Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef __LINUX_COMPILER_H
3#define __LINUX_COMPILER_H
4
5#include <linux/compiler_types.h>
6
7#ifndef __ASSEMBLY__
8
9#ifdef __KERNEL__
10
11/*
12 * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
13 * to disable branch tracing on a per file basis.
14 */
15#if defined(CONFIG_TRACE_BRANCH_PROFILING) \
16 && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
17void ftrace_likely_update(struct ftrace_likely_data *f, int val,
18 int expect, int is_constant);
19
20#define likely_notrace(x) __builtin_expect(!!(x), 1)
21#define unlikely_notrace(x) __builtin_expect(!!(x), 0)
22
23#define __branch_check__(x, expect, is_constant) ({ \
24 int ______r; \
25 static struct ftrace_likely_data \
26 __attribute__((__aligned__(4))) \
27 __attribute__((section("_ftrace_annotated_branch"))) \
28 ______f = { \
29 .data.func = __func__, \
30 .data.file = __FILE__, \
31 .data.line = __LINE__, \
32 }; \
33 ______r = __builtin_expect(!!(x), expect); \
34 ftrace_likely_update(&______f, ______r, \
35 expect, is_constant); \
36 ______r; \
37 })
38
39/*
40 * Using __builtin_constant_p(x) to ignore cases where the return
41 * value is always the same. This idea is taken from a similar patch
42 * written by Daniel Walker.
43 */
44# ifndef likely
45# define likely(x) (__branch_check__(x, 1, __builtin_constant_p(x)))
46# endif
47# ifndef unlikely
48# define unlikely(x) (__branch_check__(x, 0, __builtin_constant_p(x)))
49# endif
50
51#ifdef CONFIG_PROFILE_ALL_BRANCHES
52/*
53 * "Define 'is'", Bill Clinton
54 * "Define 'if'", Steven Rostedt
55 */
56#define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) )
57#define __trace_if(cond) \
58 if (__builtin_constant_p(!!(cond)) ? !!(cond) : \
59 ({ \
60 int ______r; \
61 static struct ftrace_branch_data \
62 __attribute__((__aligned__(4))) \
63 __attribute__((section("_ftrace_branch"))) \
64 ______f = { \
65 .func = __func__, \
66 .file = __FILE__, \
67 .line = __LINE__, \
68 }; \
69 ______r = !!(cond); \
70 ______f.miss_hit[______r]++; \
71 ______r; \
72 }))
73#endif /* CONFIG_PROFILE_ALL_BRANCHES */
74
75#else
76# define likely(x) __builtin_expect(!!(x), 1)
77# define unlikely(x) __builtin_expect(!!(x), 0)
78#endif
79
80/* Optimization barrier */
81#ifndef barrier
82# define barrier() __memory_barrier()
83#endif
84
85#ifndef barrier_data
86# define barrier_data(ptr) barrier()
87#endif
88
89/* Unreachable code */
90#ifdef CONFIG_STACK_VALIDATION
91/*
92 * These macros help objtool understand GCC code flow for unreachable code.
93 * The __COUNTER__ based labels are a hack to make each instance of the macros
94 * unique, to convince GCC not to merge duplicate inline asm statements.
95 */
96#define annotate_reachable() ({ \
97 asm volatile("%c0:\n\t" \
98 ".pushsection .discard.reachable\n\t" \
99 ".long %c0b - .\n\t" \
100 ".popsection\n\t" : : "i" (__COUNTER__)); \
101})
102#define annotate_unreachable() ({ \
103 asm volatile("%c0:\n\t" \
104 ".pushsection .discard.unreachable\n\t" \
105 ".long %c0b - .\n\t" \
106 ".popsection\n\t" : : "i" (__COUNTER__)); \
107})
108#define ASM_UNREACHABLE \
109 "999:\n\t" \
110 ".pushsection .discard.unreachable\n\t" \
111 ".long 999b - .\n\t" \
112 ".popsection\n\t"
113#else
114#define annotate_reachable()
115#define annotate_unreachable()
116#endif
117
118#ifndef ASM_UNREACHABLE
119# define ASM_UNREACHABLE
120#endif
121#ifndef unreachable
122# define unreachable() do { annotate_reachable(); do { } while (1); } while (0)
123#endif
124
125/*
126 * KENTRY - kernel entry point
127 * This can be used to annotate symbols (functions or data) that are used
128 * without their linker symbol being referenced explicitly. For example,
129 * interrupt vector handlers, or functions in the kernel image that are found
130 * programatically.
131 *
132 * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those
133 * are handled in their own way (with KEEP() in linker scripts).
134 *
135 * KENTRY can be avoided if the symbols in question are marked as KEEP() in the
136 * linker script. For example an architecture could KEEP() its entire
137 * boot/exception vector code rather than annotate each function and data.
138 */
139#ifndef KENTRY
140# define KENTRY(sym) \
141 extern typeof(sym) sym; \
142 static const unsigned long __kentry_##sym \
143 __used \
144 __attribute__((section("___kentry" "+" #sym ), used)) \
145 = (unsigned long)&sym;
146#endif
147
148#ifndef RELOC_HIDE
149# define RELOC_HIDE(ptr, off) \
150 ({ unsigned long __ptr; \
151 __ptr = (unsigned long) (ptr); \
152 (typeof(ptr)) (__ptr + (off)); })
153#endif
154
155#ifndef OPTIMIZER_HIDE_VAR
156#define OPTIMIZER_HIDE_VAR(var) barrier()
157#endif
158
159/* Not-quite-unique ID. */
160#ifndef __UNIQUE_ID
161# define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
162#endif
163
164#include <uapi/linux/types.h>
165
166#define __READ_ONCE_SIZE \
167({ \
168 switch (size) { \
169 case 1: *(__u8 *)res = *(volatile __u8 *)p; break; \
170 case 2: *(__u16 *)res = *(volatile __u16 *)p; break; \
171 case 4: *(__u32 *)res = *(volatile __u32 *)p; break; \
172 case 8: *(__u64 *)res = *(volatile __u64 *)p; break; \
173 default: \
174 barrier(); \
175 __builtin_memcpy((void *)res, (const void *)p, size); \
176 barrier(); \
177 } \
178})
179
180static __always_inline
181void __read_once_size(const volatile void *p, void *res, int size)
182{
183 __READ_ONCE_SIZE;
184}
185
186#ifdef CONFIG_KASAN
187/*
188 * We can't declare function 'inline' because __no_sanitize_address confilcts
189 * with inlining. Attempt to inline it may cause a build failure.
190 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368
191 * '__maybe_unused' allows us to avoid defined-but-not-used warnings.
192 */
193# define __no_kasan_or_inline __no_sanitize_address __maybe_unused
194#else
195# define __no_kasan_or_inline __always_inline
196#endif
197
198static __no_kasan_or_inline
199void __read_once_size_nocheck(const volatile void *p, void *res, int size)
200{
201 __READ_ONCE_SIZE;
202}
203
204static __always_inline void __write_once_size(volatile void *p, void *res, int size)
205{
206 switch (size) {
207 case 1: *(volatile __u8 *)p = *(__u8 *)res; break;
208 case 2: *(volatile __u16 *)p = *(__u16 *)res; break;
209 case 4: *(volatile __u32 *)p = *(__u32 *)res; break;
210 case 8: *(volatile __u64 *)p = *(__u64 *)res; break;
211 default:
212 barrier();
213 __builtin_memcpy((void *)p, (const void *)res, size);
214 barrier();
215 }
216}
217
218/*
219 * Prevent the compiler from merging or refetching reads or writes. The
220 * compiler is also forbidden from reordering successive instances of
221 * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some
222 * particular ordering. One way to make the compiler aware of ordering is to
223 * put the two invocations of READ_ONCE or WRITE_ONCE in different C
224 * statements.
225 *
226 * These two macros will also work on aggregate data types like structs or
227 * unions. If the size of the accessed data type exceeds the word size of
228 * the machine (e.g., 32 bits or 64 bits) READ_ONCE() and WRITE_ONCE() will
229 * fall back to memcpy(). There's at least two memcpy()s: one for the
230 * __builtin_memcpy() and then one for the macro doing the copy of variable
231 * - '__u' allocated on the stack.
232 *
233 * Their two major use cases are: (1) Mediating communication between
234 * process-level code and irq/NMI handlers, all running on the same CPU,
235 * and (2) Ensuring that the compiler does not fold, spindle, or otherwise
236 * mutilate accesses that either do not require ordering or that interact
237 * with an explicit memory barrier or atomic instruction that provides the
238 * required ordering.
239 */
240#include <asm/barrier.h>
241#include <linux/kasan-checks.h>
242
243#define __READ_ONCE(x, check) \
244({ \
245 union { typeof(x) __val; char __c[1]; } __u; \
246 if (check) \
247 __read_once_size(&(x), __u.__c, sizeof(x)); \
248 else \
249 __read_once_size_nocheck(&(x), __u.__c, sizeof(x)); \
250 smp_read_barrier_depends(); /* Enforce dependency ordering from x */ \
251 __u.__val; \
252})
253#define READ_ONCE(x) __READ_ONCE(x, 1)
254
255/*
256 * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need
257 * to hide memory access from KASAN.
258 */
259#define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0)
260
261static __no_kasan_or_inline
262unsigned long read_word_at_a_time(const void *addr)
263{
264 kasan_check_read(addr, 1);
265 return *(unsigned long *)addr;
266}
267
268#define WRITE_ONCE(x, val) \
269({ \
270 union { typeof(x) __val; char __c[1]; } __u = \
271 { .__val = (__force typeof(x)) (val) }; \
272 __write_once_size(&(x), __u.__c, sizeof(x)); \
273 __u.__val; \
274})
275
276#endif /* __KERNEL__ */
277
278#endif /* __ASSEMBLY__ */
279
280#ifndef __optimize
281# define __optimize(level)
282#endif
283
284/* Compile time object size, -1 for unknown */
285#ifndef __compiletime_object_size
286# define __compiletime_object_size(obj) -1
287#endif
288#ifndef __compiletime_warning
289# define __compiletime_warning(message)
290#endif
291#ifndef __compiletime_error
292# define __compiletime_error(message)
293/*
294 * Sparse complains of variable sized arrays due to the temporary variable in
295 * __compiletime_assert. Unfortunately we can't just expand it out to make
296 * sparse see a constant array size without breaking compiletime_assert on old
297 * versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether.
298 */
299# ifndef __CHECKER__
300# define __compiletime_error_fallback(condition) \
301 do { ((void)sizeof(char[1 - 2 * condition])); } while (0)
302# endif
303#endif
304#ifndef __compiletime_error_fallback
305# define __compiletime_error_fallback(condition) do { } while (0)
306#endif
307
308#ifdef __OPTIMIZE__
309# define __compiletime_assert(condition, msg, prefix, suffix) \
310 do { \
311 bool __cond = !(condition); \
312 extern void prefix ## suffix(void) __compiletime_error(msg); \
313 if (__cond) \
314 prefix ## suffix(); \
315 __compiletime_error_fallback(__cond); \
316 } while (0)
317#else
318# define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0)
319#endif
320
321#define _compiletime_assert(condition, msg, prefix, suffix) \
322 __compiletime_assert(condition, msg, prefix, suffix)
323
324/**
325 * compiletime_assert - break build and emit msg if condition is false
326 * @condition: a compile-time constant condition to check
327 * @msg: a message to emit if condition is false
328 *
329 * In tradition of POSIX assert, this macro will break the build if the
330 * supplied condition is *false*, emitting the supplied error message if the
331 * compiler has support to do so.
332 */
333#define compiletime_assert(condition, msg) \
334 _compiletime_assert(condition, msg, __compiletime_assert_, __LINE__)
335
336#define compiletime_assert_atomic_type(t) \
337 compiletime_assert(__native_word(t), \
338 "Need native word sized stores/loads for atomicity.")
339
340#endif /* __LINUX_COMPILER_H */