at v4.16-rc2 142 kB view raw
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25#ifndef _LINUX_NETDEVICE_H 26#define _LINUX_NETDEVICE_H 27 28#include <linux/timer.h> 29#include <linux/bug.h> 30#include <linux/delay.h> 31#include <linux/atomic.h> 32#include <linux/prefetch.h> 33#include <asm/cache.h> 34#include <asm/byteorder.h> 35 36#include <linux/percpu.h> 37#include <linux/rculist.h> 38#include <linux/workqueue.h> 39#include <linux/dynamic_queue_limits.h> 40 41#include <linux/ethtool.h> 42#include <net/net_namespace.h> 43#ifdef CONFIG_DCB 44#include <net/dcbnl.h> 45#endif 46#include <net/netprio_cgroup.h> 47#include <net/xdp.h> 48 49#include <linux/netdev_features.h> 50#include <linux/neighbour.h> 51#include <uapi/linux/netdevice.h> 52#include <uapi/linux/if_bonding.h> 53#include <uapi/linux/pkt_cls.h> 54#include <linux/hashtable.h> 55 56struct netpoll_info; 57struct device; 58struct phy_device; 59struct dsa_port; 60 61/* 802.11 specific */ 62struct wireless_dev; 63/* 802.15.4 specific */ 64struct wpan_dev; 65struct mpls_dev; 66/* UDP Tunnel offloads */ 67struct udp_tunnel_info; 68struct bpf_prog; 69struct xdp_buff; 70 71void netdev_set_default_ethtool_ops(struct net_device *dev, 72 const struct ethtool_ops *ops); 73 74/* Backlog congestion levels */ 75#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 76#define NET_RX_DROP 1 /* packet dropped */ 77 78/* 79 * Transmit return codes: transmit return codes originate from three different 80 * namespaces: 81 * 82 * - qdisc return codes 83 * - driver transmit return codes 84 * - errno values 85 * 86 * Drivers are allowed to return any one of those in their hard_start_xmit() 87 * function. Real network devices commonly used with qdiscs should only return 88 * the driver transmit return codes though - when qdiscs are used, the actual 89 * transmission happens asynchronously, so the value is not propagated to 90 * higher layers. Virtual network devices transmit synchronously; in this case 91 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 92 * others are propagated to higher layers. 93 */ 94 95/* qdisc ->enqueue() return codes. */ 96#define NET_XMIT_SUCCESS 0x00 97#define NET_XMIT_DROP 0x01 /* skb dropped */ 98#define NET_XMIT_CN 0x02 /* congestion notification */ 99#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 100 101/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 102 * indicates that the device will soon be dropping packets, or already drops 103 * some packets of the same priority; prompting us to send less aggressively. */ 104#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 105#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 106 107/* Driver transmit return codes */ 108#define NETDEV_TX_MASK 0xf0 109 110enum netdev_tx { 111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 112 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 114}; 115typedef enum netdev_tx netdev_tx_t; 116 117/* 118 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 119 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 120 */ 121static inline bool dev_xmit_complete(int rc) 122{ 123 /* 124 * Positive cases with an skb consumed by a driver: 125 * - successful transmission (rc == NETDEV_TX_OK) 126 * - error while transmitting (rc < 0) 127 * - error while queueing to a different device (rc & NET_XMIT_MASK) 128 */ 129 if (likely(rc < NET_XMIT_MASK)) 130 return true; 131 132 return false; 133} 134 135/* 136 * Compute the worst-case header length according to the protocols 137 * used. 138 */ 139 140#if defined(CONFIG_HYPERV_NET) 141# define LL_MAX_HEADER 128 142#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 143# if defined(CONFIG_MAC80211_MESH) 144# define LL_MAX_HEADER 128 145# else 146# define LL_MAX_HEADER 96 147# endif 148#else 149# define LL_MAX_HEADER 32 150#endif 151 152#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 153 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 154#define MAX_HEADER LL_MAX_HEADER 155#else 156#define MAX_HEADER (LL_MAX_HEADER + 48) 157#endif 158 159/* 160 * Old network device statistics. Fields are native words 161 * (unsigned long) so they can be read and written atomically. 162 */ 163 164struct net_device_stats { 165 unsigned long rx_packets; 166 unsigned long tx_packets; 167 unsigned long rx_bytes; 168 unsigned long tx_bytes; 169 unsigned long rx_errors; 170 unsigned long tx_errors; 171 unsigned long rx_dropped; 172 unsigned long tx_dropped; 173 unsigned long multicast; 174 unsigned long collisions; 175 unsigned long rx_length_errors; 176 unsigned long rx_over_errors; 177 unsigned long rx_crc_errors; 178 unsigned long rx_frame_errors; 179 unsigned long rx_fifo_errors; 180 unsigned long rx_missed_errors; 181 unsigned long tx_aborted_errors; 182 unsigned long tx_carrier_errors; 183 unsigned long tx_fifo_errors; 184 unsigned long tx_heartbeat_errors; 185 unsigned long tx_window_errors; 186 unsigned long rx_compressed; 187 unsigned long tx_compressed; 188}; 189 190 191#include <linux/cache.h> 192#include <linux/skbuff.h> 193 194#ifdef CONFIG_RPS 195#include <linux/static_key.h> 196extern struct static_key rps_needed; 197extern struct static_key rfs_needed; 198#endif 199 200struct neighbour; 201struct neigh_parms; 202struct sk_buff; 203 204struct netdev_hw_addr { 205 struct list_head list; 206 unsigned char addr[MAX_ADDR_LEN]; 207 unsigned char type; 208#define NETDEV_HW_ADDR_T_LAN 1 209#define NETDEV_HW_ADDR_T_SAN 2 210#define NETDEV_HW_ADDR_T_SLAVE 3 211#define NETDEV_HW_ADDR_T_UNICAST 4 212#define NETDEV_HW_ADDR_T_MULTICAST 5 213 bool global_use; 214 int sync_cnt; 215 int refcount; 216 int synced; 217 struct rcu_head rcu_head; 218}; 219 220struct netdev_hw_addr_list { 221 struct list_head list; 222 int count; 223}; 224 225#define netdev_hw_addr_list_count(l) ((l)->count) 226#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 227#define netdev_hw_addr_list_for_each(ha, l) \ 228 list_for_each_entry(ha, &(l)->list, list) 229 230#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 231#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 232#define netdev_for_each_uc_addr(ha, dev) \ 233 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 234 235#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 236#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 237#define netdev_for_each_mc_addr(ha, dev) \ 238 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 239 240struct hh_cache { 241 unsigned int hh_len; 242 seqlock_t hh_lock; 243 244 /* cached hardware header; allow for machine alignment needs. */ 245#define HH_DATA_MOD 16 246#define HH_DATA_OFF(__len) \ 247 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 248#define HH_DATA_ALIGN(__len) \ 249 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 250 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 251}; 252 253/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 254 * Alternative is: 255 * dev->hard_header_len ? (dev->hard_header_len + 256 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 257 * 258 * We could use other alignment values, but we must maintain the 259 * relationship HH alignment <= LL alignment. 260 */ 261#define LL_RESERVED_SPACE(dev) \ 262 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 263#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 264 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 265 266struct header_ops { 267 int (*create) (struct sk_buff *skb, struct net_device *dev, 268 unsigned short type, const void *daddr, 269 const void *saddr, unsigned int len); 270 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 271 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 272 void (*cache_update)(struct hh_cache *hh, 273 const struct net_device *dev, 274 const unsigned char *haddr); 275 bool (*validate)(const char *ll_header, unsigned int len); 276}; 277 278/* These flag bits are private to the generic network queueing 279 * layer; they may not be explicitly referenced by any other 280 * code. 281 */ 282 283enum netdev_state_t { 284 __LINK_STATE_START, 285 __LINK_STATE_PRESENT, 286 __LINK_STATE_NOCARRIER, 287 __LINK_STATE_LINKWATCH_PENDING, 288 __LINK_STATE_DORMANT, 289}; 290 291 292/* 293 * This structure holds boot-time configured netdevice settings. They 294 * are then used in the device probing. 295 */ 296struct netdev_boot_setup { 297 char name[IFNAMSIZ]; 298 struct ifmap map; 299}; 300#define NETDEV_BOOT_SETUP_MAX 8 301 302int __init netdev_boot_setup(char *str); 303 304/* 305 * Structure for NAPI scheduling similar to tasklet but with weighting 306 */ 307struct napi_struct { 308 /* The poll_list must only be managed by the entity which 309 * changes the state of the NAPI_STATE_SCHED bit. This means 310 * whoever atomically sets that bit can add this napi_struct 311 * to the per-CPU poll_list, and whoever clears that bit 312 * can remove from the list right before clearing the bit. 313 */ 314 struct list_head poll_list; 315 316 unsigned long state; 317 int weight; 318 unsigned int gro_count; 319 int (*poll)(struct napi_struct *, int); 320#ifdef CONFIG_NETPOLL 321 int poll_owner; 322#endif 323 struct net_device *dev; 324 struct sk_buff *gro_list; 325 struct sk_buff *skb; 326 struct hrtimer timer; 327 struct list_head dev_list; 328 struct hlist_node napi_hash_node; 329 unsigned int napi_id; 330}; 331 332enum { 333 NAPI_STATE_SCHED, /* Poll is scheduled */ 334 NAPI_STATE_MISSED, /* reschedule a napi */ 335 NAPI_STATE_DISABLE, /* Disable pending */ 336 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 337 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 338 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 339 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 340}; 341 342enum { 343 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 344 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 345 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 346 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 347 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 348 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 349 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 350}; 351 352enum gro_result { 353 GRO_MERGED, 354 GRO_MERGED_FREE, 355 GRO_HELD, 356 GRO_NORMAL, 357 GRO_DROP, 358 GRO_CONSUMED, 359}; 360typedef enum gro_result gro_result_t; 361 362/* 363 * enum rx_handler_result - Possible return values for rx_handlers. 364 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 365 * further. 366 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 367 * case skb->dev was changed by rx_handler. 368 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 369 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 370 * 371 * rx_handlers are functions called from inside __netif_receive_skb(), to do 372 * special processing of the skb, prior to delivery to protocol handlers. 373 * 374 * Currently, a net_device can only have a single rx_handler registered. Trying 375 * to register a second rx_handler will return -EBUSY. 376 * 377 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 378 * To unregister a rx_handler on a net_device, use 379 * netdev_rx_handler_unregister(). 380 * 381 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 382 * do with the skb. 383 * 384 * If the rx_handler consumed the skb in some way, it should return 385 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 386 * the skb to be delivered in some other way. 387 * 388 * If the rx_handler changed skb->dev, to divert the skb to another 389 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 390 * new device will be called if it exists. 391 * 392 * If the rx_handler decides the skb should be ignored, it should return 393 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 394 * are registered on exact device (ptype->dev == skb->dev). 395 * 396 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 397 * delivered, it should return RX_HANDLER_PASS. 398 * 399 * A device without a registered rx_handler will behave as if rx_handler 400 * returned RX_HANDLER_PASS. 401 */ 402 403enum rx_handler_result { 404 RX_HANDLER_CONSUMED, 405 RX_HANDLER_ANOTHER, 406 RX_HANDLER_EXACT, 407 RX_HANDLER_PASS, 408}; 409typedef enum rx_handler_result rx_handler_result_t; 410typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 411 412void __napi_schedule(struct napi_struct *n); 413void __napi_schedule_irqoff(struct napi_struct *n); 414 415static inline bool napi_disable_pending(struct napi_struct *n) 416{ 417 return test_bit(NAPI_STATE_DISABLE, &n->state); 418} 419 420bool napi_schedule_prep(struct napi_struct *n); 421 422/** 423 * napi_schedule - schedule NAPI poll 424 * @n: NAPI context 425 * 426 * Schedule NAPI poll routine to be called if it is not already 427 * running. 428 */ 429static inline void napi_schedule(struct napi_struct *n) 430{ 431 if (napi_schedule_prep(n)) 432 __napi_schedule(n); 433} 434 435/** 436 * napi_schedule_irqoff - schedule NAPI poll 437 * @n: NAPI context 438 * 439 * Variant of napi_schedule(), assuming hard irqs are masked. 440 */ 441static inline void napi_schedule_irqoff(struct napi_struct *n) 442{ 443 if (napi_schedule_prep(n)) 444 __napi_schedule_irqoff(n); 445} 446 447/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 448static inline bool napi_reschedule(struct napi_struct *napi) 449{ 450 if (napi_schedule_prep(napi)) { 451 __napi_schedule(napi); 452 return true; 453 } 454 return false; 455} 456 457bool napi_complete_done(struct napi_struct *n, int work_done); 458/** 459 * napi_complete - NAPI processing complete 460 * @n: NAPI context 461 * 462 * Mark NAPI processing as complete. 463 * Consider using napi_complete_done() instead. 464 * Return false if device should avoid rearming interrupts. 465 */ 466static inline bool napi_complete(struct napi_struct *n) 467{ 468 return napi_complete_done(n, 0); 469} 470 471/** 472 * napi_hash_del - remove a NAPI from global table 473 * @napi: NAPI context 474 * 475 * Warning: caller must observe RCU grace period 476 * before freeing memory containing @napi, if 477 * this function returns true. 478 * Note: core networking stack automatically calls it 479 * from netif_napi_del(). 480 * Drivers might want to call this helper to combine all 481 * the needed RCU grace periods into a single one. 482 */ 483bool napi_hash_del(struct napi_struct *napi); 484 485/** 486 * napi_disable - prevent NAPI from scheduling 487 * @n: NAPI context 488 * 489 * Stop NAPI from being scheduled on this context. 490 * Waits till any outstanding processing completes. 491 */ 492void napi_disable(struct napi_struct *n); 493 494/** 495 * napi_enable - enable NAPI scheduling 496 * @n: NAPI context 497 * 498 * Resume NAPI from being scheduled on this context. 499 * Must be paired with napi_disable. 500 */ 501static inline void napi_enable(struct napi_struct *n) 502{ 503 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 504 smp_mb__before_atomic(); 505 clear_bit(NAPI_STATE_SCHED, &n->state); 506 clear_bit(NAPI_STATE_NPSVC, &n->state); 507} 508 509/** 510 * napi_synchronize - wait until NAPI is not running 511 * @n: NAPI context 512 * 513 * Wait until NAPI is done being scheduled on this context. 514 * Waits till any outstanding processing completes but 515 * does not disable future activations. 516 */ 517static inline void napi_synchronize(const struct napi_struct *n) 518{ 519 if (IS_ENABLED(CONFIG_SMP)) 520 while (test_bit(NAPI_STATE_SCHED, &n->state)) 521 msleep(1); 522 else 523 barrier(); 524} 525 526enum netdev_queue_state_t { 527 __QUEUE_STATE_DRV_XOFF, 528 __QUEUE_STATE_STACK_XOFF, 529 __QUEUE_STATE_FROZEN, 530}; 531 532#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 533#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 534#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 535 536#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 537#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 538 QUEUE_STATE_FROZEN) 539#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 540 QUEUE_STATE_FROZEN) 541 542/* 543 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 544 * netif_tx_* functions below are used to manipulate this flag. The 545 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 546 * queue independently. The netif_xmit_*stopped functions below are called 547 * to check if the queue has been stopped by the driver or stack (either 548 * of the XOFF bits are set in the state). Drivers should not need to call 549 * netif_xmit*stopped functions, they should only be using netif_tx_*. 550 */ 551 552struct netdev_queue { 553/* 554 * read-mostly part 555 */ 556 struct net_device *dev; 557 struct Qdisc __rcu *qdisc; 558 struct Qdisc *qdisc_sleeping; 559#ifdef CONFIG_SYSFS 560 struct kobject kobj; 561#endif 562#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 563 int numa_node; 564#endif 565 unsigned long tx_maxrate; 566 /* 567 * Number of TX timeouts for this queue 568 * (/sys/class/net/DEV/Q/trans_timeout) 569 */ 570 unsigned long trans_timeout; 571/* 572 * write-mostly part 573 */ 574 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 575 int xmit_lock_owner; 576 /* 577 * Time (in jiffies) of last Tx 578 */ 579 unsigned long trans_start; 580 581 unsigned long state; 582 583#ifdef CONFIG_BQL 584 struct dql dql; 585#endif 586} ____cacheline_aligned_in_smp; 587 588static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 589{ 590#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 591 return q->numa_node; 592#else 593 return NUMA_NO_NODE; 594#endif 595} 596 597static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 598{ 599#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 600 q->numa_node = node; 601#endif 602} 603 604#ifdef CONFIG_RPS 605/* 606 * This structure holds an RPS map which can be of variable length. The 607 * map is an array of CPUs. 608 */ 609struct rps_map { 610 unsigned int len; 611 struct rcu_head rcu; 612 u16 cpus[0]; 613}; 614#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 615 616/* 617 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 618 * tail pointer for that CPU's input queue at the time of last enqueue, and 619 * a hardware filter index. 620 */ 621struct rps_dev_flow { 622 u16 cpu; 623 u16 filter; 624 unsigned int last_qtail; 625}; 626#define RPS_NO_FILTER 0xffff 627 628/* 629 * The rps_dev_flow_table structure contains a table of flow mappings. 630 */ 631struct rps_dev_flow_table { 632 unsigned int mask; 633 struct rcu_head rcu; 634 struct rps_dev_flow flows[0]; 635}; 636#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 637 ((_num) * sizeof(struct rps_dev_flow))) 638 639/* 640 * The rps_sock_flow_table contains mappings of flows to the last CPU 641 * on which they were processed by the application (set in recvmsg). 642 * Each entry is a 32bit value. Upper part is the high-order bits 643 * of flow hash, lower part is CPU number. 644 * rps_cpu_mask is used to partition the space, depending on number of 645 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 646 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 647 * meaning we use 32-6=26 bits for the hash. 648 */ 649struct rps_sock_flow_table { 650 u32 mask; 651 652 u32 ents[0] ____cacheline_aligned_in_smp; 653}; 654#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 655 656#define RPS_NO_CPU 0xffff 657 658extern u32 rps_cpu_mask; 659extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 660 661static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 662 u32 hash) 663{ 664 if (table && hash) { 665 unsigned int index = hash & table->mask; 666 u32 val = hash & ~rps_cpu_mask; 667 668 /* We only give a hint, preemption can change CPU under us */ 669 val |= raw_smp_processor_id(); 670 671 if (table->ents[index] != val) 672 table->ents[index] = val; 673 } 674} 675 676#ifdef CONFIG_RFS_ACCEL 677bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 678 u16 filter_id); 679#endif 680#endif /* CONFIG_RPS */ 681 682/* This structure contains an instance of an RX queue. */ 683struct netdev_rx_queue { 684#ifdef CONFIG_RPS 685 struct rps_map __rcu *rps_map; 686 struct rps_dev_flow_table __rcu *rps_flow_table; 687#endif 688 struct kobject kobj; 689 struct net_device *dev; 690 struct xdp_rxq_info xdp_rxq; 691} ____cacheline_aligned_in_smp; 692 693/* 694 * RX queue sysfs structures and functions. 695 */ 696struct rx_queue_attribute { 697 struct attribute attr; 698 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 699 ssize_t (*store)(struct netdev_rx_queue *queue, 700 const char *buf, size_t len); 701}; 702 703#ifdef CONFIG_XPS 704/* 705 * This structure holds an XPS map which can be of variable length. The 706 * map is an array of queues. 707 */ 708struct xps_map { 709 unsigned int len; 710 unsigned int alloc_len; 711 struct rcu_head rcu; 712 u16 queues[0]; 713}; 714#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 715#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 716 - sizeof(struct xps_map)) / sizeof(u16)) 717 718/* 719 * This structure holds all XPS maps for device. Maps are indexed by CPU. 720 */ 721struct xps_dev_maps { 722 struct rcu_head rcu; 723 struct xps_map __rcu *cpu_map[0]; 724}; 725#define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 726 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 727#endif /* CONFIG_XPS */ 728 729#define TC_MAX_QUEUE 16 730#define TC_BITMASK 15 731/* HW offloaded queuing disciplines txq count and offset maps */ 732struct netdev_tc_txq { 733 u16 count; 734 u16 offset; 735}; 736 737#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 738/* 739 * This structure is to hold information about the device 740 * configured to run FCoE protocol stack. 741 */ 742struct netdev_fcoe_hbainfo { 743 char manufacturer[64]; 744 char serial_number[64]; 745 char hardware_version[64]; 746 char driver_version[64]; 747 char optionrom_version[64]; 748 char firmware_version[64]; 749 char model[256]; 750 char model_description[256]; 751}; 752#endif 753 754#define MAX_PHYS_ITEM_ID_LEN 32 755 756/* This structure holds a unique identifier to identify some 757 * physical item (port for example) used by a netdevice. 758 */ 759struct netdev_phys_item_id { 760 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 761 unsigned char id_len; 762}; 763 764static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 765 struct netdev_phys_item_id *b) 766{ 767 return a->id_len == b->id_len && 768 memcmp(a->id, b->id, a->id_len) == 0; 769} 770 771typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 772 struct sk_buff *skb); 773 774enum tc_setup_type { 775 TC_SETUP_QDISC_MQPRIO, 776 TC_SETUP_CLSU32, 777 TC_SETUP_CLSFLOWER, 778 TC_SETUP_CLSMATCHALL, 779 TC_SETUP_CLSBPF, 780 TC_SETUP_BLOCK, 781 TC_SETUP_QDISC_CBS, 782 TC_SETUP_QDISC_RED, 783 TC_SETUP_QDISC_PRIO, 784}; 785 786/* These structures hold the attributes of bpf state that are being passed 787 * to the netdevice through the bpf op. 788 */ 789enum bpf_netdev_command { 790 /* Set or clear a bpf program used in the earliest stages of packet 791 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 792 * is responsible for calling bpf_prog_put on any old progs that are 793 * stored. In case of error, the callee need not release the new prog 794 * reference, but on success it takes ownership and must bpf_prog_put 795 * when it is no longer used. 796 */ 797 XDP_SETUP_PROG, 798 XDP_SETUP_PROG_HW, 799 /* Check if a bpf program is set on the device. The callee should 800 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true" 801 * is equivalent to XDP_ATTACHED_DRV. 802 */ 803 XDP_QUERY_PROG, 804 /* BPF program for offload callbacks, invoked at program load time. */ 805 BPF_OFFLOAD_VERIFIER_PREP, 806 BPF_OFFLOAD_TRANSLATE, 807 BPF_OFFLOAD_DESTROY, 808 BPF_OFFLOAD_MAP_ALLOC, 809 BPF_OFFLOAD_MAP_FREE, 810}; 811 812struct bpf_prog_offload_ops; 813struct netlink_ext_ack; 814 815struct netdev_bpf { 816 enum bpf_netdev_command command; 817 union { 818 /* XDP_SETUP_PROG */ 819 struct { 820 u32 flags; 821 struct bpf_prog *prog; 822 struct netlink_ext_ack *extack; 823 }; 824 /* XDP_QUERY_PROG */ 825 struct { 826 u8 prog_attached; 827 u32 prog_id; 828 /* flags with which program was installed */ 829 u32 prog_flags; 830 }; 831 /* BPF_OFFLOAD_VERIFIER_PREP */ 832 struct { 833 struct bpf_prog *prog; 834 const struct bpf_prog_offload_ops *ops; /* callee set */ 835 } verifier; 836 /* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */ 837 struct { 838 struct bpf_prog *prog; 839 } offload; 840 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 841 struct { 842 struct bpf_offloaded_map *offmap; 843 }; 844 }; 845}; 846 847#ifdef CONFIG_XFRM_OFFLOAD 848struct xfrmdev_ops { 849 int (*xdo_dev_state_add) (struct xfrm_state *x); 850 void (*xdo_dev_state_delete) (struct xfrm_state *x); 851 void (*xdo_dev_state_free) (struct xfrm_state *x); 852 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 853 struct xfrm_state *x); 854 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 855}; 856#endif 857 858struct dev_ifalias { 859 struct rcu_head rcuhead; 860 char ifalias[]; 861}; 862 863/* 864 * This structure defines the management hooks for network devices. 865 * The following hooks can be defined; unless noted otherwise, they are 866 * optional and can be filled with a null pointer. 867 * 868 * int (*ndo_init)(struct net_device *dev); 869 * This function is called once when a network device is registered. 870 * The network device can use this for any late stage initialization 871 * or semantic validation. It can fail with an error code which will 872 * be propagated back to register_netdev. 873 * 874 * void (*ndo_uninit)(struct net_device *dev); 875 * This function is called when device is unregistered or when registration 876 * fails. It is not called if init fails. 877 * 878 * int (*ndo_open)(struct net_device *dev); 879 * This function is called when a network device transitions to the up 880 * state. 881 * 882 * int (*ndo_stop)(struct net_device *dev); 883 * This function is called when a network device transitions to the down 884 * state. 885 * 886 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 887 * struct net_device *dev); 888 * Called when a packet needs to be transmitted. 889 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 890 * the queue before that can happen; it's for obsolete devices and weird 891 * corner cases, but the stack really does a non-trivial amount 892 * of useless work if you return NETDEV_TX_BUSY. 893 * Required; cannot be NULL. 894 * 895 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 896 * struct net_device *dev 897 * netdev_features_t features); 898 * Called by core transmit path to determine if device is capable of 899 * performing offload operations on a given packet. This is to give 900 * the device an opportunity to implement any restrictions that cannot 901 * be otherwise expressed by feature flags. The check is called with 902 * the set of features that the stack has calculated and it returns 903 * those the driver believes to be appropriate. 904 * 905 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 906 * void *accel_priv, select_queue_fallback_t fallback); 907 * Called to decide which queue to use when device supports multiple 908 * transmit queues. 909 * 910 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 911 * This function is called to allow device receiver to make 912 * changes to configuration when multicast or promiscuous is enabled. 913 * 914 * void (*ndo_set_rx_mode)(struct net_device *dev); 915 * This function is called device changes address list filtering. 916 * If driver handles unicast address filtering, it should set 917 * IFF_UNICAST_FLT in its priv_flags. 918 * 919 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 920 * This function is called when the Media Access Control address 921 * needs to be changed. If this interface is not defined, the 922 * MAC address can not be changed. 923 * 924 * int (*ndo_validate_addr)(struct net_device *dev); 925 * Test if Media Access Control address is valid for the device. 926 * 927 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 928 * Called when a user requests an ioctl which can't be handled by 929 * the generic interface code. If not defined ioctls return 930 * not supported error code. 931 * 932 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 933 * Used to set network devices bus interface parameters. This interface 934 * is retained for legacy reasons; new devices should use the bus 935 * interface (PCI) for low level management. 936 * 937 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 938 * Called when a user wants to change the Maximum Transfer Unit 939 * of a device. 940 * 941 * void (*ndo_tx_timeout)(struct net_device *dev); 942 * Callback used when the transmitter has not made any progress 943 * for dev->watchdog ticks. 944 * 945 * void (*ndo_get_stats64)(struct net_device *dev, 946 * struct rtnl_link_stats64 *storage); 947 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 948 * Called when a user wants to get the network device usage 949 * statistics. Drivers must do one of the following: 950 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 951 * rtnl_link_stats64 structure passed by the caller. 952 * 2. Define @ndo_get_stats to update a net_device_stats structure 953 * (which should normally be dev->stats) and return a pointer to 954 * it. The structure may be changed asynchronously only if each 955 * field is written atomically. 956 * 3. Update dev->stats asynchronously and atomically, and define 957 * neither operation. 958 * 959 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 960 * Return true if this device supports offload stats of this attr_id. 961 * 962 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 963 * void *attr_data) 964 * Get statistics for offload operations by attr_id. Write it into the 965 * attr_data pointer. 966 * 967 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 968 * If device supports VLAN filtering this function is called when a 969 * VLAN id is registered. 970 * 971 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 972 * If device supports VLAN filtering this function is called when a 973 * VLAN id is unregistered. 974 * 975 * void (*ndo_poll_controller)(struct net_device *dev); 976 * 977 * SR-IOV management functions. 978 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 979 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 980 * u8 qos, __be16 proto); 981 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 982 * int max_tx_rate); 983 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 984 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 985 * int (*ndo_get_vf_config)(struct net_device *dev, 986 * int vf, struct ifla_vf_info *ivf); 987 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 988 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 989 * struct nlattr *port[]); 990 * 991 * Enable or disable the VF ability to query its RSS Redirection Table and 992 * Hash Key. This is needed since on some devices VF share this information 993 * with PF and querying it may introduce a theoretical security risk. 994 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 995 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 996 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 997 * void *type_data); 998 * Called to setup any 'tc' scheduler, classifier or action on @dev. 999 * This is always called from the stack with the rtnl lock held and netif 1000 * tx queues stopped. This allows the netdevice to perform queue 1001 * management safely. 1002 * 1003 * Fiber Channel over Ethernet (FCoE) offload functions. 1004 * int (*ndo_fcoe_enable)(struct net_device *dev); 1005 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1006 * so the underlying device can perform whatever needed configuration or 1007 * initialization to support acceleration of FCoE traffic. 1008 * 1009 * int (*ndo_fcoe_disable)(struct net_device *dev); 1010 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1011 * so the underlying device can perform whatever needed clean-ups to 1012 * stop supporting acceleration of FCoE traffic. 1013 * 1014 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1015 * struct scatterlist *sgl, unsigned int sgc); 1016 * Called when the FCoE Initiator wants to initialize an I/O that 1017 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1018 * perform necessary setup and returns 1 to indicate the device is set up 1019 * successfully to perform DDP on this I/O, otherwise this returns 0. 1020 * 1021 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1022 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1023 * indicated by the FC exchange id 'xid', so the underlying device can 1024 * clean up and reuse resources for later DDP requests. 1025 * 1026 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1027 * struct scatterlist *sgl, unsigned int sgc); 1028 * Called when the FCoE Target wants to initialize an I/O that 1029 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1030 * perform necessary setup and returns 1 to indicate the device is set up 1031 * successfully to perform DDP on this I/O, otherwise this returns 0. 1032 * 1033 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1034 * struct netdev_fcoe_hbainfo *hbainfo); 1035 * Called when the FCoE Protocol stack wants information on the underlying 1036 * device. This information is utilized by the FCoE protocol stack to 1037 * register attributes with Fiber Channel management service as per the 1038 * FC-GS Fabric Device Management Information(FDMI) specification. 1039 * 1040 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1041 * Called when the underlying device wants to override default World Wide 1042 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1043 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1044 * protocol stack to use. 1045 * 1046 * RFS acceleration. 1047 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1048 * u16 rxq_index, u32 flow_id); 1049 * Set hardware filter for RFS. rxq_index is the target queue index; 1050 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1051 * Return the filter ID on success, or a negative error code. 1052 * 1053 * Slave management functions (for bridge, bonding, etc). 1054 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1055 * Called to make another netdev an underling. 1056 * 1057 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1058 * Called to release previously enslaved netdev. 1059 * 1060 * Feature/offload setting functions. 1061 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1062 * netdev_features_t features); 1063 * Adjusts the requested feature flags according to device-specific 1064 * constraints, and returns the resulting flags. Must not modify 1065 * the device state. 1066 * 1067 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1068 * Called to update device configuration to new features. Passed 1069 * feature set might be less than what was returned by ndo_fix_features()). 1070 * Must return >0 or -errno if it changed dev->features itself. 1071 * 1072 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1073 * struct net_device *dev, 1074 * const unsigned char *addr, u16 vid, u16 flags) 1075 * Adds an FDB entry to dev for addr. 1076 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1077 * struct net_device *dev, 1078 * const unsigned char *addr, u16 vid) 1079 * Deletes the FDB entry from dev coresponding to addr. 1080 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1081 * struct net_device *dev, struct net_device *filter_dev, 1082 * int *idx) 1083 * Used to add FDB entries to dump requests. Implementers should add 1084 * entries to skb and update idx with the number of entries. 1085 * 1086 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1087 * u16 flags) 1088 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1089 * struct net_device *dev, u32 filter_mask, 1090 * int nlflags) 1091 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1092 * u16 flags); 1093 * 1094 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1095 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1096 * which do not represent real hardware may define this to allow their 1097 * userspace components to manage their virtual carrier state. Devices 1098 * that determine carrier state from physical hardware properties (eg 1099 * network cables) or protocol-dependent mechanisms (eg 1100 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1101 * 1102 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1103 * struct netdev_phys_item_id *ppid); 1104 * Called to get ID of physical port of this device. If driver does 1105 * not implement this, it is assumed that the hw is not able to have 1106 * multiple net devices on single physical port. 1107 * 1108 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1109 * struct udp_tunnel_info *ti); 1110 * Called by UDP tunnel to notify a driver about the UDP port and socket 1111 * address family that a UDP tunnel is listnening to. It is called only 1112 * when a new port starts listening. The operation is protected by the 1113 * RTNL. 1114 * 1115 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1116 * struct udp_tunnel_info *ti); 1117 * Called by UDP tunnel to notify the driver about a UDP port and socket 1118 * address family that the UDP tunnel is not listening to anymore. The 1119 * operation is protected by the RTNL. 1120 * 1121 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1122 * struct net_device *dev) 1123 * Called by upper layer devices to accelerate switching or other 1124 * station functionality into hardware. 'pdev is the lowerdev 1125 * to use for the offload and 'dev' is the net device that will 1126 * back the offload. Returns a pointer to the private structure 1127 * the upper layer will maintain. 1128 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1129 * Called by upper layer device to delete the station created 1130 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1131 * the station and priv is the structure returned by the add 1132 * operation. 1133 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1134 * int queue_index, u32 maxrate); 1135 * Called when a user wants to set a max-rate limitation of specific 1136 * TX queue. 1137 * int (*ndo_get_iflink)(const struct net_device *dev); 1138 * Called to get the iflink value of this device. 1139 * void (*ndo_change_proto_down)(struct net_device *dev, 1140 * bool proto_down); 1141 * This function is used to pass protocol port error state information 1142 * to the switch driver. The switch driver can react to the proto_down 1143 * by doing a phys down on the associated switch port. 1144 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1145 * This function is used to get egress tunnel information for given skb. 1146 * This is useful for retrieving outer tunnel header parameters while 1147 * sampling packet. 1148 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1149 * This function is used to specify the headroom that the skb must 1150 * consider when allocation skb during packet reception. Setting 1151 * appropriate rx headroom value allows avoiding skb head copy on 1152 * forward. Setting a negative value resets the rx headroom to the 1153 * default value. 1154 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1155 * This function is used to set or query state related to XDP on the 1156 * netdevice and manage BPF offload. See definition of 1157 * enum bpf_netdev_command for details. 1158 * int (*ndo_xdp_xmit)(struct net_device *dev, struct xdp_buff *xdp); 1159 * This function is used to submit a XDP packet for transmit on a 1160 * netdevice. 1161 * void (*ndo_xdp_flush)(struct net_device *dev); 1162 * This function is used to inform the driver to flush a particular 1163 * xdp tx queue. Must be called on same CPU as xdp_xmit. 1164 */ 1165struct net_device_ops { 1166 int (*ndo_init)(struct net_device *dev); 1167 void (*ndo_uninit)(struct net_device *dev); 1168 int (*ndo_open)(struct net_device *dev); 1169 int (*ndo_stop)(struct net_device *dev); 1170 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1171 struct net_device *dev); 1172 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1173 struct net_device *dev, 1174 netdev_features_t features); 1175 u16 (*ndo_select_queue)(struct net_device *dev, 1176 struct sk_buff *skb, 1177 void *accel_priv, 1178 select_queue_fallback_t fallback); 1179 void (*ndo_change_rx_flags)(struct net_device *dev, 1180 int flags); 1181 void (*ndo_set_rx_mode)(struct net_device *dev); 1182 int (*ndo_set_mac_address)(struct net_device *dev, 1183 void *addr); 1184 int (*ndo_validate_addr)(struct net_device *dev); 1185 int (*ndo_do_ioctl)(struct net_device *dev, 1186 struct ifreq *ifr, int cmd); 1187 int (*ndo_set_config)(struct net_device *dev, 1188 struct ifmap *map); 1189 int (*ndo_change_mtu)(struct net_device *dev, 1190 int new_mtu); 1191 int (*ndo_neigh_setup)(struct net_device *dev, 1192 struct neigh_parms *); 1193 void (*ndo_tx_timeout) (struct net_device *dev); 1194 1195 void (*ndo_get_stats64)(struct net_device *dev, 1196 struct rtnl_link_stats64 *storage); 1197 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1198 int (*ndo_get_offload_stats)(int attr_id, 1199 const struct net_device *dev, 1200 void *attr_data); 1201 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1202 1203 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1204 __be16 proto, u16 vid); 1205 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1206 __be16 proto, u16 vid); 1207#ifdef CONFIG_NET_POLL_CONTROLLER 1208 void (*ndo_poll_controller)(struct net_device *dev); 1209 int (*ndo_netpoll_setup)(struct net_device *dev, 1210 struct netpoll_info *info); 1211 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1212#endif 1213 int (*ndo_set_vf_mac)(struct net_device *dev, 1214 int queue, u8 *mac); 1215 int (*ndo_set_vf_vlan)(struct net_device *dev, 1216 int queue, u16 vlan, 1217 u8 qos, __be16 proto); 1218 int (*ndo_set_vf_rate)(struct net_device *dev, 1219 int vf, int min_tx_rate, 1220 int max_tx_rate); 1221 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1222 int vf, bool setting); 1223 int (*ndo_set_vf_trust)(struct net_device *dev, 1224 int vf, bool setting); 1225 int (*ndo_get_vf_config)(struct net_device *dev, 1226 int vf, 1227 struct ifla_vf_info *ivf); 1228 int (*ndo_set_vf_link_state)(struct net_device *dev, 1229 int vf, int link_state); 1230 int (*ndo_get_vf_stats)(struct net_device *dev, 1231 int vf, 1232 struct ifla_vf_stats 1233 *vf_stats); 1234 int (*ndo_set_vf_port)(struct net_device *dev, 1235 int vf, 1236 struct nlattr *port[]); 1237 int (*ndo_get_vf_port)(struct net_device *dev, 1238 int vf, struct sk_buff *skb); 1239 int (*ndo_set_vf_guid)(struct net_device *dev, 1240 int vf, u64 guid, 1241 int guid_type); 1242 int (*ndo_set_vf_rss_query_en)( 1243 struct net_device *dev, 1244 int vf, bool setting); 1245 int (*ndo_setup_tc)(struct net_device *dev, 1246 enum tc_setup_type type, 1247 void *type_data); 1248#if IS_ENABLED(CONFIG_FCOE) 1249 int (*ndo_fcoe_enable)(struct net_device *dev); 1250 int (*ndo_fcoe_disable)(struct net_device *dev); 1251 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1252 u16 xid, 1253 struct scatterlist *sgl, 1254 unsigned int sgc); 1255 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1256 u16 xid); 1257 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1258 u16 xid, 1259 struct scatterlist *sgl, 1260 unsigned int sgc); 1261 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1262 struct netdev_fcoe_hbainfo *hbainfo); 1263#endif 1264 1265#if IS_ENABLED(CONFIG_LIBFCOE) 1266#define NETDEV_FCOE_WWNN 0 1267#define NETDEV_FCOE_WWPN 1 1268 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1269 u64 *wwn, int type); 1270#endif 1271 1272#ifdef CONFIG_RFS_ACCEL 1273 int (*ndo_rx_flow_steer)(struct net_device *dev, 1274 const struct sk_buff *skb, 1275 u16 rxq_index, 1276 u32 flow_id); 1277#endif 1278 int (*ndo_add_slave)(struct net_device *dev, 1279 struct net_device *slave_dev, 1280 struct netlink_ext_ack *extack); 1281 int (*ndo_del_slave)(struct net_device *dev, 1282 struct net_device *slave_dev); 1283 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1284 netdev_features_t features); 1285 int (*ndo_set_features)(struct net_device *dev, 1286 netdev_features_t features); 1287 int (*ndo_neigh_construct)(struct net_device *dev, 1288 struct neighbour *n); 1289 void (*ndo_neigh_destroy)(struct net_device *dev, 1290 struct neighbour *n); 1291 1292 int (*ndo_fdb_add)(struct ndmsg *ndm, 1293 struct nlattr *tb[], 1294 struct net_device *dev, 1295 const unsigned char *addr, 1296 u16 vid, 1297 u16 flags); 1298 int (*ndo_fdb_del)(struct ndmsg *ndm, 1299 struct nlattr *tb[], 1300 struct net_device *dev, 1301 const unsigned char *addr, 1302 u16 vid); 1303 int (*ndo_fdb_dump)(struct sk_buff *skb, 1304 struct netlink_callback *cb, 1305 struct net_device *dev, 1306 struct net_device *filter_dev, 1307 int *idx); 1308 1309 int (*ndo_bridge_setlink)(struct net_device *dev, 1310 struct nlmsghdr *nlh, 1311 u16 flags); 1312 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1313 u32 pid, u32 seq, 1314 struct net_device *dev, 1315 u32 filter_mask, 1316 int nlflags); 1317 int (*ndo_bridge_dellink)(struct net_device *dev, 1318 struct nlmsghdr *nlh, 1319 u16 flags); 1320 int (*ndo_change_carrier)(struct net_device *dev, 1321 bool new_carrier); 1322 int (*ndo_get_phys_port_id)(struct net_device *dev, 1323 struct netdev_phys_item_id *ppid); 1324 int (*ndo_get_phys_port_name)(struct net_device *dev, 1325 char *name, size_t len); 1326 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1327 struct udp_tunnel_info *ti); 1328 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1329 struct udp_tunnel_info *ti); 1330 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1331 struct net_device *dev); 1332 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1333 void *priv); 1334 1335 int (*ndo_get_lock_subclass)(struct net_device *dev); 1336 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1337 int queue_index, 1338 u32 maxrate); 1339 int (*ndo_get_iflink)(const struct net_device *dev); 1340 int (*ndo_change_proto_down)(struct net_device *dev, 1341 bool proto_down); 1342 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1343 struct sk_buff *skb); 1344 void (*ndo_set_rx_headroom)(struct net_device *dev, 1345 int needed_headroom); 1346 int (*ndo_bpf)(struct net_device *dev, 1347 struct netdev_bpf *bpf); 1348 int (*ndo_xdp_xmit)(struct net_device *dev, 1349 struct xdp_buff *xdp); 1350 void (*ndo_xdp_flush)(struct net_device *dev); 1351}; 1352 1353/** 1354 * enum net_device_priv_flags - &struct net_device priv_flags 1355 * 1356 * These are the &struct net_device, they are only set internally 1357 * by drivers and used in the kernel. These flags are invisible to 1358 * userspace; this means that the order of these flags can change 1359 * during any kernel release. 1360 * 1361 * You should have a pretty good reason to be extending these flags. 1362 * 1363 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1364 * @IFF_EBRIDGE: Ethernet bridging device 1365 * @IFF_BONDING: bonding master or slave 1366 * @IFF_ISATAP: ISATAP interface (RFC4214) 1367 * @IFF_WAN_HDLC: WAN HDLC device 1368 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1369 * release skb->dst 1370 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1371 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1372 * @IFF_MACVLAN_PORT: device used as macvlan port 1373 * @IFF_BRIDGE_PORT: device used as bridge port 1374 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1375 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1376 * @IFF_UNICAST_FLT: Supports unicast filtering 1377 * @IFF_TEAM_PORT: device used as team port 1378 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1379 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1380 * change when it's running 1381 * @IFF_MACVLAN: Macvlan device 1382 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1383 * underlying stacked devices 1384 * @IFF_IPVLAN_MASTER: IPvlan master device 1385 * @IFF_IPVLAN_SLAVE: IPvlan slave device 1386 * @IFF_L3MDEV_MASTER: device is an L3 master device 1387 * @IFF_NO_QUEUE: device can run without qdisc attached 1388 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1389 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1390 * @IFF_TEAM: device is a team device 1391 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1392 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1393 * entity (i.e. the master device for bridged veth) 1394 * @IFF_MACSEC: device is a MACsec device 1395 */ 1396enum netdev_priv_flags { 1397 IFF_802_1Q_VLAN = 1<<0, 1398 IFF_EBRIDGE = 1<<1, 1399 IFF_BONDING = 1<<2, 1400 IFF_ISATAP = 1<<3, 1401 IFF_WAN_HDLC = 1<<4, 1402 IFF_XMIT_DST_RELEASE = 1<<5, 1403 IFF_DONT_BRIDGE = 1<<6, 1404 IFF_DISABLE_NETPOLL = 1<<7, 1405 IFF_MACVLAN_PORT = 1<<8, 1406 IFF_BRIDGE_PORT = 1<<9, 1407 IFF_OVS_DATAPATH = 1<<10, 1408 IFF_TX_SKB_SHARING = 1<<11, 1409 IFF_UNICAST_FLT = 1<<12, 1410 IFF_TEAM_PORT = 1<<13, 1411 IFF_SUPP_NOFCS = 1<<14, 1412 IFF_LIVE_ADDR_CHANGE = 1<<15, 1413 IFF_MACVLAN = 1<<16, 1414 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1415 IFF_IPVLAN_MASTER = 1<<18, 1416 IFF_IPVLAN_SLAVE = 1<<19, 1417 IFF_L3MDEV_MASTER = 1<<20, 1418 IFF_NO_QUEUE = 1<<21, 1419 IFF_OPENVSWITCH = 1<<22, 1420 IFF_L3MDEV_SLAVE = 1<<23, 1421 IFF_TEAM = 1<<24, 1422 IFF_RXFH_CONFIGURED = 1<<25, 1423 IFF_PHONY_HEADROOM = 1<<26, 1424 IFF_MACSEC = 1<<27, 1425}; 1426 1427#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1428#define IFF_EBRIDGE IFF_EBRIDGE 1429#define IFF_BONDING IFF_BONDING 1430#define IFF_ISATAP IFF_ISATAP 1431#define IFF_WAN_HDLC IFF_WAN_HDLC 1432#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1433#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1434#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1435#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1436#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1437#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1438#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1439#define IFF_UNICAST_FLT IFF_UNICAST_FLT 1440#define IFF_TEAM_PORT IFF_TEAM_PORT 1441#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1442#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1443#define IFF_MACVLAN IFF_MACVLAN 1444#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1445#define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1446#define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1447#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1448#define IFF_NO_QUEUE IFF_NO_QUEUE 1449#define IFF_OPENVSWITCH IFF_OPENVSWITCH 1450#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1451#define IFF_TEAM IFF_TEAM 1452#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1453#define IFF_MACSEC IFF_MACSEC 1454 1455/** 1456 * struct net_device - The DEVICE structure. 1457 * 1458 * Actually, this whole structure is a big mistake. It mixes I/O 1459 * data with strictly "high-level" data, and it has to know about 1460 * almost every data structure used in the INET module. 1461 * 1462 * @name: This is the first field of the "visible" part of this structure 1463 * (i.e. as seen by users in the "Space.c" file). It is the name 1464 * of the interface. 1465 * 1466 * @name_hlist: Device name hash chain, please keep it close to name[] 1467 * @ifalias: SNMP alias 1468 * @mem_end: Shared memory end 1469 * @mem_start: Shared memory start 1470 * @base_addr: Device I/O address 1471 * @irq: Device IRQ number 1472 * 1473 * @state: Generic network queuing layer state, see netdev_state_t 1474 * @dev_list: The global list of network devices 1475 * @napi_list: List entry used for polling NAPI devices 1476 * @unreg_list: List entry when we are unregistering the 1477 * device; see the function unregister_netdev 1478 * @close_list: List entry used when we are closing the device 1479 * @ptype_all: Device-specific packet handlers for all protocols 1480 * @ptype_specific: Device-specific, protocol-specific packet handlers 1481 * 1482 * @adj_list: Directly linked devices, like slaves for bonding 1483 * @features: Currently active device features 1484 * @hw_features: User-changeable features 1485 * 1486 * @wanted_features: User-requested features 1487 * @vlan_features: Mask of features inheritable by VLAN devices 1488 * 1489 * @hw_enc_features: Mask of features inherited by encapsulating devices 1490 * This field indicates what encapsulation 1491 * offloads the hardware is capable of doing, 1492 * and drivers will need to set them appropriately. 1493 * 1494 * @mpls_features: Mask of features inheritable by MPLS 1495 * 1496 * @ifindex: interface index 1497 * @group: The group the device belongs to 1498 * 1499 * @stats: Statistics struct, which was left as a legacy, use 1500 * rtnl_link_stats64 instead 1501 * 1502 * @rx_dropped: Dropped packets by core network, 1503 * do not use this in drivers 1504 * @tx_dropped: Dropped packets by core network, 1505 * do not use this in drivers 1506 * @rx_nohandler: nohandler dropped packets by core network on 1507 * inactive devices, do not use this in drivers 1508 * @carrier_up_count: Number of times the carrier has been up 1509 * @carrier_down_count: Number of times the carrier has been down 1510 * 1511 * @wireless_handlers: List of functions to handle Wireless Extensions, 1512 * instead of ioctl, 1513 * see <net/iw_handler.h> for details. 1514 * @wireless_data: Instance data managed by the core of wireless extensions 1515 * 1516 * @netdev_ops: Includes several pointers to callbacks, 1517 * if one wants to override the ndo_*() functions 1518 * @ethtool_ops: Management operations 1519 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1520 * discovery handling. Necessary for e.g. 6LoWPAN. 1521 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1522 * of Layer 2 headers. 1523 * 1524 * @flags: Interface flags (a la BSD) 1525 * @priv_flags: Like 'flags' but invisible to userspace, 1526 * see if.h for the definitions 1527 * @gflags: Global flags ( kept as legacy ) 1528 * @padded: How much padding added by alloc_netdev() 1529 * @operstate: RFC2863 operstate 1530 * @link_mode: Mapping policy to operstate 1531 * @if_port: Selectable AUI, TP, ... 1532 * @dma: DMA channel 1533 * @mtu: Interface MTU value 1534 * @min_mtu: Interface Minimum MTU value 1535 * @max_mtu: Interface Maximum MTU value 1536 * @type: Interface hardware type 1537 * @hard_header_len: Maximum hardware header length. 1538 * @min_header_len: Minimum hardware header length 1539 * 1540 * @needed_headroom: Extra headroom the hardware may need, but not in all 1541 * cases can this be guaranteed 1542 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1543 * cases can this be guaranteed. Some cases also use 1544 * LL_MAX_HEADER instead to allocate the skb 1545 * 1546 * interface address info: 1547 * 1548 * @perm_addr: Permanent hw address 1549 * @addr_assign_type: Hw address assignment type 1550 * @addr_len: Hardware address length 1551 * @neigh_priv_len: Used in neigh_alloc() 1552 * @dev_id: Used to differentiate devices that share 1553 * the same link layer address 1554 * @dev_port: Used to differentiate devices that share 1555 * the same function 1556 * @addr_list_lock: XXX: need comments on this one 1557 * @uc_promisc: Counter that indicates promiscuous mode 1558 * has been enabled due to the need to listen to 1559 * additional unicast addresses in a device that 1560 * does not implement ndo_set_rx_mode() 1561 * @uc: unicast mac addresses 1562 * @mc: multicast mac addresses 1563 * @dev_addrs: list of device hw addresses 1564 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1565 * @promiscuity: Number of times the NIC is told to work in 1566 * promiscuous mode; if it becomes 0 the NIC will 1567 * exit promiscuous mode 1568 * @allmulti: Counter, enables or disables allmulticast mode 1569 * 1570 * @vlan_info: VLAN info 1571 * @dsa_ptr: dsa specific data 1572 * @tipc_ptr: TIPC specific data 1573 * @atalk_ptr: AppleTalk link 1574 * @ip_ptr: IPv4 specific data 1575 * @dn_ptr: DECnet specific data 1576 * @ip6_ptr: IPv6 specific data 1577 * @ax25_ptr: AX.25 specific data 1578 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1579 * 1580 * @dev_addr: Hw address (before bcast, 1581 * because most packets are unicast) 1582 * 1583 * @_rx: Array of RX queues 1584 * @num_rx_queues: Number of RX queues 1585 * allocated at register_netdev() time 1586 * @real_num_rx_queues: Number of RX queues currently active in device 1587 * 1588 * @rx_handler: handler for received packets 1589 * @rx_handler_data: XXX: need comments on this one 1590 * @miniq_ingress: ingress/clsact qdisc specific data for 1591 * ingress processing 1592 * @ingress_queue: XXX: need comments on this one 1593 * @broadcast: hw bcast address 1594 * 1595 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1596 * indexed by RX queue number. Assigned by driver. 1597 * This must only be set if the ndo_rx_flow_steer 1598 * operation is defined 1599 * @index_hlist: Device index hash chain 1600 * 1601 * @_tx: Array of TX queues 1602 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1603 * @real_num_tx_queues: Number of TX queues currently active in device 1604 * @qdisc: Root qdisc from userspace point of view 1605 * @tx_queue_len: Max frames per queue allowed 1606 * @tx_global_lock: XXX: need comments on this one 1607 * 1608 * @xps_maps: XXX: need comments on this one 1609 * @miniq_egress: clsact qdisc specific data for 1610 * egress processing 1611 * @watchdog_timeo: Represents the timeout that is used by 1612 * the watchdog (see dev_watchdog()) 1613 * @watchdog_timer: List of timers 1614 * 1615 * @pcpu_refcnt: Number of references to this device 1616 * @todo_list: Delayed register/unregister 1617 * @link_watch_list: XXX: need comments on this one 1618 * 1619 * @reg_state: Register/unregister state machine 1620 * @dismantle: Device is going to be freed 1621 * @rtnl_link_state: This enum represents the phases of creating 1622 * a new link 1623 * 1624 * @needs_free_netdev: Should unregister perform free_netdev? 1625 * @priv_destructor: Called from unregister 1626 * @npinfo: XXX: need comments on this one 1627 * @nd_net: Network namespace this network device is inside 1628 * 1629 * @ml_priv: Mid-layer private 1630 * @lstats: Loopback statistics 1631 * @tstats: Tunnel statistics 1632 * @dstats: Dummy statistics 1633 * @vstats: Virtual ethernet statistics 1634 * 1635 * @garp_port: GARP 1636 * @mrp_port: MRP 1637 * 1638 * @dev: Class/net/name entry 1639 * @sysfs_groups: Space for optional device, statistics and wireless 1640 * sysfs groups 1641 * 1642 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1643 * @rtnl_link_ops: Rtnl_link_ops 1644 * 1645 * @gso_max_size: Maximum size of generic segmentation offload 1646 * @gso_max_segs: Maximum number of segments that can be passed to the 1647 * NIC for GSO 1648 * 1649 * @dcbnl_ops: Data Center Bridging netlink ops 1650 * @num_tc: Number of traffic classes in the net device 1651 * @tc_to_txq: XXX: need comments on this one 1652 * @prio_tc_map: XXX: need comments on this one 1653 * 1654 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1655 * 1656 * @priomap: XXX: need comments on this one 1657 * @phydev: Physical device may attach itself 1658 * for hardware timestamping 1659 * 1660 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1661 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1662 * 1663 * @proto_down: protocol port state information can be sent to the 1664 * switch driver and used to set the phys state of the 1665 * switch port. 1666 * 1667 * FIXME: cleanup struct net_device such that network protocol info 1668 * moves out. 1669 */ 1670 1671struct net_device { 1672 char name[IFNAMSIZ]; 1673 struct hlist_node name_hlist; 1674 struct dev_ifalias __rcu *ifalias; 1675 /* 1676 * I/O specific fields 1677 * FIXME: Merge these and struct ifmap into one 1678 */ 1679 unsigned long mem_end; 1680 unsigned long mem_start; 1681 unsigned long base_addr; 1682 int irq; 1683 1684 /* 1685 * Some hardware also needs these fields (state,dev_list, 1686 * napi_list,unreg_list,close_list) but they are not 1687 * part of the usual set specified in Space.c. 1688 */ 1689 1690 unsigned long state; 1691 1692 struct list_head dev_list; 1693 struct list_head napi_list; 1694 struct list_head unreg_list; 1695 struct list_head close_list; 1696 struct list_head ptype_all; 1697 struct list_head ptype_specific; 1698 1699 struct { 1700 struct list_head upper; 1701 struct list_head lower; 1702 } adj_list; 1703 1704 netdev_features_t features; 1705 netdev_features_t hw_features; 1706 netdev_features_t wanted_features; 1707 netdev_features_t vlan_features; 1708 netdev_features_t hw_enc_features; 1709 netdev_features_t mpls_features; 1710 netdev_features_t gso_partial_features; 1711 1712 int ifindex; 1713 int group; 1714 1715 struct net_device_stats stats; 1716 1717 atomic_long_t rx_dropped; 1718 atomic_long_t tx_dropped; 1719 atomic_long_t rx_nohandler; 1720 1721 /* Stats to monitor link on/off, flapping */ 1722 atomic_t carrier_up_count; 1723 atomic_t carrier_down_count; 1724 1725#ifdef CONFIG_WIRELESS_EXT 1726 const struct iw_handler_def *wireless_handlers; 1727 struct iw_public_data *wireless_data; 1728#endif 1729 const struct net_device_ops *netdev_ops; 1730 const struct ethtool_ops *ethtool_ops; 1731#ifdef CONFIG_NET_SWITCHDEV 1732 const struct switchdev_ops *switchdev_ops; 1733#endif 1734#ifdef CONFIG_NET_L3_MASTER_DEV 1735 const struct l3mdev_ops *l3mdev_ops; 1736#endif 1737#if IS_ENABLED(CONFIG_IPV6) 1738 const struct ndisc_ops *ndisc_ops; 1739#endif 1740 1741#ifdef CONFIG_XFRM_OFFLOAD 1742 const struct xfrmdev_ops *xfrmdev_ops; 1743#endif 1744 1745 const struct header_ops *header_ops; 1746 1747 unsigned int flags; 1748 unsigned int priv_flags; 1749 1750 unsigned short gflags; 1751 unsigned short padded; 1752 1753 unsigned char operstate; 1754 unsigned char link_mode; 1755 1756 unsigned char if_port; 1757 unsigned char dma; 1758 1759 unsigned int mtu; 1760 unsigned int min_mtu; 1761 unsigned int max_mtu; 1762 unsigned short type; 1763 unsigned short hard_header_len; 1764 unsigned char min_header_len; 1765 1766 unsigned short needed_headroom; 1767 unsigned short needed_tailroom; 1768 1769 /* Interface address info. */ 1770 unsigned char perm_addr[MAX_ADDR_LEN]; 1771 unsigned char addr_assign_type; 1772 unsigned char addr_len; 1773 unsigned short neigh_priv_len; 1774 unsigned short dev_id; 1775 unsigned short dev_port; 1776 spinlock_t addr_list_lock; 1777 unsigned char name_assign_type; 1778 bool uc_promisc; 1779 struct netdev_hw_addr_list uc; 1780 struct netdev_hw_addr_list mc; 1781 struct netdev_hw_addr_list dev_addrs; 1782 1783#ifdef CONFIG_SYSFS 1784 struct kset *queues_kset; 1785#endif 1786 unsigned int promiscuity; 1787 unsigned int allmulti; 1788 1789 1790 /* Protocol-specific pointers */ 1791 1792#if IS_ENABLED(CONFIG_VLAN_8021Q) 1793 struct vlan_info __rcu *vlan_info; 1794#endif 1795#if IS_ENABLED(CONFIG_NET_DSA) 1796 struct dsa_port *dsa_ptr; 1797#endif 1798#if IS_ENABLED(CONFIG_TIPC) 1799 struct tipc_bearer __rcu *tipc_ptr; 1800#endif 1801 void *atalk_ptr; 1802 struct in_device __rcu *ip_ptr; 1803 struct dn_dev __rcu *dn_ptr; 1804 struct inet6_dev __rcu *ip6_ptr; 1805 void *ax25_ptr; 1806 struct wireless_dev *ieee80211_ptr; 1807 struct wpan_dev *ieee802154_ptr; 1808#if IS_ENABLED(CONFIG_MPLS_ROUTING) 1809 struct mpls_dev __rcu *mpls_ptr; 1810#endif 1811 1812/* 1813 * Cache lines mostly used on receive path (including eth_type_trans()) 1814 */ 1815 /* Interface address info used in eth_type_trans() */ 1816 unsigned char *dev_addr; 1817 1818 struct netdev_rx_queue *_rx; 1819 unsigned int num_rx_queues; 1820 unsigned int real_num_rx_queues; 1821 1822 struct bpf_prog __rcu *xdp_prog; 1823 unsigned long gro_flush_timeout; 1824 rx_handler_func_t __rcu *rx_handler; 1825 void __rcu *rx_handler_data; 1826 1827#ifdef CONFIG_NET_CLS_ACT 1828 struct mini_Qdisc __rcu *miniq_ingress; 1829#endif 1830 struct netdev_queue __rcu *ingress_queue; 1831#ifdef CONFIG_NETFILTER_INGRESS 1832 struct nf_hook_entries __rcu *nf_hooks_ingress; 1833#endif 1834 1835 unsigned char broadcast[MAX_ADDR_LEN]; 1836#ifdef CONFIG_RFS_ACCEL 1837 struct cpu_rmap *rx_cpu_rmap; 1838#endif 1839 struct hlist_node index_hlist; 1840 1841/* 1842 * Cache lines mostly used on transmit path 1843 */ 1844 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1845 unsigned int num_tx_queues; 1846 unsigned int real_num_tx_queues; 1847 struct Qdisc *qdisc; 1848#ifdef CONFIG_NET_SCHED 1849 DECLARE_HASHTABLE (qdisc_hash, 4); 1850#endif 1851 unsigned int tx_queue_len; 1852 spinlock_t tx_global_lock; 1853 int watchdog_timeo; 1854 1855#ifdef CONFIG_XPS 1856 struct xps_dev_maps __rcu *xps_maps; 1857#endif 1858#ifdef CONFIG_NET_CLS_ACT 1859 struct mini_Qdisc __rcu *miniq_egress; 1860#endif 1861 1862 /* These may be needed for future network-power-down code. */ 1863 struct timer_list watchdog_timer; 1864 1865 int __percpu *pcpu_refcnt; 1866 struct list_head todo_list; 1867 1868 struct list_head link_watch_list; 1869 1870 enum { NETREG_UNINITIALIZED=0, 1871 NETREG_REGISTERED, /* completed register_netdevice */ 1872 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1873 NETREG_UNREGISTERED, /* completed unregister todo */ 1874 NETREG_RELEASED, /* called free_netdev */ 1875 NETREG_DUMMY, /* dummy device for NAPI poll */ 1876 } reg_state:8; 1877 1878 bool dismantle; 1879 1880 enum { 1881 RTNL_LINK_INITIALIZED, 1882 RTNL_LINK_INITIALIZING, 1883 } rtnl_link_state:16; 1884 1885 bool needs_free_netdev; 1886 void (*priv_destructor)(struct net_device *dev); 1887 1888#ifdef CONFIG_NETPOLL 1889 struct netpoll_info __rcu *npinfo; 1890#endif 1891 1892 possible_net_t nd_net; 1893 1894 /* mid-layer private */ 1895 union { 1896 void *ml_priv; 1897 struct pcpu_lstats __percpu *lstats; 1898 struct pcpu_sw_netstats __percpu *tstats; 1899 struct pcpu_dstats __percpu *dstats; 1900 struct pcpu_vstats __percpu *vstats; 1901 }; 1902 1903#if IS_ENABLED(CONFIG_GARP) 1904 struct garp_port __rcu *garp_port; 1905#endif 1906#if IS_ENABLED(CONFIG_MRP) 1907 struct mrp_port __rcu *mrp_port; 1908#endif 1909 1910 struct device dev; 1911 const struct attribute_group *sysfs_groups[4]; 1912 const struct attribute_group *sysfs_rx_queue_group; 1913 1914 const struct rtnl_link_ops *rtnl_link_ops; 1915 1916 /* for setting kernel sock attribute on TCP connection setup */ 1917#define GSO_MAX_SIZE 65536 1918 unsigned int gso_max_size; 1919#define GSO_MAX_SEGS 65535 1920 u16 gso_max_segs; 1921 1922#ifdef CONFIG_DCB 1923 const struct dcbnl_rtnl_ops *dcbnl_ops; 1924#endif 1925 u8 num_tc; 1926 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1927 u8 prio_tc_map[TC_BITMASK + 1]; 1928 1929#if IS_ENABLED(CONFIG_FCOE) 1930 unsigned int fcoe_ddp_xid; 1931#endif 1932#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1933 struct netprio_map __rcu *priomap; 1934#endif 1935 struct phy_device *phydev; 1936 struct lock_class_key *qdisc_tx_busylock; 1937 struct lock_class_key *qdisc_running_key; 1938 bool proto_down; 1939}; 1940#define to_net_dev(d) container_of(d, struct net_device, dev) 1941 1942static inline bool netif_elide_gro(const struct net_device *dev) 1943{ 1944 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 1945 return true; 1946 return false; 1947} 1948 1949#define NETDEV_ALIGN 32 1950 1951static inline 1952int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1953{ 1954 return dev->prio_tc_map[prio & TC_BITMASK]; 1955} 1956 1957static inline 1958int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1959{ 1960 if (tc >= dev->num_tc) 1961 return -EINVAL; 1962 1963 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1964 return 0; 1965} 1966 1967int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 1968void netdev_reset_tc(struct net_device *dev); 1969int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 1970int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 1971 1972static inline 1973int netdev_get_num_tc(struct net_device *dev) 1974{ 1975 return dev->num_tc; 1976} 1977 1978static inline 1979struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1980 unsigned int index) 1981{ 1982 return &dev->_tx[index]; 1983} 1984 1985static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1986 const struct sk_buff *skb) 1987{ 1988 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1989} 1990 1991static inline void netdev_for_each_tx_queue(struct net_device *dev, 1992 void (*f)(struct net_device *, 1993 struct netdev_queue *, 1994 void *), 1995 void *arg) 1996{ 1997 unsigned int i; 1998 1999 for (i = 0; i < dev->num_tx_queues; i++) 2000 f(dev, &dev->_tx[i], arg); 2001} 2002 2003#define netdev_lockdep_set_classes(dev) \ 2004{ \ 2005 static struct lock_class_key qdisc_tx_busylock_key; \ 2006 static struct lock_class_key qdisc_running_key; \ 2007 static struct lock_class_key qdisc_xmit_lock_key; \ 2008 static struct lock_class_key dev_addr_list_lock_key; \ 2009 unsigned int i; \ 2010 \ 2011 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2012 (dev)->qdisc_running_key = &qdisc_running_key; \ 2013 lockdep_set_class(&(dev)->addr_list_lock, \ 2014 &dev_addr_list_lock_key); \ 2015 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2016 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2017 &qdisc_xmit_lock_key); \ 2018} 2019 2020struct netdev_queue *netdev_pick_tx(struct net_device *dev, 2021 struct sk_buff *skb, 2022 void *accel_priv); 2023 2024/* returns the headroom that the master device needs to take in account 2025 * when forwarding to this dev 2026 */ 2027static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2028{ 2029 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2030} 2031 2032static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2033{ 2034 if (dev->netdev_ops->ndo_set_rx_headroom) 2035 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2036} 2037 2038/* set the device rx headroom to the dev's default */ 2039static inline void netdev_reset_rx_headroom(struct net_device *dev) 2040{ 2041 netdev_set_rx_headroom(dev, -1); 2042} 2043 2044/* 2045 * Net namespace inlines 2046 */ 2047static inline 2048struct net *dev_net(const struct net_device *dev) 2049{ 2050 return read_pnet(&dev->nd_net); 2051} 2052 2053static inline 2054void dev_net_set(struct net_device *dev, struct net *net) 2055{ 2056 write_pnet(&dev->nd_net, net); 2057} 2058 2059/** 2060 * netdev_priv - access network device private data 2061 * @dev: network device 2062 * 2063 * Get network device private data 2064 */ 2065static inline void *netdev_priv(const struct net_device *dev) 2066{ 2067 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2068} 2069 2070/* Set the sysfs physical device reference for the network logical device 2071 * if set prior to registration will cause a symlink during initialization. 2072 */ 2073#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2074 2075/* Set the sysfs device type for the network logical device to allow 2076 * fine-grained identification of different network device types. For 2077 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2078 */ 2079#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2080 2081/* Default NAPI poll() weight 2082 * Device drivers are strongly advised to not use bigger value 2083 */ 2084#define NAPI_POLL_WEIGHT 64 2085 2086/** 2087 * netif_napi_add - initialize a NAPI context 2088 * @dev: network device 2089 * @napi: NAPI context 2090 * @poll: polling function 2091 * @weight: default weight 2092 * 2093 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2094 * *any* of the other NAPI-related functions. 2095 */ 2096void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2097 int (*poll)(struct napi_struct *, int), int weight); 2098 2099/** 2100 * netif_tx_napi_add - initialize a NAPI context 2101 * @dev: network device 2102 * @napi: NAPI context 2103 * @poll: polling function 2104 * @weight: default weight 2105 * 2106 * This variant of netif_napi_add() should be used from drivers using NAPI 2107 * to exclusively poll a TX queue. 2108 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2109 */ 2110static inline void netif_tx_napi_add(struct net_device *dev, 2111 struct napi_struct *napi, 2112 int (*poll)(struct napi_struct *, int), 2113 int weight) 2114{ 2115 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2116 netif_napi_add(dev, napi, poll, weight); 2117} 2118 2119/** 2120 * netif_napi_del - remove a NAPI context 2121 * @napi: NAPI context 2122 * 2123 * netif_napi_del() removes a NAPI context from the network device NAPI list 2124 */ 2125void netif_napi_del(struct napi_struct *napi); 2126 2127struct napi_gro_cb { 2128 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2129 void *frag0; 2130 2131 /* Length of frag0. */ 2132 unsigned int frag0_len; 2133 2134 /* This indicates where we are processing relative to skb->data. */ 2135 int data_offset; 2136 2137 /* This is non-zero if the packet cannot be merged with the new skb. */ 2138 u16 flush; 2139 2140 /* Save the IP ID here and check when we get to the transport layer */ 2141 u16 flush_id; 2142 2143 /* Number of segments aggregated. */ 2144 u16 count; 2145 2146 /* Start offset for remote checksum offload */ 2147 u16 gro_remcsum_start; 2148 2149 /* jiffies when first packet was created/queued */ 2150 unsigned long age; 2151 2152 /* Used in ipv6_gro_receive() and foo-over-udp */ 2153 u16 proto; 2154 2155 /* This is non-zero if the packet may be of the same flow. */ 2156 u8 same_flow:1; 2157 2158 /* Used in tunnel GRO receive */ 2159 u8 encap_mark:1; 2160 2161 /* GRO checksum is valid */ 2162 u8 csum_valid:1; 2163 2164 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2165 u8 csum_cnt:3; 2166 2167 /* Free the skb? */ 2168 u8 free:2; 2169#define NAPI_GRO_FREE 1 2170#define NAPI_GRO_FREE_STOLEN_HEAD 2 2171 2172 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2173 u8 is_ipv6:1; 2174 2175 /* Used in GRE, set in fou/gue_gro_receive */ 2176 u8 is_fou:1; 2177 2178 /* Used to determine if flush_id can be ignored */ 2179 u8 is_atomic:1; 2180 2181 /* Number of gro_receive callbacks this packet already went through */ 2182 u8 recursion_counter:4; 2183 2184 /* 1 bit hole */ 2185 2186 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2187 __wsum csum; 2188 2189 /* used in skb_gro_receive() slow path */ 2190 struct sk_buff *last; 2191}; 2192 2193#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2194 2195#define GRO_RECURSION_LIMIT 15 2196static inline int gro_recursion_inc_test(struct sk_buff *skb) 2197{ 2198 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2199} 2200 2201typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *); 2202static inline struct sk_buff **call_gro_receive(gro_receive_t cb, 2203 struct sk_buff **head, 2204 struct sk_buff *skb) 2205{ 2206 if (unlikely(gro_recursion_inc_test(skb))) { 2207 NAPI_GRO_CB(skb)->flush |= 1; 2208 return NULL; 2209 } 2210 2211 return cb(head, skb); 2212} 2213 2214typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **, 2215 struct sk_buff *); 2216static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb, 2217 struct sock *sk, 2218 struct sk_buff **head, 2219 struct sk_buff *skb) 2220{ 2221 if (unlikely(gro_recursion_inc_test(skb))) { 2222 NAPI_GRO_CB(skb)->flush |= 1; 2223 return NULL; 2224 } 2225 2226 return cb(sk, head, skb); 2227} 2228 2229struct packet_type { 2230 __be16 type; /* This is really htons(ether_type). */ 2231 struct net_device *dev; /* NULL is wildcarded here */ 2232 int (*func) (struct sk_buff *, 2233 struct net_device *, 2234 struct packet_type *, 2235 struct net_device *); 2236 bool (*id_match)(struct packet_type *ptype, 2237 struct sock *sk); 2238 void *af_packet_priv; 2239 struct list_head list; 2240}; 2241 2242struct offload_callbacks { 2243 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2244 netdev_features_t features); 2245 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2246 struct sk_buff *skb); 2247 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2248}; 2249 2250struct packet_offload { 2251 __be16 type; /* This is really htons(ether_type). */ 2252 u16 priority; 2253 struct offload_callbacks callbacks; 2254 struct list_head list; 2255}; 2256 2257/* often modified stats are per-CPU, other are shared (netdev->stats) */ 2258struct pcpu_sw_netstats { 2259 u64 rx_packets; 2260 u64 rx_bytes; 2261 u64 tx_packets; 2262 u64 tx_bytes; 2263 struct u64_stats_sync syncp; 2264}; 2265 2266#define __netdev_alloc_pcpu_stats(type, gfp) \ 2267({ \ 2268 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2269 if (pcpu_stats) { \ 2270 int __cpu; \ 2271 for_each_possible_cpu(__cpu) { \ 2272 typeof(type) *stat; \ 2273 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2274 u64_stats_init(&stat->syncp); \ 2275 } \ 2276 } \ 2277 pcpu_stats; \ 2278}) 2279 2280#define netdev_alloc_pcpu_stats(type) \ 2281 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2282 2283enum netdev_lag_tx_type { 2284 NETDEV_LAG_TX_TYPE_UNKNOWN, 2285 NETDEV_LAG_TX_TYPE_RANDOM, 2286 NETDEV_LAG_TX_TYPE_BROADCAST, 2287 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2288 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2289 NETDEV_LAG_TX_TYPE_HASH, 2290}; 2291 2292struct netdev_lag_upper_info { 2293 enum netdev_lag_tx_type tx_type; 2294}; 2295 2296struct netdev_lag_lower_state_info { 2297 u8 link_up : 1, 2298 tx_enabled : 1; 2299}; 2300 2301#include <linux/notifier.h> 2302 2303/* netdevice notifier chain. Please remember to update the rtnetlink 2304 * notification exclusion list in rtnetlink_event() when adding new 2305 * types. 2306 */ 2307#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2308#define NETDEV_DOWN 0x0002 2309#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2310 detected a hardware crash and restarted 2311 - we can use this eg to kick tcp sessions 2312 once done */ 2313#define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2314#define NETDEV_REGISTER 0x0005 2315#define NETDEV_UNREGISTER 0x0006 2316#define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2317#define NETDEV_CHANGEADDR 0x0008 2318#define NETDEV_GOING_DOWN 0x0009 2319#define NETDEV_CHANGENAME 0x000A 2320#define NETDEV_FEAT_CHANGE 0x000B 2321#define NETDEV_BONDING_FAILOVER 0x000C 2322#define NETDEV_PRE_UP 0x000D 2323#define NETDEV_PRE_TYPE_CHANGE 0x000E 2324#define NETDEV_POST_TYPE_CHANGE 0x000F 2325#define NETDEV_POST_INIT 0x0010 2326#define NETDEV_UNREGISTER_FINAL 0x0011 2327#define NETDEV_RELEASE 0x0012 2328#define NETDEV_NOTIFY_PEERS 0x0013 2329#define NETDEV_JOIN 0x0014 2330#define NETDEV_CHANGEUPPER 0x0015 2331#define NETDEV_RESEND_IGMP 0x0016 2332#define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2333#define NETDEV_CHANGEINFODATA 0x0018 2334#define NETDEV_BONDING_INFO 0x0019 2335#define NETDEV_PRECHANGEUPPER 0x001A 2336#define NETDEV_CHANGELOWERSTATE 0x001B 2337#define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C 2338#define NETDEV_UDP_TUNNEL_DROP_INFO 0x001D 2339#define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E 2340 2341int register_netdevice_notifier(struct notifier_block *nb); 2342int unregister_netdevice_notifier(struct notifier_block *nb); 2343 2344struct netdev_notifier_info { 2345 struct net_device *dev; 2346 struct netlink_ext_ack *extack; 2347}; 2348 2349struct netdev_notifier_change_info { 2350 struct netdev_notifier_info info; /* must be first */ 2351 unsigned int flags_changed; 2352}; 2353 2354struct netdev_notifier_changeupper_info { 2355 struct netdev_notifier_info info; /* must be first */ 2356 struct net_device *upper_dev; /* new upper dev */ 2357 bool master; /* is upper dev master */ 2358 bool linking; /* is the notification for link or unlink */ 2359 void *upper_info; /* upper dev info */ 2360}; 2361 2362struct netdev_notifier_changelowerstate_info { 2363 struct netdev_notifier_info info; /* must be first */ 2364 void *lower_state_info; /* is lower dev state */ 2365}; 2366 2367static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2368 struct net_device *dev) 2369{ 2370 info->dev = dev; 2371 info->extack = NULL; 2372} 2373 2374static inline struct net_device * 2375netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2376{ 2377 return info->dev; 2378} 2379 2380static inline struct netlink_ext_ack * 2381netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2382{ 2383 return info->extack; 2384} 2385 2386int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2387 2388 2389extern rwlock_t dev_base_lock; /* Device list lock */ 2390 2391#define for_each_netdev(net, d) \ 2392 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2393#define for_each_netdev_reverse(net, d) \ 2394 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2395#define for_each_netdev_rcu(net, d) \ 2396 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2397#define for_each_netdev_safe(net, d, n) \ 2398 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2399#define for_each_netdev_continue(net, d) \ 2400 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2401#define for_each_netdev_continue_rcu(net, d) \ 2402 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2403#define for_each_netdev_in_bond_rcu(bond, slave) \ 2404 for_each_netdev_rcu(&init_net, slave) \ 2405 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2406#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2407 2408static inline struct net_device *next_net_device(struct net_device *dev) 2409{ 2410 struct list_head *lh; 2411 struct net *net; 2412 2413 net = dev_net(dev); 2414 lh = dev->dev_list.next; 2415 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2416} 2417 2418static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2419{ 2420 struct list_head *lh; 2421 struct net *net; 2422 2423 net = dev_net(dev); 2424 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2425 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2426} 2427 2428static inline struct net_device *first_net_device(struct net *net) 2429{ 2430 return list_empty(&net->dev_base_head) ? NULL : 2431 net_device_entry(net->dev_base_head.next); 2432} 2433 2434static inline struct net_device *first_net_device_rcu(struct net *net) 2435{ 2436 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2437 2438 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2439} 2440 2441int netdev_boot_setup_check(struct net_device *dev); 2442unsigned long netdev_boot_base(const char *prefix, int unit); 2443struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2444 const char *hwaddr); 2445struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2446struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2447void dev_add_pack(struct packet_type *pt); 2448void dev_remove_pack(struct packet_type *pt); 2449void __dev_remove_pack(struct packet_type *pt); 2450void dev_add_offload(struct packet_offload *po); 2451void dev_remove_offload(struct packet_offload *po); 2452 2453int dev_get_iflink(const struct net_device *dev); 2454int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2455struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2456 unsigned short mask); 2457struct net_device *dev_get_by_name(struct net *net, const char *name); 2458struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2459struct net_device *__dev_get_by_name(struct net *net, const char *name); 2460int dev_alloc_name(struct net_device *dev, const char *name); 2461int dev_open(struct net_device *dev); 2462void dev_close(struct net_device *dev); 2463void dev_close_many(struct list_head *head, bool unlink); 2464void dev_disable_lro(struct net_device *dev); 2465int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2466int dev_queue_xmit(struct sk_buff *skb); 2467int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2468int register_netdevice(struct net_device *dev); 2469void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2470void unregister_netdevice_many(struct list_head *head); 2471static inline void unregister_netdevice(struct net_device *dev) 2472{ 2473 unregister_netdevice_queue(dev, NULL); 2474} 2475 2476int netdev_refcnt_read(const struct net_device *dev); 2477void free_netdev(struct net_device *dev); 2478void netdev_freemem(struct net_device *dev); 2479void synchronize_net(void); 2480int init_dummy_netdev(struct net_device *dev); 2481 2482DECLARE_PER_CPU(int, xmit_recursion); 2483#define XMIT_RECURSION_LIMIT 10 2484 2485static inline int dev_recursion_level(void) 2486{ 2487 return this_cpu_read(xmit_recursion); 2488} 2489 2490struct net_device *dev_get_by_index(struct net *net, int ifindex); 2491struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2492struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2493struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2494int netdev_get_name(struct net *net, char *name, int ifindex); 2495int dev_restart(struct net_device *dev); 2496int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2497 2498static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2499{ 2500 return NAPI_GRO_CB(skb)->data_offset; 2501} 2502 2503static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2504{ 2505 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2506} 2507 2508static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2509{ 2510 NAPI_GRO_CB(skb)->data_offset += len; 2511} 2512 2513static inline void *skb_gro_header_fast(struct sk_buff *skb, 2514 unsigned int offset) 2515{ 2516 return NAPI_GRO_CB(skb)->frag0 + offset; 2517} 2518 2519static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2520{ 2521 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2522} 2523 2524static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2525{ 2526 NAPI_GRO_CB(skb)->frag0 = NULL; 2527 NAPI_GRO_CB(skb)->frag0_len = 0; 2528} 2529 2530static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2531 unsigned int offset) 2532{ 2533 if (!pskb_may_pull(skb, hlen)) 2534 return NULL; 2535 2536 skb_gro_frag0_invalidate(skb); 2537 return skb->data + offset; 2538} 2539 2540static inline void *skb_gro_network_header(struct sk_buff *skb) 2541{ 2542 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2543 skb_network_offset(skb); 2544} 2545 2546static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2547 const void *start, unsigned int len) 2548{ 2549 if (NAPI_GRO_CB(skb)->csum_valid) 2550 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2551 csum_partial(start, len, 0)); 2552} 2553 2554/* GRO checksum functions. These are logical equivalents of the normal 2555 * checksum functions (in skbuff.h) except that they operate on the GRO 2556 * offsets and fields in sk_buff. 2557 */ 2558 2559__sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2560 2561static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2562{ 2563 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2564} 2565 2566static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2567 bool zero_okay, 2568 __sum16 check) 2569{ 2570 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2571 skb_checksum_start_offset(skb) < 2572 skb_gro_offset(skb)) && 2573 !skb_at_gro_remcsum_start(skb) && 2574 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2575 (!zero_okay || check)); 2576} 2577 2578static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2579 __wsum psum) 2580{ 2581 if (NAPI_GRO_CB(skb)->csum_valid && 2582 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2583 return 0; 2584 2585 NAPI_GRO_CB(skb)->csum = psum; 2586 2587 return __skb_gro_checksum_complete(skb); 2588} 2589 2590static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2591{ 2592 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2593 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2594 NAPI_GRO_CB(skb)->csum_cnt--; 2595 } else { 2596 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2597 * verified a new top level checksum or an encapsulated one 2598 * during GRO. This saves work if we fallback to normal path. 2599 */ 2600 __skb_incr_checksum_unnecessary(skb); 2601 } 2602} 2603 2604#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2605 compute_pseudo) \ 2606({ \ 2607 __sum16 __ret = 0; \ 2608 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2609 __ret = __skb_gro_checksum_validate_complete(skb, \ 2610 compute_pseudo(skb, proto)); \ 2611 if (!__ret) \ 2612 skb_gro_incr_csum_unnecessary(skb); \ 2613 __ret; \ 2614}) 2615 2616#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2617 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2618 2619#define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2620 compute_pseudo) \ 2621 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2622 2623#define skb_gro_checksum_simple_validate(skb) \ 2624 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2625 2626static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2627{ 2628 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2629 !NAPI_GRO_CB(skb)->csum_valid); 2630} 2631 2632static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2633 __sum16 check, __wsum pseudo) 2634{ 2635 NAPI_GRO_CB(skb)->csum = ~pseudo; 2636 NAPI_GRO_CB(skb)->csum_valid = 1; 2637} 2638 2639#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2640do { \ 2641 if (__skb_gro_checksum_convert_check(skb)) \ 2642 __skb_gro_checksum_convert(skb, check, \ 2643 compute_pseudo(skb, proto)); \ 2644} while (0) 2645 2646struct gro_remcsum { 2647 int offset; 2648 __wsum delta; 2649}; 2650 2651static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2652{ 2653 grc->offset = 0; 2654 grc->delta = 0; 2655} 2656 2657static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2658 unsigned int off, size_t hdrlen, 2659 int start, int offset, 2660 struct gro_remcsum *grc, 2661 bool nopartial) 2662{ 2663 __wsum delta; 2664 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2665 2666 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2667 2668 if (!nopartial) { 2669 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2670 return ptr; 2671 } 2672 2673 ptr = skb_gro_header_fast(skb, off); 2674 if (skb_gro_header_hard(skb, off + plen)) { 2675 ptr = skb_gro_header_slow(skb, off + plen, off); 2676 if (!ptr) 2677 return NULL; 2678 } 2679 2680 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2681 start, offset); 2682 2683 /* Adjust skb->csum since we changed the packet */ 2684 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2685 2686 grc->offset = off + hdrlen + offset; 2687 grc->delta = delta; 2688 2689 return ptr; 2690} 2691 2692static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2693 struct gro_remcsum *grc) 2694{ 2695 void *ptr; 2696 size_t plen = grc->offset + sizeof(u16); 2697 2698 if (!grc->delta) 2699 return; 2700 2701 ptr = skb_gro_header_fast(skb, grc->offset); 2702 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2703 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2704 if (!ptr) 2705 return; 2706 } 2707 2708 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2709} 2710 2711#ifdef CONFIG_XFRM_OFFLOAD 2712static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2713{ 2714 if (PTR_ERR(pp) != -EINPROGRESS) 2715 NAPI_GRO_CB(skb)->flush |= flush; 2716} 2717#else 2718static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush) 2719{ 2720 NAPI_GRO_CB(skb)->flush |= flush; 2721} 2722#endif 2723 2724static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2725 unsigned short type, 2726 const void *daddr, const void *saddr, 2727 unsigned int len) 2728{ 2729 if (!dev->header_ops || !dev->header_ops->create) 2730 return 0; 2731 2732 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2733} 2734 2735static inline int dev_parse_header(const struct sk_buff *skb, 2736 unsigned char *haddr) 2737{ 2738 const struct net_device *dev = skb->dev; 2739 2740 if (!dev->header_ops || !dev->header_ops->parse) 2741 return 0; 2742 return dev->header_ops->parse(skb, haddr); 2743} 2744 2745/* ll_header must have at least hard_header_len allocated */ 2746static inline bool dev_validate_header(const struct net_device *dev, 2747 char *ll_header, int len) 2748{ 2749 if (likely(len >= dev->hard_header_len)) 2750 return true; 2751 if (len < dev->min_header_len) 2752 return false; 2753 2754 if (capable(CAP_SYS_RAWIO)) { 2755 memset(ll_header + len, 0, dev->hard_header_len - len); 2756 return true; 2757 } 2758 2759 if (dev->header_ops && dev->header_ops->validate) 2760 return dev->header_ops->validate(ll_header, len); 2761 2762 return false; 2763} 2764 2765typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 2766 int len, int size); 2767int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2768static inline int unregister_gifconf(unsigned int family) 2769{ 2770 return register_gifconf(family, NULL); 2771} 2772 2773#ifdef CONFIG_NET_FLOW_LIMIT 2774#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2775struct sd_flow_limit { 2776 u64 count; 2777 unsigned int num_buckets; 2778 unsigned int history_head; 2779 u16 history[FLOW_LIMIT_HISTORY]; 2780 u8 buckets[]; 2781}; 2782 2783extern int netdev_flow_limit_table_len; 2784#endif /* CONFIG_NET_FLOW_LIMIT */ 2785 2786/* 2787 * Incoming packets are placed on per-CPU queues 2788 */ 2789struct softnet_data { 2790 struct list_head poll_list; 2791 struct sk_buff_head process_queue; 2792 2793 /* stats */ 2794 unsigned int processed; 2795 unsigned int time_squeeze; 2796 unsigned int received_rps; 2797#ifdef CONFIG_RPS 2798 struct softnet_data *rps_ipi_list; 2799#endif 2800#ifdef CONFIG_NET_FLOW_LIMIT 2801 struct sd_flow_limit __rcu *flow_limit; 2802#endif 2803 struct Qdisc *output_queue; 2804 struct Qdisc **output_queue_tailp; 2805 struct sk_buff *completion_queue; 2806#ifdef CONFIG_XFRM_OFFLOAD 2807 struct sk_buff_head xfrm_backlog; 2808#endif 2809#ifdef CONFIG_RPS 2810 /* input_queue_head should be written by cpu owning this struct, 2811 * and only read by other cpus. Worth using a cache line. 2812 */ 2813 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2814 2815 /* Elements below can be accessed between CPUs for RPS/RFS */ 2816 call_single_data_t csd ____cacheline_aligned_in_smp; 2817 struct softnet_data *rps_ipi_next; 2818 unsigned int cpu; 2819 unsigned int input_queue_tail; 2820#endif 2821 unsigned int dropped; 2822 struct sk_buff_head input_pkt_queue; 2823 struct napi_struct backlog; 2824 2825}; 2826 2827static inline void input_queue_head_incr(struct softnet_data *sd) 2828{ 2829#ifdef CONFIG_RPS 2830 sd->input_queue_head++; 2831#endif 2832} 2833 2834static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2835 unsigned int *qtail) 2836{ 2837#ifdef CONFIG_RPS 2838 *qtail = ++sd->input_queue_tail; 2839#endif 2840} 2841 2842DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2843 2844void __netif_schedule(struct Qdisc *q); 2845void netif_schedule_queue(struct netdev_queue *txq); 2846 2847static inline void netif_tx_schedule_all(struct net_device *dev) 2848{ 2849 unsigned int i; 2850 2851 for (i = 0; i < dev->num_tx_queues; i++) 2852 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2853} 2854 2855static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2856{ 2857 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2858} 2859 2860/** 2861 * netif_start_queue - allow transmit 2862 * @dev: network device 2863 * 2864 * Allow upper layers to call the device hard_start_xmit routine. 2865 */ 2866static inline void netif_start_queue(struct net_device *dev) 2867{ 2868 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2869} 2870 2871static inline void netif_tx_start_all_queues(struct net_device *dev) 2872{ 2873 unsigned int i; 2874 2875 for (i = 0; i < dev->num_tx_queues; i++) { 2876 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2877 netif_tx_start_queue(txq); 2878 } 2879} 2880 2881void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2882 2883/** 2884 * netif_wake_queue - restart transmit 2885 * @dev: network device 2886 * 2887 * Allow upper layers to call the device hard_start_xmit routine. 2888 * Used for flow control when transmit resources are available. 2889 */ 2890static inline void netif_wake_queue(struct net_device *dev) 2891{ 2892 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2893} 2894 2895static inline void netif_tx_wake_all_queues(struct net_device *dev) 2896{ 2897 unsigned int i; 2898 2899 for (i = 0; i < dev->num_tx_queues; i++) { 2900 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2901 netif_tx_wake_queue(txq); 2902 } 2903} 2904 2905static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2906{ 2907 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2908} 2909 2910/** 2911 * netif_stop_queue - stop transmitted packets 2912 * @dev: network device 2913 * 2914 * Stop upper layers calling the device hard_start_xmit routine. 2915 * Used for flow control when transmit resources are unavailable. 2916 */ 2917static inline void netif_stop_queue(struct net_device *dev) 2918{ 2919 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2920} 2921 2922void netif_tx_stop_all_queues(struct net_device *dev); 2923 2924static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2925{ 2926 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2927} 2928 2929/** 2930 * netif_queue_stopped - test if transmit queue is flowblocked 2931 * @dev: network device 2932 * 2933 * Test if transmit queue on device is currently unable to send. 2934 */ 2935static inline bool netif_queue_stopped(const struct net_device *dev) 2936{ 2937 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2938} 2939 2940static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2941{ 2942 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2943} 2944 2945static inline bool 2946netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2947{ 2948 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2949} 2950 2951static inline bool 2952netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2953{ 2954 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2955} 2956 2957/** 2958 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2959 * @dev_queue: pointer to transmit queue 2960 * 2961 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2962 * to give appropriate hint to the CPU. 2963 */ 2964static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2965{ 2966#ifdef CONFIG_BQL 2967 prefetchw(&dev_queue->dql.num_queued); 2968#endif 2969} 2970 2971/** 2972 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2973 * @dev_queue: pointer to transmit queue 2974 * 2975 * BQL enabled drivers might use this helper in their TX completion path, 2976 * to give appropriate hint to the CPU. 2977 */ 2978static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2979{ 2980#ifdef CONFIG_BQL 2981 prefetchw(&dev_queue->dql.limit); 2982#endif 2983} 2984 2985static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2986 unsigned int bytes) 2987{ 2988#ifdef CONFIG_BQL 2989 dql_queued(&dev_queue->dql, bytes); 2990 2991 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2992 return; 2993 2994 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2995 2996 /* 2997 * The XOFF flag must be set before checking the dql_avail below, 2998 * because in netdev_tx_completed_queue we update the dql_completed 2999 * before checking the XOFF flag. 3000 */ 3001 smp_mb(); 3002 3003 /* check again in case another CPU has just made room avail */ 3004 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3005 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3006#endif 3007} 3008 3009/** 3010 * netdev_sent_queue - report the number of bytes queued to hardware 3011 * @dev: network device 3012 * @bytes: number of bytes queued to the hardware device queue 3013 * 3014 * Report the number of bytes queued for sending/completion to the network 3015 * device hardware queue. @bytes should be a good approximation and should 3016 * exactly match netdev_completed_queue() @bytes 3017 */ 3018static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3019{ 3020 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3021} 3022 3023static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3024 unsigned int pkts, unsigned int bytes) 3025{ 3026#ifdef CONFIG_BQL 3027 if (unlikely(!bytes)) 3028 return; 3029 3030 dql_completed(&dev_queue->dql, bytes); 3031 3032 /* 3033 * Without the memory barrier there is a small possiblity that 3034 * netdev_tx_sent_queue will miss the update and cause the queue to 3035 * be stopped forever 3036 */ 3037 smp_mb(); 3038 3039 if (dql_avail(&dev_queue->dql) < 0) 3040 return; 3041 3042 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3043 netif_schedule_queue(dev_queue); 3044#endif 3045} 3046 3047/** 3048 * netdev_completed_queue - report bytes and packets completed by device 3049 * @dev: network device 3050 * @pkts: actual number of packets sent over the medium 3051 * @bytes: actual number of bytes sent over the medium 3052 * 3053 * Report the number of bytes and packets transmitted by the network device 3054 * hardware queue over the physical medium, @bytes must exactly match the 3055 * @bytes amount passed to netdev_sent_queue() 3056 */ 3057static inline void netdev_completed_queue(struct net_device *dev, 3058 unsigned int pkts, unsigned int bytes) 3059{ 3060 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3061} 3062 3063static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3064{ 3065#ifdef CONFIG_BQL 3066 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3067 dql_reset(&q->dql); 3068#endif 3069} 3070 3071/** 3072 * netdev_reset_queue - reset the packets and bytes count of a network device 3073 * @dev_queue: network device 3074 * 3075 * Reset the bytes and packet count of a network device and clear the 3076 * software flow control OFF bit for this network device 3077 */ 3078static inline void netdev_reset_queue(struct net_device *dev_queue) 3079{ 3080 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3081} 3082 3083/** 3084 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3085 * @dev: network device 3086 * @queue_index: given tx queue index 3087 * 3088 * Returns 0 if given tx queue index >= number of device tx queues, 3089 * otherwise returns the originally passed tx queue index. 3090 */ 3091static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3092{ 3093 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3094 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3095 dev->name, queue_index, 3096 dev->real_num_tx_queues); 3097 return 0; 3098 } 3099 3100 return queue_index; 3101} 3102 3103/** 3104 * netif_running - test if up 3105 * @dev: network device 3106 * 3107 * Test if the device has been brought up. 3108 */ 3109static inline bool netif_running(const struct net_device *dev) 3110{ 3111 return test_bit(__LINK_STATE_START, &dev->state); 3112} 3113 3114/* 3115 * Routines to manage the subqueues on a device. We only need start, 3116 * stop, and a check if it's stopped. All other device management is 3117 * done at the overall netdevice level. 3118 * Also test the device if we're multiqueue. 3119 */ 3120 3121/** 3122 * netif_start_subqueue - allow sending packets on subqueue 3123 * @dev: network device 3124 * @queue_index: sub queue index 3125 * 3126 * Start individual transmit queue of a device with multiple transmit queues. 3127 */ 3128static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3129{ 3130 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3131 3132 netif_tx_start_queue(txq); 3133} 3134 3135/** 3136 * netif_stop_subqueue - stop sending packets on subqueue 3137 * @dev: network device 3138 * @queue_index: sub queue index 3139 * 3140 * Stop individual transmit queue of a device with multiple transmit queues. 3141 */ 3142static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3143{ 3144 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3145 netif_tx_stop_queue(txq); 3146} 3147 3148/** 3149 * netif_subqueue_stopped - test status of subqueue 3150 * @dev: network device 3151 * @queue_index: sub queue index 3152 * 3153 * Check individual transmit queue of a device with multiple transmit queues. 3154 */ 3155static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3156 u16 queue_index) 3157{ 3158 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3159 3160 return netif_tx_queue_stopped(txq); 3161} 3162 3163static inline bool netif_subqueue_stopped(const struct net_device *dev, 3164 struct sk_buff *skb) 3165{ 3166 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3167} 3168 3169/** 3170 * netif_wake_subqueue - allow sending packets on subqueue 3171 * @dev: network device 3172 * @queue_index: sub queue index 3173 * 3174 * Resume individual transmit queue of a device with multiple transmit queues. 3175 */ 3176static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3177{ 3178 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3179 3180 netif_tx_wake_queue(txq); 3181} 3182 3183#ifdef CONFIG_XPS 3184int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3185 u16 index); 3186#else 3187static inline int netif_set_xps_queue(struct net_device *dev, 3188 const struct cpumask *mask, 3189 u16 index) 3190{ 3191 return 0; 3192} 3193#endif 3194 3195u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3196 unsigned int num_tx_queues); 3197 3198/* 3199 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 3200 * as a distribution range limit for the returned value. 3201 */ 3202static inline u16 skb_tx_hash(const struct net_device *dev, 3203 struct sk_buff *skb) 3204{ 3205 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 3206} 3207 3208/** 3209 * netif_is_multiqueue - test if device has multiple transmit queues 3210 * @dev: network device 3211 * 3212 * Check if device has multiple transmit queues 3213 */ 3214static inline bool netif_is_multiqueue(const struct net_device *dev) 3215{ 3216 return dev->num_tx_queues > 1; 3217} 3218 3219int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3220 3221#ifdef CONFIG_SYSFS 3222int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3223#else 3224static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3225 unsigned int rxq) 3226{ 3227 return 0; 3228} 3229#endif 3230 3231static inline struct netdev_rx_queue * 3232__netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3233{ 3234 return dev->_rx + rxq; 3235} 3236 3237#ifdef CONFIG_SYSFS 3238static inline unsigned int get_netdev_rx_queue_index( 3239 struct netdev_rx_queue *queue) 3240{ 3241 struct net_device *dev = queue->dev; 3242 int index = queue - dev->_rx; 3243 3244 BUG_ON(index >= dev->num_rx_queues); 3245 return index; 3246} 3247#endif 3248 3249#define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3250int netif_get_num_default_rss_queues(void); 3251 3252enum skb_free_reason { 3253 SKB_REASON_CONSUMED, 3254 SKB_REASON_DROPPED, 3255}; 3256 3257void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3258void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3259 3260/* 3261 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3262 * interrupt context or with hardware interrupts being disabled. 3263 * (in_irq() || irqs_disabled()) 3264 * 3265 * We provide four helpers that can be used in following contexts : 3266 * 3267 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3268 * replacing kfree_skb(skb) 3269 * 3270 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3271 * Typically used in place of consume_skb(skb) in TX completion path 3272 * 3273 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3274 * replacing kfree_skb(skb) 3275 * 3276 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3277 * and consumed a packet. Used in place of consume_skb(skb) 3278 */ 3279static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3280{ 3281 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3282} 3283 3284static inline void dev_consume_skb_irq(struct sk_buff *skb) 3285{ 3286 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3287} 3288 3289static inline void dev_kfree_skb_any(struct sk_buff *skb) 3290{ 3291 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3292} 3293 3294static inline void dev_consume_skb_any(struct sk_buff *skb) 3295{ 3296 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3297} 3298 3299void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3300int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3301int netif_rx(struct sk_buff *skb); 3302int netif_rx_ni(struct sk_buff *skb); 3303int netif_receive_skb(struct sk_buff *skb); 3304int netif_receive_skb_core(struct sk_buff *skb); 3305gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3306void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3307struct sk_buff *napi_get_frags(struct napi_struct *napi); 3308gro_result_t napi_gro_frags(struct napi_struct *napi); 3309struct packet_offload *gro_find_receive_by_type(__be16 type); 3310struct packet_offload *gro_find_complete_by_type(__be16 type); 3311 3312static inline void napi_free_frags(struct napi_struct *napi) 3313{ 3314 kfree_skb(napi->skb); 3315 napi->skb = NULL; 3316} 3317 3318bool netdev_is_rx_handler_busy(struct net_device *dev); 3319int netdev_rx_handler_register(struct net_device *dev, 3320 rx_handler_func_t *rx_handler, 3321 void *rx_handler_data); 3322void netdev_rx_handler_unregister(struct net_device *dev); 3323 3324bool dev_valid_name(const char *name); 3325int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3326 bool *need_copyout); 3327int dev_ifconf(struct net *net, struct ifconf *, int); 3328int dev_ethtool(struct net *net, struct ifreq *); 3329unsigned int dev_get_flags(const struct net_device *); 3330int __dev_change_flags(struct net_device *, unsigned int flags); 3331int dev_change_flags(struct net_device *, unsigned int); 3332void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3333 unsigned int gchanges); 3334int dev_change_name(struct net_device *, const char *); 3335int dev_set_alias(struct net_device *, const char *, size_t); 3336int dev_get_alias(const struct net_device *, char *, size_t); 3337int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3338int __dev_set_mtu(struct net_device *, int); 3339int dev_set_mtu(struct net_device *, int); 3340int dev_change_tx_queue_len(struct net_device *, unsigned long); 3341void dev_set_group(struct net_device *, int); 3342int dev_set_mac_address(struct net_device *, struct sockaddr *); 3343int dev_change_carrier(struct net_device *, bool new_carrier); 3344int dev_get_phys_port_id(struct net_device *dev, 3345 struct netdev_phys_item_id *ppid); 3346int dev_get_phys_port_name(struct net_device *dev, 3347 char *name, size_t len); 3348int dev_change_proto_down(struct net_device *dev, bool proto_down); 3349struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3350struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3351 struct netdev_queue *txq, int *ret); 3352 3353typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3354int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3355 int fd, u32 flags); 3356void __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op, 3357 struct netdev_bpf *xdp); 3358 3359int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3360int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3361bool is_skb_forwardable(const struct net_device *dev, 3362 const struct sk_buff *skb); 3363 3364static __always_inline int ____dev_forward_skb(struct net_device *dev, 3365 struct sk_buff *skb) 3366{ 3367 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3368 unlikely(!is_skb_forwardable(dev, skb))) { 3369 atomic_long_inc(&dev->rx_dropped); 3370 kfree_skb(skb); 3371 return NET_RX_DROP; 3372 } 3373 3374 skb_scrub_packet(skb, true); 3375 skb->priority = 0; 3376 return 0; 3377} 3378 3379void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3380 3381extern int netdev_budget; 3382extern unsigned int netdev_budget_usecs; 3383 3384/* Called by rtnetlink.c:rtnl_unlock() */ 3385void netdev_run_todo(void); 3386 3387/** 3388 * dev_put - release reference to device 3389 * @dev: network device 3390 * 3391 * Release reference to device to allow it to be freed. 3392 */ 3393static inline void dev_put(struct net_device *dev) 3394{ 3395 this_cpu_dec(*dev->pcpu_refcnt); 3396} 3397 3398/** 3399 * dev_hold - get reference to device 3400 * @dev: network device 3401 * 3402 * Hold reference to device to keep it from being freed. 3403 */ 3404static inline void dev_hold(struct net_device *dev) 3405{ 3406 this_cpu_inc(*dev->pcpu_refcnt); 3407} 3408 3409/* Carrier loss detection, dial on demand. The functions netif_carrier_on 3410 * and _off may be called from IRQ context, but it is caller 3411 * who is responsible for serialization of these calls. 3412 * 3413 * The name carrier is inappropriate, these functions should really be 3414 * called netif_lowerlayer_*() because they represent the state of any 3415 * kind of lower layer not just hardware media. 3416 */ 3417 3418void linkwatch_init_dev(struct net_device *dev); 3419void linkwatch_fire_event(struct net_device *dev); 3420void linkwatch_forget_dev(struct net_device *dev); 3421 3422/** 3423 * netif_carrier_ok - test if carrier present 3424 * @dev: network device 3425 * 3426 * Check if carrier is present on device 3427 */ 3428static inline bool netif_carrier_ok(const struct net_device *dev) 3429{ 3430 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3431} 3432 3433unsigned long dev_trans_start(struct net_device *dev); 3434 3435void __netdev_watchdog_up(struct net_device *dev); 3436 3437void netif_carrier_on(struct net_device *dev); 3438 3439void netif_carrier_off(struct net_device *dev); 3440 3441/** 3442 * netif_dormant_on - mark device as dormant. 3443 * @dev: network device 3444 * 3445 * Mark device as dormant (as per RFC2863). 3446 * 3447 * The dormant state indicates that the relevant interface is not 3448 * actually in a condition to pass packets (i.e., it is not 'up') but is 3449 * in a "pending" state, waiting for some external event. For "on- 3450 * demand" interfaces, this new state identifies the situation where the 3451 * interface is waiting for events to place it in the up state. 3452 */ 3453static inline void netif_dormant_on(struct net_device *dev) 3454{ 3455 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3456 linkwatch_fire_event(dev); 3457} 3458 3459/** 3460 * netif_dormant_off - set device as not dormant. 3461 * @dev: network device 3462 * 3463 * Device is not in dormant state. 3464 */ 3465static inline void netif_dormant_off(struct net_device *dev) 3466{ 3467 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3468 linkwatch_fire_event(dev); 3469} 3470 3471/** 3472 * netif_dormant - test if device is dormant 3473 * @dev: network device 3474 * 3475 * Check if device is dormant. 3476 */ 3477static inline bool netif_dormant(const struct net_device *dev) 3478{ 3479 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3480} 3481 3482 3483/** 3484 * netif_oper_up - test if device is operational 3485 * @dev: network device 3486 * 3487 * Check if carrier is operational 3488 */ 3489static inline bool netif_oper_up(const struct net_device *dev) 3490{ 3491 return (dev->operstate == IF_OPER_UP || 3492 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3493} 3494 3495/** 3496 * netif_device_present - is device available or removed 3497 * @dev: network device 3498 * 3499 * Check if device has not been removed from system. 3500 */ 3501static inline bool netif_device_present(struct net_device *dev) 3502{ 3503 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3504} 3505 3506void netif_device_detach(struct net_device *dev); 3507 3508void netif_device_attach(struct net_device *dev); 3509 3510/* 3511 * Network interface message level settings 3512 */ 3513 3514enum { 3515 NETIF_MSG_DRV = 0x0001, 3516 NETIF_MSG_PROBE = 0x0002, 3517 NETIF_MSG_LINK = 0x0004, 3518 NETIF_MSG_TIMER = 0x0008, 3519 NETIF_MSG_IFDOWN = 0x0010, 3520 NETIF_MSG_IFUP = 0x0020, 3521 NETIF_MSG_RX_ERR = 0x0040, 3522 NETIF_MSG_TX_ERR = 0x0080, 3523 NETIF_MSG_TX_QUEUED = 0x0100, 3524 NETIF_MSG_INTR = 0x0200, 3525 NETIF_MSG_TX_DONE = 0x0400, 3526 NETIF_MSG_RX_STATUS = 0x0800, 3527 NETIF_MSG_PKTDATA = 0x1000, 3528 NETIF_MSG_HW = 0x2000, 3529 NETIF_MSG_WOL = 0x4000, 3530}; 3531 3532#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3533#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3534#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3535#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3536#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3537#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3538#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3539#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3540#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3541#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3542#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3543#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3544#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3545#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3546#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3547 3548static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3549{ 3550 /* use default */ 3551 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3552 return default_msg_enable_bits; 3553 if (debug_value == 0) /* no output */ 3554 return 0; 3555 /* set low N bits */ 3556 return (1 << debug_value) - 1; 3557} 3558 3559static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3560{ 3561 spin_lock(&txq->_xmit_lock); 3562 txq->xmit_lock_owner = cpu; 3563} 3564 3565static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3566{ 3567 __acquire(&txq->_xmit_lock); 3568 return true; 3569} 3570 3571static inline void __netif_tx_release(struct netdev_queue *txq) 3572{ 3573 __release(&txq->_xmit_lock); 3574} 3575 3576static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3577{ 3578 spin_lock_bh(&txq->_xmit_lock); 3579 txq->xmit_lock_owner = smp_processor_id(); 3580} 3581 3582static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3583{ 3584 bool ok = spin_trylock(&txq->_xmit_lock); 3585 if (likely(ok)) 3586 txq->xmit_lock_owner = smp_processor_id(); 3587 return ok; 3588} 3589 3590static inline void __netif_tx_unlock(struct netdev_queue *txq) 3591{ 3592 txq->xmit_lock_owner = -1; 3593 spin_unlock(&txq->_xmit_lock); 3594} 3595 3596static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3597{ 3598 txq->xmit_lock_owner = -1; 3599 spin_unlock_bh(&txq->_xmit_lock); 3600} 3601 3602static inline void txq_trans_update(struct netdev_queue *txq) 3603{ 3604 if (txq->xmit_lock_owner != -1) 3605 txq->trans_start = jiffies; 3606} 3607 3608/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3609static inline void netif_trans_update(struct net_device *dev) 3610{ 3611 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3612 3613 if (txq->trans_start != jiffies) 3614 txq->trans_start = jiffies; 3615} 3616 3617/** 3618 * netif_tx_lock - grab network device transmit lock 3619 * @dev: network device 3620 * 3621 * Get network device transmit lock 3622 */ 3623static inline void netif_tx_lock(struct net_device *dev) 3624{ 3625 unsigned int i; 3626 int cpu; 3627 3628 spin_lock(&dev->tx_global_lock); 3629 cpu = smp_processor_id(); 3630 for (i = 0; i < dev->num_tx_queues; i++) { 3631 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3632 3633 /* We are the only thread of execution doing a 3634 * freeze, but we have to grab the _xmit_lock in 3635 * order to synchronize with threads which are in 3636 * the ->hard_start_xmit() handler and already 3637 * checked the frozen bit. 3638 */ 3639 __netif_tx_lock(txq, cpu); 3640 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3641 __netif_tx_unlock(txq); 3642 } 3643} 3644 3645static inline void netif_tx_lock_bh(struct net_device *dev) 3646{ 3647 local_bh_disable(); 3648 netif_tx_lock(dev); 3649} 3650 3651static inline void netif_tx_unlock(struct net_device *dev) 3652{ 3653 unsigned int i; 3654 3655 for (i = 0; i < dev->num_tx_queues; i++) { 3656 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3657 3658 /* No need to grab the _xmit_lock here. If the 3659 * queue is not stopped for another reason, we 3660 * force a schedule. 3661 */ 3662 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3663 netif_schedule_queue(txq); 3664 } 3665 spin_unlock(&dev->tx_global_lock); 3666} 3667 3668static inline void netif_tx_unlock_bh(struct net_device *dev) 3669{ 3670 netif_tx_unlock(dev); 3671 local_bh_enable(); 3672} 3673 3674#define HARD_TX_LOCK(dev, txq, cpu) { \ 3675 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3676 __netif_tx_lock(txq, cpu); \ 3677 } else { \ 3678 __netif_tx_acquire(txq); \ 3679 } \ 3680} 3681 3682#define HARD_TX_TRYLOCK(dev, txq) \ 3683 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3684 __netif_tx_trylock(txq) : \ 3685 __netif_tx_acquire(txq)) 3686 3687#define HARD_TX_UNLOCK(dev, txq) { \ 3688 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3689 __netif_tx_unlock(txq); \ 3690 } else { \ 3691 __netif_tx_release(txq); \ 3692 } \ 3693} 3694 3695static inline void netif_tx_disable(struct net_device *dev) 3696{ 3697 unsigned int i; 3698 int cpu; 3699 3700 local_bh_disable(); 3701 cpu = smp_processor_id(); 3702 for (i = 0; i < dev->num_tx_queues; i++) { 3703 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3704 3705 __netif_tx_lock(txq, cpu); 3706 netif_tx_stop_queue(txq); 3707 __netif_tx_unlock(txq); 3708 } 3709 local_bh_enable(); 3710} 3711 3712static inline void netif_addr_lock(struct net_device *dev) 3713{ 3714 spin_lock(&dev->addr_list_lock); 3715} 3716 3717static inline void netif_addr_lock_nested(struct net_device *dev) 3718{ 3719 int subclass = SINGLE_DEPTH_NESTING; 3720 3721 if (dev->netdev_ops->ndo_get_lock_subclass) 3722 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3723 3724 spin_lock_nested(&dev->addr_list_lock, subclass); 3725} 3726 3727static inline void netif_addr_lock_bh(struct net_device *dev) 3728{ 3729 spin_lock_bh(&dev->addr_list_lock); 3730} 3731 3732static inline void netif_addr_unlock(struct net_device *dev) 3733{ 3734 spin_unlock(&dev->addr_list_lock); 3735} 3736 3737static inline void netif_addr_unlock_bh(struct net_device *dev) 3738{ 3739 spin_unlock_bh(&dev->addr_list_lock); 3740} 3741 3742/* 3743 * dev_addrs walker. Should be used only for read access. Call with 3744 * rcu_read_lock held. 3745 */ 3746#define for_each_dev_addr(dev, ha) \ 3747 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3748 3749/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3750 3751void ether_setup(struct net_device *dev); 3752 3753/* Support for loadable net-drivers */ 3754struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3755 unsigned char name_assign_type, 3756 void (*setup)(struct net_device *), 3757 unsigned int txqs, unsigned int rxqs); 3758int dev_get_valid_name(struct net *net, struct net_device *dev, 3759 const char *name); 3760 3761#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3762 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3763 3764#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3765 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3766 count) 3767 3768int register_netdev(struct net_device *dev); 3769void unregister_netdev(struct net_device *dev); 3770 3771/* General hardware address lists handling functions */ 3772int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3773 struct netdev_hw_addr_list *from_list, int addr_len); 3774void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3775 struct netdev_hw_addr_list *from_list, int addr_len); 3776int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3777 struct net_device *dev, 3778 int (*sync)(struct net_device *, const unsigned char *), 3779 int (*unsync)(struct net_device *, 3780 const unsigned char *)); 3781void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3782 struct net_device *dev, 3783 int (*unsync)(struct net_device *, 3784 const unsigned char *)); 3785void __hw_addr_init(struct netdev_hw_addr_list *list); 3786 3787/* Functions used for device addresses handling */ 3788int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3789 unsigned char addr_type); 3790int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3791 unsigned char addr_type); 3792void dev_addr_flush(struct net_device *dev); 3793int dev_addr_init(struct net_device *dev); 3794 3795/* Functions used for unicast addresses handling */ 3796int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3797int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3798int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3799int dev_uc_sync(struct net_device *to, struct net_device *from); 3800int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3801void dev_uc_unsync(struct net_device *to, struct net_device *from); 3802void dev_uc_flush(struct net_device *dev); 3803void dev_uc_init(struct net_device *dev); 3804 3805/** 3806 * __dev_uc_sync - Synchonize device's unicast list 3807 * @dev: device to sync 3808 * @sync: function to call if address should be added 3809 * @unsync: function to call if address should be removed 3810 * 3811 * Add newly added addresses to the interface, and release 3812 * addresses that have been deleted. 3813 */ 3814static inline int __dev_uc_sync(struct net_device *dev, 3815 int (*sync)(struct net_device *, 3816 const unsigned char *), 3817 int (*unsync)(struct net_device *, 3818 const unsigned char *)) 3819{ 3820 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3821} 3822 3823/** 3824 * __dev_uc_unsync - Remove synchronized addresses from device 3825 * @dev: device to sync 3826 * @unsync: function to call if address should be removed 3827 * 3828 * Remove all addresses that were added to the device by dev_uc_sync(). 3829 */ 3830static inline void __dev_uc_unsync(struct net_device *dev, 3831 int (*unsync)(struct net_device *, 3832 const unsigned char *)) 3833{ 3834 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3835} 3836 3837/* Functions used for multicast addresses handling */ 3838int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3839int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3840int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3841int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3842int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3843int dev_mc_sync(struct net_device *to, struct net_device *from); 3844int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3845void dev_mc_unsync(struct net_device *to, struct net_device *from); 3846void dev_mc_flush(struct net_device *dev); 3847void dev_mc_init(struct net_device *dev); 3848 3849/** 3850 * __dev_mc_sync - Synchonize device's multicast list 3851 * @dev: device to sync 3852 * @sync: function to call if address should be added 3853 * @unsync: function to call if address should be removed 3854 * 3855 * Add newly added addresses to the interface, and release 3856 * addresses that have been deleted. 3857 */ 3858static inline int __dev_mc_sync(struct net_device *dev, 3859 int (*sync)(struct net_device *, 3860 const unsigned char *), 3861 int (*unsync)(struct net_device *, 3862 const unsigned char *)) 3863{ 3864 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3865} 3866 3867/** 3868 * __dev_mc_unsync - Remove synchronized addresses from device 3869 * @dev: device to sync 3870 * @unsync: function to call if address should be removed 3871 * 3872 * Remove all addresses that were added to the device by dev_mc_sync(). 3873 */ 3874static inline void __dev_mc_unsync(struct net_device *dev, 3875 int (*unsync)(struct net_device *, 3876 const unsigned char *)) 3877{ 3878 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3879} 3880 3881/* Functions used for secondary unicast and multicast support */ 3882void dev_set_rx_mode(struct net_device *dev); 3883void __dev_set_rx_mode(struct net_device *dev); 3884int dev_set_promiscuity(struct net_device *dev, int inc); 3885int dev_set_allmulti(struct net_device *dev, int inc); 3886void netdev_state_change(struct net_device *dev); 3887void netdev_notify_peers(struct net_device *dev); 3888void netdev_features_change(struct net_device *dev); 3889/* Load a device via the kmod */ 3890void dev_load(struct net *net, const char *name); 3891struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3892 struct rtnl_link_stats64 *storage); 3893void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3894 const struct net_device_stats *netdev_stats); 3895 3896extern int netdev_max_backlog; 3897extern int netdev_tstamp_prequeue; 3898extern int weight_p; 3899extern int dev_weight_rx_bias; 3900extern int dev_weight_tx_bias; 3901extern int dev_rx_weight; 3902extern int dev_tx_weight; 3903 3904bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3905struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3906 struct list_head **iter); 3907struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3908 struct list_head **iter); 3909 3910/* iterate through upper list, must be called under RCU read lock */ 3911#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3912 for (iter = &(dev)->adj_list.upper, \ 3913 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3914 updev; \ 3915 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3916 3917int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 3918 int (*fn)(struct net_device *upper_dev, 3919 void *data), 3920 void *data); 3921 3922bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 3923 struct net_device *upper_dev); 3924 3925bool netdev_has_any_upper_dev(struct net_device *dev); 3926 3927void *netdev_lower_get_next_private(struct net_device *dev, 3928 struct list_head **iter); 3929void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3930 struct list_head **iter); 3931 3932#define netdev_for_each_lower_private(dev, priv, iter) \ 3933 for (iter = (dev)->adj_list.lower.next, \ 3934 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3935 priv; \ 3936 priv = netdev_lower_get_next_private(dev, &(iter))) 3937 3938#define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3939 for (iter = &(dev)->adj_list.lower, \ 3940 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3941 priv; \ 3942 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3943 3944void *netdev_lower_get_next(struct net_device *dev, 3945 struct list_head **iter); 3946 3947#define netdev_for_each_lower_dev(dev, ldev, iter) \ 3948 for (iter = (dev)->adj_list.lower.next, \ 3949 ldev = netdev_lower_get_next(dev, &(iter)); \ 3950 ldev; \ 3951 ldev = netdev_lower_get_next(dev, &(iter))) 3952 3953struct net_device *netdev_all_lower_get_next(struct net_device *dev, 3954 struct list_head **iter); 3955struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 3956 struct list_head **iter); 3957 3958int netdev_walk_all_lower_dev(struct net_device *dev, 3959 int (*fn)(struct net_device *lower_dev, 3960 void *data), 3961 void *data); 3962int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 3963 int (*fn)(struct net_device *lower_dev, 3964 void *data), 3965 void *data); 3966 3967void *netdev_adjacent_get_private(struct list_head *adj_list); 3968void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3969struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3970struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3971int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 3972 struct netlink_ext_ack *extack); 3973int netdev_master_upper_dev_link(struct net_device *dev, 3974 struct net_device *upper_dev, 3975 void *upper_priv, void *upper_info, 3976 struct netlink_ext_ack *extack); 3977void netdev_upper_dev_unlink(struct net_device *dev, 3978 struct net_device *upper_dev); 3979void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3980void *netdev_lower_dev_get_private(struct net_device *dev, 3981 struct net_device *lower_dev); 3982void netdev_lower_state_changed(struct net_device *lower_dev, 3983 void *lower_state_info); 3984 3985/* RSS keys are 40 or 52 bytes long */ 3986#define NETDEV_RSS_KEY_LEN 52 3987extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 3988void netdev_rss_key_fill(void *buffer, size_t len); 3989 3990int dev_get_nest_level(struct net_device *dev); 3991int skb_checksum_help(struct sk_buff *skb); 3992int skb_crc32c_csum_help(struct sk_buff *skb); 3993int skb_csum_hwoffload_help(struct sk_buff *skb, 3994 const netdev_features_t features); 3995 3996struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3997 netdev_features_t features, bool tx_path); 3998struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3999 netdev_features_t features); 4000 4001struct netdev_bonding_info { 4002 ifslave slave; 4003 ifbond master; 4004}; 4005 4006struct netdev_notifier_bonding_info { 4007 struct netdev_notifier_info info; /* must be first */ 4008 struct netdev_bonding_info bonding_info; 4009}; 4010 4011void netdev_bonding_info_change(struct net_device *dev, 4012 struct netdev_bonding_info *bonding_info); 4013 4014static inline 4015struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4016{ 4017 return __skb_gso_segment(skb, features, true); 4018} 4019__be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4020 4021static inline bool can_checksum_protocol(netdev_features_t features, 4022 __be16 protocol) 4023{ 4024 if (protocol == htons(ETH_P_FCOE)) 4025 return !!(features & NETIF_F_FCOE_CRC); 4026 4027 /* Assume this is an IP checksum (not SCTP CRC) */ 4028 4029 if (features & NETIF_F_HW_CSUM) { 4030 /* Can checksum everything */ 4031 return true; 4032 } 4033 4034 switch (protocol) { 4035 case htons(ETH_P_IP): 4036 return !!(features & NETIF_F_IP_CSUM); 4037 case htons(ETH_P_IPV6): 4038 return !!(features & NETIF_F_IPV6_CSUM); 4039 default: 4040 return false; 4041 } 4042} 4043 4044#ifdef CONFIG_BUG 4045void netdev_rx_csum_fault(struct net_device *dev); 4046#else 4047static inline void netdev_rx_csum_fault(struct net_device *dev) 4048{ 4049} 4050#endif 4051/* rx skb timestamps */ 4052void net_enable_timestamp(void); 4053void net_disable_timestamp(void); 4054 4055#ifdef CONFIG_PROC_FS 4056int __init dev_proc_init(void); 4057#else 4058#define dev_proc_init() 0 4059#endif 4060 4061static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4062 struct sk_buff *skb, struct net_device *dev, 4063 bool more) 4064{ 4065 skb->xmit_more = more ? 1 : 0; 4066 return ops->ndo_start_xmit(skb, dev); 4067} 4068 4069static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4070 struct netdev_queue *txq, bool more) 4071{ 4072 const struct net_device_ops *ops = dev->netdev_ops; 4073 int rc; 4074 4075 rc = __netdev_start_xmit(ops, skb, dev, more); 4076 if (rc == NETDEV_TX_OK) 4077 txq_trans_update(txq); 4078 4079 return rc; 4080} 4081 4082int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4083 const void *ns); 4084void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4085 const void *ns); 4086 4087static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4088{ 4089 return netdev_class_create_file_ns(class_attr, NULL); 4090} 4091 4092static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4093{ 4094 netdev_class_remove_file_ns(class_attr, NULL); 4095} 4096 4097extern const struct kobj_ns_type_operations net_ns_type_operations; 4098 4099const char *netdev_drivername(const struct net_device *dev); 4100 4101void linkwatch_run_queue(void); 4102 4103static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4104 netdev_features_t f2) 4105{ 4106 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4107 if (f1 & NETIF_F_HW_CSUM) 4108 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4109 else 4110 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4111 } 4112 4113 return f1 & f2; 4114} 4115 4116static inline netdev_features_t netdev_get_wanted_features( 4117 struct net_device *dev) 4118{ 4119 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4120} 4121netdev_features_t netdev_increment_features(netdev_features_t all, 4122 netdev_features_t one, netdev_features_t mask); 4123 4124/* Allow TSO being used on stacked device : 4125 * Performing the GSO segmentation before last device 4126 * is a performance improvement. 4127 */ 4128static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4129 netdev_features_t mask) 4130{ 4131 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4132} 4133 4134int __netdev_update_features(struct net_device *dev); 4135void netdev_update_features(struct net_device *dev); 4136void netdev_change_features(struct net_device *dev); 4137 4138void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4139 struct net_device *dev); 4140 4141netdev_features_t passthru_features_check(struct sk_buff *skb, 4142 struct net_device *dev, 4143 netdev_features_t features); 4144netdev_features_t netif_skb_features(struct sk_buff *skb); 4145 4146static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4147{ 4148 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4149 4150 /* check flags correspondence */ 4151 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4152 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4153 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4154 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4155 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4156 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4157 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4158 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4159 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4160 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4161 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4162 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4163 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4164 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4165 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4166 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4167 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4168 4169 return (features & feature) == feature; 4170} 4171 4172static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4173{ 4174 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4175 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4176} 4177 4178static inline bool netif_needs_gso(struct sk_buff *skb, 4179 netdev_features_t features) 4180{ 4181 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4182 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4183 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4184} 4185 4186static inline void netif_set_gso_max_size(struct net_device *dev, 4187 unsigned int size) 4188{ 4189 dev->gso_max_size = size; 4190} 4191 4192static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4193 int pulled_hlen, u16 mac_offset, 4194 int mac_len) 4195{ 4196 skb->protocol = protocol; 4197 skb->encapsulation = 1; 4198 skb_push(skb, pulled_hlen); 4199 skb_reset_transport_header(skb); 4200 skb->mac_header = mac_offset; 4201 skb->network_header = skb->mac_header + mac_len; 4202 skb->mac_len = mac_len; 4203} 4204 4205static inline bool netif_is_macsec(const struct net_device *dev) 4206{ 4207 return dev->priv_flags & IFF_MACSEC; 4208} 4209 4210static inline bool netif_is_macvlan(const struct net_device *dev) 4211{ 4212 return dev->priv_flags & IFF_MACVLAN; 4213} 4214 4215static inline bool netif_is_macvlan_port(const struct net_device *dev) 4216{ 4217 return dev->priv_flags & IFF_MACVLAN_PORT; 4218} 4219 4220static inline bool netif_is_ipvlan(const struct net_device *dev) 4221{ 4222 return dev->priv_flags & IFF_IPVLAN_SLAVE; 4223} 4224 4225static inline bool netif_is_ipvlan_port(const struct net_device *dev) 4226{ 4227 return dev->priv_flags & IFF_IPVLAN_MASTER; 4228} 4229 4230static inline bool netif_is_bond_master(const struct net_device *dev) 4231{ 4232 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4233} 4234 4235static inline bool netif_is_bond_slave(const struct net_device *dev) 4236{ 4237 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4238} 4239 4240static inline bool netif_supports_nofcs(struct net_device *dev) 4241{ 4242 return dev->priv_flags & IFF_SUPP_NOFCS; 4243} 4244 4245static inline bool netif_is_l3_master(const struct net_device *dev) 4246{ 4247 return dev->priv_flags & IFF_L3MDEV_MASTER; 4248} 4249 4250static inline bool netif_is_l3_slave(const struct net_device *dev) 4251{ 4252 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4253} 4254 4255static inline bool netif_is_bridge_master(const struct net_device *dev) 4256{ 4257 return dev->priv_flags & IFF_EBRIDGE; 4258} 4259 4260static inline bool netif_is_bridge_port(const struct net_device *dev) 4261{ 4262 return dev->priv_flags & IFF_BRIDGE_PORT; 4263} 4264 4265static inline bool netif_is_ovs_master(const struct net_device *dev) 4266{ 4267 return dev->priv_flags & IFF_OPENVSWITCH; 4268} 4269 4270static inline bool netif_is_ovs_port(const struct net_device *dev) 4271{ 4272 return dev->priv_flags & IFF_OVS_DATAPATH; 4273} 4274 4275static inline bool netif_is_team_master(const struct net_device *dev) 4276{ 4277 return dev->priv_flags & IFF_TEAM; 4278} 4279 4280static inline bool netif_is_team_port(const struct net_device *dev) 4281{ 4282 return dev->priv_flags & IFF_TEAM_PORT; 4283} 4284 4285static inline bool netif_is_lag_master(const struct net_device *dev) 4286{ 4287 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4288} 4289 4290static inline bool netif_is_lag_port(const struct net_device *dev) 4291{ 4292 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4293} 4294 4295static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4296{ 4297 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4298} 4299 4300/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4301static inline void netif_keep_dst(struct net_device *dev) 4302{ 4303 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4304} 4305 4306/* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4307static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4308{ 4309 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4310 return dev->priv_flags & IFF_MACSEC; 4311} 4312 4313extern struct pernet_operations __net_initdata loopback_net_ops; 4314 4315/* Logging, debugging and troubleshooting/diagnostic helpers. */ 4316 4317/* netdev_printk helpers, similar to dev_printk */ 4318 4319static inline const char *netdev_name(const struct net_device *dev) 4320{ 4321 if (!dev->name[0] || strchr(dev->name, '%')) 4322 return "(unnamed net_device)"; 4323 return dev->name; 4324} 4325 4326static inline bool netdev_unregistering(const struct net_device *dev) 4327{ 4328 return dev->reg_state == NETREG_UNREGISTERING; 4329} 4330 4331static inline const char *netdev_reg_state(const struct net_device *dev) 4332{ 4333 switch (dev->reg_state) { 4334 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4335 case NETREG_REGISTERED: return ""; 4336 case NETREG_UNREGISTERING: return " (unregistering)"; 4337 case NETREG_UNREGISTERED: return " (unregistered)"; 4338 case NETREG_RELEASED: return " (released)"; 4339 case NETREG_DUMMY: return " (dummy)"; 4340 } 4341 4342 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4343 return " (unknown)"; 4344} 4345 4346__printf(3, 4) 4347void netdev_printk(const char *level, const struct net_device *dev, 4348 const char *format, ...); 4349__printf(2, 3) 4350void netdev_emerg(const struct net_device *dev, const char *format, ...); 4351__printf(2, 3) 4352void netdev_alert(const struct net_device *dev, const char *format, ...); 4353__printf(2, 3) 4354void netdev_crit(const struct net_device *dev, const char *format, ...); 4355__printf(2, 3) 4356void netdev_err(const struct net_device *dev, const char *format, ...); 4357__printf(2, 3) 4358void netdev_warn(const struct net_device *dev, const char *format, ...); 4359__printf(2, 3) 4360void netdev_notice(const struct net_device *dev, const char *format, ...); 4361__printf(2, 3) 4362void netdev_info(const struct net_device *dev, const char *format, ...); 4363 4364#define netdev_level_once(level, dev, fmt, ...) \ 4365do { \ 4366 static bool __print_once __read_mostly; \ 4367 \ 4368 if (!__print_once) { \ 4369 __print_once = true; \ 4370 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4371 } \ 4372} while (0) 4373 4374#define netdev_emerg_once(dev, fmt, ...) \ 4375 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4376#define netdev_alert_once(dev, fmt, ...) \ 4377 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4378#define netdev_crit_once(dev, fmt, ...) \ 4379 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4380#define netdev_err_once(dev, fmt, ...) \ 4381 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4382#define netdev_warn_once(dev, fmt, ...) \ 4383 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4384#define netdev_notice_once(dev, fmt, ...) \ 4385 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4386#define netdev_info_once(dev, fmt, ...) \ 4387 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4388 4389#define MODULE_ALIAS_NETDEV(device) \ 4390 MODULE_ALIAS("netdev-" device) 4391 4392#if defined(CONFIG_DYNAMIC_DEBUG) 4393#define netdev_dbg(__dev, format, args...) \ 4394do { \ 4395 dynamic_netdev_dbg(__dev, format, ##args); \ 4396} while (0) 4397#elif defined(DEBUG) 4398#define netdev_dbg(__dev, format, args...) \ 4399 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4400#else 4401#define netdev_dbg(__dev, format, args...) \ 4402({ \ 4403 if (0) \ 4404 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4405}) 4406#endif 4407 4408#if defined(VERBOSE_DEBUG) 4409#define netdev_vdbg netdev_dbg 4410#else 4411 4412#define netdev_vdbg(dev, format, args...) \ 4413({ \ 4414 if (0) \ 4415 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4416 0; \ 4417}) 4418#endif 4419 4420/* 4421 * netdev_WARN() acts like dev_printk(), but with the key difference 4422 * of using a WARN/WARN_ON to get the message out, including the 4423 * file/line information and a backtrace. 4424 */ 4425#define netdev_WARN(dev, format, args...) \ 4426 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4427 netdev_reg_state(dev), ##args) 4428 4429#define netdev_WARN_ONCE(dev, format, args...) \ 4430 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4431 netdev_reg_state(dev), ##args) 4432 4433/* netif printk helpers, similar to netdev_printk */ 4434 4435#define netif_printk(priv, type, level, dev, fmt, args...) \ 4436do { \ 4437 if (netif_msg_##type(priv)) \ 4438 netdev_printk(level, (dev), fmt, ##args); \ 4439} while (0) 4440 4441#define netif_level(level, priv, type, dev, fmt, args...) \ 4442do { \ 4443 if (netif_msg_##type(priv)) \ 4444 netdev_##level(dev, fmt, ##args); \ 4445} while (0) 4446 4447#define netif_emerg(priv, type, dev, fmt, args...) \ 4448 netif_level(emerg, priv, type, dev, fmt, ##args) 4449#define netif_alert(priv, type, dev, fmt, args...) \ 4450 netif_level(alert, priv, type, dev, fmt, ##args) 4451#define netif_crit(priv, type, dev, fmt, args...) \ 4452 netif_level(crit, priv, type, dev, fmt, ##args) 4453#define netif_err(priv, type, dev, fmt, args...) \ 4454 netif_level(err, priv, type, dev, fmt, ##args) 4455#define netif_warn(priv, type, dev, fmt, args...) \ 4456 netif_level(warn, priv, type, dev, fmt, ##args) 4457#define netif_notice(priv, type, dev, fmt, args...) \ 4458 netif_level(notice, priv, type, dev, fmt, ##args) 4459#define netif_info(priv, type, dev, fmt, args...) \ 4460 netif_level(info, priv, type, dev, fmt, ##args) 4461 4462#if defined(CONFIG_DYNAMIC_DEBUG) 4463#define netif_dbg(priv, type, netdev, format, args...) \ 4464do { \ 4465 if (netif_msg_##type(priv)) \ 4466 dynamic_netdev_dbg(netdev, format, ##args); \ 4467} while (0) 4468#elif defined(DEBUG) 4469#define netif_dbg(priv, type, dev, format, args...) \ 4470 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4471#else 4472#define netif_dbg(priv, type, dev, format, args...) \ 4473({ \ 4474 if (0) \ 4475 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4476 0; \ 4477}) 4478#endif 4479 4480/* if @cond then downgrade to debug, else print at @level */ 4481#define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4482 do { \ 4483 if (cond) \ 4484 netif_dbg(priv, type, netdev, fmt, ##args); \ 4485 else \ 4486 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4487 } while (0) 4488 4489#if defined(VERBOSE_DEBUG) 4490#define netif_vdbg netif_dbg 4491#else 4492#define netif_vdbg(priv, type, dev, format, args...) \ 4493({ \ 4494 if (0) \ 4495 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4496 0; \ 4497}) 4498#endif 4499 4500/* 4501 * The list of packet types we will receive (as opposed to discard) 4502 * and the routines to invoke. 4503 * 4504 * Why 16. Because with 16 the only overlap we get on a hash of the 4505 * low nibble of the protocol value is RARP/SNAP/X.25. 4506 * 4507 * 0800 IP 4508 * 0001 802.3 4509 * 0002 AX.25 4510 * 0004 802.2 4511 * 8035 RARP 4512 * 0005 SNAP 4513 * 0805 X.25 4514 * 0806 ARP 4515 * 8137 IPX 4516 * 0009 Localtalk 4517 * 86DD IPv6 4518 */ 4519#define PTYPE_HASH_SIZE (16) 4520#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4521 4522#endif /* _LINUX_NETDEVICE_H */