Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * sparse memory mappings.
4 */
5#include <linux/mm.h>
6#include <linux/slab.h>
7#include <linux/mmzone.h>
8#include <linux/bootmem.h>
9#include <linux/compiler.h>
10#include <linux/highmem.h>
11#include <linux/export.h>
12#include <linux/spinlock.h>
13#include <linux/vmalloc.h>
14
15#include "internal.h"
16#include <asm/dma.h>
17#include <asm/pgalloc.h>
18#include <asm/pgtable.h>
19
20/*
21 * Permanent SPARSEMEM data:
22 *
23 * 1) mem_section - memory sections, mem_map's for valid memory
24 */
25#ifdef CONFIG_SPARSEMEM_EXTREME
26struct mem_section **mem_section;
27#else
28struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 ____cacheline_internodealigned_in_smp;
30#endif
31EXPORT_SYMBOL(mem_section);
32
33#ifdef NODE_NOT_IN_PAGE_FLAGS
34/*
35 * If we did not store the node number in the page then we have to
36 * do a lookup in the section_to_node_table in order to find which
37 * node the page belongs to.
38 */
39#if MAX_NUMNODES <= 256
40static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41#else
42static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43#endif
44
45int page_to_nid(const struct page *page)
46{
47 return section_to_node_table[page_to_section(page)];
48}
49EXPORT_SYMBOL(page_to_nid);
50
51static void set_section_nid(unsigned long section_nr, int nid)
52{
53 section_to_node_table[section_nr] = nid;
54}
55#else /* !NODE_NOT_IN_PAGE_FLAGS */
56static inline void set_section_nid(unsigned long section_nr, int nid)
57{
58}
59#endif
60
61#ifdef CONFIG_SPARSEMEM_EXTREME
62static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63{
64 struct mem_section *section = NULL;
65 unsigned long array_size = SECTIONS_PER_ROOT *
66 sizeof(struct mem_section);
67
68 if (slab_is_available())
69 section = kzalloc_node(array_size, GFP_KERNEL, nid);
70 else
71 section = memblock_virt_alloc_node(array_size, nid);
72
73 return section;
74}
75
76static int __meminit sparse_index_init(unsigned long section_nr, int nid)
77{
78 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
79 struct mem_section *section;
80
81 if (mem_section[root])
82 return -EEXIST;
83
84 section = sparse_index_alloc(nid);
85 if (!section)
86 return -ENOMEM;
87
88 mem_section[root] = section;
89
90 return 0;
91}
92#else /* !SPARSEMEM_EXTREME */
93static inline int sparse_index_init(unsigned long section_nr, int nid)
94{
95 return 0;
96}
97#endif
98
99#ifdef CONFIG_SPARSEMEM_EXTREME
100int __section_nr(struct mem_section* ms)
101{
102 unsigned long root_nr;
103 struct mem_section *root = NULL;
104
105 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
106 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
107 if (!root)
108 continue;
109
110 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
111 break;
112 }
113
114 VM_BUG_ON(!root);
115
116 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
117}
118#else
119int __section_nr(struct mem_section* ms)
120{
121 return (int)(ms - mem_section[0]);
122}
123#endif
124
125/*
126 * During early boot, before section_mem_map is used for an actual
127 * mem_map, we use section_mem_map to store the section's NUMA
128 * node. This keeps us from having to use another data structure. The
129 * node information is cleared just before we store the real mem_map.
130 */
131static inline unsigned long sparse_encode_early_nid(int nid)
132{
133 return (nid << SECTION_NID_SHIFT);
134}
135
136static inline int sparse_early_nid(struct mem_section *section)
137{
138 return (section->section_mem_map >> SECTION_NID_SHIFT);
139}
140
141/* Validate the physical addressing limitations of the model */
142void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143 unsigned long *end_pfn)
144{
145 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
146
147 /*
148 * Sanity checks - do not allow an architecture to pass
149 * in larger pfns than the maximum scope of sparsemem:
150 */
151 if (*start_pfn > max_sparsemem_pfn) {
152 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154 *start_pfn, *end_pfn, max_sparsemem_pfn);
155 WARN_ON_ONCE(1);
156 *start_pfn = max_sparsemem_pfn;
157 *end_pfn = max_sparsemem_pfn;
158 } else if (*end_pfn > max_sparsemem_pfn) {
159 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161 *start_pfn, *end_pfn, max_sparsemem_pfn);
162 WARN_ON_ONCE(1);
163 *end_pfn = max_sparsemem_pfn;
164 }
165}
166
167/*
168 * There are a number of times that we loop over NR_MEM_SECTIONS,
169 * looking for section_present() on each. But, when we have very
170 * large physical address spaces, NR_MEM_SECTIONS can also be
171 * very large which makes the loops quite long.
172 *
173 * Keeping track of this gives us an easy way to break out of
174 * those loops early.
175 */
176int __highest_present_section_nr;
177static void section_mark_present(struct mem_section *ms)
178{
179 int section_nr = __section_nr(ms);
180
181 if (section_nr > __highest_present_section_nr)
182 __highest_present_section_nr = section_nr;
183
184 ms->section_mem_map |= SECTION_MARKED_PRESENT;
185}
186
187static inline int next_present_section_nr(int section_nr)
188{
189 do {
190 section_nr++;
191 if (present_section_nr(section_nr))
192 return section_nr;
193 } while ((section_nr < NR_MEM_SECTIONS) &&
194 (section_nr <= __highest_present_section_nr));
195
196 return -1;
197}
198#define for_each_present_section_nr(start, section_nr) \
199 for (section_nr = next_present_section_nr(start-1); \
200 ((section_nr >= 0) && \
201 (section_nr < NR_MEM_SECTIONS) && \
202 (section_nr <= __highest_present_section_nr)); \
203 section_nr = next_present_section_nr(section_nr))
204
205/* Record a memory area against a node. */
206void __init memory_present(int nid, unsigned long start, unsigned long end)
207{
208 unsigned long pfn;
209
210#ifdef CONFIG_SPARSEMEM_EXTREME
211 if (unlikely(!mem_section)) {
212 unsigned long size, align;
213
214 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
215 align = 1 << (INTERNODE_CACHE_SHIFT);
216 mem_section = memblock_virt_alloc(size, align);
217 }
218#endif
219
220 start &= PAGE_SECTION_MASK;
221 mminit_validate_memmodel_limits(&start, &end);
222 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
223 unsigned long section = pfn_to_section_nr(pfn);
224 struct mem_section *ms;
225
226 sparse_index_init(section, nid);
227 set_section_nid(section, nid);
228
229 ms = __nr_to_section(section);
230 if (!ms->section_mem_map) {
231 ms->section_mem_map = sparse_encode_early_nid(nid) |
232 SECTION_IS_ONLINE;
233 section_mark_present(ms);
234 }
235 }
236}
237
238/*
239 * Only used by the i386 NUMA architecures, but relatively
240 * generic code.
241 */
242unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
243 unsigned long end_pfn)
244{
245 unsigned long pfn;
246 unsigned long nr_pages = 0;
247
248 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
249 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
250 if (nid != early_pfn_to_nid(pfn))
251 continue;
252
253 if (pfn_present(pfn))
254 nr_pages += PAGES_PER_SECTION;
255 }
256
257 return nr_pages * sizeof(struct page);
258}
259
260/*
261 * Subtle, we encode the real pfn into the mem_map such that
262 * the identity pfn - section_mem_map will return the actual
263 * physical page frame number.
264 */
265static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
266{
267 unsigned long coded_mem_map =
268 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
269 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
270 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
271 return coded_mem_map;
272}
273
274/*
275 * Decode mem_map from the coded memmap
276 */
277struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
278{
279 /* mask off the extra low bits of information */
280 coded_mem_map &= SECTION_MAP_MASK;
281 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
282}
283
284static int __meminit sparse_init_one_section(struct mem_section *ms,
285 unsigned long pnum, struct page *mem_map,
286 unsigned long *pageblock_bitmap)
287{
288 if (!present_section(ms))
289 return -EINVAL;
290
291 ms->section_mem_map &= ~SECTION_MAP_MASK;
292 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
293 SECTION_HAS_MEM_MAP;
294 ms->pageblock_flags = pageblock_bitmap;
295
296 return 1;
297}
298
299unsigned long usemap_size(void)
300{
301 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
302}
303
304#ifdef CONFIG_MEMORY_HOTPLUG
305static unsigned long *__kmalloc_section_usemap(void)
306{
307 return kmalloc(usemap_size(), GFP_KERNEL);
308}
309#endif /* CONFIG_MEMORY_HOTPLUG */
310
311#ifdef CONFIG_MEMORY_HOTREMOVE
312static unsigned long * __init
313sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
314 unsigned long size)
315{
316 unsigned long goal, limit;
317 unsigned long *p;
318 int nid;
319 /*
320 * A page may contain usemaps for other sections preventing the
321 * page being freed and making a section unremovable while
322 * other sections referencing the usemap remain active. Similarly,
323 * a pgdat can prevent a section being removed. If section A
324 * contains a pgdat and section B contains the usemap, both
325 * sections become inter-dependent. This allocates usemaps
326 * from the same section as the pgdat where possible to avoid
327 * this problem.
328 */
329 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
330 limit = goal + (1UL << PA_SECTION_SHIFT);
331 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
332again:
333 p = memblock_virt_alloc_try_nid_nopanic(size,
334 SMP_CACHE_BYTES, goal, limit,
335 nid);
336 if (!p && limit) {
337 limit = 0;
338 goto again;
339 }
340 return p;
341}
342
343static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
344{
345 unsigned long usemap_snr, pgdat_snr;
346 static unsigned long old_usemap_snr;
347 static unsigned long old_pgdat_snr;
348 struct pglist_data *pgdat = NODE_DATA(nid);
349 int usemap_nid;
350
351 /* First call */
352 if (!old_usemap_snr) {
353 old_usemap_snr = NR_MEM_SECTIONS;
354 old_pgdat_snr = NR_MEM_SECTIONS;
355 }
356
357 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
358 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
359 if (usemap_snr == pgdat_snr)
360 return;
361
362 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
363 /* skip redundant message */
364 return;
365
366 old_usemap_snr = usemap_snr;
367 old_pgdat_snr = pgdat_snr;
368
369 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
370 if (usemap_nid != nid) {
371 pr_info("node %d must be removed before remove section %ld\n",
372 nid, usemap_snr);
373 return;
374 }
375 /*
376 * There is a circular dependency.
377 * Some platforms allow un-removable section because they will just
378 * gather other removable sections for dynamic partitioning.
379 * Just notify un-removable section's number here.
380 */
381 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
382 usemap_snr, pgdat_snr, nid);
383}
384#else
385static unsigned long * __init
386sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
387 unsigned long size)
388{
389 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
390}
391
392static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
393{
394}
395#endif /* CONFIG_MEMORY_HOTREMOVE */
396
397static void __init sparse_early_usemaps_alloc_node(void *data,
398 unsigned long pnum_begin,
399 unsigned long pnum_end,
400 unsigned long usemap_count, int nodeid)
401{
402 void *usemap;
403 unsigned long pnum;
404 unsigned long **usemap_map = (unsigned long **)data;
405 int size = usemap_size();
406
407 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
408 size * usemap_count);
409 if (!usemap) {
410 pr_warn("%s: allocation failed\n", __func__);
411 return;
412 }
413
414 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
415 if (!present_section_nr(pnum))
416 continue;
417 usemap_map[pnum] = usemap;
418 usemap += size;
419 check_usemap_section_nr(nodeid, usemap_map[pnum]);
420 }
421}
422
423#ifndef CONFIG_SPARSEMEM_VMEMMAP
424struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid,
425 struct vmem_altmap *altmap)
426{
427 struct page *map;
428 unsigned long size;
429
430 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
431 if (map)
432 return map;
433
434 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
435 map = memblock_virt_alloc_try_nid(size,
436 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
437 BOOTMEM_ALLOC_ACCESSIBLE, nid);
438 return map;
439}
440void __init sparse_mem_maps_populate_node(struct page **map_map,
441 unsigned long pnum_begin,
442 unsigned long pnum_end,
443 unsigned long map_count, int nodeid)
444{
445 void *map;
446 unsigned long pnum;
447 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
448
449 map = alloc_remap(nodeid, size * map_count);
450 if (map) {
451 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
452 if (!present_section_nr(pnum))
453 continue;
454 map_map[pnum] = map;
455 map += size;
456 }
457 return;
458 }
459
460 size = PAGE_ALIGN(size);
461 map = memblock_virt_alloc_try_nid_raw(size * map_count,
462 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
463 BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
464 if (map) {
465 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
466 if (!present_section_nr(pnum))
467 continue;
468 map_map[pnum] = map;
469 map += size;
470 }
471 return;
472 }
473
474 /* fallback */
475 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
476 struct mem_section *ms;
477
478 if (!present_section_nr(pnum))
479 continue;
480 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid, NULL);
481 if (map_map[pnum])
482 continue;
483 ms = __nr_to_section(pnum);
484 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
485 __func__);
486 ms->section_mem_map = 0;
487 }
488}
489#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
490
491#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
492static void __init sparse_early_mem_maps_alloc_node(void *data,
493 unsigned long pnum_begin,
494 unsigned long pnum_end,
495 unsigned long map_count, int nodeid)
496{
497 struct page **map_map = (struct page **)data;
498 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
499 map_count, nodeid);
500}
501#else
502static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
503{
504 struct page *map;
505 struct mem_section *ms = __nr_to_section(pnum);
506 int nid = sparse_early_nid(ms);
507
508 map = sparse_mem_map_populate(pnum, nid, NULL);
509 if (map)
510 return map;
511
512 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
513 __func__);
514 ms->section_mem_map = 0;
515 return NULL;
516}
517#endif
518
519void __weak __meminit vmemmap_populate_print_last(void)
520{
521}
522
523/**
524 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
525 * @map: usemap_map for pageblock flags or mmap_map for vmemmap
526 */
527static void __init alloc_usemap_and_memmap(void (*alloc_func)
528 (void *, unsigned long, unsigned long,
529 unsigned long, int), void *data)
530{
531 unsigned long pnum;
532 unsigned long map_count;
533 int nodeid_begin = 0;
534 unsigned long pnum_begin = 0;
535
536 for_each_present_section_nr(0, pnum) {
537 struct mem_section *ms;
538
539 ms = __nr_to_section(pnum);
540 nodeid_begin = sparse_early_nid(ms);
541 pnum_begin = pnum;
542 break;
543 }
544 map_count = 1;
545 for_each_present_section_nr(pnum_begin + 1, pnum) {
546 struct mem_section *ms;
547 int nodeid;
548
549 ms = __nr_to_section(pnum);
550 nodeid = sparse_early_nid(ms);
551 if (nodeid == nodeid_begin) {
552 map_count++;
553 continue;
554 }
555 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
556 alloc_func(data, pnum_begin, pnum,
557 map_count, nodeid_begin);
558 /* new start, update count etc*/
559 nodeid_begin = nodeid;
560 pnum_begin = pnum;
561 map_count = 1;
562 }
563 /* ok, last chunk */
564 alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
565 map_count, nodeid_begin);
566}
567
568/*
569 * Allocate the accumulated non-linear sections, allocate a mem_map
570 * for each and record the physical to section mapping.
571 */
572void __init sparse_init(void)
573{
574 unsigned long pnum;
575 struct page *map;
576 unsigned long *usemap;
577 unsigned long **usemap_map;
578 int size;
579#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
580 int size2;
581 struct page **map_map;
582#endif
583
584 /* see include/linux/mmzone.h 'struct mem_section' definition */
585 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
586
587 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
588 set_pageblock_order();
589
590 /*
591 * map is using big page (aka 2M in x86 64 bit)
592 * usemap is less one page (aka 24 bytes)
593 * so alloc 2M (with 2M align) and 24 bytes in turn will
594 * make next 2M slip to one more 2M later.
595 * then in big system, the memory will have a lot of holes...
596 * here try to allocate 2M pages continuously.
597 *
598 * powerpc need to call sparse_init_one_section right after each
599 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
600 */
601 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
602 usemap_map = memblock_virt_alloc(size, 0);
603 if (!usemap_map)
604 panic("can not allocate usemap_map\n");
605 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
606 (void *)usemap_map);
607
608#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
609 size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
610 map_map = memblock_virt_alloc(size2, 0);
611 if (!map_map)
612 panic("can not allocate map_map\n");
613 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
614 (void *)map_map);
615#endif
616
617 for_each_present_section_nr(0, pnum) {
618 usemap = usemap_map[pnum];
619 if (!usemap)
620 continue;
621
622#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
623 map = map_map[pnum];
624#else
625 map = sparse_early_mem_map_alloc(pnum);
626#endif
627 if (!map)
628 continue;
629
630 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
631 usemap);
632 }
633
634 vmemmap_populate_print_last();
635
636#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
637 memblock_free_early(__pa(map_map), size2);
638#endif
639 memblock_free_early(__pa(usemap_map), size);
640}
641
642#ifdef CONFIG_MEMORY_HOTPLUG
643
644/* Mark all memory sections within the pfn range as online */
645void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
646{
647 unsigned long pfn;
648
649 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
650 unsigned long section_nr = pfn_to_section_nr(pfn);
651 struct mem_section *ms;
652
653 /* onlining code should never touch invalid ranges */
654 if (WARN_ON(!valid_section_nr(section_nr)))
655 continue;
656
657 ms = __nr_to_section(section_nr);
658 ms->section_mem_map |= SECTION_IS_ONLINE;
659 }
660}
661
662#ifdef CONFIG_MEMORY_HOTREMOVE
663/* Mark all memory sections within the pfn range as online */
664void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
665{
666 unsigned long pfn;
667
668 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
669 unsigned long section_nr = pfn_to_section_nr(start_pfn);
670 struct mem_section *ms;
671
672 /*
673 * TODO this needs some double checking. Offlining code makes
674 * sure to check pfn_valid but those checks might be just bogus
675 */
676 if (WARN_ON(!valid_section_nr(section_nr)))
677 continue;
678
679 ms = __nr_to_section(section_nr);
680 ms->section_mem_map &= ~SECTION_IS_ONLINE;
681 }
682}
683#endif
684
685#ifdef CONFIG_SPARSEMEM_VMEMMAP
686static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
687 struct vmem_altmap *altmap)
688{
689 /* This will make the necessary allocations eventually. */
690 return sparse_mem_map_populate(pnum, nid, altmap);
691}
692static void __kfree_section_memmap(struct page *memmap,
693 struct vmem_altmap *altmap)
694{
695 unsigned long start = (unsigned long)memmap;
696 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
697
698 vmemmap_free(start, end, altmap);
699}
700#ifdef CONFIG_MEMORY_HOTREMOVE
701static void free_map_bootmem(struct page *memmap)
702{
703 unsigned long start = (unsigned long)memmap;
704 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
705
706 vmemmap_free(start, end, NULL);
707}
708#endif /* CONFIG_MEMORY_HOTREMOVE */
709#else
710static struct page *__kmalloc_section_memmap(void)
711{
712 struct page *page, *ret;
713 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
714
715 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
716 if (page)
717 goto got_map_page;
718
719 ret = vmalloc(memmap_size);
720 if (ret)
721 goto got_map_ptr;
722
723 return NULL;
724got_map_page:
725 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
726got_map_ptr:
727
728 return ret;
729}
730
731static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
732 struct vmem_altmap *altmap)
733{
734 return __kmalloc_section_memmap();
735}
736
737static void __kfree_section_memmap(struct page *memmap,
738 struct vmem_altmap *altmap)
739{
740 if (is_vmalloc_addr(memmap))
741 vfree(memmap);
742 else
743 free_pages((unsigned long)memmap,
744 get_order(sizeof(struct page) * PAGES_PER_SECTION));
745}
746
747#ifdef CONFIG_MEMORY_HOTREMOVE
748static void free_map_bootmem(struct page *memmap)
749{
750 unsigned long maps_section_nr, removing_section_nr, i;
751 unsigned long magic, nr_pages;
752 struct page *page = virt_to_page(memmap);
753
754 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
755 >> PAGE_SHIFT;
756
757 for (i = 0; i < nr_pages; i++, page++) {
758 magic = (unsigned long) page->freelist;
759
760 BUG_ON(magic == NODE_INFO);
761
762 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
763 removing_section_nr = page_private(page);
764
765 /*
766 * When this function is called, the removing section is
767 * logical offlined state. This means all pages are isolated
768 * from page allocator. If removing section's memmap is placed
769 * on the same section, it must not be freed.
770 * If it is freed, page allocator may allocate it which will
771 * be removed physically soon.
772 */
773 if (maps_section_nr != removing_section_nr)
774 put_page_bootmem(page);
775 }
776}
777#endif /* CONFIG_MEMORY_HOTREMOVE */
778#endif /* CONFIG_SPARSEMEM_VMEMMAP */
779
780/*
781 * returns the number of sections whose mem_maps were properly
782 * set. If this is <=0, then that means that the passed-in
783 * map was not consumed and must be freed.
784 */
785int __meminit sparse_add_one_section(struct pglist_data *pgdat,
786 unsigned long start_pfn, struct vmem_altmap *altmap)
787{
788 unsigned long section_nr = pfn_to_section_nr(start_pfn);
789 struct mem_section *ms;
790 struct page *memmap;
791 unsigned long *usemap;
792 unsigned long flags;
793 int ret;
794
795 /*
796 * no locking for this, because it does its own
797 * plus, it does a kmalloc
798 */
799 ret = sparse_index_init(section_nr, pgdat->node_id);
800 if (ret < 0 && ret != -EEXIST)
801 return ret;
802 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, altmap);
803 if (!memmap)
804 return -ENOMEM;
805 usemap = __kmalloc_section_usemap();
806 if (!usemap) {
807 __kfree_section_memmap(memmap, altmap);
808 return -ENOMEM;
809 }
810
811 pgdat_resize_lock(pgdat, &flags);
812
813 ms = __pfn_to_section(start_pfn);
814 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
815 ret = -EEXIST;
816 goto out;
817 }
818
819 memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
820
821 section_mark_present(ms);
822
823 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
824
825out:
826 pgdat_resize_unlock(pgdat, &flags);
827 if (ret <= 0) {
828 kfree(usemap);
829 __kfree_section_memmap(memmap, altmap);
830 }
831 return ret;
832}
833
834#ifdef CONFIG_MEMORY_HOTREMOVE
835#ifdef CONFIG_MEMORY_FAILURE
836static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
837{
838 int i;
839
840 if (!memmap)
841 return;
842
843 for (i = 0; i < nr_pages; i++) {
844 if (PageHWPoison(&memmap[i])) {
845 atomic_long_sub(1, &num_poisoned_pages);
846 ClearPageHWPoison(&memmap[i]);
847 }
848 }
849}
850#else
851static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
852{
853}
854#endif
855
856static void free_section_usemap(struct page *memmap, unsigned long *usemap,
857 struct vmem_altmap *altmap)
858{
859 struct page *usemap_page;
860
861 if (!usemap)
862 return;
863
864 usemap_page = virt_to_page(usemap);
865 /*
866 * Check to see if allocation came from hot-plug-add
867 */
868 if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
869 kfree(usemap);
870 if (memmap)
871 __kfree_section_memmap(memmap, altmap);
872 return;
873 }
874
875 /*
876 * The usemap came from bootmem. This is packed with other usemaps
877 * on the section which has pgdat at boot time. Just keep it as is now.
878 */
879
880 if (memmap)
881 free_map_bootmem(memmap);
882}
883
884void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
885 unsigned long map_offset, struct vmem_altmap *altmap)
886{
887 struct page *memmap = NULL;
888 unsigned long *usemap = NULL, flags;
889 struct pglist_data *pgdat = zone->zone_pgdat;
890
891 pgdat_resize_lock(pgdat, &flags);
892 if (ms->section_mem_map) {
893 usemap = ms->pageblock_flags;
894 memmap = sparse_decode_mem_map(ms->section_mem_map,
895 __section_nr(ms));
896 ms->section_mem_map = 0;
897 ms->pageblock_flags = NULL;
898 }
899 pgdat_resize_unlock(pgdat, &flags);
900
901 clear_hwpoisoned_pages(memmap + map_offset,
902 PAGES_PER_SECTION - map_offset);
903 free_section_usemap(memmap, usemap, altmap);
904}
905#endif /* CONFIG_MEMORY_HOTREMOVE */
906#endif /* CONFIG_MEMORY_HOTPLUG */