 noreclaim_flag = memalloc_noreclaim_save();
4609 ret = __netif_receive_skb_core(skb, true);
4610 memalloc_noreclaim_restore(noreclaim_flag);
4611 } else
4612 ret = __netif_receive_skb_core(skb, false);
4613
4614 return ret;
4615}
4616
4617static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4618{
4619 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4620 struct bpf_prog *new = xdp->prog;
4621 int ret = 0;
4622
4623 switch (xdp->command) {
4624 case XDP_SETUP_PROG:
4625 rcu_assign_pointer(dev->xdp_prog, new);
4626 if (old)
4627 bpf_prog_put(old);
4628
4629 if (old && !new) {
4630 static_key_slow_dec(&generic_xdp_needed);
4631 } else if (new && !old) {
4632 static_key_slow_inc(&generic_xdp_needed);
4633 dev_disable_lro(dev);
4634 dev_disable_gro_hw(dev);
4635 }
4636 break;
4637
4638 case XDP_QUERY_PROG:
4639 xdp->prog_attached = !!old;
4640 xdp->prog_id = old ? old->aux->id : 0;
4641 break;
4642
4643 default:
4644 ret = -EINVAL;
4645 break;
4646 }
4647
4648 return ret;
4649}
4650
4651static int netif_receive_skb_internal(struct sk_buff *skb)
4652{
4653 int ret;
4654
4655 net_timestamp_check(netdev_tstamp_prequeue, skb);
4656
4657 if (skb_defer_rx_timestamp(skb))
4658 return NET_RX_SUCCESS;
4659
4660 if (static_key_false(&generic_xdp_needed)) {
4661 int ret;
4662
4663 preempt_disable();
4664 rcu_read_lock();
4665 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4666 rcu_read_unlock();
4667 preempt_enable();
4668
4669 if (ret != XDP_PASS)
4670 return NET_RX_DROP;
4671 }
4672
4673 rcu_read_lock();
4674#ifdef CONFIG_RPS
4675 if (static_key_false(&rps_needed)) {
4676 struct rps_dev_flow voidflow, *rflow = &voidflow;
4677 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4678
4679 if (cpu >= 0) {
4680 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4681 rcu_read_unlock();
4682 return ret;
4683 }
4684 }
4685#endif
4686 ret = __netif_receive_skb(skb);
4687 rcu_read_unlock();
4688 return ret;
4689}
4690
4691/**
4692 * netif_receive_skb - process receive buffer from network
4693 * @skb: buffer to process
4694 *
4695 * netif_receive_skb() is the main receive data processing function.
4696 * It always succeeds. The buffer may be dropped during processing
4697 * for congestion control or by the protocol layers.
4698 *
4699 * This function may only be called from softirq context and interrupts
4700 * should be enabled.
4701 *
4702 * Return values (usually ignored):
4703 * NET_RX_SUCCESS: no congestion
4704 * NET_RX_DROP: packet was dropped
4705 */
4706int netif_receive_skb(struct sk_buff *skb)
4707{
4708 trace_netif_receive_skb_entry(skb);
4709
4710 return netif_receive_skb_internal(skb);
4711}
4712EXPORT_SYMBOL(netif_receive_skb);
4713
4714DEFINE_PER_CPU(struct work_struct, flush_works);
4715
4716/* Network device is going away, flush any packets still pending */
4717static void flush_backlog(struct work_struct *work)
4718{
4719 struct sk_buff *skb, *tmp;
4720 struct softnet_data *sd;
4721
4722 local_bh_disable();
4723 sd = this_cpu_ptr(&softnet_data);
4724
4725 local_irq_disable();
4726 rps_lock(sd);
4727 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4728 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4729 __skb_unlink(skb, &sd->input_pkt_queue);
4730 kfree_skb(skb);
4731 input_queue_head_incr(sd);
4732 }
4733 }
4734 rps_unlock(sd);
4735 local_irq_enable();
4736
4737 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4738 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4739 __skb_unlink(skb, &sd->process_queue);
4740 kfree_skb(skb);
4741 input_queue_head_incr(sd);
4742 }
4743 }
4744 local_bh_enable();
4745}
4746
4747static void flush_all_backlogs(void)
4748{
4749 unsigned int cpu;
4750
4751 get_online_cpus();
4752
4753 for_each_online_cpu(cpu)
4754 queue_work_on(cpu, system_highpri_wq,
4755 per_cpu_ptr(&flush_works, cpu));
4756
4757 for_each_online_cpu(cpu)
4758 flush_work(per_cpu_ptr(&flush_works, cpu));
4759
4760 put_online_cpus();
4761}
4762
4763static int napi_gro_complete(struct sk_buff *skb)
4764{
4765 struct packet_offload *ptype;
4766 __be16 type = skb->protocol;
4767 struct list_head *head = &offload_base;
4768 int err = -ENOENT;
4769
4770 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4771
4772 if (NAPI_GRO_CB(skb)->count == 1) {
4773 skb_shinfo(skb)->gso_size = 0;
4774 goto out;
4775 }
4776
4777 rcu_read_lock();
4778 list_for_each_entry_rcu(ptype, head, list) {
4779 if (ptype->type != type || !ptype->callbacks.gro_complete)
4780 continue;
4781
4782 err = ptype->callbacks.gro_complete(skb, 0);
4783 break;
4784 }
4785 rcu_read_unlock();
4786
4787 if (err) {
4788 WARN_ON(&ptype->list == head);
4789 kfree_skb(skb);
4790 return NET_RX_SUCCESS;
4791 }
4792
4793out:
4794 return netif_receive_skb_internal(skb);
4795}
4796
4797/* napi->gro_list contains packets ordered by age.
4798 * youngest packets at the head of it.
4799 * Complete skbs in reverse order to reduce latencies.
4800 */
4801void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4802{
4803 struct sk_buff *skb, *prev = NULL;
4804
4805 /* scan list and build reverse chain */
4806 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4807 skb->prev = prev;
4808 prev = skb;
4809 }
4810
4811 for (skb = prev; skb; skb = prev) {
4812 skb->next = NULL;
4813
4814 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4815 return;
4816
4817 prev = skb->prev;
4818 napi_gro_complete(skb);
4819 napi->gro_count--;
4820 }
4821
4822 napi->gro_list = NULL;
4823}
4824EXPORT_SYMBOL(napi_gro_flush);
4825
4826static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4827{
4828 struct sk_buff *p;
4829 unsigned int maclen = skb->dev->hard_header_len;
4830 u32 hash = skb_get_hash_raw(skb);
4831
4832 for (p = napi->gro_list; p; p = p->next) {
4833 unsigned long diffs;
4834
4835 NAPI_GRO_CB(p)->flush = 0;
4836
4837 if (hash != skb_get_hash_raw(p)) {
4838 NAPI_GRO_CB(p)->same_flow = 0;
4839 continue;
4840 }
4841
4842 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4843 diffs |= p->vlan_tci ^ skb->vlan_tci;
4844 diffs |= skb_metadata_dst_cmp(p, skb);
4845 diffs |= skb_metadata_differs(p, skb);
4846 if (maclen == ETH_HLEN)
4847 diffs |= compare_ether_header(skb_mac_header(p),
4848 skb_mac_header(skb));
4849 else if (!diffs)
4850 diffs = memcmp(skb_mac_header(p),
4851 skb_mac_header(skb),
4852 maclen);
4853 NAPI_GRO_CB(p)->same_flow = !diffs;
4854 }
4855}
4856
4857static void skb_gro_reset_offset(struct sk_buff *skb)
4858{
4859 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4860 const skb_frag_t *frag0 = &pinfo->frags[0];
4861
4862 NAPI_GRO_CB(skb)->data_offset = 0;
4863 NAPI_GRO_CB(skb)->frag0 = NULL;
4864 NAPI_GRO_CB(skb)->frag0_len = 0;
4865
4866 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4867 pinfo->nr_frags &&
4868 !PageHighMem(skb_frag_page(frag0))) {
4869 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4870 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4871 skb_frag_size(frag0),
4872 skb->end - skb->tail);
4873 }
4874}
4875
4876static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4877{
4878 struct skb_shared_info *pinfo = skb_shinfo(skb);
4879
4880 BUG_ON(skb->end - skb->tail < grow);
4881
4882 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4883
4884 skb->data_len -= grow;
4885 skb->tail += grow;
4886
4887 pinfo->frags[0].page_offset += grow;
4888 skb_frag_size_sub(&pinfo->frags[0], grow);
4889
4890 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4891 skb_frag_unref(skb, 0);
4892 memmove(pinfo->frags, pinfo->frags + 1,
4893 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4894 }
4895}
4896
4897static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4898{
4899 struct sk_buff **pp = NULL;
4900 struct packet_offload *ptype;
4901 __be16 type = skb->protocol;
4902 struct list_head *head = &offload_base;
4903 int same_flow;
4904 enum gro_result ret;
4905 int grow;
4906
4907 if (netif_elide_gro(skb->dev))
4908 goto normal;
4909
4910 gro_list_prepare(napi, skb);
4911
4912 rcu_read_lock();
4913 list_for_each_entry_rcu(ptype, head, list) {
4914 if (ptype->type != type || !ptype->callbacks.gro_receive)
4915 continue;
4916
4917 skb_set_network_header(skb, skb_gro_offset(skb));
4918 skb_reset_mac_len(skb);
4919 NAPI_GRO_CB(skb)->same_flow = 0;
4920 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4921 NAPI_GRO_CB(skb)->free = 0;
4922 NAPI_GRO_CB(skb)->encap_mark = 0;
4923 NAPI_GRO_CB(skb)->recursion_counter = 0;
4924 NAPI_GRO_CB(skb)->is_fou = 0;
4925 NAPI_GRO_CB(skb)->is_atomic = 1;
4926 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4927
4928 /* Setup for GRO checksum validation */
4929 switch (skb->ip_summed) {
4930 case CHECKSUM_COMPLETE:
4931 NAPI_GRO_CB(skb)->csum = skb->csum;
4932 NAPI_GRO_CB(skb)->csum_valid = 1;
4933 NAPI_GRO_CB(skb)->csum_cnt = 0;
4934 break;
4935 case CHECKSUM_UNNECESSARY:
4936 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4937 NAPI_GRO_CB(skb)->csum_valid = 0;
4938 break;
4939 default:
4940 NAPI_GRO_CB(skb)->csum_cnt = 0;
4941 NAPI_GRO_CB(skb)->csum_valid = 0;
4942 }
4943
4944 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4945 break;
4946 }
4947 rcu_read_unlock();
4948
4949 if (&ptype->list == head)
4950 goto normal;
4951
4952 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4953 ret = GRO_CONSUMED;
4954 goto ok;
4955 }
4956
4957 same_flow = NAPI_GRO_CB(skb)->same_flow;
4958 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4959
4960 if (pp) {
4961 struct sk_buff *nskb = *pp;
4962
4963 *pp = nskb->next;
4964 nskb->next = NULL;
4965 napi_gro_complete(nskb);
4966 napi->gro_count--;
4967 }
4968
4969 if (same_flow)
4970 goto ok;
4971
4972 if (NAPI_GRO_CB(skb)->flush)
4973 goto normal;
4974
4975 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4976 struct sk_buff *nskb = napi->gro_list;
4977
4978 /* locate the end of the list to select the 'oldest' flow */
4979 while (nskb->next) {
4980 pp = &nskb->next;
4981 nskb = *pp;
4982 }
4983 *pp = NULL;
4984 nskb->next = NULL;
4985 napi_gro_complete(nskb);
4986 } else {
4987 napi->gro_count++;
4988 }
4989 NAPI_GRO_CB(skb)->count = 1;
4990 NAPI_GRO_CB(skb)->age = jiffies;
4991 NAPI_GRO_CB(skb)->last = skb;
4992 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4993 skb->next = napi->gro_list;
4994 napi->gro_list = skb;
4995 ret = GRO_HELD;
4996
4997pull:
4998 grow = skb_gro_offset(skb) - skb_headlen(skb);
4999 if (grow > 0)
5000 gro_pull_from_frag0(skb, grow);
5001ok:
5002 return ret;
5003
5004normal:
5005 ret = GRO_NORMAL;
5006 goto pull;
5007}
5008
5009struct packet_offload *gro_find_receive_by_type(__be16 type)
5010{
5011 struct list_head *offload_head = &offload_base;
5012 struct packet_offload *ptype;
5013
5014 list_for_each_entry_rcu(ptype, offload_head, list) {
5015 if (ptype->type != type || !ptype->callbacks.gro_receive)
5016 continue;
5017 return ptype;
5018 }
5019 return NULL;
5020}
5021EXPORT_SYMBOL(gro_find_receive_by_type);
5022
5023struct packet_offload *gro_find_complete_by_type(__be16 type)
5024{
5025 struct list_head *offload_head = &offload_base;
5026 struct packet_offload *ptype;
5027
5028 list_for_each_entry_rcu(ptype, offload_head, list) {
5029 if (ptype->type != type || !ptype->callbacks.gro_complete)
5030 continue;
5031 return ptype;
5032 }
5033 return NULL;
5034}
5035EXPORT_SYMBOL(gro_find_complete_by_type);
5036
5037static void napi_skb_free_stolen_head(struct sk_buff *skb)
5038{
5039 skb_dst_drop(skb);
5040 secpath_reset(skb);
5041 kmem_cache_free(skbuff_head_cache, skb);
5042}
5043
5044static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5045{
5046 switch (ret) {
5047 case GRO_NORMAL:
5048 if (netif_receive_skb_internal(skb))
5049 ret = GRO_DROP;
5050 break;
5051
5052 case GRO_DROP:
5053 kfree_skb(skb);
5054 break;
5055
5056 case GRO_MERGED_FREE:
5057 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5058 napi_skb_free_stolen_head(skb);
5059 else
5060 __kfree_skb(skb);
5061 break;
5062
5063 case GRO_HELD:
5064 case GRO_MERGED:
5065 case GRO_CONSUMED:
5066 break;
5067 }
5068
5069 return ret;
5070}
5071
5072gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5073{
5074 skb_mark_napi_id(skb, napi);
5075 trace_napi_gro_receive_entry(skb);
5076
5077 skb_gro_reset_offset(skb);
5078
5079 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5080}
5081EXPORT_SYMBOL(napi_gro_receive);
5082
5083static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5084{
5085 if (unlikely(skb->pfmemalloc)) {
5086 consume_skb(skb);
5087 return;
5088 }
5089 __skb_pull(skb, skb_headlen(skb));
5090 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5091 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5092 skb->vlan_tci = 0;
5093 skb->dev = napi->dev;
5094 skb->skb_iif = 0;
5095 skb->encapsulation = 0;
5096 skb_shinfo(skb)->gso_type = 0;
5097 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5098 secpath_reset(skb);
5099
5100 napi->skb = skb;
5101}
5102
5103struct sk_buff *napi_get_frags(struct napi_struct *napi)
5104{
5105 struct sk_buff *skb = napi->skb;
5106
5107 if (!skb) {
5108 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5109 if (skb) {
5110 napi->skb = skb;
5111 skb_mark_napi_id(skb, napi);
5112 }
5113 }
5114 return skb;
5115}
5116EXPORT_SYMBOL(napi_get_frags);
5117
5118static gro_result_t napi_frags_finish(struct napi_struct *napi,
5119 struct sk_buff *skb,
5120 gro_result_t ret)
5121{
5122 switch (ret) {
5123 case GRO_NORMAL:
5124 case GRO_HELD:
5125 __skb_push(skb, ETH_HLEN);
5126 skb->protocol = eth_type_trans(skb, skb->dev);
5127 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5128 ret = GRO_DROP;
5129 break;
5130
5131 case GRO_DROP:
5132 napi_reuse_skb(napi, skb);
5133 break;
5134
5135 case GRO_MERGED_FREE:
5136 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5137 napi_skb_free_stolen_head(skb);
5138 else
5139 napi_reuse_skb(napi, skb);
5140 break;
5141
5142 case GRO_MERGED:
5143 case GRO_CONSUMED:
5144 break;
5145 }
5146
5147 return ret;
5148}
5149
5150/* Upper GRO stack assumes network header starts at gro_offset=0
5151 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5152 * We copy ethernet header into skb->data to have a common layout.
5153 */
5154static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5155{
5156 struct sk_buff *skb = napi->skb;
5157 const struct ethhdr *eth;
5158 unsigned int hlen = sizeof(*eth);
5159
5160 napi->skb = NULL;
5161
5162 skb_reset_mac_header(skb);
5163 skb_gro_reset_offset(skb);
5164
5165 eth = skb_gro_header_fast(skb, 0);
5166 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5167 eth = skb_gro_header_slow(skb, hlen, 0);
5168 if (unlikely(!eth)) {
5169 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5170 __func__, napi->dev->name);
5171 napi_reuse_skb(napi, skb);
5172 return NULL;
5173 }
5174 } else {
5175 gro_pull_from_frag0(skb, hlen);
5176 NAPI_GRO_CB(skb)->frag0 += hlen;
5177 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5178 }
5179 __skb_pull(skb, hlen);
5180
5181 /*
5182 * This works because the only protocols we care about don't require
5183 * special handling.
5184 * We'll fix it up properly in napi_frags_finish()
5185 */
5186 skb->protocol = eth->h_proto;
5187
5188 return skb;
5189}
5190
5191gro_result_t napi_gro_frags(struct napi_struct *napi)
5192{
5193 struct sk_buff *skb = napi_frags_skb(napi);
5194
5195 if (!skb)
5196 return GRO_DROP;
5197
5198 trace_napi_gro_frags_entry(skb);
5199
5200 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5201}
5202EXPORT_SYMBOL(napi_gro_frags);
5203
5204/* Compute the checksum from gro_offset and return the folded value
5205 * after adding in any pseudo checksum.
5206 */
5207__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5208{
5209 __wsum wsum;
5210 __sum16 sum;
5211
5212 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5213
5214 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5215 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5216 if (likely(!sum)) {
5217 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5218 !skb->csum_complete_sw)
5219 netdev_rx_csum_fault(skb->dev);
5220 }
5221
5222 NAPI_GRO_CB(skb)->csum = wsum;
5223 NAPI_GRO_CB(skb)->csum_valid = 1;
5224
5225 return sum;
5226}
5227EXPORT_SYMBOL(__skb_gro_checksum_complete);
5228
5229static void net_rps_send_ipi(struct softnet_data *remsd)
5230{
5231#ifdef CONFIG_RPS
5232 while (remsd) {
5233 struct softnet_data *next = remsd->rps_ipi_next;
5234
5235 if (cpu_online(remsd->cpu))
5236 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5237 remsd = next;
5238 }
5239#endif
5240}
5241
5242/*
5243 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5244 * Note: called with local irq disabled, but exits with local irq enabled.
5245 */
5246static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5247{
5248#ifdef CONFIG_RPS
5249 struct softnet_data *remsd = sd->rps_ipi_list;
5250
5251 if (remsd) {
5252 sd->rps_ipi_list = NULL;
5253
5254 local_irq_enable();
5255
5256 /* Send pending IPI's to kick RPS processing on remote cpus. */
5257 net_rps_send_ipi(remsd);
5258 } else
5259#endif
5260 local_irq_enable();
5261}
5262
5263static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5264{
5265#ifdef CONFIG_RPS
5266 return sd->rps_ipi_list != NULL;
5267#else
5268 return false;
5269#endif
5270}
5271
5272static int process_backlog(struct napi_struct *napi, int quota)
5273{
5274 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5275 bool again = true;
5276 int work = 0;
5277
5278 /* Check if we have pending ipi, its better to send them now,
5279 * not waiting net_rx_action() end.
5280 */
5281 if (sd_has_rps_ipi_waiting(sd)) {
5282 local_irq_disable();
5283 net_rps_action_and_irq_enable(sd);
5284 }
5285
5286 napi->weight = dev_rx_weight;
5287 while (again) {
5288 struct sk_buff *skb;
5289
5290 while ((skb = __skb_dequeue(&sd->process_queue))) {
5291 rcu_read_lock();
5292 __netif_receive_skb(skb);
5293 rcu_read_unlock();
5294 input_queue_head_incr(sd);
5295 if (++work >= quota)
5296 return work;
5297
5298 }
5299
5300 local_irq_disable();
5301 rps_lock(sd);
5302 if (skb_queue_empty(&sd->input_pkt_queue)) {
5303 /*
5304 * Inline a custom version of __napi_complete().
5305 * only current cpu owns and manipulates this napi,
5306 * and NAPI_STATE_SCHED is the only possible flag set
5307 * on backlog.
5308 * We can use a plain write instead of clear_bit(),
5309 * and we dont need an smp_mb() memory barrier.
5310 */
5311 napi->state = 0;
5312 again = false;
5313 } else {
5314 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5315 &sd->process_queue);
5316 }
5317 rps_unlock(sd);
5318 local_irq_enable();
5319 }
5320
5321 return work;
5322}
5323
5324/**
5325 * __napi_schedule - schedule for receive
5326 * @n: entry to schedule
5327 *
5328 * The entry's receive function will be scheduled to run.
5329 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5330 */
5331void __napi_schedule(struct napi_struct *n)
5332{
5333 unsigned long flags;
5334
5335 local_irq_save(flags);
5336 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5337 local_irq_restore(flags);
5338}
5339EXPORT_SYMBOL(__napi_schedule);
5340
5341/**
5342 * napi_schedule_prep - check if napi can be scheduled
5343 * @n: napi context
5344 *
5345 * Test if NAPI routine is already running, and if not mark
5346 * it as running. This is used as a condition variable
5347 * insure only one NAPI poll instance runs. We also make
5348 * sure there is no pending NAPI disable.
5349 */
5350bool napi_schedule_prep(struct napi_struct *n)
5351{
5352 unsigned long val, new;
5353
5354 do {
5355 val = READ_ONCE(n->state);
5356 if (unlikely(val & NAPIF_STATE_DISABLE))
5357 return false;
5358 new = val | NAPIF_STATE_SCHED;
5359
5360 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5361 * This was suggested by Alexander Duyck, as compiler
5362 * emits better code than :
5363 * if (val & NAPIF_STATE_SCHED)
5364 * new |= NAPIF_STATE_MISSED;
5365 */
5366 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5367 NAPIF_STATE_MISSED;
5368 } while (cmpxchg(&n->state, val, new) != val);
5369
5370 return !(val & NAPIF_STATE_SCHED);
5371}
5372EXPORT_SYMBOL(napi_schedule_prep);
5373
5374/**
5375 * __napi_schedule_irqoff - schedule for receive
5376 * @n: entry to schedule
5377 *
5378 * Variant of __napi_schedule() assuming hard irqs are masked
5379 */
5380void __napi_schedule_irqoff(struct napi_struct *n)
5381{
5382 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5383}
5384EXPORT_SYMBOL(__napi_schedule_irqoff);
5385
5386bool napi_complete_done(struct napi_struct *n, int work_done)
5387{
5388 unsigned long flags, val, new;
5389
5390 /*
5391 * 1) Don't let napi dequeue from the cpu poll list
5392 * just in case its running on a different cpu.
5393 * 2) If we are busy polling, do nothing here, we have
5394 * the guarantee we will be called later.
5395 */
5396 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5397 NAPIF_STATE_IN_BUSY_POLL)))
5398 return false;
5399
5400 if (n->gro_list) {
5401 unsigned long timeout = 0;
5402
5403 if (work_done)
5404 timeout = n->dev->gro_flush_timeout;
5405
5406 if (timeout)
5407 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5408 HRTIMER_MODE_REL_PINNED);
5409 else
5410 napi_gro_flush(n, false);
5411 }
5412 if (unlikely(!list_empty(&n->poll_list))) {
5413 /* If n->poll_list is not empty, we need to mask irqs */
5414 local_irq_save(flags);
5415 list_del_init(&n->poll_list);
5416 local_irq_restore(flags);
5417 }
5418
5419 do {
5420 val = READ_ONCE(n->state);
5421
5422 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5423
5424 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5425
5426 /* If STATE_MISSED was set, leave STATE_SCHED set,
5427 * because we will call napi->poll() one more time.
5428 * This C code was suggested by Alexander Duyck to help gcc.
5429 */
5430 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5431 NAPIF_STATE_SCHED;
5432 } while (cmpxchg(&n->state, val, new) != val);
5433
5434 if (unlikely(val & NAPIF_STATE_MISSED)) {
5435 __napi_schedule(n);
5436 return false;
5437 }
5438
5439 return true;
5440}
5441EXPORT_SYMBOL(napi_complete_done);
5442
5443/* must be called under rcu_read_lock(), as we dont take a reference */
5444static struct napi_struct *napi_by_id(unsigned int napi_id)
5445{
5446 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5447 struct napi_struct *napi;
5448
5449 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5450 if (napi->napi_id == napi_id)
5451 return napi;
5452
5453 return NULL;
5454}
5455
5456#if defined(CONFIG_NET_RX_BUSY_POLL)
5457
5458#define BUSY_POLL_BUDGET 8
5459
5460static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5461{
5462 int rc;
5463
5464 /* Busy polling means there is a high chance device driver hard irq
5465 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5466 * set in napi_schedule_prep().
5467 * Since we are about to call napi->poll() once more, we can safely
5468 * clear NAPI_STATE_MISSED.
5469 *
5470 * Note: x86 could use a single "lock and ..." instruction
5471 * to perform these two clear_bit()
5472 */
5473 clear_bit(NAPI_STATE_MISSED, &napi->state);
5474 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5475
5476 local_bh_disable();
5477
5478 /* All we really want here is to re-enable device interrupts.
5479 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5480 */
5481 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5482 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5483 netpoll_poll_unlock(have_poll_lock);
5484 if (rc == BUSY_POLL_BUDGET)
5485 __napi_schedule(napi);
5486 local_bh_enable();
5487}
5488
5489void napi_busy_loop(unsigned int napi_id,
5490 bool (*loop_end)(void *, unsigned long),
5491 void *loop_end_arg)
5492{
5493 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5494 int (*napi_poll)(struct napi_struct *napi, int budget);
5495 void *have_poll_lock = NULL;
5496 struct napi_struct *napi;
5497
5498restart:
5499 napi_poll = NULL;
5500
5501 rcu_read_lock();
5502
5503 napi = napi_by_id(napi_id);
5504 if (!napi)
5505 goto out;
5506
5507 preempt_disable();
5508 for (;;) {
5509 int work = 0;
5510
5511 local_bh_disable();
5512 if (!napi_poll) {
5513 unsigned long val = READ_ONCE(napi->state);
5514
5515 /* If multiple threads are competing for this napi,
5516 * we avoid dirtying napi->state as much as we can.
5517 */
5518 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5519 NAPIF_STATE_IN_BUSY_POLL))
5520 goto count;
5521 if (cmpxchg(&napi->state, val,
5522 val | NAPIF_STATE_IN_BUSY_POLL |
5523 NAPIF_STATE_SCHED) != val)
5524 goto count;
5525 have_poll_lock = netpoll_poll_lock(napi);
5526 napi_poll = napi->poll;
5527 }
5528 work = napi_poll(napi, BUSY_POLL_BUDGET);
5529 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5530count:
5531 if (work > 0)
5532 __NET_ADD_STATS(dev_net(napi->dev),
5533 LINUX_MIB_BUSYPOLLRXPACKETS, work);
5534 local_bh_enable();
5535
5536 if (!loop_end || loop_end(loop_end_arg, start_time))
5537 break;
5538
5539 if (unlikely(need_resched())) {
5540 if (napi_poll)
5541 busy_poll_stop(napi, have_poll_lock);
5542 preempt_enable();
5543 rcu_read_unlock();
5544 cond_resched();
5545 if (loop_end(loop_end_arg, start_time))
5546 return;
5547 goto restart;
5548 }
5549 cpu_relax();
5550 }
5551 if (napi_poll)
5552 busy_poll_stop(napi, have_poll_lock);
5553 preempt_enable();
5554out:
5555 rcu_read_unlock();
5556}
5557EXPORT_SYMBOL(napi_busy_loop);
5558
5559#endif /* CONFIG_NET_RX_BUSY_POLL */
5560
5561static void napi_hash_add(struct napi_struct *napi)
5562{
5563 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5564 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5565 return;
5566
5567 spin_lock(&napi_hash_lock);
5568
5569 /* 0..NR_CPUS range is reserved for sender_cpu use */
5570 do {
5571 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5572 napi_gen_id = MIN_NAPI_ID;
5573 } while (napi_by_id(napi_gen_id));
5574 napi->napi_id = napi_gen_id;
5575
5576 hlist_add_head_rcu(&napi->napi_hash_node,
5577 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5578
5579 spin_unlock(&napi_hash_lock);
5580}
5581
5582/* Warning : caller is responsible to make sure rcu grace period
5583 * is respected before freeing memory containing @napi
5584 */
5585bool napi_hash_del(struct napi_struct *napi)
5586{
5587 bool rcu_sync_needed = false;
5588
5589 spin_lock(&napi_hash_lock);
5590
5591 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5592 rcu_sync_needed = true;
5593 hlist_del_rcu(&napi->napi_hash_node);
5594 }
5595 spin_unlock(&napi_hash_lock);
5596 return rcu_sync_needed;
5597}
5598EXPORT_SYMBOL_GPL(napi_hash_del);
5599
5600static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5601{
5602 struct napi_struct *napi;
5603
5604 napi = container_of(timer, struct napi_struct, timer);
5605
5606 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5607 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5608 */
5609 if (napi->gro_list && !napi_disable_pending(napi) &&
5610 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5611 __napi_schedule_irqoff(napi);
5612
5613 return HRTIMER_NORESTART;
5614}
5615
5616void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5617 int (*poll)(struct napi_struct *, int), int weight)
5618{
5619 INIT_LIST_HEAD(&napi->poll_list);
5620 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5621 napi->timer.function = napi_watchdog;
5622 napi->gro_count = 0;
5623 napi->gro_list = NULL;
5624 napi->skb = NULL;
5625 napi->poll = poll;
5626 if (weight > NAPI_POLL_WEIGHT)
5627 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5628 weight, dev->name);
5629 napi->weight = weight;
5630 list_add(&napi->dev_list, &dev->napi_list);
5631 napi->dev = dev;
5632#ifdef CONFIG_NETPOLL
5633 napi->poll_owner = -1;
5634#endif
5635 set_bit(NAPI_STATE_SCHED, &napi->state);
5636 napi_hash_add(napi);
5637}
5638EXPORT_SYMBOL(netif_napi_add);
5639
5640void napi_disable(struct napi_struct *n)
5641{
5642 might_sleep();
5643 set_bit(NAPI_STATE_DISABLE, &n->state);
5644
5645 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5646 msleep(1);
5647 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5648 msleep(1);
5649
5650 hrtimer_cancel(&n->timer);
5651
5652 clear_bit(NAPI_STATE_DISABLE, &n->state);
5653}
5654EXPORT_SYMBOL(napi_disable);
5655
5656/* Must be called in process context */
5657void netif_napi_del(struct napi_struct *napi)
5658{
5659 might_sleep();
5660 if (napi_hash_del(napi))
5661 synchronize_net();
5662 list_del_init(&napi->dev_list);
5663 napi_free_frags(napi);
5664
5665 kfree_skb_list(napi->gro_list);
5666 napi->gro_list = NULL;
5667 napi->gro_count = 0;
5668}
5669EXPORT_SYMBOL(netif_napi_del);
5670
5671static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5672{
5673 void *have;
5674 int work, weight;
5675
5676 list_del_init(&n->poll_list);
5677
5678 have = netpoll_poll_lock(n);
5679
5680 weight = n->weight;
5681
5682 /* This NAPI_STATE_SCHED test is for avoiding a race
5683 * with netpoll's poll_napi(). Only the entity which
5684 * obtains the lock and sees NAPI_STATE_SCHED set will
5685 * actually make the ->poll() call. Therefore we avoid
5686 * accidentally calling ->poll() when NAPI is not scheduled.
5687 */
5688 work = 0;
5689 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5690 work = n->poll(n, weight);
5691 trace_napi_poll(n, work, weight);
5692 }
5693
5694 WARN_ON_ONCE(work > weight);
5695
5696 if (likely(work < weight))
5697 goto out_unlock;
5698
5699 /* Drivers must not modify the NAPI state if they
5700 * consume the entire weight. In such cases this code
5701 * still "owns" the NAPI instance and therefore can
5702 * move the instance around on the list at-will.
5703 */
5704 if (unlikely(napi_disable_pending(n))) {
5705 napi_complete(n);
5706 goto out_unlock;
5707 }
5708
5709 if (n->gro_list) {
5710 /* flush too old packets
5711 * If HZ < 1000, flush all packets.
5712 */
5713 napi_gro_flush(n, HZ >= 1000);
5714 }
5715
5716 /* Some drivers may have called napi_schedule
5717 * prior to exhausting their budget.
5718 */
5719 if (unlikely(!list_empty(&n->poll_list))) {
5720 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5721 n->dev ? n->dev->name : "backlog");
5722 goto out_unlock;
5723 }
5724
5725 list_add_tail(&n->poll_list, repoll);
5726
5727out_unlock:
5728 netpoll_poll_unlock(have);
5729
5730 return work;
5731}
5732
5733static __latent_entropy void net_rx_action(struct softirq_action *h)
5734{
5735 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5736 unsigned long time_limit = jiffies +
5737 usecs_to_jiffies(netdev_budget_usecs);
5738 int budget = netdev_budget;
5739 LIST_HEAD(list);
5740 LIST_HEAD(repoll);
5741
5742 local_irq_disable();
5743 list_splice_init(&sd->poll_list, &list);
5744 local_irq_enable();
5745
5746 for (;;) {
5747 struct napi_struct *n;
5748
5749 if (list_empty(&list)) {
5750 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5751 goto out;
5752 break;
5753 }
5754
5755 n = list_first_entry(&list, struct napi_struct, poll_list);
5756 budget -= napi_poll(n, &repoll);
5757
5758 /* If softirq window is exhausted then punt.
5759 * Allow this to run for 2 jiffies since which will allow
5760 * an average latency of 1.5/HZ.
5761 */
5762 if (unlikely(budget <= 0 ||
5763 time_after_eq(jiffies, time_limit))) {
5764 sd->time_squeeze++;
5765 break;
5766 }
5767 }
5768
5769 local_irq_disable();
5770
5771 list_splice_tail_init(&sd->poll_list, &list);
5772 list_splice_tail(&repoll, &list);
5773 list_splice(&list, &sd->poll_list);
5774 if (!list_empty(&sd->poll_list))
5775 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5776
5777 net_rps_action_and_irq_enable(sd);
5778out:
5779 __kfree_skb_flush();
5780}
5781
5782struct netdev_adjacent {
5783 struct net_device *dev;
5784
5785 /* upper master flag, there can only be one master device per list */
5786 bool master;
5787
5788 /* counter for the number of times this device was added to us */
5789 u16 ref_nr;
5790
5791 /* private field for the users */
5792 void *private;
5793
5794 struct list_head list;
5795 struct rcu_head rcu;
5796};
5797
5798static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5799 struct list_head *adj_list)
5800{
5801 struct netdev_adjacent *adj;
5802
5803 list_for_each_entry(adj, adj_list, list) {
5804 if (adj->dev == adj_dev)
5805 return adj;
5806 }
5807 return NULL;
5808}
5809
5810static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5811{
5812 struct net_device *dev = data;
5813
5814 return upper_dev == dev;
5815}
5816
5817/**
5818 * netdev_has_upper_dev - Check if device is linked to an upper device
5819 * @dev: device
5820 * @upper_dev: upper device to check
5821 *
5822 * Find out if a device is linked to specified upper device and return true
5823 * in case it is. Note that this checks only immediate upper device,
5824 * not through a complete stack of devices. The caller must hold the RTNL lock.
5825 */
5826bool netdev_has_upper_dev(struct net_device *dev,
5827 struct net_device *upper_dev)
5828{
5829 ASSERT_RTNL();
5830
5831 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5832 upper_dev);
5833}
5834EXPORT_SYMBOL(netdev_has_upper_dev);
5835
5836/**
5837 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5838 * @dev: device
5839 * @upper_dev: upper device to check
5840 *
5841 * Find out if a device is linked to specified upper device and return true
5842 * in case it is. Note that this checks the entire upper device chain.
5843 * The caller must hold rcu lock.
5844 */
5845
5846bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5847 struct net_device *upper_dev)
5848{
5849 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5850 upper_dev);
5851}
5852EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5853
5854/**
5855 * netdev_has_any_upper_dev - Check if device is linked to some device
5856 * @dev: device
5857 *
5858 * Find out if a device is linked to an upper device and return true in case
5859 * it is. The caller must hold the RTNL lock.
5860 */
5861bool netdev_has_any_upper_dev(struct net_device *dev)
5862{
5863 ASSERT_RTNL();
5864
5865 return !list_empty(&dev->adj_list.upper);
5866}
5867EXPORT_SYMBOL(netdev_has_any_upper_dev);
5868
5869/**
5870 * netdev_master_upper_dev_get - Get master upper device
5871 * @dev: device
5872 *
5873 * Find a master upper device and return pointer to it or NULL in case
5874 * it's not there. The caller must hold the RTNL lock.
5875 */
5876struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5877{
5878 struct netdev_adjacent *upper;
5879
5880 ASSERT_RTNL();
5881
5882 if (list_empty(&dev->adj_list.upper))
5883 return NULL;
5884
5885 upper = list_first_entry(&dev->adj_list.upper,
5886 struct netdev_adjacent, list);
5887 if (likely(upper->master))
5888 return upper->dev;
5889 return NULL;
5890}
5891EXPORT_SYMBOL(netdev_master_upper_dev_get);
5892
5893/**
5894 * netdev_has_any_lower_dev - Check if device is linked to some device
5895 * @dev: device
5896 *
5897 * Find out if a device is linked to a lower device and return true in case
5898 * it is. The caller must hold the RTNL lock.
5899 */
5900static bool netdev_has_any_lower_dev(struct net_device *dev)
5901{
5902 ASSERT_RTNL();
5903
5904 return !list_empty(&dev->adj_list.lower);
5905}
5906
5907void *netdev_adjacent_get_private(struct list_head *adj_list)
5908{
5909 struct netdev_adjacent *adj;
5910
5911 adj = list_entry(adj_list, struct netdev_adjacent, list);
5912
5913 return adj->private;
5914}
5915EXPORT_SYMBOL(netdev_adjacent_get_private);
5916
5917/**
5918 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5919 * @dev: device
5920 * @iter: list_head ** of the current position
5921 *
5922 * Gets the next device from the dev's upper list, starting from iter
5923 * position. The caller must hold RCU read lock.
5924 */
5925struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5926 struct list_head **iter)
5927{
5928 struct netdev_adjacent *upper;
5929
5930 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5931
5932 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5933
5934 if (&upper->list == &dev->adj_list.upper)
5935 return NULL;
5936
5937 *iter = &upper->list;
5938
5939 return upper->dev;
5940}
5941EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5942
5943static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5944 struct list_head **iter)
5945{
5946 struct netdev_adjacent *upper;
5947
5948 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5949
5950 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5951
5952 if (&upper->list == &dev->adj_list.upper)
5953 return NULL;
5954
5955 *iter = &upper->list;
5956
5957 return upper->dev;
5958}
5959
5960int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5961 int (*fn)(struct net_device *dev,
5962 void *data),
5963 void *data)
5964{
5965 struct net_device *udev;
5966 struct list_head *iter;
5967 int ret;
5968
5969 for (iter = &dev->adj_list.upper,
5970 udev = netdev_next_upper_dev_rcu(dev, &iter);
5971 udev;
5972 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5973 /* first is the upper device itself */
5974 ret = fn(udev, data);
5975 if (ret)
5976 return ret;
5977
5978 /* then look at all of its upper devices */
5979 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5980 if (ret)
5981 return ret;
5982 }
5983
5984 return 0;
5985}
5986EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5987
5988/**
5989 * netdev_lower_get_next_private - Get the next ->private from the
5990 * lower neighbour list
5991 * @dev: device
5992 * @iter: list_head ** of the current position
5993 *
5994 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5995 * list, starting from iter position. The caller must hold either hold the
5996 * RTNL lock or its own locking that guarantees that the neighbour lower
5997 * list will remain unchanged.
5998 */
5999void *netdev_lower_get_next_private(struct net_device *dev,
6000 struct list_head **iter)
6001{
6002 struct netdev_adjacent *lower;
6003
6004 lower = list_entry(*iter, struct netdev_adjacent, list);
6005
6006 if (&lower->list == &dev->adj_list.lower)
6007 return NULL;
6008
6009 *iter = lower->list.next;
6010
6011 return lower->private;
6012}
6013EXPORT_SYMBOL(netdev_lower_get_next_private);
6014
6015/**
6016 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6017 * lower neighbour list, RCU
6018 * variant
6019 * @dev: device
6020 * @iter: list_head ** of the current position
6021 *
6022 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6023 * list, starting from iter position. The caller must hold RCU read lock.
6024 */
6025void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6026 struct list_head **iter)
6027{
6028 struct netdev_adjacent *lower;
6029
6030 WARN_ON_ONCE(!rcu_read_lock_held());
6031
6032 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6033
6034 if (&lower->list == &dev->adj_list.lower)
6035 return NULL;
6036
6037 *iter = &lower->list;
6038
6039 return lower->private;
6040}
6041EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6042
6043/**
6044 * netdev_lower_get_next - Get the next device from the lower neighbour
6045 * list
6046 * @dev: device
6047 * @iter: list_head ** of the current position
6048 *
6049 * Gets the next netdev_adjacent from the dev's lower neighbour
6050 * list, starting from iter position. The caller must hold RTNL lock or
6051 * its own locking that guarantees that the neighbour lower
6052 * list will remain unchanged.
6053 */
6054void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6055{
6056 struct netdev_adjacent *lower;
6057
6058 lower = list_entry(*iter, struct netdev_adjacent, list);
6059
6060 if (&lower->list == &dev->adj_list.lower)
6061 return NULL;
6062
6063 *iter = lower->list.next;
6064
6065 return lower->dev;
6066}
6067EXPORT_SYMBOL(netdev_lower_get_next);
6068
6069static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6070 struct list_head **iter)
6071{
6072 struct netdev_adjacent *lower;
6073
6074 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6075
6076 if (&lower->list == &dev->adj_list.lower)
6077 return NULL;
6078
6079 *iter = &lower->list;
6080
6081 return lower->dev;
6082}
6083
6084int netdev_walk_all_lower_dev(struct net_device *dev,
6085 int (*fn)(struct net_device *dev,
6086 void *data),
6087 void *data)
6088{
6089 struct net_device *ldev;
6090 struct list_head *iter;
6091 int ret;
6092
6093 for (iter = &dev->adj_list.lower,
6094 ldev = netdev_next_lower_dev(dev, &iter);
6095 ldev;
6096 ldev = netdev_next_lower_dev(dev, &iter)) {
6097 /* first is the lower device itself */
6098 ret = fn(ldev, data);
6099 if (ret)
6100 return ret;
6101
6102 /* then look at all of its lower devices */
6103 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6104 if (ret)
6105 return ret;
6106 }
6107
6108 return 0;
6109}
6110EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6111
6112static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6113 struct list_head **iter)
6114{
6115 struct netdev_adjacent *lower;
6116
6117 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6118 if (&lower->list == &dev->adj_list.lower)
6119 return NULL;
6120
6121 *iter = &lower->list;
6122
6123 return lower->dev;
6124}
6125
6126int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6127 int (*fn)(struct net_device *dev,
6128 void *data),
6129 void *data)
6130{
6131 struct net_device *ldev;
6132 struct list_head *iter;
6133 int ret;
6134
6135 for (iter = &dev->adj_list.lower,
6136 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6137 ldev;
6138 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6139 /* first is the lower device itself */
6140 ret = fn(ldev, data);
6141 if (ret)
6142 return ret;
6143
6144 /* then look at all of its lower devices */
6145 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6146 if (ret)
6147 return ret;
6148 }
6149
6150 return 0;
6151}
6152EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6153
6154/**
6155 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6156 * lower neighbour list, RCU
6157 * variant
6158 * @dev: device
6159 *
6160 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6161 * list. The caller must hold RCU read lock.
6162 */
6163void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6164{
6165 struct netdev_adjacent *lower;
6166
6167 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6168 struct netdev_adjacent, list);
6169 if (lower)
6170 return lower->private;
6171 return NULL;
6172}
6173EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6174
6175/**
6176 * netdev_master_upper_dev_get_rcu - Get master upper device
6177 * @dev: device
6178 *
6179 * Find a master upper device and return pointer to it or NULL in case
6180 * it's not there. The caller must hold the RCU read lock.
6181 */
6182struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6183{
6184 struct netdev_adjacent *upper;
6185
6186 upper = list_first_or_null_rcu(&dev->adj_list.upper,
6187 struct netdev_adjacent, list);
6188 if (upper && likely(upper->master))
6189 return upper->dev;
6190 return NULL;
6191}
6192EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6193
6194static int netdev_adjacent_sysfs_add(struct net_device *dev,
6195 struct net_device *adj_dev,
6196 struct list_head *dev_list)
6197{
6198 char linkname[IFNAMSIZ+7];
6199
6200 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6201 "upper_%s" : "lower_%s", adj_dev->name);
6202 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6203 linkname);
6204}
6205static void netdev_adjacent_sysfs_del(struct net_device *dev,
6206 char *name,
6207 struct list_head *dev_list)
6208{
6209 char linkname[IFNAMSIZ+7];
6210
6211 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6212 "upper_%s" : "lower_%s", name);
6213 sysfs_remove_link(&(dev->dev.kobj), linkname);
6214}
6215
6216static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6217 struct net_device *adj_dev,
6218 struct list_head *dev_list)
6219{
6220 return (dev_list == &dev->adj_list.upper ||
6221 dev_list == &dev->adj_list.lower) &&
6222 net_eq(dev_net(dev), dev_net(adj_dev));
6223}
6224
6225static int __netdev_adjacent_dev_insert(struct net_device *dev,
6226 struct net_device *adj_dev,
6227 struct list_head *dev_list,
6228 void *private, bool master)
6229{
6230 struct netdev_adjacent *adj;
6231 int ret;
6232
6233 adj = __netdev_find_adj(adj_dev, dev_list);
6234
6235 if (adj) {
6236 adj->ref_nr += 1;
6237 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6238 dev->name, adj_dev->name, adj->ref_nr);
6239
6240 return 0;
6241 }
6242
6243 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6244 if (!adj)
6245 return -ENOMEM;
6246
6247 adj->dev = adj_dev;
6248 adj->master = master;
6249 adj->ref_nr = 1;
6250 adj->private = private;
6251 dev_hold(adj_dev);
6252
6253 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6254 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6255
6256 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6257 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6258 if (ret)
6259 goto free_adj;
6260 }
6261
6262 /* Ensure that master link is always the first item in list. */
6263 if (master) {
6264 ret = sysfs_create_link(&(dev->dev.kobj),
6265 &(adj_dev->dev.kobj), "master");
6266 if (ret)
6267 goto remove_symlinks;
6268
6269 list_add_rcu(&adj->list, dev_list);
6270 } else {
6271 list_add_tail_rcu(&adj->list, dev_list);
6272 }
6273
6274 return 0;
6275
6276remove_symlinks:
6277 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6278 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6279free_adj:
6280 kfree(adj);
6281 dev_put(adj_dev);
6282
6283 return ret;
6284}
6285
6286static void __netdev_adjacent_dev_remove(struct net_device *dev,
6287 struct net_device *adj_dev,
6288 u16 ref_nr,
6289 struct list_head *dev_list)
6290{
6291 struct netdev_adjacent *adj;
6292
6293 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6294 dev->name, adj_dev->name, ref_nr);
6295
6296 adj = __netdev_find_adj(adj_dev, dev_list);
6297
6298 if (!adj) {
6299 pr_err("Adjacency does not exist for device %s from %s\n",
6300 dev->name, adj_dev->name);
6301 WARN_ON(1);
6302 return;
6303 }
6304
6305 if (adj->ref_nr > ref_nr) {
6306 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6307 dev->name, adj_dev->name, ref_nr,
6308 adj->ref_nr - ref_nr);
6309 adj->ref_nr -= ref_nr;
6310 return;
6311 }
6312
6313 if (adj->master)
6314 sysfs_remove_link(&(dev->dev.kobj), "master");
6315
6316 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6317 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6318
6319 list_del_rcu(&adj->list);
6320 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6321 adj_dev->name, dev->name, adj_dev->name);
6322 dev_put(adj_dev);
6323 kfree_rcu(adj, rcu);
6324}
6325
6326static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6327 struct net_device *upper_dev,
6328 struct list_head *up_list,
6329 struct list_head *down_list,
6330 void *private, bool master)
6331{
6332 int ret;
6333
6334 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6335 private, master);
6336 if (ret)
6337 return ret;
6338
6339 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6340 private, false);
6341 if (ret) {
6342 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6343 return ret;
6344 }
6345
6346 return 0;
6347}
6348
6349static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6350 struct net_device *upper_dev,
6351 u16 ref_nr,
6352 struct list_head *up_list,
6353 struct list_head *down_list)
6354{
6355 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6356 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6357}
6358
6359static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6360 struct net_device *upper_dev,
6361 void *private, bool master)
6362{
6363 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6364 &dev->adj_list.upper,
6365 &upper_dev->adj_list.lower,
6366 private, master);
6367}
6368
6369static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6370 struct net_device *upper_dev)
6371{
6372 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6373 &dev->adj_list.upper,
6374 &upper_dev->adj_list.lower);
6375}
6376
6377static int __netdev_upper_dev_link(struct net_device *dev,
6378 struct net_device *upper_dev, bool master,
6379 void *upper_priv, void *upper_info,
6380 struct netlink_ext_ack *extack)
6381{
6382 struct netdev_notifier_changeupper_info changeupper_info = {
6383 .info = {
6384 .dev = dev,
6385 .extack = extack,
6386 },
6387 .upper_dev = upper_dev,
6388 .master = master,
6389 .linking = true,
6390 .upper_info = upper_info,
6391 };
6392 int ret = 0;
6393
6394 ASSERT_RTNL();
6395
6396 if (dev == upper_dev)
6397 return -EBUSY;
6398
6399 /* To prevent loops, check if dev is not upper device to upper_dev. */
6400 if (netdev_has_upper_dev(upper_dev, dev))
6401 return -EBUSY;
6402
6403 if (netdev_has_upper_dev(dev, upper_dev))
6404 return -EEXIST;
6405
6406 if (master && netdev_master_upper_dev_get(dev))
6407 return -EBUSY;
6408
6409 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6410 &changeupper_info.info);
6411 ret = notifier_to_errno(ret);
6412 if (ret)
6413 return ret;
6414
6415 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6416 master);
6417 if (ret)
6418 return ret;
6419
6420 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6421 &changeupper_info.info);
6422 ret = notifier_to_errno(ret);
6423 if (ret)
6424 goto rollback;
6425
6426 return 0;
6427
6428rollback:
6429 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6430
6431 return ret;
6432}
6433
6434/**
6435 * netdev_upper_dev_link - Add a link to the upper device
6436 * @dev: device
6437 * @upper_dev: new upper device
6438 * @extack: netlink extended ack
6439 *
6440 * Adds a link to device which is upper to this one. The caller must hold
6441 * the RTNL lock. On a failure a negative errno code is returned.
6442 * On success the reference counts are adjusted and the function
6443 * returns zero.
6444 */
6445int netdev_upper_dev_link(struct net_device *dev,
6446 struct net_device *upper_dev,
6447 struct netlink_ext_ack *extack)
6448{
6449 return __netdev_upper_dev_link(dev, upper_dev, false,
6450 NULL, NULL, extack);
6451}
6452EXPORT_SYMBOL(netdev_upper_dev_link);
6453
6454/**
6455 * netdev_master_upper_dev_link - Add a master link to the upper device
6456 * @dev: device
6457 * @upper_dev: new upper device
6458 * @upper_priv: upper device private
6459 * @upper_info: upper info to be passed down via notifier
6460 * @extack: netlink extended ack
6461 *
6462 * Adds a link to device which is upper to this one. In this case, only
6463 * one master upper device can be linked, although other non-master devices
6464 * might be linked as well. The caller must hold the RTNL lock.
6465 * On a failure a negative errno code is returned. On success the reference
6466 * counts are adjusted and the function returns zero.
6467 */
6468int netdev_master_upper_dev_link(struct net_device *dev,
6469 struct net_device *upper_dev,
6470 void *upper_priv, void *upper_info,
6471 struct netlink_ext_ack *extack)
6472{
6473 return __netdev_upper_dev_link(dev, upper_dev, true,
6474 upper_priv, upper_info, extack);
6475}
6476EXPORT_SYMBOL(netdev_master_upper_dev_link);
6477
6478/**
6479 * netdev_upper_dev_unlink - Removes a link to upper device
6480 * @dev: device
6481 * @upper_dev: new upper device
6482 *
6483 * Removes a link to device which is upper to this one. The caller must hold
6484 * the RTNL lock.
6485 */
6486void netdev_upper_dev_unlink(struct net_device *dev,
6487 struct net_device *upper_dev)
6488{
6489 struct netdev_notifier_changeupper_info changeupper_info = {
6490 .info = {
6491 .dev = dev,
6492 },
6493 .upper_dev = upper_dev,
6494 .linking = false,
6495 };
6496
6497 ASSERT_RTNL();
6498
6499 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6500
6501 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6502 &changeupper_info.info);
6503
6504 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6505
6506 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6507 &changeupper_info.info);
6508}
6509EXPORT_SYMBOL(netdev_upper_dev_unlink);
6510
6511/**
6512 * netdev_bonding_info_change - Dispatch event about slave change
6513 * @dev: device
6514 * @bonding_info: info to dispatch
6515 *
6516 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6517 * The caller must hold the RTNL lock.
6518 */
6519void netdev_bonding_info_change(struct net_device *dev,
6520 struct netdev_bonding_info *bonding_info)
6521{
6522 struct netdev_notifier_bonding_info info = {
6523 .info.dev = dev,
6524 };
6525
6526 memcpy(&info.bonding_info, bonding_info,
6527 sizeof(struct netdev_bonding_info));
6528 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6529 &info.info);
6530}
6531EXPORT_SYMBOL(netdev_bonding_info_change);
6532
6533static void netdev_adjacent_add_links(struct net_device *dev)
6534{
6535 struct netdev_adjacent *iter;
6536
6537 struct net *net = dev_net(dev);
6538
6539 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6540 if (!net_eq(net, dev_net(iter->dev)))
6541 continue;
6542 netdev_adjacent_sysfs_add(iter->dev, dev,
6543 &iter->dev->adj_list.lower);
6544 netdev_adjacent_sysfs_add(dev, iter->dev,
6545 &dev->adj_list.upper);
6546 }
6547
6548 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6549 if (!net_eq(net, dev_net(iter->dev)))
6550 continue;
6551 netdev_adjacent_sysfs_add(iter->dev, dev,
6552 &iter->dev->adj_list.upper);
6553 netdev_adjacent_sysfs_add(dev, iter->dev,
6554 &dev->adj_list.lower);
6555 }
6556}
6557
6558static void netdev_adjacent_del_links(struct net_device *dev)
6559{
6560 struct netdev_adjacent *iter;
6561
6562 struct net *net = dev_net(dev);
6563
6564 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6565 if (!net_eq(net, dev_net(iter->dev)))
6566 continue;
6567 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6568 &iter->dev->adj_list.lower);
6569 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6570 &dev->adj_list.upper);
6571 }
6572
6573 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6574 if (!net_eq(net, dev_net(iter->dev)))
6575 continue;
6576 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6577 &iter->dev->adj_list.upper);
6578 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6579 &dev->adj_list.lower);
6580 }
6581}
6582
6583void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6584{
6585 struct netdev_adjacent *iter;
6586
6587 struct net *net = dev_net(dev);
6588
6589 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6590 if (!net_eq(net, dev_net(iter->dev)))
6591 continue;
6592 netdev_adjacent_sysfs_del(iter->dev, oldname,
6593 &iter->dev->adj_list.lower);
6594 netdev_adjacent_sysfs_add(iter->dev, dev,
6595 &iter->dev->adj_list.lower);
6596 }
6597
6598 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6599 if (!net_eq(net, dev_net(iter->dev)))
6600 continue;
6601 netdev_adjacent_sysfs_del(iter->dev, oldname,
6602 &iter->dev->adj_list.upper);
6603 netdev_adjacent_sysfs_add(iter->dev, dev,
6604 &iter->dev->adj_list.upper);
6605 }
6606}
6607
6608void *netdev_lower_dev_get_private(struct net_device *dev,
6609 struct net_device *lower_dev)
6610{
6611 struct netdev_adjacent *lower;
6612
6613 if (!lower_dev)
6614 return NULL;
6615 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6616 if (!lower)
6617 return NULL;
6618
6619 return lower->private;
6620}
6621EXPORT_SYMBOL(netdev_lower_dev_get_private);
6622
6623
6624int dev_get_nest_level(struct net_device *dev)
6625{
6626 struct net_device *lower = NULL;
6627 struct list_head *iter;
6628 int max_nest = -1;
6629 int nest;
6630
6631 ASSERT_RTNL();
6632
6633 netdev_for_each_lower_dev(dev, lower, iter) {
6634 nest = dev_get_nest_level(lower);
6635 if (max_nest < nest)
6636 max_nest = nest;
6637 }
6638
6639 return max_nest + 1;
6640}
6641EXPORT_SYMBOL(dev_get_nest_level);
6642
6643/**
6644 * netdev_lower_change - Dispatch event about lower device state change
6645 * @lower_dev: device
6646 * @lower_state_info: state to dispatch
6647 *
6648 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6649 * The caller must hold the RTNL lock.
6650 */
6651void netdev_lower_state_changed(struct net_device *lower_dev,
6652 void *lower_state_info)
6653{
6654 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6655 .info.dev = lower_dev,
6656 };
6657
6658 ASSERT_RTNL();
6659 changelowerstate_info.lower_state_info = lower_state_info;
6660 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6661 &changelowerstate_info.info);
6662}
6663EXPORT_SYMBOL(netdev_lower_state_changed);
6664
6665static void dev_change_rx_flags(struct net_device *dev, int flags)
6666{
6667 const struct net_device_ops *ops = dev->netdev_ops;
6668
6669 if (ops->ndo_change_rx_flags)
6670 ops->ndo_change_rx_flags(dev, flags);
6671}
6672
6673static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6674{
6675 unsigned int old_flags = dev->flags;
6676 kuid_t uid;
6677 kgid_t gid;
6678
6679 ASSERT_RTNL();
6680
6681 dev->flags |= IFF_PROMISC;
6682 dev->promiscuity += inc;
6683 if (dev->promiscuity == 0) {
6684 /*
6685 * Avoid overflow.
6686 * If inc causes overflow, untouch promisc and return error.
6687 */
6688 if (inc < 0)
6689 dev->flags &= ~IFF_PROMISC;
6690 else {
6691 dev->promiscuity -= inc;
6692 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6693 dev->name);
6694 return -EOVERFLOW;
6695 }
6696 }
6697 if (dev->flags != old_flags) {
6698 pr_info("device %s %s promiscuous mode\n",
6699 dev->name,
6700 dev->flags & IFF_PROMISC ? "entered" : "left");
6701 if (audit_enabled) {
6702 current_uid_gid(&uid, &gid);
6703 audit_log(current->audit_context, GFP_ATOMIC,
6704 AUDIT_ANOM_PROMISCUOUS,
6705 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6706 dev->name, (dev->flags & IFF_PROMISC),
6707 (old_flags & IFF_PROMISC),
6708 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6709 from_kuid(&init_user_ns, uid),
6710 from_kgid(&init_user_ns, gid),
6711 audit_get_sessionid(current));
6712 }
6713
6714 dev_change_rx_flags(dev, IFF_PROMISC);
6715 }
6716 if (notify)
6717 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6718 return 0;
6719}
6720
6721/**
6722 * dev_set_promiscuity - update promiscuity count on a device
6723 * @dev: device
6724 * @inc: modifier
6725 *
6726 * Add or remove promiscuity from a device. While the count in the device
6727 * remains above zero the interface remains promiscuous. Once it hits zero
6728 * the device reverts back to normal filtering operation. A negative inc
6729 * value is used to drop promiscuity on the device.
6730 * Return 0 if successful or a negative errno code on error.
6731 */
6732int dev_set_promiscuity(struct net_device *dev, int inc)
6733{
6734 unsigned int old_flags = dev->flags;
6735 int err;
6736
6737 err = __dev_set_promiscuity(dev, inc, true);
6738 if (err < 0)
6739 return err;
6740 if (dev->flags != old_flags)
6741 dev_set_rx_mode(dev);
6742 return err;
6743}
6744EXPORT_SYMBOL(dev_set_promiscuity);
6745
6746static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6747{
6748 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6749
6750 ASSERT_RTNL();
6751
6752 dev->flags |= IFF_ALLMULTI;
6753 dev->allmulti += inc;
6754 if (dev->allmulti == 0) {
6755 /*
6756 * Avoid overflow.
6757 * If inc causes overflow, untouch allmulti and return error.
6758 */
6759 if (inc < 0)
6760 dev->flags &= ~IFF_ALLMULTI;
6761 else {
6762 dev->allmulti -= inc;
6763 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6764 dev->name);
6765 return -EOVERFLOW;
6766 }
6767 }
6768 if (dev->flags ^ old_flags) {
6769 dev_change_rx_flags(dev, IFF_ALLMULTI);
6770 dev_set_rx_mode(dev);
6771 if (notify)
6772 __dev_notify_flags(dev, old_flags,
6773 dev->gflags ^ old_gflags);
6774 }
6775 return 0;
6776}
6777
6778/**
6779 * dev_set_allmulti - update allmulti count on a device
6780 * @dev: device
6781 * @inc: modifier
6782 *
6783 * Add or remove reception of all multicast frames to a device. While the
6784 * count in the device remains above zero the interface remains listening
6785 * to all interfaces. Once it hits zero the device reverts back to normal
6786 * filtering operation. A negative @inc value is used to drop the counter
6787 * when releasing a resource needing all multicasts.
6788 * Return 0 if successful or a negative errno code on error.
6789 */
6790
6791int dev_set_allmulti(struct net_device *dev, int inc)
6792{
6793 return __dev_set_allmulti(dev, inc, true);
6794}
6795EXPORT_SYMBOL(dev_set_allmulti);
6796
6797/*
6798 * Upload unicast and multicast address lists to device and
6799 * configure RX filtering. When the device doesn't support unicast
6800 * filtering it is put in promiscuous mode while unicast addresses
6801 * are present.
6802 */
6803void __dev_set_rx_mode(struct net_device *dev)
6804{
6805 const struct net_device_ops *ops = dev->netdev_ops;
6806
6807 /* dev_open will call this function so the list will stay sane. */
6808 if (!(dev->flags&IFF_UP))
6809 return;
6810
6811 if (!netif_device_present(dev))
6812 return;
6813
6814 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6815 /* Unicast addresses changes may only happen under the rtnl,
6816 * therefore calling __dev_set_promiscuity here is safe.
6817 */
6818 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6819 __dev_set_promiscuity(dev, 1, false);
6820 dev->uc_promisc = true;
6821 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6822 __dev_set_promiscuity(dev, -1, false);
6823 dev->uc_promisc = false;
6824 }
6825 }
6826
6827 if (ops->ndo_set_rx_mode)
6828 ops->ndo_set_rx_mode(dev);
6829}
6830
6831void dev_set_rx_mode(struct net_device *dev)
6832{
6833 netif_addr_lock_bh(dev);
6834 __dev_set_rx_mode(dev);
6835 netif_addr_unlock_bh(dev);
6836}
6837
6838/**
6839 * dev_get_flags - get flags reported to userspace
6840 * @dev: device
6841 *
6842 * Get the combination of flag bits exported through APIs to userspace.
6843 */
6844unsigned int dev_get_flags(const struct net_device *dev)
6845{
6846 unsigned int flags;
6847
6848 flags = (dev->flags & ~(IFF_PROMISC |
6849 IFF_ALLMULTI |
6850 IFF_RUNNING |
6851 IFF_LOWER_UP |
6852 IFF_DORMANT)) |
6853 (dev->gflags & (IFF_PROMISC |
6854 IFF_ALLMULTI));
6855
6856 if (netif_running(dev)) {
6857 if (netif_oper_up(dev))
6858 flags |= IFF_RUNNING;
6859 if (netif_carrier_ok(dev))
6860 flags |= IFF_LOWER_UP;
6861 if (netif_dormant(dev))
6862 flags |= IFF_DORMANT;
6863 }
6864
6865 return flags;
6866}
6867EXPORT_SYMBOL(dev_get_flags);
6868
6869int __dev_change_flags(struct net_device *dev, unsigned int flags)
6870{
6871 unsigned int old_flags = dev->flags;
6872 int ret;
6873
6874 ASSERT_RTNL();
6875
6876 /*
6877 * Set the flags on our device.
6878 */
6879
6880 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6881 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6882 IFF_AUTOMEDIA)) |
6883 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6884 IFF_ALLMULTI));
6885
6886 /*
6887 * Load in the correct multicast list now the flags have changed.
6888 */
6889
6890 if ((old_flags ^ flags) & IFF_MULTICAST)
6891 dev_change_rx_flags(dev, IFF_MULTICAST);
6892
6893 dev_set_rx_mode(dev);
6894
6895 /*
6896 * Have we downed the interface. We handle IFF_UP ourselves
6897 * according to user attempts to set it, rather than blindly
6898 * setting it.
6899 */
6900
6901 ret = 0;
6902 if ((old_flags ^ flags) & IFF_UP) {
6903 if (old_flags & IFF_UP)
6904 __dev_close(dev);
6905 else
6906 ret = __dev_open(dev);
6907 }
6908
6909 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6910 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6911 unsigned int old_flags = dev->flags;
6912
6913 dev->gflags ^= IFF_PROMISC;
6914
6915 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6916 if (dev->flags != old_flags)
6917 dev_set_rx_mode(dev);
6918 }
6919
6920 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6921 * is important. Some (broken) drivers set IFF_PROMISC, when
6922 * IFF_ALLMULTI is requested not asking us and not reporting.
6923 */
6924 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6925 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6926
6927 dev->gflags ^= IFF_ALLMULTI;
6928 __dev_set_allmulti(dev, inc, false);
6929 }
6930
6931 return ret;
6932}
6933
6934void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6935 unsigned int gchanges)
6936{
6937 unsigned int changes = dev->flags ^ old_flags;
6938
6939 if (gchanges)
6940 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6941
6942 if (changes & IFF_UP) {
6943 if (dev->flags & IFF_UP)
6944 call_netdevice_notifiers(NETDEV_UP, dev);
6945 else
6946 call_netdevice_notifiers(NETDEV_DOWN, dev);
6947 }
6948
6949 if (dev->flags & IFF_UP &&
6950 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6951 struct netdev_notifier_change_info change_info = {
6952 .info = {
6953 .dev = dev,
6954 },
6955 .flags_changed = changes,
6956 };
6957
6958 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
6959 }
6960}
6961
6962/**
6963 * dev_change_flags - change device settings
6964 * @dev: device
6965 * @flags: device state flags
6966 *
6967 * Change settings on device based state flags. The flags are
6968 * in the userspace exported format.
6969 */
6970int dev_change_flags(struct net_device *dev, unsigned int flags)
6971{
6972 int ret;
6973 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6974
6975 ret = __dev_change_flags(dev, flags);
6976 if (ret < 0)
6977 return ret;
6978
6979 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6980 __dev_notify_flags(dev, old_flags, changes);
6981 return ret;
6982}
6983EXPORT_SYMBOL(dev_change_flags);
6984
6985int __dev_set_mtu(struct net_device *dev, int new_mtu)
6986{
6987 const struct net_device_ops *ops = dev->netdev_ops;
6988
6989 if (ops->ndo_change_mtu)
6990 return ops->ndo_change_mtu(dev, new_mtu);
6991
6992 dev->mtu = new_mtu;
6993 return 0;
6994}
6995EXPORT_SYMBOL(__dev_set_mtu);
6996
6997/**
6998 * dev_set_mtu - Change maximum transfer unit
6999 * @dev: device
7000 * @new_mtu: new transfer unit
7001 *
7002 * Change the maximum transfer size of the network device.
7003 */
7004int dev_set_mtu(struct net_device *dev, int new_mtu)
7005{
7006 int err, orig_mtu;
7007
7008 if (new_mtu == dev->mtu)
7009 return 0;
7010
7011 /* MTU must be positive, and in range */
7012 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7013 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7014 dev->name, new_mtu, dev->min_mtu);
7015 return -EINVAL;
7016 }
7017
7018 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7019 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7020 dev->name, new_mtu, dev->max_mtu);
7021 return -EINVAL;
7022 }
7023
7024 if (!netif_device_present(dev))
7025 return -ENODEV;
7026
7027 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7028 err = notifier_to_errno(err);
7029 if (err)
7030 return err;
7031
7032 orig_mtu = dev->mtu;
7033 err = __dev_set_mtu(dev, new_mtu);
7034
7035 if (!err) {
7036 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7037 err = notifier_to_errno(err);
7038 if (err) {
7039 /* setting mtu back and notifying everyone again,
7040 * so that they have a chance to revert changes.
7041 */
7042 __dev_set_mtu(dev, orig_mtu);
7043 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7044 }
7045 }
7046 return err;
7047}
7048EXPORT_SYMBOL(dev_set_mtu);
7049
7050/**
7051 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7052 * @dev: device
7053 * @new_len: new tx queue length
7054 */
7055int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7056{
7057 unsigned int orig_len = dev->tx_queue_len;
7058 int res;
7059
7060 if (new_len != (unsigned int)new_len)
7061 return -ERANGE;
7062
7063 if (new_len != orig_len) {
7064 dev->tx_queue_len = new_len;
7065 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7066 res = notifier_to_errno(res);
7067 if (res) {
7068 netdev_err(dev,
7069 "refused to change device tx_queue_len\n");
7070 dev->tx_queue_len = orig_len;
7071 return res;
7072 }
7073 return dev_qdisc_change_tx_queue_len(dev);
7074 }
7075
7076 return 0;
7077}
7078
7079/**
7080 * dev_set_group - Change group this device belongs to
7081 * @dev: device
7082 * @new_group: group this device should belong to
7083 */
7084void dev_set_group(struct net_device *dev, int new_group)
7085{
7086 dev->group = new_group;
7087}
7088EXPORT_SYMBOL(dev_set_group);
7089
7090/**
7091 * dev_set_mac_address - Change Media Access Control Address
7092 * @dev: device
7093 * @sa: new address
7094 *
7095 * Change the hardware (MAC) address of the device
7096 */
7097int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7098{
7099 const struct net_device_ops *ops = dev->netdev_ops;
7100 int err;
7101
7102 if (!ops->ndo_set_mac_address)
7103 return -EOPNOTSUPP;
7104 if (sa->sa_family != dev->type)
7105 return -EINVAL;
7106 if (!netif_device_present(dev))
7107 return -ENODEV;
7108 err = ops->ndo_set_mac_address(dev, sa);
7109 if (err)
7110 return err;
7111 dev->addr_assign_type = NET_ADDR_SET;
7112 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7113 add_device_randomness(dev->dev_addr, dev->addr_len);
7114 return 0;
7115}
7116EXPORT_SYMBOL(dev_set_mac_address);
7117
7118/**
7119 * dev_change_carrier - Change device carrier
7120 * @dev: device
7121 * @new_carrier: new value
7122 *
7123 * Change device carrier
7124 */
7125int dev_change_carrier(struct net_device *dev, bool new_carrier)
7126{
7127 const struct net_device_ops *ops = dev->netdev_ops;
7128
7129 if (!ops->ndo_change_carrier)
7130 return -EOPNOTSUPP;
7131 if (!netif_device_present(dev))
7132 return -ENODEV;
7133 return ops->ndo_change_carrier(dev, new_carrier);
7134}
7135EXPORT_SYMBOL(dev_change_carrier);
7136
7137/**
7138 * dev_get_phys_port_id - Get device physical port ID
7139 * @dev: device
7140 * @ppid: port ID
7141 *
7142 * Get device physical port ID
7143 */
7144int dev_get_phys_port_id(struct net_device *dev,
7145 struct netdev_phys_item_id *ppid)
7146{
7147 const struct net_device_ops *ops = dev->netdev_ops;
7148
7149 if (!ops->ndo_get_phys_port_id)
7150 return -EOPNOTSUPP;
7151 return ops->ndo_get_phys_port_id(dev, ppid);
7152}
7153EXPORT_SYMBOL(dev_get_phys_port_id);
7154
7155/**
7156 * dev_get_phys_port_name - Get device physical port name
7157 * @dev: device
7158 * @name: port name
7159 * @len: limit of bytes to copy to name
7160 *
7161 * Get device physical port name
7162 */
7163int dev_get_phys_port_name(struct net_device *dev,
7164 char *name, size_t len)
7165{
7166 const struct net_device_ops *ops = dev->netdev_ops;
7167
7168 if (!ops->ndo_get_phys_port_name)
7169 return -EOPNOTSUPP;
7170 return ops->ndo_get_phys_port_name(dev, name, len);
7171}
7172EXPORT_SYMBOL(dev_get_phys_port_name);
7173
7174/**
7175 * dev_change_proto_down - update protocol port state information
7176 * @dev: device
7177 * @proto_down: new value
7178 *
7179 * This info can be used by switch drivers to set the phys state of the
7180 * port.
7181 */
7182int dev_change_proto_down(struct net_device *dev, bool proto_down)
7183{
7184 const struct net_device_ops *ops = dev->netdev_ops;
7185
7186 if (!ops->ndo_change_proto_down)
7187 return -EOPNOTSUPP;
7188 if (!netif_device_present(dev))
7189 return -ENODEV;
7190 return ops->ndo_change_proto_down(dev, proto_down);
7191}
7192EXPORT_SYMBOL(dev_change_proto_down);
7193
7194void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7195 struct netdev_bpf *xdp)
7196{
7197 memset(xdp, 0, sizeof(*xdp));
7198 xdp->command = XDP_QUERY_PROG;
7199
7200 /* Query must always succeed. */
7201 WARN_ON(bpf_op(dev, xdp) < 0);
7202}
7203
7204static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7205{
7206 struct netdev_bpf xdp;
7207
7208 __dev_xdp_query(dev, bpf_op, &xdp);
7209
7210 return xdp.prog_attached;
7211}
7212
7213static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7214 struct netlink_ext_ack *extack, u32 flags,
7215 struct bpf_prog *prog)
7216{
7217 struct netdev_bpf xdp;
7218
7219 memset(&xdp, 0, sizeof(xdp));
7220 if (flags & XDP_FLAGS_HW_MODE)
7221 xdp.command = XDP_SETUP_PROG_HW;
7222 else
7223 xdp.command = XDP_SETUP_PROG;
7224 xdp.extack = extack;
7225 xdp.flags = flags;
7226 xdp.prog = prog;
7227
7228 return bpf_op(dev, &xdp);
7229}
7230
7231static void dev_xdp_uninstall(struct net_device *dev)
7232{
7233 struct netdev_bpf xdp;
7234 bpf_op_t ndo_bpf;
7235
7236 /* Remove generic XDP */
7237 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7238
7239 /* Remove from the driver */
7240 ndo_bpf = dev->netdev_ops->ndo_bpf;
7241 if (!ndo_bpf)
7242 return;
7243
7244 __dev_xdp_query(dev, ndo_bpf, &xdp);
7245 if (xdp.prog_attached == XDP_ATTACHED_NONE)
7246 return;
7247
7248 /* Program removal should always succeed */
7249 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7250}
7251
7252/**
7253 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7254 * @dev: device
7255 * @extack: netlink extended ack
7256 * @fd: new program fd or negative value to clear
7257 * @flags: xdp-related flags
7258 *
7259 * Set or clear a bpf program for a device
7260 */
7261int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7262 int fd, u32 flags)
7263{
7264 const struct net_device_ops *ops = dev->netdev_ops;
7265 struct bpf_prog *prog = NULL;
7266 bpf_op_t bpf_op, bpf_chk;
7267 int err;
7268
7269 ASSERT_RTNL();
7270
7271 bpf_op = bpf_chk = ops->ndo_bpf;
7272 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7273 return -EOPNOTSUPP;
7274 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7275 bpf_op = generic_xdp_install;
7276 if (bpf_op == bpf_chk)
7277 bpf_chk = generic_xdp_install;
7278
7279 if (fd >= 0) {
7280 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7281 return -EEXIST;
7282 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7283 __dev_xdp_attached(dev, bpf_op))
7284 return -EBUSY;
7285
7286 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7287 bpf_op == ops->ndo_bpf);
7288 if (IS_ERR(prog))
7289 return PTR_ERR(prog);
7290
7291 if (!(flags & XDP_FLAGS_HW_MODE) &&
7292 bpf_prog_is_dev_bound(prog->aux)) {
7293 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7294 bpf_prog_put(prog);
7295 return -EINVAL;
7296 }
7297 }
7298
7299 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7300 if (err < 0 && prog)
7301 bpf_prog_put(prog);
7302
7303 return err;
7304}
7305
7306/**
7307 * dev_new_index - allocate an ifindex
7308 * @net: the applicable net namespace
7309 *
7310 * Returns a suitable unique value for a new device interface
7311 * number. The caller must hold the rtnl semaphore or the
7312 * dev_base_lock to be sure it remains unique.
7313 */
7314static int dev_new_index(struct net *net)
7315{
7316 int ifindex = net->ifindex;
7317
7318 for (;;) {
7319 if (++ifindex <= 0)
7320 ifindex = 1;
7321 if (!__dev_get_by_index(net, ifindex))
7322 return net->ifindex = ifindex;
7323 }
7324}
7325
7326/* Delayed registration/unregisteration */
7327static LIST_HEAD(net_todo_list);
7328DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7329
7330static void net_set_todo(struct net_device *dev)
7331{
7332 list_add_tail(&dev->todo_list, &net_todo_list);
7333 dev_net(dev)->dev_unreg_count++;
7334}
7335
7336static void rollback_registered_many(struct list_head *head)
7337{
7338 struct net_device *dev, *tmp;
7339 LIST_HEAD(close_head);
7340
7341 BUG_ON(dev_boot_phase);
7342 ASSERT_RTNL();
7343
7344 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7345 /* Some devices call without registering
7346 * for initialization unwind. Remove those
7347 * devices and proceed with the remaining.
7348 */
7349 if (dev->reg_state == NETREG_UNINITIALIZED) {
7350 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7351 dev->name, dev);
7352
7353 WARN_ON(1);
7354 list_del(&dev->unreg_list);
7355 continue;
7356 }
7357 dev->dismantle = true;
7358 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7359 }
7360
7361 /* If device is running, close it first. */
7362 list_for_each_entry(dev, head, unreg_list)
7363 list_add_tail(&dev->close_list, &close_head);
7364 dev_close_many(&close_head, true);
7365
7366 list_for_each_entry(dev, head, unreg_list) {
7367 /* And unlink it from device chain. */
7368 unlist_netdevice(dev);
7369
7370 dev->reg_state = NETREG_UNREGISTERING;
7371 }
7372 flush_all_backlogs();
7373
7374 synchronize_net();
7375
7376 list_for_each_entry(dev, head, unreg_list) {
7377 struct sk_buff *skb = NULL;
7378
7379 /* Shutdown queueing discipline. */
7380 dev_shutdown(dev);
7381
7382 dev_xdp_uninstall(dev);
7383
7384 /* Notify protocols, that we are about to destroy
7385 * this device. They should clean all the things.
7386 */
7387 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7388
7389 if (!dev->rtnl_link_ops ||
7390 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7391 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7392 GFP_KERNEL, NULL, 0);
7393
7394 /*
7395 * Flush the unicast and multicast chains
7396 */
7397 dev_uc_flush(dev);
7398 dev_mc_flush(dev);
7399
7400 if (dev->netdev_ops->ndo_uninit)
7401 dev->netdev_ops->ndo_uninit(dev);
7402
7403 if (skb)
7404 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7405
7406 /* Notifier chain MUST detach us all upper devices. */
7407 WARN_ON(netdev_has_any_upper_dev(dev));
7408 WARN_ON(netdev_has_any_lower_dev(dev));
7409
7410 /* Remove entries from kobject tree */
7411 netdev_unregister_kobject(dev);
7412#ifdef CONFIG_XPS
7413 /* Remove XPS queueing entries */
7414 netif_reset_xps_queues_gt(dev, 0);
7415#endif
7416 }
7417
7418 synchronize_net();
7419
7420 list_for_each_entry(dev, head, unreg_list)
7421 dev_put(dev);
7422}
7423
7424static void rollback_registered(struct net_device *dev)
7425{
7426 LIST_HEAD(single);
7427
7428 list_add(&dev->unreg_list, &single);
7429 rollback_registered_many(&single);
7430 list_del(&single);
7431}
7432
7433static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7434 struct net_device *upper, netdev_features_t features)
7435{
7436 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7437 netdev_features_t feature;
7438 int feature_bit;
7439
7440 for_each_netdev_feature(&upper_disables, feature_bit) {
7441 feature = __NETIF_F_BIT(feature_bit);
7442 if (!(upper->wanted_features & feature)
7443 && (features & feature)) {
7444 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7445 &feature, upper->name);
7446 features &= ~feature;
7447 }
7448 }
7449
7450 return features;
7451}
7452
7453static void netdev_sync_lower_features(struct net_device *upper,
7454 struct net_device *lower, netdev_features_t features)
7455{
7456 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7457 netdev_features_t feature;
7458 int feature_bit;
7459
7460 for_each_netdev_feature(&upper_disables, feature_bit) {
7461 feature = __NETIF_F_BIT(feature_bit);
7462 if (!(features & feature) && (lower->features & feature)) {
7463 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7464 &feature, lower->name);
7465 lower->wanted_features &= ~feature;
7466 netdev_update_features(lower);
7467
7468 if (unlikely(lower->features & feature))
7469 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7470 &feature, lower->name);
7471 }
7472 }
7473}
7474
7475static netdev_features_t netdev_fix_features(struct net_device *dev,
7476 netdev_features_t features)
7477{
7478 /* Fix illegal checksum combinations */
7479 if ((features & NETIF_F_HW_CSUM) &&
7480 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7481 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7482 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7483 }
7484
7485 /* TSO requires that SG is present as well. */
7486 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7487 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7488 features &= ~NETIF_F_ALL_TSO;
7489 }
7490
7491 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7492 !(features & NETIF_F_IP_CSUM)) {
7493 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7494 features &= ~NETIF_F_TSO;
7495 features &= ~NETIF_F_TSO_ECN;
7496 }
7497
7498 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7499 !(features & NETIF_F_IPV6_CSUM)) {
7500 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7501 features &= ~NETIF_F_TSO6;
7502 }
7503
7504 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7505 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7506 features &= ~NETIF_F_TSO_MANGLEID;
7507
7508 /* TSO ECN requires that TSO is present as well. */
7509 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7510 features &= ~NETIF_F_TSO_ECN;
7511
7512 /* Software GSO depends on SG. */
7513 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7514 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7515 features &= ~NETIF_F_GSO;
7516 }
7517
7518 /* GSO partial features require GSO partial be set */
7519 if ((features & dev->gso_partial_features) &&
7520 !(features & NETIF_F_GSO_PARTIAL)) {
7521 netdev_dbg(dev,
7522 "Dropping partially supported GSO features since no GSO partial.\n");
7523 features &= ~dev->gso_partial_features;
7524 }
7525
7526 if (!(features & NETIF_F_RXCSUM)) {
7527 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7528 * successfully merged by hardware must also have the
7529 * checksum verified by hardware. If the user does not
7530 * want to enable RXCSUM, logically, we should disable GRO_HW.
7531 */
7532 if (features & NETIF_F_GRO_HW) {
7533 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7534 features &= ~NETIF_F_GRO_HW;
7535 }
7536 }
7537
7538 return features;
7539}
7540
7541int __netdev_update_features(struct net_device *dev)
7542{
7543 struct net_device *upper, *lower;
7544 netdev_features_t features;
7545 struct list_head *iter;
7546 int err = -1;
7547
7548 ASSERT_RTNL();
7549
7550 features = netdev_get_wanted_features(dev);
7551
7552 if (dev->netdev_ops->ndo_fix_features)
7553 features = dev->netdev_ops->ndo_fix_features(dev, features);
7554
7555 /* driver might be less strict about feature dependencies */
7556 features = netdev_fix_features(dev, features);
7557
7558 /* some features can't be enabled if they're off an an upper device */
7559 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7560 features = netdev_sync_upper_features(dev, upper, features);
7561
7562 if (dev->features == features)
7563 goto sync_lower;
7564
7565 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7566 &dev->features, &features);
7567
7568 if (dev->netdev_ops->ndo_set_features)
7569 err = dev->netdev_ops->ndo_set_features(dev, features);
7570 else
7571 err = 0;
7572
7573 if (unlikely(err < 0)) {
7574 netdev_err(dev,
7575 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7576 err, &features, &dev->features);
7577 /* return non-0 since some features might have changed and
7578 * it's better to fire a spurious notification than miss it
7579 */
7580 return -1;
7581 }
7582
7583sync_lower:
7584 /* some features must be disabled on lower devices when disabled
7585 * on an upper device (think: bonding master or bridge)
7586 */
7587 netdev_for_each_lower_dev(dev, lower, iter)
7588 netdev_sync_lower_features(dev, lower, features);
7589
7590 if (!err) {
7591 netdev_features_t diff = features ^ dev->features;
7592
7593 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7594 /* udp_tunnel_{get,drop}_rx_info both need
7595 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7596 * device, or they won't do anything.
7597 * Thus we need to update dev->features
7598 * *before* calling udp_tunnel_get_rx_info,
7599 * but *after* calling udp_tunnel_drop_rx_info.
7600 */
7601 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7602 dev->features = features;
7603 udp_tunnel_get_rx_info(dev);
7604 } else {
7605 udp_tunnel_drop_rx_info(dev);
7606 }
7607 }
7608
7609 dev->features = features;
7610 }
7611
7612 return err < 0 ? 0 : 1;
7613}
7614
7615/**
7616 * netdev_update_features - recalculate device features
7617 * @dev: the device to check
7618 *
7619 * Recalculate dev->features set and send notifications if it
7620 * has changed. Should be called after driver or hardware dependent
7621 * conditions might have changed that influence the features.
7622 */
7623void netdev_update_features(struct net_device *dev)
7624{
7625 if (__netdev_update_features(dev))
7626 netdev_features_change(dev);
7627}
7628EXPORT_SYMBOL(netdev_update_features);
7629
7630/**
7631 * netdev_change_features - recalculate device features
7632 * @dev: the device to check
7633 *
7634 * Recalculate dev->features set and send notifications even
7635 * if they have not changed. Should be called instead of
7636 * netdev_update_features() if also dev->vlan_features might
7637 * have changed to allow the changes to be propagated to stacked
7638 * VLAN devices.
7639 */
7640void netdev_change_features(struct net_device *dev)
7641{
7642 __netdev_update_features(dev);
7643 netdev_features_change(dev);
7644}
7645EXPORT_SYMBOL(netdev_change_features);
7646
7647/**
7648 * netif_stacked_transfer_operstate - transfer operstate
7649 * @rootdev: the root or lower level device to transfer state from
7650 * @dev: the device to transfer operstate to
7651 *
7652 * Transfer operational state from root to device. This is normally
7653 * called when a stacking relationship exists between the root
7654 * device and the device(a leaf device).
7655 */
7656void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7657 struct net_device *dev)
7658{
7659 if (rootdev->operstate == IF_OPER_DORMANT)
7660 netif_dormant_on(dev);
7661 else
7662 netif_dormant_off(dev);
7663
7664 if (netif_carrier_ok(rootdev))
7665 netif_carrier_on(dev);
7666 else
7667 netif_carrier_off(dev);
7668}
7669EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7670
7671static int netif_alloc_rx_queues(struct net_device *dev)
7672{
7673 unsigned int i, count = dev->num_rx_queues;
7674 struct netdev_rx_queue *rx;
7675 size_t sz = count * sizeof(*rx);
7676 int err = 0;
7677
7678 BUG_ON(count < 1);
7679
7680 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7681 if (!rx)
7682 return -ENOMEM;
7683
7684 dev->_rx = rx;
7685
7686 for (i = 0; i < count; i++) {
7687 rx[i].dev = dev;
7688
7689 /* XDP RX-queue setup */
7690 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7691 if (err < 0)
7692 goto err_rxq_info;
7693 }
7694 return 0;
7695
7696err_rxq_info:
7697 /* Rollback successful reg's and free other resources */
7698 while (i--)
7699 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7700 kvfree(dev->_rx);
7701 dev->_rx = NULL;
7702 return err;
7703}
7704
7705static void netif_free_rx_queues(struct net_device *dev)
7706{
7707 unsigned int i, count = dev->num_rx_queues;
7708
7709 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7710 if (!dev->_rx)
7711 return;
7712
7713 for (i = 0; i < count; i++)
7714 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
7715
7716 kvfree(dev->_rx);
7717}
7718
7719static void netdev_init_one_queue(struct net_device *dev,
7720 struct netdev_queue *queue, void *_unused)
7721{
7722 /* Initialize queue lock */
7723 spin_lock_init(&queue->_xmit_lock);
7724 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7725 queue->xmit_lock_owner = -1;
7726 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7727 queue->dev = dev;
7728#ifdef CONFIG_BQL
7729 dql_init(&queue->dql, HZ);
7730#endif
7731}
7732
7733static void netif_free_tx_queues(struct net_device *dev)
7734{
7735 kvfree(dev->_tx);
7736}
7737
7738static int netif_alloc_netdev_queues(struct net_device *dev)
7739{
7740 unsigned int count = dev->num_tx_queues;
7741 struct netdev_queue *tx;
7742 size_t sz = count * sizeof(*tx);
7743
7744 if (count < 1 || count > 0xffff)
7745 return -EINVAL;
7746
7747 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7748 if (!tx)
7749 return -ENOMEM;
7750
7751 dev->_tx = tx;
7752
7753 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7754 spin_lock_init(&dev->tx_global_lock);
7755
7756 return 0;
7757}
7758
7759void netif_tx_stop_all_queues(struct net_device *dev)
7760{
7761 unsigned int i;
7762
7763 for (i = 0; i < dev->num_tx_queues; i++) {
7764 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7765
7766 netif_tx_stop_queue(txq);
7767 }
7768}
7769EXPORT_SYMBOL(netif_tx_stop_all_queues);
7770
7771/**
7772 * register_netdevice - register a network device
7773 * @dev: device to register
7774 *
7775 * Take a completed network device structure and add it to the kernel
7776 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7777 * chain. 0 is returned on success. A negative errno code is returned
7778 * on a failure to set up the device, or if the name is a duplicate.
7779 *
7780 * Callers must hold the rtnl semaphore. You may want
7781 * register_netdev() instead of this.
7782 *
7783 * BUGS:
7784 * The locking appears insufficient to guarantee two parallel registers
7785 * will not get the same name.
7786 */
7787
7788int register_netdevice(struct net_device *dev)
7789{
7790 int ret;
7791 struct net *net = dev_net(dev);
7792
7793 BUG_ON(dev_boot_phase);
7794 ASSERT_RTNL();
7795
7796 might_sleep();
7797
7798 /* When net_device's are persistent, this will be fatal. */
7799 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7800 BUG_ON(!net);
7801
7802 spin_lock_init(&dev->addr_list_lock);
7803 netdev_set_addr_lockdep_class(dev);
7804
7805 ret = dev_get_valid_name(net, dev, dev->name);
7806 if (ret < 0)
7807 goto out;
7808
7809 /* Init, if this function is available */
7810 if (dev->netdev_ops->ndo_init) {
7811 ret = dev->netdev_ops->ndo_init(dev);
7812 if (ret) {
7813 if (ret > 0)
7814 ret = -EIO;
7815 goto out;
7816 }
7817 }
7818
7819 if (((dev->hw_features | dev->features) &
7820 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7821 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7822 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7823 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7824 ret = -EINVAL;
7825 goto err_uninit;
7826 }
7827
7828 ret = -EBUSY;
7829 if (!dev->ifindex)
7830 dev->ifindex = dev_new_index(net);
7831 else if (__dev_get_by_index(net, dev->ifindex))
7832 goto err_uninit;
7833
7834 /* Transfer changeable features to wanted_features and enable
7835 * software offloads (GSO and GRO).
7836 */
7837 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7838 dev->features |= NETIF_F_SOFT_FEATURES;
7839
7840 if (dev->netdev_ops->ndo_udp_tunnel_add) {
7841 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7842 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7843 }
7844
7845 dev->wanted_features = dev->features & dev->hw_features;
7846
7847 if (!(dev->flags & IFF_LOOPBACK))
7848 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7849
7850 /* If IPv4 TCP segmentation offload is supported we should also
7851 * allow the device to enable segmenting the frame with the option
7852 * of ignoring a static IP ID value. This doesn't enable the
7853 * feature itself but allows the user to enable it later.
7854 */
7855 if (dev->hw_features & NETIF_F_TSO)
7856 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7857 if (dev->vlan_features & NETIF_F_TSO)
7858 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7859 if (dev->mpls_features & NETIF_F_TSO)
7860 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7861 if (dev->hw_enc_features & NETIF_F_TSO)
7862 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7863
7864 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7865 */
7866 dev->vlan_features |= NETIF_F_HIGHDMA;
7867
7868 /* Make NETIF_F_SG inheritable to tunnel devices.
7869 */
7870 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7871
7872 /* Make NETIF_F_SG inheritable to MPLS.
7873 */
7874 dev->mpls_features |= NETIF_F_SG;
7875
7876 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7877 ret = notifier_to_errno(ret);
7878 if (ret)
7879 goto err_uninit;
7880
7881 ret = netdev_register_kobject(dev);
7882 if (ret)
7883 goto err_uninit;
7884 dev->reg_state = NETREG_REGISTERED;
7885
7886 __netdev_update_features(dev);
7887
7888 /*
7889 * Default initial state at registry is that the
7890 * device is present.
7891 */
7892
7893 set_bit(__LINK_STATE_PRESENT, &dev->state);
7894
7895 linkwatch_init_dev(dev);
7896
7897 dev_init_scheduler(dev);
7898 dev_hold(dev);
7899 list_netdevice(dev);
7900 add_device_randomness(dev->dev_addr, dev->addr_len);
7901
7902 /* If the device has permanent device address, driver should
7903 * set dev_addr and also addr_assign_type should be set to
7904 * NET_ADDR_PERM (default value).
7905 */
7906 if (dev->addr_assign_type == NET_ADDR_PERM)
7907 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7908
7909 /* Notify protocols, that a new device appeared. */
7910 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7911 ret = notifier_to_errno(ret);
7912 if (ret) {
7913 rollback_registered(dev);
7914 dev->reg_state = NETREG_UNREGISTERED;
7915 }
7916 /*
7917 * Prevent userspace races by waiting until the network
7918 * device is fully setup before sending notifications.
7919 */
7920 if (!dev->rtnl_link_ops ||
7921 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7922 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7923
7924out:
7925 return ret;
7926
7927err_uninit:
7928 if (dev->netdev_ops->ndo_uninit)
7929 dev->netdev_ops->ndo_uninit(dev);
7930 if (dev->priv_destructor)
7931 dev->priv_destructor(dev);
7932 goto out;
7933}
7934EXPORT_SYMBOL(register_netdevice);
7935
7936/**
7937 * init_dummy_netdev - init a dummy network device for NAPI
7938 * @dev: device to init
7939 *
7940 * This takes a network device structure and initialize the minimum
7941 * amount of fields so it can be used to schedule NAPI polls without
7942 * registering a full blown interface. This is to be used by drivers
7943 * that need to tie several hardware interfaces to a single NAPI
7944 * poll scheduler due to HW limitations.
7945 */
7946int init_dummy_netdev(struct net_device *dev)
7947{
7948 /* Clear everything. Note we don't initialize spinlocks
7949 * are they aren't supposed to be taken by any of the
7950 * NAPI code and this dummy netdev is supposed to be
7951 * only ever used for NAPI polls
7952 */
7953 memset(dev, 0, sizeof(struct net_device));
7954
7955 /* make sure we BUG if trying to hit standard
7956 * register/unregister code path
7957 */
7958 dev->reg_state = NETREG_DUMMY;
7959
7960 /* NAPI wants this */
7961 INIT_LIST_HEAD(&dev->napi_list);
7962
7963 /* a dummy interface is started by default */
7964 set_bit(__LINK_STATE_PRESENT, &dev->state);
7965 set_bit(__LINK_STATE_START, &dev->state);
7966
7967 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7968 * because users of this 'device' dont need to change
7969 * its refcount.
7970 */
7971
7972 return 0;
7973}
7974EXPORT_SYMBOL_GPL(init_dummy_netdev);
7975
7976
7977/**
7978 * register_netdev - register a network device
7979 * @dev: device to register
7980 *
7981 * Take a completed network device structure and add it to the kernel
7982 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7983 * chain. 0 is returned on success. A negative errno code is returned
7984 * on a failure to set up the device, or if the name is a duplicate.
7985 *
7986 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7987 * and expands the device name if you passed a format string to
7988 * alloc_netdev.
7989 */
7990int register_netdev(struct net_device *dev)
7991{
7992 int err;
7993
7994 rtnl_lock();
7995 err = register_netdevice(dev);
7996 rtnl_unlock();
7997 return err;
7998}
7999EXPORT_SYMBOL(register_netdev);
8000
8001int netdev_refcnt_read(const struct net_device *dev)
8002{
8003 int i, refcnt = 0;
8004
8005 for_each_possible_cpu(i)
8006 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8007 return refcnt;
8008}
8009EXPORT_SYMBOL(netdev_refcnt_read);
8010
8011/**
8012 * netdev_wait_allrefs - wait until all references are gone.
8013 * @dev: target net_device
8014 *
8015 * This is called when unregistering network devices.
8016 *
8017 * Any protocol or device that holds a reference should register
8018 * for netdevice notification, and cleanup and put back the
8019 * reference if they receive an UNREGISTER event.
8020 * We can get stuck here if buggy protocols don't correctly
8021 * call dev_put.
8022 */
8023static void netdev_wait_allrefs(struct net_device *dev)
8024{
8025 unsigned long rebroadcast_time, warning_time;
8026 int refcnt;
8027
8028 linkwatch_forget_dev(dev);
8029
8030 rebroadcast_time = warning_time = jiffies;
8031 refcnt = netdev_refcnt_read(dev);
8032
8033 while (refcnt != 0) {
8034 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8035 rtnl_lock();
8036
8037 /* Rebroadcast unregister notification */
8038 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8039
8040 __rtnl_unlock();
8041 rcu_barrier();
8042 rtnl_lock();
8043
8044 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8045 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8046 &dev->state)) {
8047 /* We must not have linkwatch events
8048 * pending on unregister. If this
8049 * happens, we simply run the queue
8050 * unscheduled, resulting in a noop
8051 * for this device.
8052 */
8053 linkwatch_run_queue();
8054 }
8055
8056 __rtnl_unlock();
8057
8058 rebroadcast_time = jiffies;
8059 }
8060
8061 msleep(250);
8062
8063 refcnt = netdev_refcnt_read(dev);
8064
8065 if (time_after(jiffies, warning_time + 10 * HZ)) {
8066 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8067 dev->name, refcnt);
8068 warning_time = jiffies;
8069 }
8070 }
8071}
8072
8073/* The sequence is:
8074 *
8075 * rtnl_lock();
8076 * ...
8077 * register_netdevice(x1);
8078 * register_netdevice(x2);
8079 * ...
8080 * unregister_netdevice(y1);
8081 * unregister_netdevice(y2);
8082 * ...
8083 * rtnl_unlock();
8084 * free_netdev(y1);
8085 * free_netdev(y2);
8086 *
8087 * We are invoked by rtnl_unlock().
8088 * This allows us to deal with problems:
8089 * 1) We can delete sysfs objects which invoke hotplug
8090 * without deadlocking with linkwatch via keventd.
8091 * 2) Since we run with the RTNL semaphore not held, we can sleep
8092 * safely in order to wait for the netdev refcnt to drop to zero.
8093 *
8094 * We must not return until all unregister events added during
8095 * the interval the lock was held have been completed.
8096 */
8097void netdev_run_todo(void)
8098{
8099 struct list_head list;
8100
8101 /* Snapshot list, allow later requests */
8102 list_replace_init(&net_todo_list, &list);
8103
8104 __rtnl_unlock();
8105
8106
8107 /* Wait for rcu callbacks to finish before next phase */
8108 if (!list_empty(&list))
8109 rcu_barrier();
8110
8111 while (!list_empty(&list)) {
8112 struct net_device *dev
8113 = list_first_entry(&list, struct net_device, todo_list);
8114 list_del(&dev->todo_list);
8115
8116 rtnl_lock();
8117 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8118 __rtnl_unlock();
8119
8120 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8121 pr_err("network todo '%s' but state %d\n",
8122 dev->name, dev->reg_state);
8123 dump_stack();
8124 continue;
8125 }
8126
8127 dev->reg_state = NETREG_UNREGISTERED;
8128
8129 netdev_wait_allrefs(dev);
8130
8131 /* paranoia */
8132 BUG_ON(netdev_refcnt_read(dev));
8133 BUG_ON(!list_empty(&dev->ptype_all));
8134 BUG_ON(!list_empty(&dev->ptype_specific));
8135 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8136 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8137 WARN_ON(dev->dn_ptr);
8138
8139 if (dev->priv_destructor)
8140 dev->priv_destructor(dev);
8141 if (dev->needs_free_netdev)
8142 free_netdev(dev);
8143
8144 /* Report a network device has been unregistered */
8145 rtnl_lock();
8146 dev_net(dev)->dev_unreg_count--;
8147 __rtnl_unlock();
8148 wake_up(&netdev_unregistering_wq);
8149
8150 /* Free network device */
8151 kobject_put(&dev->dev.kobj);
8152 }
8153}
8154
8155/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8156 * all the same fields in the same order as net_device_stats, with only
8157 * the type differing, but rtnl_link_stats64 may have additional fields
8158 * at the end for newer counters.
8159 */
8160void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8161 const struct net_device_stats *netdev_stats)
8162{
8163#if BITS_PER_LONG == 64
8164 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8165 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8166 /* zero out counters that only exist in rtnl_link_stats64 */
8167 memset((char *)stats64 + sizeof(*netdev_stats), 0,
8168 sizeof(*stats64) - sizeof(*netdev_stats));
8169#else
8170 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8171 const unsigned long *src = (const unsigned long *)netdev_stats;
8172 u64 *dst = (u64 *)stats64;
8173
8174 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8175 for (i = 0; i < n; i++)
8176 dst[i] = src[i];
8177 /* zero out counters that only exist in rtnl_link_stats64 */
8178 memset((char *)stats64 + n * sizeof(u64), 0,
8179 sizeof(*stats64) - n * sizeof(u64));
8180#endif
8181}
8182EXPORT_SYMBOL(netdev_stats_to_stats64);
8183
8184/**
8185 * dev_get_stats - get network device statistics
8186 * @dev: device to get statistics from
8187 * @storage: place to store stats
8188 *
8189 * Get network statistics from device. Return @storage.
8190 * The device driver may provide its own method by setting
8191 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8192 * otherwise the internal statistics structure is used.
8193 */
8194struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8195 struct rtnl_link_stats64 *storage)
8196{
8197 const struct net_device_ops *ops = dev->netdev_ops;
8198
8199 if (ops->ndo_get_stats64) {
8200 memset(storage, 0, sizeof(*storage));
8201 ops->ndo_get_stats64(dev, storage);
8202 } else if (ops->ndo_get_stats) {
8203 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8204 } else {
8205 netdev_stats_to_stats64(storage, &dev->stats);
8206 }
8207 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8208 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8209 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8210 return storage;
8211}
8212EXPORT_SYMBOL(dev_get_stats);
8213
8214struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8215{
8216 struct netdev_queue *queue = dev_ingress_queue(dev);
8217
8218#ifdef CONFIG_NET_CLS_ACT
8219 if (queue)
8220 return queue;
8221 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8222 if (!queue)
8223 return NULL;
8224 netdev_init_one_queue(dev, queue, NULL);
8225 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8226 queue->qdisc_sleeping = &noop_qdisc;
8227 rcu_assign_pointer(dev->ingress_queue, queue);
8228#endif
8229 return queue;
8230}
8231
8232static const struct ethtool_ops default_ethtool_ops;
8233
8234void netdev_set_default_ethtool_ops(struct net_device *dev,
8235 const struct ethtool_ops *ops)
8236{
8237 if (dev->ethtool_ops == &default_ethtool_ops)
8238 dev->ethtool_ops = ops;
8239}
8240EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8241
8242void netdev_freemem(struct net_device *dev)
8243{
8244 char *addr = (char *)dev - dev->padded;
8245
8246 kvfree(addr);
8247}
8248
8249/**
8250 * alloc_netdev_mqs - allocate network device
8251 * @sizeof_priv: size of private data to allocate space for
8252 * @name: device name format string
8253 * @name_assign_type: origin of device name
8254 * @setup: callback to initialize device
8255 * @txqs: the number of TX subqueues to allocate
8256 * @rxqs: the number of RX subqueues to allocate
8257 *
8258 * Allocates a struct net_device with private data area for driver use
8259 * and performs basic initialization. Also allocates subqueue structs
8260 * for each queue on the device.
8261 */
8262struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8263 unsigned char name_assign_type,
8264 void (*setup)(struct net_device *),
8265 unsigned int txqs, unsigned int rxqs)
8266{
8267 struct net_device *dev;
8268 unsigned int alloc_size;
8269 struct net_device *p;
8270
8271 BUG_ON(strlen(name) >= sizeof(dev->name));
8272
8273 if (txqs < 1) {
8274 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8275 return NULL;
8276 }
8277
8278 if (rxqs < 1) {
8279 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8280 return NULL;
8281 }
8282
8283 alloc_size = sizeof(struct net_device);
8284 if (sizeof_priv) {
8285 /* ensure 32-byte alignment of private area */
8286 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8287 alloc_size += sizeof_priv;
8288 }
8289 /* ensure 32-byte alignment of whole construct */
8290 alloc_size += NETDEV_ALIGN - 1;
8291
8292 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8293 if (!p)
8294 return NULL;
8295
8296 dev = PTR_ALIGN(p, NETDEV_ALIGN);
8297 dev->padded = (char *)dev - (char *)p;
8298
8299 dev->pcpu_refcnt = alloc_percpu(int);
8300 if (!dev->pcpu_refcnt)
8301 goto free_dev;
8302
8303 if (dev_addr_init(dev))
8304 goto free_pcpu;
8305
8306 dev_mc_init(dev);
8307 dev_uc_init(dev);
8308
8309 dev_net_set(dev, &init_net);
8310
8311 dev->gso_max_size = GSO_MAX_SIZE;
8312 dev->gso_max_segs = GSO_MAX_SEGS;
8313
8314 INIT_LIST_HEAD(&dev->napi_list);
8315 INIT_LIST_HEAD(&dev->unreg_list);
8316 INIT_LIST_HEAD(&dev->close_list);
8317 INIT_LIST_HEAD(&dev->link_watch_list);
8318 INIT_LIST_HEAD(&dev->adj_list.upper);
8319 INIT_LIST_HEAD(&dev->adj_list.lower);
8320 INIT_LIST_HEAD(&dev->ptype_all);
8321 INIT_LIST_HEAD(&dev->ptype_specific);
8322#ifdef CONFIG_NET_SCHED
8323 hash_init(dev->qdisc_hash);
8324#endif
8325 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8326 setup(dev);
8327
8328 if (!dev->tx_queue_len) {
8329 dev->priv_flags |= IFF_NO_QUEUE;
8330 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8331 }
8332
8333 dev->num_tx_queues = txqs;
8334 dev->real_num_tx_queues = txqs;
8335 if (netif_alloc_netdev_queues(dev))
8336 goto free_all;
8337
8338 dev->num_rx_queues = rxqs;
8339 dev->real_num_rx_queues = rxqs;
8340 if (netif_alloc_rx_queues(dev))
8341 goto free_all;
8342
8343 strcpy(dev->name, name);
8344 dev->name_assign_type = name_assign_type;
8345 dev->group = INIT_NETDEV_GROUP;
8346 if (!dev->ethtool_ops)
8347 dev->ethtool_ops = &default_ethtool_ops;
8348
8349 nf_hook_ingress_init(dev);
8350
8351 return dev;
8352
8353free_all:
8354 free_netdev(dev);
8355 return NULL;
8356
8357free_pcpu:
8358 free_percpu(dev->pcpu_refcnt);
8359free_dev:
8360 netdev_freemem(dev);
8361 return NULL;
8362}
8363EXPORT_SYMBOL(alloc_netdev_mqs);
8364
8365/**
8366 * free_netdev - free network device
8367 * @dev: device
8368 *
8369 * This function does the last stage of destroying an allocated device
8370 * interface. The reference to the device object is released. If this
8371 * is the last reference then it will be freed.Must be called in process
8372 * context.
8373 */
8374void free_netdev(struct net_device *dev)
8375{
8376 struct napi_struct *p, *n;
8377
8378 might_sleep();
8379 netif_free_tx_queues(dev);
8380 netif_free_rx_queues(dev);
8381
8382 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8383
8384 /* Flush device addresses */
8385 dev_addr_flush(dev);
8386
8387 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8388 netif_napi_del(p);
8389
8390 free_percpu(dev->pcpu_refcnt);
8391 dev->pcpu_refcnt = NULL;
8392
8393 /* Compatibility with error handling in drivers */
8394 if (dev->reg_state == NETREG_UNINITIALIZED) {
8395 netdev_freemem(dev);
8396 return;
8397 }
8398
8399 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8400 dev->reg_state = NETREG_RELEASED;
8401
8402 /* will free via device release */
8403 put_device(&dev->dev);
8404}
8405EXPORT_SYMBOL(free_netdev);
8406
8407/**
8408 * synchronize_net - Synchronize with packet receive processing
8409 *
8410 * Wait for packets currently being received to be done.
8411 * Does not block later packets from starting.
8412 */
8413void synchronize_net(void)
8414{
8415 might_sleep();
8416 if (rtnl_is_locked())
8417 synchronize_rcu_expedited();
8418 else
8419 synchronize_rcu();
8420}
8421EXPORT_SYMBOL(synchronize_net);
8422
8423/**
8424 * unregister_netdevice_queue - remove device from the kernel
8425 * @dev: device
8426 * @head: list
8427 *
8428 * This function shuts down a device interface and removes it
8429 * from the kernel tables.
8430 * If head not NULL, device is queued to be unregistered later.
8431 *
8432 * Callers must hold the rtnl semaphore. You may want
8433 * unregister_netdev() instead of this.
8434 */
8435
8436void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8437{
8438 ASSERT_RTNL();
8439
8440 if (head) {
8441 list_move_tail(&dev->unreg_list, head);
8442 } else {
8443 rollback_registered(dev);
8444 /* Finish processing unregister after unlock */
8445 net_set_todo(dev);
8446 }
8447}
8448EXPORT_SYMBOL(unregister_netdevice_queue);
8449
8450/**
8451 * unregister_netdevice_many - unregister many devices
8452 * @head: list of devices
8453 *
8454 * Note: As most callers use a stack allocated list_head,
8455 * we force a list_del() to make sure stack wont be corrupted later.
8456 */
8457void unregister_netdevice_many(struct list_head *head)
8458{
8459 struct net_device *dev;
8460
8461 if (!list_empty(head)) {
8462 rollback_registered_many(head);
8463 list_for_each_entry(dev, head, unreg_list)
8464 net_set_todo(dev);
8465 list_del(head);
8466 }
8467}
8468EXPORT_SYMBOL(unregister_netdevice_many);
8469
8470/**
8471 * unregister_netdev - remove device from the kernel
8472 * @dev: device
8473 *
8474 * This function shuts down a device interface and removes it
8475 * from the kernel tables.
8476 *
8477 * This is just a wrapper for unregister_netdevice that takes
8478 * the rtnl semaphore. In general you want to use this and not
8479 * unregister_netdevice.
8480 */
8481void unregister_netdev(struct net_device *dev)
8482{
8483 rtnl_lock();
8484 unregister_netdevice(dev);
8485 rtnl_unlock();
8486}
8487EXPORT_SYMBOL(unregister_netdev);
8488
8489/**
8490 * dev_change_net_namespace - move device to different nethost namespace
8491 * @dev: device
8492 * @net: network namespace
8493 * @pat: If not NULL name pattern to try if the current device name
8494 * is already taken in the destination network namespace.
8495 *
8496 * This function shuts down a device interface and moves it
8497 * to a new network namespace. On success 0 is returned, on
8498 * a failure a netagive errno code is returned.
8499 *
8500 * Callers must hold the rtnl semaphore.
8501 */
8502
8503int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8504{
8505 int err, new_nsid, new_ifindex;
8506
8507 ASSERT_RTNL();
8508
8509 /* Don't allow namespace local devices to be moved. */
8510 err = -EINVAL;
8511 if (dev->features & NETIF_F_NETNS_LOCAL)
8512 goto out;
8513
8514 /* Ensure the device has been registrered */
8515 if (dev->reg_state != NETREG_REGISTERED)
8516 goto out;
8517
8518 /* Get out if there is nothing todo */
8519 err = 0;
8520 if (net_eq(dev_net(dev), net))
8521 goto out;
8522
8523 /* Pick the destination device name, and ensure
8524 * we can use it in the destination network namespace.
8525 */
8526 err = -EEXIST;
8527 if (__dev_get_by_name(net, dev->name)) {
8528 /* We get here if we can't use the current device name */
8529 if (!pat)
8530 goto out;
8531 if (dev_get_valid_name(net, dev, pat) < 0)
8532 goto out;
8533 }
8534
8535 /*
8536 * And now a mini version of register_netdevice unregister_netdevice.
8537 */
8538
8539 /* If device is running close it first. */
8540 dev_close(dev);
8541
8542 /* And unlink it from device chain */
8543 err = -ENODEV;
8544 unlist_netdevice(dev);
8545
8546 synchronize_net();
8547
8548 /* Shutdown queueing discipline. */
8549 dev_shutdown(dev);
8550
8551 /* Notify protocols, that we are about to destroy
8552 * this device. They should clean all the things.
8553 *
8554 * Note that dev->reg_state stays at NETREG_REGISTERED.
8555 * This is wanted because this way 8021q and macvlan know
8556 * the device is just moving and can keep their slaves up.
8557 */
8558 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8559 rcu_barrier();
8560 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8561
8562 new_nsid = peernet2id_alloc(dev_net(dev), net);
8563 /* If there is an ifindex conflict assign a new one */
8564 if (__dev_get_by_index(net, dev->ifindex))
8565 new_ifindex = dev_new_index(net);
8566 else
8567 new_ifindex = dev->ifindex;
8568
8569 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8570 new_ifindex);
8571
8572 /*
8573 * Flush the unicast and multicast chains
8574 */
8575 dev_uc_flush(dev);
8576 dev_mc_flush(dev);
8577
8578 /* Send a netdev-removed uevent to the old namespace */
8579 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8580 netdev_adjacent_del_links(dev);
8581
8582 /* Actually switch the network namespace */
8583 dev_net_set(dev, net);
8584 dev->ifindex = new_ifindex;
8585
8586 /* Send a netdev-add uevent to the new namespace */
8587 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8588 netdev_adjacent_add_links(dev);
8589
8590 /* Fixup kobjects */
8591 err = device_rename(&dev->dev, dev->name);
8592 WARN_ON(err);
8593
8594 /* Add the device back in the hashes */
8595 list_netdevice(dev);
8596
8597 /* Notify protocols, that a new device appeared. */
8598 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8599
8600 /*
8601 * Prevent userspace races by waiting until the network
8602 * device is fully setup before sending notifications.
8603 */
8604 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8605
8606 synchronize_net();
8607 err = 0;
8608out:
8609 return err;
8610}
8611EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8612
8613static int dev_cpu_dead(unsigned int oldcpu)
8614{
8615 struct sk_buff **list_skb;
8616 struct sk_buff *skb;
8617 unsigned int cpu;
8618 struct softnet_data *sd, *oldsd, *remsd = NULL;
8619
8620 local_irq_disable();
8621 cpu = smp_processor_id();
8622 sd = &per_cpu(softnet_data, cpu);
8623 oldsd = &per_cpu(softnet_data, oldcpu);
8624
8625 /* Find end of our completion_queue. */
8626 list_skb = &sd->completion_queue;
8627 while (*list_skb)
8628 list_skb = &(*list_skb)->next;
8629 /* Append completion queue from offline CPU. */
8630 *list_skb = oldsd->completion_queue;
8631 oldsd->completion_queue = NULL;
8632
8633 /* Append output queue from offline CPU. */
8634 if (oldsd->output_queue) {
8635 *sd->output_queue_tailp = oldsd->output_queue;
8636 sd->output_queue_tailp = oldsd->output_queue_tailp;
8637 oldsd->output_queue = NULL;
8638 oldsd->output_queue_tailp = &oldsd->output_queue;
8639 }
8640 /* Append NAPI poll list from offline CPU, with one exception :
8641 * process_backlog() must be called by cpu owning percpu backlog.
8642 * We properly handle process_queue & input_pkt_queue later.
8643 */
8644 while (!list_empty(&oldsd->poll_list)) {
8645 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8646 struct napi_struct,
8647 poll_list);
8648
8649 list_del_init(&napi->poll_list);
8650 if (napi->poll == process_backlog)
8651 napi->state = 0;
8652 else
8653 ____napi_schedule(sd, napi);
8654 }
8655
8656 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8657 local_irq_enable();
8658
8659#ifdef CONFIG_RPS
8660 remsd = oldsd->rps_ipi_list;
8661 oldsd->rps_ipi_list = NULL;
8662#endif
8663 /* send out pending IPI's on offline CPU */
8664 net_rps_send_ipi(remsd);
8665
8666 /* Process offline CPU's input_pkt_queue */
8667 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8668 netif_rx_ni(skb);
8669 input_queue_head_incr(oldsd);
8670 }
8671 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8672 netif_rx_ni(skb);
8673 input_queue_head_incr(oldsd);
8674 }
8675
8676 return 0;
8677}
8678
8679/**
8680 * netdev_increment_features - increment feature set by one
8681 * @all: current feature set
8682 * @one: new feature set
8683 * @mask: mask feature set
8684 *
8685 * Computes a new feature set after adding a device with feature set
8686 * @one to the master device with current feature set @all. Will not
8687 * enable anything that is off in @mask. Returns the new feature set.
8688 */
8689netdev_features_t netdev_increment_features(netdev_features_t all,
8690 netdev_features_t one, netdev_features_t mask)
8691{
8692 if (mask & NETIF_F_HW_CSUM)
8693 mask |= NETIF_F_CSUM_MASK;
8694 mask |= NETIF_F_VLAN_CHALLENGED;
8695
8696 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8697 all &= one | ~NETIF_F_ALL_FOR_ALL;
8698
8699 /* If one device supports hw checksumming, set for all. */
8700 if (all & NETIF_F_HW_CSUM)
8701 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8702
8703 return all;
8704}
8705EXPORT_SYMBOL(netdev_increment_features);
8706
8707static struct hlist_head * __net_init netdev_create_hash(void)
8708{
8709 int i;
8710 struct hlist_head *hash;
8711
8712 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8713 if (hash != NULL)
8714 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8715 INIT_HLIST_HEAD(&hash[i]);
8716
8717 return hash;
8718}
8719
8720/* Initialize per network namespace state */
8721static int __net_init netdev_init(struct net *net)
8722{
8723 if (net != &init_net)
8724 INIT_LIST_HEAD(&net->dev_base_head);
8725
8726 net->dev_name_head = netdev_create_hash();
8727 if (net->dev_name_head == NULL)
8728 goto err_name;
8729
8730 net->dev_index_head = netdev_create_hash();
8731 if (net->dev_index_head == NULL)
8732 goto err_idx;
8733
8734 return 0;
8735
8736err_idx:
8737 kfree(net->dev_name_head);
8738err_name:
8739 return -ENOMEM;
8740}
8741
8742/**
8743 * netdev_drivername - network driver for the device
8744 * @dev: network device
8745 *
8746 * Determine network driver for device.
8747 */
8748const char *netdev_drivername(const struct net_device *dev)
8749{
8750 const struct device_driver *driver;
8751 const struct device *parent;
8752 const char *empty = "";
8753
8754 parent = dev->dev.parent;
8755 if (!parent)
8756 return empty;
8757
8758 driver = parent->driver;
8759 if (driver && driver->name)
8760 return driver->name;
8761 return empty;
8762}
8763
8764static void __netdev_printk(const char *level, const struct net_device *dev,
8765 struct va_format *vaf)
8766{
8767 if (dev && dev->dev.parent) {
8768 dev_printk_emit(level[1] - '0',
8769 dev->dev.parent,
8770 "%s %s %s%s: %pV",
8771 dev_driver_string(dev->dev.parent),
8772 dev_name(dev->dev.parent),
8773 netdev_name(dev), netdev_reg_state(dev),
8774 vaf);
8775 } else if (dev) {
8776 printk("%s%s%s: %pV",
8777 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8778 } else {
8779 printk("%s(NULL net_device): %pV", level, vaf);
8780 }
8781}
8782
8783void netdev_printk(const char *level, const struct net_device *dev,
8784 const char *format, ...)
8785{
8786 struct va_format vaf;
8787 va_list args;
8788
8789 va_start(args, format);
8790
8791 vaf.fmt = format;
8792 vaf.va = &args;
8793
8794 __netdev_printk(level, dev, &vaf);
8795
8796 va_end(args);
8797}
8798EXPORT_SYMBOL(netdev_printk);
8799
8800#define define_netdev_printk_level(func, level) \
8801void func(const struct net_device *dev, const char *fmt, ...) \
8802{ \
8803 struct va_format vaf; \
8804 va_list args; \
8805 \
8806 va_start(args, fmt); \
8807 \
8808 vaf.fmt = fmt; \
8809 vaf.va = &args; \
8810 \
8811 __netdev_printk(level, dev, &vaf); \
8812 \
8813 va_end(args); \
8814} \
8815EXPORT_SYMBOL(func);
8816
8817define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8818define_netdev_printk_level(netdev_alert, KERN_ALERT);
8819define_netdev_printk_level(netdev_crit, KERN_CRIT);
8820define_netdev_printk_level(netdev_err, KERN_ERR);
8821define_netdev_printk_level(netdev_warn, KERN_WARNING);
8822define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8823define_netdev_printk_level(netdev_info, KERN_INFO);
8824
8825static void __net_exit netdev_exit(struct net *net)
8826{
8827 kfree(net->dev_name_head);
8828 kfree(net->dev_index_head);
8829 if (net != &init_net)
8830 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8831}
8832
8833static struct pernet_operations __net_initdata netdev_net_ops = {
8834 .init = netdev_init,
8835 .exit = netdev_exit,
8836};
8837
8838static void __net_exit default_device_exit(struct net *net)
8839{
8840 struct net_device *dev, *aux;
8841 /*
8842 * Push all migratable network devices back to the
8843 * initial network namespace
8844 */
8845 rtnl_lock();
8846 for_each_netdev_safe(net, dev, aux) {
8847 int err;
8848 char fb_name[IFNAMSIZ];
8849
8850 /* Ignore unmoveable devices (i.e. loopback) */
8851 if (dev->features & NETIF_F_NETNS_LOCAL)
8852 continue;
8853
8854 /* Leave virtual devices for the generic cleanup */
8855 if (dev->rtnl_link_ops)
8856 continue;
8857
8858 /* Push remaining network devices to init_net */
8859 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8860 err = dev_change_net_namespace(dev, &init_net, fb_name);
8861 if (err) {
8862 pr_emerg("%s: failed to move %s to init_net: %d\n",
8863 __func__, dev->name, err);
8864 BUG();
8865 }
8866 }
8867 rtnl_unlock();
8868}
8869
8870static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8871{
8872 /* Return with the rtnl_lock held when there are no network
8873 * devices unregistering in any network namespace in net_list.
8874 */
8875 struct net *net;
8876 bool unregistering;
8877 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8878
8879 add_wait_queue(&netdev_unregistering_wq, &wait);
8880 for (;;) {
8881 unregistering = false;
8882 rtnl_lock();
8883 list_for_each_entry(net, net_list, exit_list) {
8884 if (net->dev_unreg_count > 0) {
8885 unregistering = true;
8886 break;
8887 }
8888 }
8889 if (!unregistering)
8890 break;
8891 __rtnl_unlock();
8892
8893 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8894 }
8895 remove_wait_queue(&netdev_unregistering_wq, &wait);
8896}
8897
8898static void __net_exit default_device_exit_batch(struct list_head *net_list)
8899{
8900 /* At exit all network devices most be removed from a network
8901 * namespace. Do this in the reverse order of registration.
8902 * Do this across as many network namespaces as possible to
8903 * improve batching efficiency.
8904 */
8905 struct net_device *dev;
8906 struct net *net;
8907 LIST_HEAD(dev_kill_list);
8908
8909 /* To prevent network device cleanup code from dereferencing
8910 * loopback devices or network devices that have been freed
8911 * wait here for all pending unregistrations to complete,
8912 * before unregistring the loopback device and allowing the
8913 * network namespace be freed.
8914 *
8915 * The netdev todo list containing all network devices
8916 * unregistrations that happen in default_device_exit_batch
8917 * will run in the rtnl_unlock() at the end of
8918 * default_device_exit_batch.
8919 */
8920 rtnl_lock_unregistering(net_list);
8921 list_for_each_entry(net, net_list, exit_list) {
8922 for_each_netdev_reverse(net, dev) {
8923 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8924 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8925 else
8926 unregister_netdevice_queue(dev, &dev_kill_list);
8927 }
8928 }
8929 unregister_netdevice_many(&dev_kill_list);
8930 rtnl_unlock();
8931}
8932
8933static struct pernet_operations __net_initdata default_device_ops = {
8934 .exit = default_device_exit,
8935 .exit_batch = default_device_exit_batch,
8936};
8937
8938/*
8939 * Initialize the DEV module. At boot time this walks the device list and
8940 * unhooks any devices that fail to initialise (normally hardware not
8941 * present) and leaves us with a valid list of present and active devices.
8942 *
8943 */
8944
8945/*
8946 * This is called single threaded during boot, so no need
8947 * to take the rtnl semaphore.
8948 */
8949static int __init net_dev_init(void)
8950{
8951 int i, rc = -ENOMEM;
8952
8953 BUG_ON(!dev_boot_phase);
8954
8955 if (dev_proc_init())
8956 goto out;
8957
8958 if (netdev_kobject_init())
8959 goto out;
8960
8961 INIT_LIST_HEAD(&ptype_all);
8962 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8963 INIT_LIST_HEAD(&ptype_base[i]);
8964
8965 INIT_LIST_HEAD(&offload_base);
8966
8967 if (register_pernet_subsys(&netdev_net_ops))
8968 goto out;
8969
8970 /*
8971 * Initialise the packet receive queues.
8972 */
8973
8974 for_each_possible_cpu(i) {
8975 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8976 struct softnet_data *sd = &per_cpu(softnet_data, i);
8977
8978 INIT_WORK(flush, flush_backlog);
8979
8980 skb_queue_head_init(&sd->input_pkt_queue);
8981 skb_queue_head_init(&sd->process_queue);
8982#ifdef CONFIG_XFRM_OFFLOAD
8983 skb_queue_head_init(&sd->xfrm_backlog);
8984#endif
8985 INIT_LIST_HEAD(&sd->poll_list);
8986 sd->output_queue_tailp = &sd->output_queue;
8987#ifdef CONFIG_RPS
8988 sd->csd.func = rps_trigger_softirq;
8989 sd->csd.info = sd;
8990 sd->cpu = i;
8991#endif
8992
8993 sd->backlog.poll = process_backlog;
8994 sd->backlog.weight = weight_p;
8995 }
8996
8997 dev_boot_phase = 0;
8998
8999 /* The loopback device is special if any other network devices
9000 * is present in a network namespace the loopback device must
9001 * be present. Since we now dynamically allocate and free the
9002 * loopback device ensure this invariant is maintained by
9003 * keeping the loopback device as the first device on the
9004 * list of network devices. Ensuring the loopback devices
9005 * is the first device that appears and the last network device
9006 * that disappears.
9007 */
9008 if (register_pernet_device(&loopback_net_ops))
9009 goto out;
9010
9011 if (register_pernet_device(&default_device_ops))
9012 goto out;
9013
9014 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9015 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9016
9017 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9018 NULL, dev_cpu_dead);
9019 WARN_ON(rc < 0);
9020 rc = 0;
9021out:
9022 return rc;
9023}
9024
9025subsys_initcall(net_dev_init);