at v4.16-rc2 1197 lines 30 kB view raw
1/* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20#ifndef _LINUX_MEMCONTROL_H 21#define _LINUX_MEMCONTROL_H 22#include <linux/cgroup.h> 23#include <linux/vm_event_item.h> 24#include <linux/hardirq.h> 25#include <linux/jump_label.h> 26#include <linux/page_counter.h> 27#include <linux/vmpressure.h> 28#include <linux/eventfd.h> 29#include <linux/mm.h> 30#include <linux/vmstat.h> 31#include <linux/writeback.h> 32#include <linux/page-flags.h> 33 34struct mem_cgroup; 35struct page; 36struct mm_struct; 37struct kmem_cache; 38 39/* Cgroup-specific page state, on top of universal node page state */ 40enum memcg_stat_item { 41 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS, 42 MEMCG_RSS, 43 MEMCG_RSS_HUGE, 44 MEMCG_SWAP, 45 MEMCG_SOCK, 46 /* XXX: why are these zone and not node counters? */ 47 MEMCG_KERNEL_STACK_KB, 48 MEMCG_NR_STAT, 49}; 50 51/* Cgroup-specific events, on top of universal VM events */ 52enum memcg_event_item { 53 MEMCG_LOW = NR_VM_EVENT_ITEMS, 54 MEMCG_HIGH, 55 MEMCG_MAX, 56 MEMCG_OOM, 57 MEMCG_NR_EVENTS, 58}; 59 60struct mem_cgroup_reclaim_cookie { 61 pg_data_t *pgdat; 62 int priority; 63 unsigned int generation; 64}; 65 66#ifdef CONFIG_MEMCG 67 68#define MEM_CGROUP_ID_SHIFT 16 69#define MEM_CGROUP_ID_MAX USHRT_MAX 70 71struct mem_cgroup_id { 72 int id; 73 atomic_t ref; 74}; 75 76/* 77 * Per memcg event counter is incremented at every pagein/pageout. With THP, 78 * it will be incremated by the number of pages. This counter is used for 79 * for trigger some periodic events. This is straightforward and better 80 * than using jiffies etc. to handle periodic memcg event. 81 */ 82enum mem_cgroup_events_target { 83 MEM_CGROUP_TARGET_THRESH, 84 MEM_CGROUP_TARGET_SOFTLIMIT, 85 MEM_CGROUP_TARGET_NUMAINFO, 86 MEM_CGROUP_NTARGETS, 87}; 88 89struct mem_cgroup_stat_cpu { 90 long count[MEMCG_NR_STAT]; 91 unsigned long events[MEMCG_NR_EVENTS]; 92 unsigned long nr_page_events; 93 unsigned long targets[MEM_CGROUP_NTARGETS]; 94}; 95 96struct mem_cgroup_reclaim_iter { 97 struct mem_cgroup *position; 98 /* scan generation, increased every round-trip */ 99 unsigned int generation; 100}; 101 102struct lruvec_stat { 103 long count[NR_VM_NODE_STAT_ITEMS]; 104}; 105 106/* 107 * per-zone information in memory controller. 108 */ 109struct mem_cgroup_per_node { 110 struct lruvec lruvec; 111 112 struct lruvec_stat __percpu *lruvec_stat_cpu; 113 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; 114 115 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 116 117 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1]; 118 119 struct rb_node tree_node; /* RB tree node */ 120 unsigned long usage_in_excess;/* Set to the value by which */ 121 /* the soft limit is exceeded*/ 122 bool on_tree; 123 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 124 /* use container_of */ 125}; 126 127struct mem_cgroup_threshold { 128 struct eventfd_ctx *eventfd; 129 unsigned long threshold; 130}; 131 132/* For threshold */ 133struct mem_cgroup_threshold_ary { 134 /* An array index points to threshold just below or equal to usage. */ 135 int current_threshold; 136 /* Size of entries[] */ 137 unsigned int size; 138 /* Array of thresholds */ 139 struct mem_cgroup_threshold entries[0]; 140}; 141 142struct mem_cgroup_thresholds { 143 /* Primary thresholds array */ 144 struct mem_cgroup_threshold_ary *primary; 145 /* 146 * Spare threshold array. 147 * This is needed to make mem_cgroup_unregister_event() "never fail". 148 * It must be able to store at least primary->size - 1 entries. 149 */ 150 struct mem_cgroup_threshold_ary *spare; 151}; 152 153enum memcg_kmem_state { 154 KMEM_NONE, 155 KMEM_ALLOCATED, 156 KMEM_ONLINE, 157}; 158 159/* 160 * The memory controller data structure. The memory controller controls both 161 * page cache and RSS per cgroup. We would eventually like to provide 162 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 163 * to help the administrator determine what knobs to tune. 164 */ 165struct mem_cgroup { 166 struct cgroup_subsys_state css; 167 168 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 169 struct mem_cgroup_id id; 170 171 /* Accounted resources */ 172 struct page_counter memory; 173 struct page_counter swap; 174 175 /* Legacy consumer-oriented counters */ 176 struct page_counter memsw; 177 struct page_counter kmem; 178 struct page_counter tcpmem; 179 180 /* Normal memory consumption range */ 181 unsigned long low; 182 unsigned long high; 183 184 /* Range enforcement for interrupt charges */ 185 struct work_struct high_work; 186 187 unsigned long soft_limit; 188 189 /* vmpressure notifications */ 190 struct vmpressure vmpressure; 191 192 /* 193 * Should the accounting and control be hierarchical, per subtree? 194 */ 195 bool use_hierarchy; 196 197 /* protected by memcg_oom_lock */ 198 bool oom_lock; 199 int under_oom; 200 201 int swappiness; 202 /* OOM-Killer disable */ 203 int oom_kill_disable; 204 205 /* handle for "memory.events" */ 206 struct cgroup_file events_file; 207 208 /* protect arrays of thresholds */ 209 struct mutex thresholds_lock; 210 211 /* thresholds for memory usage. RCU-protected */ 212 struct mem_cgroup_thresholds thresholds; 213 214 /* thresholds for mem+swap usage. RCU-protected */ 215 struct mem_cgroup_thresholds memsw_thresholds; 216 217 /* For oom notifier event fd */ 218 struct list_head oom_notify; 219 220 /* 221 * Should we move charges of a task when a task is moved into this 222 * mem_cgroup ? And what type of charges should we move ? 223 */ 224 unsigned long move_charge_at_immigrate; 225 /* 226 * set > 0 if pages under this cgroup are moving to other cgroup. 227 */ 228 atomic_t moving_account; 229 /* taken only while moving_account > 0 */ 230 spinlock_t move_lock; 231 struct task_struct *move_lock_task; 232 unsigned long move_lock_flags; 233 234 struct mem_cgroup_stat_cpu __percpu *stat_cpu; 235 atomic_long_t stat[MEMCG_NR_STAT]; 236 atomic_long_t events[MEMCG_NR_EVENTS]; 237 238 unsigned long socket_pressure; 239 240 /* Legacy tcp memory accounting */ 241 bool tcpmem_active; 242 int tcpmem_pressure; 243 244#ifndef CONFIG_SLOB 245 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 246 int kmemcg_id; 247 enum memcg_kmem_state kmem_state; 248 struct list_head kmem_caches; 249#endif 250 251 int last_scanned_node; 252#if MAX_NUMNODES > 1 253 nodemask_t scan_nodes; 254 atomic_t numainfo_events; 255 atomic_t numainfo_updating; 256#endif 257 258#ifdef CONFIG_CGROUP_WRITEBACK 259 struct list_head cgwb_list; 260 struct wb_domain cgwb_domain; 261#endif 262 263 /* List of events which userspace want to receive */ 264 struct list_head event_list; 265 spinlock_t event_list_lock; 266 267 struct mem_cgroup_per_node *nodeinfo[0]; 268 /* WARNING: nodeinfo must be the last member here */ 269}; 270 271/* 272 * size of first charge trial. "32" comes from vmscan.c's magic value. 273 * TODO: maybe necessary to use big numbers in big irons. 274 */ 275#define MEMCG_CHARGE_BATCH 32U 276 277extern struct mem_cgroup *root_mem_cgroup; 278 279static inline bool mem_cgroup_disabled(void) 280{ 281 return !cgroup_subsys_enabled(memory_cgrp_subsys); 282} 283 284bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg); 285 286int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 287 gfp_t gfp_mask, struct mem_cgroup **memcgp, 288 bool compound); 289void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 290 bool lrucare, bool compound); 291void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 292 bool compound); 293void mem_cgroup_uncharge(struct page *page); 294void mem_cgroup_uncharge_list(struct list_head *page_list); 295 296void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 297 298static struct mem_cgroup_per_node * 299mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 300{ 301 return memcg->nodeinfo[nid]; 302} 303 304/** 305 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone 306 * @node: node of the wanted lruvec 307 * @memcg: memcg of the wanted lruvec 308 * 309 * Returns the lru list vector holding pages for a given @node or a given 310 * @memcg and @zone. This can be the node lruvec, if the memory controller 311 * is disabled. 312 */ 313static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 314 struct mem_cgroup *memcg) 315{ 316 struct mem_cgroup_per_node *mz; 317 struct lruvec *lruvec; 318 319 if (mem_cgroup_disabled()) { 320 lruvec = node_lruvec(pgdat); 321 goto out; 322 } 323 324 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 325 lruvec = &mz->lruvec; 326out: 327 /* 328 * Since a node can be onlined after the mem_cgroup was created, 329 * we have to be prepared to initialize lruvec->pgdat here; 330 * and if offlined then reonlined, we need to reinitialize it. 331 */ 332 if (unlikely(lruvec->pgdat != pgdat)) 333 lruvec->pgdat = pgdat; 334 return lruvec; 335} 336 337struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); 338 339bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg); 340struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 341 342static inline 343struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 344 return css ? container_of(css, struct mem_cgroup, css) : NULL; 345} 346 347#define mem_cgroup_from_counter(counter, member) \ 348 container_of(counter, struct mem_cgroup, member) 349 350struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 351 struct mem_cgroup *, 352 struct mem_cgroup_reclaim_cookie *); 353void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 354int mem_cgroup_scan_tasks(struct mem_cgroup *, 355 int (*)(struct task_struct *, void *), void *); 356 357static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 358{ 359 if (mem_cgroup_disabled()) 360 return 0; 361 362 return memcg->id.id; 363} 364struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 365 366static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 367{ 368 struct mem_cgroup_per_node *mz; 369 370 if (mem_cgroup_disabled()) 371 return NULL; 372 373 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 374 return mz->memcg; 375} 376 377/** 378 * parent_mem_cgroup - find the accounting parent of a memcg 379 * @memcg: memcg whose parent to find 380 * 381 * Returns the parent memcg, or NULL if this is the root or the memory 382 * controller is in legacy no-hierarchy mode. 383 */ 384static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 385{ 386 if (!memcg->memory.parent) 387 return NULL; 388 return mem_cgroup_from_counter(memcg->memory.parent, memory); 389} 390 391static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 392 struct mem_cgroup *root) 393{ 394 if (root == memcg) 395 return true; 396 if (!root->use_hierarchy) 397 return false; 398 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 399} 400 401static inline bool mm_match_cgroup(struct mm_struct *mm, 402 struct mem_cgroup *memcg) 403{ 404 struct mem_cgroup *task_memcg; 405 bool match = false; 406 407 rcu_read_lock(); 408 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 409 if (task_memcg) 410 match = mem_cgroup_is_descendant(task_memcg, memcg); 411 rcu_read_unlock(); 412 return match; 413} 414 415struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 416ino_t page_cgroup_ino(struct page *page); 417 418static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 419{ 420 if (mem_cgroup_disabled()) 421 return true; 422 return !!(memcg->css.flags & CSS_ONLINE); 423} 424 425/* 426 * For memory reclaim. 427 */ 428int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 429 430void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 431 int zid, int nr_pages); 432 433unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 434 int nid, unsigned int lru_mask); 435 436static inline 437unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 438{ 439 struct mem_cgroup_per_node *mz; 440 unsigned long nr_pages = 0; 441 int zid; 442 443 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 444 for (zid = 0; zid < MAX_NR_ZONES; zid++) 445 nr_pages += mz->lru_zone_size[zid][lru]; 446 return nr_pages; 447} 448 449static inline 450unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 451 enum lru_list lru, int zone_idx) 452{ 453 struct mem_cgroup_per_node *mz; 454 455 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 456 return mz->lru_zone_size[zone_idx][lru]; 457} 458 459void mem_cgroup_handle_over_high(void); 460 461unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg); 462 463void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, 464 struct task_struct *p); 465 466static inline void mem_cgroup_oom_enable(void) 467{ 468 WARN_ON(current->memcg_may_oom); 469 current->memcg_may_oom = 1; 470} 471 472static inline void mem_cgroup_oom_disable(void) 473{ 474 WARN_ON(!current->memcg_may_oom); 475 current->memcg_may_oom = 0; 476} 477 478static inline bool task_in_memcg_oom(struct task_struct *p) 479{ 480 return p->memcg_in_oom; 481} 482 483bool mem_cgroup_oom_synchronize(bool wait); 484 485#ifdef CONFIG_MEMCG_SWAP 486extern int do_swap_account; 487#endif 488 489struct mem_cgroup *lock_page_memcg(struct page *page); 490void __unlock_page_memcg(struct mem_cgroup *memcg); 491void unlock_page_memcg(struct page *page); 492 493/* idx can be of type enum memcg_stat_item or node_stat_item */ 494static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, 495 int idx) 496{ 497 long x = atomic_long_read(&memcg->stat[idx]); 498#ifdef CONFIG_SMP 499 if (x < 0) 500 x = 0; 501#endif 502 return x; 503} 504 505/* idx can be of type enum memcg_stat_item or node_stat_item */ 506static inline void __mod_memcg_state(struct mem_cgroup *memcg, 507 int idx, int val) 508{ 509 long x; 510 511 if (mem_cgroup_disabled()) 512 return; 513 514 x = val + __this_cpu_read(memcg->stat_cpu->count[idx]); 515 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 516 atomic_long_add(x, &memcg->stat[idx]); 517 x = 0; 518 } 519 __this_cpu_write(memcg->stat_cpu->count[idx], x); 520} 521 522/* idx can be of type enum memcg_stat_item or node_stat_item */ 523static inline void mod_memcg_state(struct mem_cgroup *memcg, 524 int idx, int val) 525{ 526 preempt_disable(); 527 __mod_memcg_state(memcg, idx, val); 528 preempt_enable(); 529} 530 531/** 532 * mod_memcg_page_state - update page state statistics 533 * @page: the page 534 * @idx: page state item to account 535 * @val: number of pages (positive or negative) 536 * 537 * The @page must be locked or the caller must use lock_page_memcg() 538 * to prevent double accounting when the page is concurrently being 539 * moved to another memcg: 540 * 541 * lock_page(page) or lock_page_memcg(page) 542 * if (TestClearPageState(page)) 543 * mod_memcg_page_state(page, state, -1); 544 * unlock_page(page) or unlock_page_memcg(page) 545 * 546 * Kernel pages are an exception to this, since they'll never move. 547 */ 548static inline void __mod_memcg_page_state(struct page *page, 549 int idx, int val) 550{ 551 if (page->mem_cgroup) 552 __mod_memcg_state(page->mem_cgroup, idx, val); 553} 554 555static inline void mod_memcg_page_state(struct page *page, 556 int idx, int val) 557{ 558 if (page->mem_cgroup) 559 mod_memcg_state(page->mem_cgroup, idx, val); 560} 561 562static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 563 enum node_stat_item idx) 564{ 565 struct mem_cgroup_per_node *pn; 566 long x; 567 568 if (mem_cgroup_disabled()) 569 return node_page_state(lruvec_pgdat(lruvec), idx); 570 571 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 572 x = atomic_long_read(&pn->lruvec_stat[idx]); 573#ifdef CONFIG_SMP 574 if (x < 0) 575 x = 0; 576#endif 577 return x; 578} 579 580static inline void __mod_lruvec_state(struct lruvec *lruvec, 581 enum node_stat_item idx, int val) 582{ 583 struct mem_cgroup_per_node *pn; 584 long x; 585 586 /* Update node */ 587 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 588 589 if (mem_cgroup_disabled()) 590 return; 591 592 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 593 594 /* Update memcg */ 595 __mod_memcg_state(pn->memcg, idx, val); 596 597 /* Update lruvec */ 598 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 599 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 600 atomic_long_add(x, &pn->lruvec_stat[idx]); 601 x = 0; 602 } 603 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 604} 605 606static inline void mod_lruvec_state(struct lruvec *lruvec, 607 enum node_stat_item idx, int val) 608{ 609 preempt_disable(); 610 __mod_lruvec_state(lruvec, idx, val); 611 preempt_enable(); 612} 613 614static inline void __mod_lruvec_page_state(struct page *page, 615 enum node_stat_item idx, int val) 616{ 617 pg_data_t *pgdat = page_pgdat(page); 618 struct lruvec *lruvec; 619 620 /* Untracked pages have no memcg, no lruvec. Update only the node */ 621 if (!page->mem_cgroup) { 622 __mod_node_page_state(pgdat, idx, val); 623 return; 624 } 625 626 lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup); 627 __mod_lruvec_state(lruvec, idx, val); 628} 629 630static inline void mod_lruvec_page_state(struct page *page, 631 enum node_stat_item idx, int val) 632{ 633 preempt_disable(); 634 __mod_lruvec_page_state(page, idx, val); 635 preempt_enable(); 636} 637 638unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 639 gfp_t gfp_mask, 640 unsigned long *total_scanned); 641 642/* idx can be of type enum memcg_event_item or vm_event_item */ 643static inline void __count_memcg_events(struct mem_cgroup *memcg, 644 int idx, unsigned long count) 645{ 646 unsigned long x; 647 648 if (mem_cgroup_disabled()) 649 return; 650 651 x = count + __this_cpu_read(memcg->stat_cpu->events[idx]); 652 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 653 atomic_long_add(x, &memcg->events[idx]); 654 x = 0; 655 } 656 __this_cpu_write(memcg->stat_cpu->events[idx], x); 657} 658 659static inline void count_memcg_events(struct mem_cgroup *memcg, 660 int idx, unsigned long count) 661{ 662 preempt_disable(); 663 __count_memcg_events(memcg, idx, count); 664 preempt_enable(); 665} 666 667/* idx can be of type enum memcg_event_item or vm_event_item */ 668static inline void count_memcg_page_event(struct page *page, 669 int idx) 670{ 671 if (page->mem_cgroup) 672 count_memcg_events(page->mem_cgroup, idx, 1); 673} 674 675static inline void count_memcg_event_mm(struct mm_struct *mm, 676 enum vm_event_item idx) 677{ 678 struct mem_cgroup *memcg; 679 680 if (mem_cgroup_disabled()) 681 return; 682 683 rcu_read_lock(); 684 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 685 if (likely(memcg)) { 686 count_memcg_events(memcg, idx, 1); 687 if (idx == OOM_KILL) 688 cgroup_file_notify(&memcg->events_file); 689 } 690 rcu_read_unlock(); 691} 692 693static inline void mem_cgroup_event(struct mem_cgroup *memcg, 694 enum memcg_event_item event) 695{ 696 count_memcg_events(memcg, event, 1); 697 cgroup_file_notify(&memcg->events_file); 698} 699 700#ifdef CONFIG_TRANSPARENT_HUGEPAGE 701void mem_cgroup_split_huge_fixup(struct page *head); 702#endif 703 704#else /* CONFIG_MEMCG */ 705 706#define MEM_CGROUP_ID_SHIFT 0 707#define MEM_CGROUP_ID_MAX 0 708 709struct mem_cgroup; 710 711static inline bool mem_cgroup_disabled(void) 712{ 713 return true; 714} 715 716static inline void mem_cgroup_event(struct mem_cgroup *memcg, 717 enum memcg_event_item event) 718{ 719} 720 721static inline bool mem_cgroup_low(struct mem_cgroup *root, 722 struct mem_cgroup *memcg) 723{ 724 return false; 725} 726 727static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 728 gfp_t gfp_mask, 729 struct mem_cgroup **memcgp, 730 bool compound) 731{ 732 *memcgp = NULL; 733 return 0; 734} 735 736static inline void mem_cgroup_commit_charge(struct page *page, 737 struct mem_cgroup *memcg, 738 bool lrucare, bool compound) 739{ 740} 741 742static inline void mem_cgroup_cancel_charge(struct page *page, 743 struct mem_cgroup *memcg, 744 bool compound) 745{ 746} 747 748static inline void mem_cgroup_uncharge(struct page *page) 749{ 750} 751 752static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 753{ 754} 755 756static inline void mem_cgroup_migrate(struct page *old, struct page *new) 757{ 758} 759 760static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 761 struct mem_cgroup *memcg) 762{ 763 return node_lruvec(pgdat); 764} 765 766static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 767 struct pglist_data *pgdat) 768{ 769 return &pgdat->lruvec; 770} 771 772static inline bool mm_match_cgroup(struct mm_struct *mm, 773 struct mem_cgroup *memcg) 774{ 775 return true; 776} 777 778static inline bool task_in_mem_cgroup(struct task_struct *task, 779 const struct mem_cgroup *memcg) 780{ 781 return true; 782} 783 784static inline struct mem_cgroup * 785mem_cgroup_iter(struct mem_cgroup *root, 786 struct mem_cgroup *prev, 787 struct mem_cgroup_reclaim_cookie *reclaim) 788{ 789 return NULL; 790} 791 792static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 793 struct mem_cgroup *prev) 794{ 795} 796 797static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 798 int (*fn)(struct task_struct *, void *), void *arg) 799{ 800 return 0; 801} 802 803static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 804{ 805 return 0; 806} 807 808static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 809{ 810 WARN_ON_ONCE(id); 811 /* XXX: This should always return root_mem_cgroup */ 812 return NULL; 813} 814 815static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 816{ 817 return NULL; 818} 819 820static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 821{ 822 return true; 823} 824 825static inline unsigned long 826mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 827{ 828 return 0; 829} 830static inline 831unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 832 enum lru_list lru, int zone_idx) 833{ 834 return 0; 835} 836 837static inline unsigned long 838mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 839 int nid, unsigned int lru_mask) 840{ 841 return 0; 842} 843 844static inline unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) 845{ 846 return 0; 847} 848 849static inline void 850mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 851{ 852} 853 854static inline struct mem_cgroup *lock_page_memcg(struct page *page) 855{ 856 return NULL; 857} 858 859static inline void __unlock_page_memcg(struct mem_cgroup *memcg) 860{ 861} 862 863static inline void unlock_page_memcg(struct page *page) 864{ 865} 866 867static inline void mem_cgroup_handle_over_high(void) 868{ 869} 870 871static inline void mem_cgroup_oom_enable(void) 872{ 873} 874 875static inline void mem_cgroup_oom_disable(void) 876{ 877} 878 879static inline bool task_in_memcg_oom(struct task_struct *p) 880{ 881 return false; 882} 883 884static inline bool mem_cgroup_oom_synchronize(bool wait) 885{ 886 return false; 887} 888 889static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, 890 int idx) 891{ 892 return 0; 893} 894 895static inline void __mod_memcg_state(struct mem_cgroup *memcg, 896 int idx, 897 int nr) 898{ 899} 900 901static inline void mod_memcg_state(struct mem_cgroup *memcg, 902 int idx, 903 int nr) 904{ 905} 906 907static inline void __mod_memcg_page_state(struct page *page, 908 int idx, 909 int nr) 910{ 911} 912 913static inline void mod_memcg_page_state(struct page *page, 914 int idx, 915 int nr) 916{ 917} 918 919static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 920 enum node_stat_item idx) 921{ 922 return node_page_state(lruvec_pgdat(lruvec), idx); 923} 924 925static inline void __mod_lruvec_state(struct lruvec *lruvec, 926 enum node_stat_item idx, int val) 927{ 928 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 929} 930 931static inline void mod_lruvec_state(struct lruvec *lruvec, 932 enum node_stat_item idx, int val) 933{ 934 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 935} 936 937static inline void __mod_lruvec_page_state(struct page *page, 938 enum node_stat_item idx, int val) 939{ 940 __mod_node_page_state(page_pgdat(page), idx, val); 941} 942 943static inline void mod_lruvec_page_state(struct page *page, 944 enum node_stat_item idx, int val) 945{ 946 mod_node_page_state(page_pgdat(page), idx, val); 947} 948 949static inline 950unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 951 gfp_t gfp_mask, 952 unsigned long *total_scanned) 953{ 954 return 0; 955} 956 957static inline void mem_cgroup_split_huge_fixup(struct page *head) 958{ 959} 960 961static inline void count_memcg_events(struct mem_cgroup *memcg, 962 enum vm_event_item idx, 963 unsigned long count) 964{ 965} 966 967static inline void count_memcg_page_event(struct page *page, 968 int idx) 969{ 970} 971 972static inline 973void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 974{ 975} 976#endif /* CONFIG_MEMCG */ 977 978/* idx can be of type enum memcg_stat_item or node_stat_item */ 979static inline void __inc_memcg_state(struct mem_cgroup *memcg, 980 int idx) 981{ 982 __mod_memcg_state(memcg, idx, 1); 983} 984 985/* idx can be of type enum memcg_stat_item or node_stat_item */ 986static inline void __dec_memcg_state(struct mem_cgroup *memcg, 987 int idx) 988{ 989 __mod_memcg_state(memcg, idx, -1); 990} 991 992/* idx can be of type enum memcg_stat_item or node_stat_item */ 993static inline void __inc_memcg_page_state(struct page *page, 994 int idx) 995{ 996 __mod_memcg_page_state(page, idx, 1); 997} 998 999/* idx can be of type enum memcg_stat_item or node_stat_item */ 1000static inline void __dec_memcg_page_state(struct page *page, 1001 int idx) 1002{ 1003 __mod_memcg_page_state(page, idx, -1); 1004} 1005 1006static inline void __inc_lruvec_state(struct lruvec *lruvec, 1007 enum node_stat_item idx) 1008{ 1009 __mod_lruvec_state(lruvec, idx, 1); 1010} 1011 1012static inline void __dec_lruvec_state(struct lruvec *lruvec, 1013 enum node_stat_item idx) 1014{ 1015 __mod_lruvec_state(lruvec, idx, -1); 1016} 1017 1018static inline void __inc_lruvec_page_state(struct page *page, 1019 enum node_stat_item idx) 1020{ 1021 __mod_lruvec_page_state(page, idx, 1); 1022} 1023 1024static inline void __dec_lruvec_page_state(struct page *page, 1025 enum node_stat_item idx) 1026{ 1027 __mod_lruvec_page_state(page, idx, -1); 1028} 1029 1030/* idx can be of type enum memcg_stat_item or node_stat_item */ 1031static inline void inc_memcg_state(struct mem_cgroup *memcg, 1032 int idx) 1033{ 1034 mod_memcg_state(memcg, idx, 1); 1035} 1036 1037/* idx can be of type enum memcg_stat_item or node_stat_item */ 1038static inline void dec_memcg_state(struct mem_cgroup *memcg, 1039 int idx) 1040{ 1041 mod_memcg_state(memcg, idx, -1); 1042} 1043 1044/* idx can be of type enum memcg_stat_item or node_stat_item */ 1045static inline void inc_memcg_page_state(struct page *page, 1046 int idx) 1047{ 1048 mod_memcg_page_state(page, idx, 1); 1049} 1050 1051/* idx can be of type enum memcg_stat_item or node_stat_item */ 1052static inline void dec_memcg_page_state(struct page *page, 1053 int idx) 1054{ 1055 mod_memcg_page_state(page, idx, -1); 1056} 1057 1058static inline void inc_lruvec_state(struct lruvec *lruvec, 1059 enum node_stat_item idx) 1060{ 1061 mod_lruvec_state(lruvec, idx, 1); 1062} 1063 1064static inline void dec_lruvec_state(struct lruvec *lruvec, 1065 enum node_stat_item idx) 1066{ 1067 mod_lruvec_state(lruvec, idx, -1); 1068} 1069 1070static inline void inc_lruvec_page_state(struct page *page, 1071 enum node_stat_item idx) 1072{ 1073 mod_lruvec_page_state(page, idx, 1); 1074} 1075 1076static inline void dec_lruvec_page_state(struct page *page, 1077 enum node_stat_item idx) 1078{ 1079 mod_lruvec_page_state(page, idx, -1); 1080} 1081 1082#ifdef CONFIG_CGROUP_WRITEBACK 1083 1084struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg); 1085struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1086void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1087 unsigned long *pheadroom, unsigned long *pdirty, 1088 unsigned long *pwriteback); 1089 1090#else /* CONFIG_CGROUP_WRITEBACK */ 1091 1092static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1093{ 1094 return NULL; 1095} 1096 1097static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1098 unsigned long *pfilepages, 1099 unsigned long *pheadroom, 1100 unsigned long *pdirty, 1101 unsigned long *pwriteback) 1102{ 1103} 1104 1105#endif /* CONFIG_CGROUP_WRITEBACK */ 1106 1107struct sock; 1108bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1109void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1110#ifdef CONFIG_MEMCG 1111extern struct static_key_false memcg_sockets_enabled_key; 1112#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1113void mem_cgroup_sk_alloc(struct sock *sk); 1114void mem_cgroup_sk_free(struct sock *sk); 1115static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1116{ 1117 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1118 return true; 1119 do { 1120 if (time_before(jiffies, memcg->socket_pressure)) 1121 return true; 1122 } while ((memcg = parent_mem_cgroup(memcg))); 1123 return false; 1124} 1125#else 1126#define mem_cgroup_sockets_enabled 0 1127static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1128static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1129static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1130{ 1131 return false; 1132} 1133#endif 1134 1135struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep); 1136void memcg_kmem_put_cache(struct kmem_cache *cachep); 1137int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 1138 struct mem_cgroup *memcg); 1139int memcg_kmem_charge(struct page *page, gfp_t gfp, int order); 1140void memcg_kmem_uncharge(struct page *page, int order); 1141 1142#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) 1143extern struct static_key_false memcg_kmem_enabled_key; 1144extern struct workqueue_struct *memcg_kmem_cache_wq; 1145 1146extern int memcg_nr_cache_ids; 1147void memcg_get_cache_ids(void); 1148void memcg_put_cache_ids(void); 1149 1150/* 1151 * Helper macro to loop through all memcg-specific caches. Callers must still 1152 * check if the cache is valid (it is either valid or NULL). 1153 * the slab_mutex must be held when looping through those caches 1154 */ 1155#define for_each_memcg_cache_index(_idx) \ 1156 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1157 1158static inline bool memcg_kmem_enabled(void) 1159{ 1160 return static_branch_unlikely(&memcg_kmem_enabled_key); 1161} 1162 1163/* 1164 * helper for accessing a memcg's index. It will be used as an index in the 1165 * child cache array in kmem_cache, and also to derive its name. This function 1166 * will return -1 when this is not a kmem-limited memcg. 1167 */ 1168static inline int memcg_cache_id(struct mem_cgroup *memcg) 1169{ 1170 return memcg ? memcg->kmemcg_id : -1; 1171} 1172 1173#else 1174#define for_each_memcg_cache_index(_idx) \ 1175 for (; NULL; ) 1176 1177static inline bool memcg_kmem_enabled(void) 1178{ 1179 return false; 1180} 1181 1182static inline int memcg_cache_id(struct mem_cgroup *memcg) 1183{ 1184 return -1; 1185} 1186 1187static inline void memcg_get_cache_ids(void) 1188{ 1189} 1190 1191static inline void memcg_put_cache_ids(void) 1192{ 1193} 1194 1195#endif /* CONFIG_MEMCG && !CONFIG_SLOB */ 1196 1197#endif /* _LINUX_MEMCONTROL_H */