Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * message.c - synchronous message handling
4 *
5 * Released under the GPLv2 only.
6 */
7
8#include <linux/pci.h> /* for scatterlist macros */
9#include <linux/usb.h>
10#include <linux/module.h>
11#include <linux/slab.h>
12#include <linux/mm.h>
13#include <linux/timer.h>
14#include <linux/ctype.h>
15#include <linux/nls.h>
16#include <linux/device.h>
17#include <linux/scatterlist.h>
18#include <linux/usb/cdc.h>
19#include <linux/usb/quirks.h>
20#include <linux/usb/hcd.h> /* for usbcore internals */
21#include <linux/usb/of.h>
22#include <asm/byteorder.h>
23
24#include "usb.h"
25
26static void cancel_async_set_config(struct usb_device *udev);
27
28struct api_context {
29 struct completion done;
30 int status;
31};
32
33static void usb_api_blocking_completion(struct urb *urb)
34{
35 struct api_context *ctx = urb->context;
36
37 ctx->status = urb->status;
38 complete(&ctx->done);
39}
40
41
42/*
43 * Starts urb and waits for completion or timeout. Note that this call
44 * is NOT interruptible. Many device driver i/o requests should be
45 * interruptible and therefore these drivers should implement their
46 * own interruptible routines.
47 */
48static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
49{
50 struct api_context ctx;
51 unsigned long expire;
52 int retval;
53
54 init_completion(&ctx.done);
55 urb->context = &ctx;
56 urb->actual_length = 0;
57 retval = usb_submit_urb(urb, GFP_NOIO);
58 if (unlikely(retval))
59 goto out;
60
61 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
62 if (!wait_for_completion_timeout(&ctx.done, expire)) {
63 usb_kill_urb(urb);
64 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
65
66 dev_dbg(&urb->dev->dev,
67 "%s timed out on ep%d%s len=%u/%u\n",
68 current->comm,
69 usb_endpoint_num(&urb->ep->desc),
70 usb_urb_dir_in(urb) ? "in" : "out",
71 urb->actual_length,
72 urb->transfer_buffer_length);
73 } else
74 retval = ctx.status;
75out:
76 if (actual_length)
77 *actual_length = urb->actual_length;
78
79 usb_free_urb(urb);
80 return retval;
81}
82
83/*-------------------------------------------------------------------*/
84/* returns status (negative) or length (positive) */
85static int usb_internal_control_msg(struct usb_device *usb_dev,
86 unsigned int pipe,
87 struct usb_ctrlrequest *cmd,
88 void *data, int len, int timeout)
89{
90 struct urb *urb;
91 int retv;
92 int length;
93
94 urb = usb_alloc_urb(0, GFP_NOIO);
95 if (!urb)
96 return -ENOMEM;
97
98 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
99 len, usb_api_blocking_completion, NULL);
100
101 retv = usb_start_wait_urb(urb, timeout, &length);
102 if (retv < 0)
103 return retv;
104 else
105 return length;
106}
107
108/**
109 * usb_control_msg - Builds a control urb, sends it off and waits for completion
110 * @dev: pointer to the usb device to send the message to
111 * @pipe: endpoint "pipe" to send the message to
112 * @request: USB message request value
113 * @requesttype: USB message request type value
114 * @value: USB message value
115 * @index: USB message index value
116 * @data: pointer to the data to send
117 * @size: length in bytes of the data to send
118 * @timeout: time in msecs to wait for the message to complete before timing
119 * out (if 0 the wait is forever)
120 *
121 * Context: !in_interrupt ()
122 *
123 * This function sends a simple control message to a specified endpoint and
124 * waits for the message to complete, or timeout.
125 *
126 * Don't use this function from within an interrupt context. If you need
127 * an asynchronous message, or need to send a message from within interrupt
128 * context, use usb_submit_urb(). If a thread in your driver uses this call,
129 * make sure your disconnect() method can wait for it to complete. Since you
130 * don't have a handle on the URB used, you can't cancel the request.
131 *
132 * Return: If successful, the number of bytes transferred. Otherwise, a negative
133 * error number.
134 */
135int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
136 __u8 requesttype, __u16 value, __u16 index, void *data,
137 __u16 size, int timeout)
138{
139 struct usb_ctrlrequest *dr;
140 int ret;
141
142 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
143 if (!dr)
144 return -ENOMEM;
145
146 dr->bRequestType = requesttype;
147 dr->bRequest = request;
148 dr->wValue = cpu_to_le16(value);
149 dr->wIndex = cpu_to_le16(index);
150 dr->wLength = cpu_to_le16(size);
151
152 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
153
154 kfree(dr);
155
156 return ret;
157}
158EXPORT_SYMBOL_GPL(usb_control_msg);
159
160/**
161 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
162 * @usb_dev: pointer to the usb device to send the message to
163 * @pipe: endpoint "pipe" to send the message to
164 * @data: pointer to the data to send
165 * @len: length in bytes of the data to send
166 * @actual_length: pointer to a location to put the actual length transferred
167 * in bytes
168 * @timeout: time in msecs to wait for the message to complete before
169 * timing out (if 0 the wait is forever)
170 *
171 * Context: !in_interrupt ()
172 *
173 * This function sends a simple interrupt message to a specified endpoint and
174 * waits for the message to complete, or timeout.
175 *
176 * Don't use this function from within an interrupt context. If you need
177 * an asynchronous message, or need to send a message from within interrupt
178 * context, use usb_submit_urb() If a thread in your driver uses this call,
179 * make sure your disconnect() method can wait for it to complete. Since you
180 * don't have a handle on the URB used, you can't cancel the request.
181 *
182 * Return:
183 * If successful, 0. Otherwise a negative error number. The number of actual
184 * bytes transferred will be stored in the @actual_length parameter.
185 */
186int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
187 void *data, int len, int *actual_length, int timeout)
188{
189 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
190}
191EXPORT_SYMBOL_GPL(usb_interrupt_msg);
192
193/**
194 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
195 * @usb_dev: pointer to the usb device to send the message to
196 * @pipe: endpoint "pipe" to send the message to
197 * @data: pointer to the data to send
198 * @len: length in bytes of the data to send
199 * @actual_length: pointer to a location to put the actual length transferred
200 * in bytes
201 * @timeout: time in msecs to wait for the message to complete before
202 * timing out (if 0 the wait is forever)
203 *
204 * Context: !in_interrupt ()
205 *
206 * This function sends a simple bulk message to a specified endpoint
207 * and waits for the message to complete, or timeout.
208 *
209 * Don't use this function from within an interrupt context. If you need
210 * an asynchronous message, or need to send a message from within interrupt
211 * context, use usb_submit_urb() If a thread in your driver uses this call,
212 * make sure your disconnect() method can wait for it to complete. Since you
213 * don't have a handle on the URB used, you can't cancel the request.
214 *
215 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
216 * users are forced to abuse this routine by using it to submit URBs for
217 * interrupt endpoints. We will take the liberty of creating an interrupt URB
218 * (with the default interval) if the target is an interrupt endpoint.
219 *
220 * Return:
221 * If successful, 0. Otherwise a negative error number. The number of actual
222 * bytes transferred will be stored in the @actual_length parameter.
223 *
224 */
225int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
226 void *data, int len, int *actual_length, int timeout)
227{
228 struct urb *urb;
229 struct usb_host_endpoint *ep;
230
231 ep = usb_pipe_endpoint(usb_dev, pipe);
232 if (!ep || len < 0)
233 return -EINVAL;
234
235 urb = usb_alloc_urb(0, GFP_KERNEL);
236 if (!urb)
237 return -ENOMEM;
238
239 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
240 USB_ENDPOINT_XFER_INT) {
241 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
242 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
243 usb_api_blocking_completion, NULL,
244 ep->desc.bInterval);
245 } else
246 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
247 usb_api_blocking_completion, NULL);
248
249 return usb_start_wait_urb(urb, timeout, actual_length);
250}
251EXPORT_SYMBOL_GPL(usb_bulk_msg);
252
253/*-------------------------------------------------------------------*/
254
255static void sg_clean(struct usb_sg_request *io)
256{
257 if (io->urbs) {
258 while (io->entries--)
259 usb_free_urb(io->urbs[io->entries]);
260 kfree(io->urbs);
261 io->urbs = NULL;
262 }
263 io->dev = NULL;
264}
265
266static void sg_complete(struct urb *urb)
267{
268 struct usb_sg_request *io = urb->context;
269 int status = urb->status;
270
271 spin_lock(&io->lock);
272
273 /* In 2.5 we require hcds' endpoint queues not to progress after fault
274 * reports, until the completion callback (this!) returns. That lets
275 * device driver code (like this routine) unlink queued urbs first,
276 * if it needs to, since the HC won't work on them at all. So it's
277 * not possible for page N+1 to overwrite page N, and so on.
278 *
279 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
280 * complete before the HCD can get requests away from hardware,
281 * though never during cleanup after a hard fault.
282 */
283 if (io->status
284 && (io->status != -ECONNRESET
285 || status != -ECONNRESET)
286 && urb->actual_length) {
287 dev_err(io->dev->bus->controller,
288 "dev %s ep%d%s scatterlist error %d/%d\n",
289 io->dev->devpath,
290 usb_endpoint_num(&urb->ep->desc),
291 usb_urb_dir_in(urb) ? "in" : "out",
292 status, io->status);
293 /* BUG (); */
294 }
295
296 if (io->status == 0 && status && status != -ECONNRESET) {
297 int i, found, retval;
298
299 io->status = status;
300
301 /* the previous urbs, and this one, completed already.
302 * unlink pending urbs so they won't rx/tx bad data.
303 * careful: unlink can sometimes be synchronous...
304 */
305 spin_unlock(&io->lock);
306 for (i = 0, found = 0; i < io->entries; i++) {
307 if (!io->urbs[i])
308 continue;
309 if (found) {
310 usb_block_urb(io->urbs[i]);
311 retval = usb_unlink_urb(io->urbs[i]);
312 if (retval != -EINPROGRESS &&
313 retval != -ENODEV &&
314 retval != -EBUSY &&
315 retval != -EIDRM)
316 dev_err(&io->dev->dev,
317 "%s, unlink --> %d\n",
318 __func__, retval);
319 } else if (urb == io->urbs[i])
320 found = 1;
321 }
322 spin_lock(&io->lock);
323 }
324
325 /* on the last completion, signal usb_sg_wait() */
326 io->bytes += urb->actual_length;
327 io->count--;
328 if (!io->count)
329 complete(&io->complete);
330
331 spin_unlock(&io->lock);
332}
333
334
335/**
336 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
337 * @io: request block being initialized. until usb_sg_wait() returns,
338 * treat this as a pointer to an opaque block of memory,
339 * @dev: the usb device that will send or receive the data
340 * @pipe: endpoint "pipe" used to transfer the data
341 * @period: polling rate for interrupt endpoints, in frames or
342 * (for high speed endpoints) microframes; ignored for bulk
343 * @sg: scatterlist entries
344 * @nents: how many entries in the scatterlist
345 * @length: how many bytes to send from the scatterlist, or zero to
346 * send every byte identified in the list.
347 * @mem_flags: SLAB_* flags affecting memory allocations in this call
348 *
349 * This initializes a scatter/gather request, allocating resources such as
350 * I/O mappings and urb memory (except maybe memory used by USB controller
351 * drivers).
352 *
353 * The request must be issued using usb_sg_wait(), which waits for the I/O to
354 * complete (or to be canceled) and then cleans up all resources allocated by
355 * usb_sg_init().
356 *
357 * The request may be canceled with usb_sg_cancel(), either before or after
358 * usb_sg_wait() is called.
359 *
360 * Return: Zero for success, else a negative errno value.
361 */
362int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
363 unsigned pipe, unsigned period, struct scatterlist *sg,
364 int nents, size_t length, gfp_t mem_flags)
365{
366 int i;
367 int urb_flags;
368 int use_sg;
369
370 if (!io || !dev || !sg
371 || usb_pipecontrol(pipe)
372 || usb_pipeisoc(pipe)
373 || nents <= 0)
374 return -EINVAL;
375
376 spin_lock_init(&io->lock);
377 io->dev = dev;
378 io->pipe = pipe;
379
380 if (dev->bus->sg_tablesize > 0) {
381 use_sg = true;
382 io->entries = 1;
383 } else {
384 use_sg = false;
385 io->entries = nents;
386 }
387
388 /* initialize all the urbs we'll use */
389 io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
390 if (!io->urbs)
391 goto nomem;
392
393 urb_flags = URB_NO_INTERRUPT;
394 if (usb_pipein(pipe))
395 urb_flags |= URB_SHORT_NOT_OK;
396
397 for_each_sg(sg, sg, io->entries, i) {
398 struct urb *urb;
399 unsigned len;
400
401 urb = usb_alloc_urb(0, mem_flags);
402 if (!urb) {
403 io->entries = i;
404 goto nomem;
405 }
406 io->urbs[i] = urb;
407
408 urb->dev = NULL;
409 urb->pipe = pipe;
410 urb->interval = period;
411 urb->transfer_flags = urb_flags;
412 urb->complete = sg_complete;
413 urb->context = io;
414 urb->sg = sg;
415
416 if (use_sg) {
417 /* There is no single transfer buffer */
418 urb->transfer_buffer = NULL;
419 urb->num_sgs = nents;
420
421 /* A length of zero means transfer the whole sg list */
422 len = length;
423 if (len == 0) {
424 struct scatterlist *sg2;
425 int j;
426
427 for_each_sg(sg, sg2, nents, j)
428 len += sg2->length;
429 }
430 } else {
431 /*
432 * Some systems can't use DMA; they use PIO instead.
433 * For their sakes, transfer_buffer is set whenever
434 * possible.
435 */
436 if (!PageHighMem(sg_page(sg)))
437 urb->transfer_buffer = sg_virt(sg);
438 else
439 urb->transfer_buffer = NULL;
440
441 len = sg->length;
442 if (length) {
443 len = min_t(size_t, len, length);
444 length -= len;
445 if (length == 0)
446 io->entries = i + 1;
447 }
448 }
449 urb->transfer_buffer_length = len;
450 }
451 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
452
453 /* transaction state */
454 io->count = io->entries;
455 io->status = 0;
456 io->bytes = 0;
457 init_completion(&io->complete);
458 return 0;
459
460nomem:
461 sg_clean(io);
462 return -ENOMEM;
463}
464EXPORT_SYMBOL_GPL(usb_sg_init);
465
466/**
467 * usb_sg_wait - synchronously execute scatter/gather request
468 * @io: request block handle, as initialized with usb_sg_init().
469 * some fields become accessible when this call returns.
470 * Context: !in_interrupt ()
471 *
472 * This function blocks until the specified I/O operation completes. It
473 * leverages the grouping of the related I/O requests to get good transfer
474 * rates, by queueing the requests. At higher speeds, such queuing can
475 * significantly improve USB throughput.
476 *
477 * There are three kinds of completion for this function.
478 *
479 * (1) success, where io->status is zero. The number of io->bytes
480 * transferred is as requested.
481 * (2) error, where io->status is a negative errno value. The number
482 * of io->bytes transferred before the error is usually less
483 * than requested, and can be nonzero.
484 * (3) cancellation, a type of error with status -ECONNRESET that
485 * is initiated by usb_sg_cancel().
486 *
487 * When this function returns, all memory allocated through usb_sg_init() or
488 * this call will have been freed. The request block parameter may still be
489 * passed to usb_sg_cancel(), or it may be freed. It could also be
490 * reinitialized and then reused.
491 *
492 * Data Transfer Rates:
493 *
494 * Bulk transfers are valid for full or high speed endpoints.
495 * The best full speed data rate is 19 packets of 64 bytes each
496 * per frame, or 1216 bytes per millisecond.
497 * The best high speed data rate is 13 packets of 512 bytes each
498 * per microframe, or 52 KBytes per millisecond.
499 *
500 * The reason to use interrupt transfers through this API would most likely
501 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
502 * could be transferred. That capability is less useful for low or full
503 * speed interrupt endpoints, which allow at most one packet per millisecond,
504 * of at most 8 or 64 bytes (respectively).
505 *
506 * It is not necessary to call this function to reserve bandwidth for devices
507 * under an xHCI host controller, as the bandwidth is reserved when the
508 * configuration or interface alt setting is selected.
509 */
510void usb_sg_wait(struct usb_sg_request *io)
511{
512 int i;
513 int entries = io->entries;
514
515 /* queue the urbs. */
516 spin_lock_irq(&io->lock);
517 i = 0;
518 while (i < entries && !io->status) {
519 int retval;
520
521 io->urbs[i]->dev = io->dev;
522 spin_unlock_irq(&io->lock);
523
524 retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
525
526 switch (retval) {
527 /* maybe we retrying will recover */
528 case -ENXIO: /* hc didn't queue this one */
529 case -EAGAIN:
530 case -ENOMEM:
531 retval = 0;
532 yield();
533 break;
534
535 /* no error? continue immediately.
536 *
537 * NOTE: to work better with UHCI (4K I/O buffer may
538 * need 3K of TDs) it may be good to limit how many
539 * URBs are queued at once; N milliseconds?
540 */
541 case 0:
542 ++i;
543 cpu_relax();
544 break;
545
546 /* fail any uncompleted urbs */
547 default:
548 io->urbs[i]->status = retval;
549 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
550 __func__, retval);
551 usb_sg_cancel(io);
552 }
553 spin_lock_irq(&io->lock);
554 if (retval && (io->status == 0 || io->status == -ECONNRESET))
555 io->status = retval;
556 }
557 io->count -= entries - i;
558 if (io->count == 0)
559 complete(&io->complete);
560 spin_unlock_irq(&io->lock);
561
562 /* OK, yes, this could be packaged as non-blocking.
563 * So could the submit loop above ... but it's easier to
564 * solve neither problem than to solve both!
565 */
566 wait_for_completion(&io->complete);
567
568 sg_clean(io);
569}
570EXPORT_SYMBOL_GPL(usb_sg_wait);
571
572/**
573 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
574 * @io: request block, initialized with usb_sg_init()
575 *
576 * This stops a request after it has been started by usb_sg_wait().
577 * It can also prevents one initialized by usb_sg_init() from starting,
578 * so that call just frees resources allocated to the request.
579 */
580void usb_sg_cancel(struct usb_sg_request *io)
581{
582 unsigned long flags;
583 int i, retval;
584
585 spin_lock_irqsave(&io->lock, flags);
586 if (io->status) {
587 spin_unlock_irqrestore(&io->lock, flags);
588 return;
589 }
590 /* shut everything down */
591 io->status = -ECONNRESET;
592 spin_unlock_irqrestore(&io->lock, flags);
593
594 for (i = io->entries - 1; i >= 0; --i) {
595 usb_block_urb(io->urbs[i]);
596
597 retval = usb_unlink_urb(io->urbs[i]);
598 if (retval != -EINPROGRESS
599 && retval != -ENODEV
600 && retval != -EBUSY
601 && retval != -EIDRM)
602 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
603 __func__, retval);
604 }
605}
606EXPORT_SYMBOL_GPL(usb_sg_cancel);
607
608/*-------------------------------------------------------------------*/
609
610/**
611 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
612 * @dev: the device whose descriptor is being retrieved
613 * @type: the descriptor type (USB_DT_*)
614 * @index: the number of the descriptor
615 * @buf: where to put the descriptor
616 * @size: how big is "buf"?
617 * Context: !in_interrupt ()
618 *
619 * Gets a USB descriptor. Convenience functions exist to simplify
620 * getting some types of descriptors. Use
621 * usb_get_string() or usb_string() for USB_DT_STRING.
622 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
623 * are part of the device structure.
624 * In addition to a number of USB-standard descriptors, some
625 * devices also use class-specific or vendor-specific descriptors.
626 *
627 * This call is synchronous, and may not be used in an interrupt context.
628 *
629 * Return: The number of bytes received on success, or else the status code
630 * returned by the underlying usb_control_msg() call.
631 */
632int usb_get_descriptor(struct usb_device *dev, unsigned char type,
633 unsigned char index, void *buf, int size)
634{
635 int i;
636 int result;
637
638 memset(buf, 0, size); /* Make sure we parse really received data */
639
640 for (i = 0; i < 3; ++i) {
641 /* retry on length 0 or error; some devices are flakey */
642 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
643 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
644 (type << 8) + index, 0, buf, size,
645 USB_CTRL_GET_TIMEOUT);
646 if (result <= 0 && result != -ETIMEDOUT)
647 continue;
648 if (result > 1 && ((u8 *)buf)[1] != type) {
649 result = -ENODATA;
650 continue;
651 }
652 break;
653 }
654 return result;
655}
656EXPORT_SYMBOL_GPL(usb_get_descriptor);
657
658/**
659 * usb_get_string - gets a string descriptor
660 * @dev: the device whose string descriptor is being retrieved
661 * @langid: code for language chosen (from string descriptor zero)
662 * @index: the number of the descriptor
663 * @buf: where to put the string
664 * @size: how big is "buf"?
665 * Context: !in_interrupt ()
666 *
667 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
668 * in little-endian byte order).
669 * The usb_string() function will often be a convenient way to turn
670 * these strings into kernel-printable form.
671 *
672 * Strings may be referenced in device, configuration, interface, or other
673 * descriptors, and could also be used in vendor-specific ways.
674 *
675 * This call is synchronous, and may not be used in an interrupt context.
676 *
677 * Return: The number of bytes received on success, or else the status code
678 * returned by the underlying usb_control_msg() call.
679 */
680static int usb_get_string(struct usb_device *dev, unsigned short langid,
681 unsigned char index, void *buf, int size)
682{
683 int i;
684 int result;
685
686 for (i = 0; i < 3; ++i) {
687 /* retry on length 0 or stall; some devices are flakey */
688 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
689 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
690 (USB_DT_STRING << 8) + index, langid, buf, size,
691 USB_CTRL_GET_TIMEOUT);
692 if (result == 0 || result == -EPIPE)
693 continue;
694 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
695 result = -ENODATA;
696 continue;
697 }
698 break;
699 }
700 return result;
701}
702
703static void usb_try_string_workarounds(unsigned char *buf, int *length)
704{
705 int newlength, oldlength = *length;
706
707 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
708 if (!isprint(buf[newlength]) || buf[newlength + 1])
709 break;
710
711 if (newlength > 2) {
712 buf[0] = newlength;
713 *length = newlength;
714 }
715}
716
717static int usb_string_sub(struct usb_device *dev, unsigned int langid,
718 unsigned int index, unsigned char *buf)
719{
720 int rc;
721
722 /* Try to read the string descriptor by asking for the maximum
723 * possible number of bytes */
724 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
725 rc = -EIO;
726 else
727 rc = usb_get_string(dev, langid, index, buf, 255);
728
729 /* If that failed try to read the descriptor length, then
730 * ask for just that many bytes */
731 if (rc < 2) {
732 rc = usb_get_string(dev, langid, index, buf, 2);
733 if (rc == 2)
734 rc = usb_get_string(dev, langid, index, buf, buf[0]);
735 }
736
737 if (rc >= 2) {
738 if (!buf[0] && !buf[1])
739 usb_try_string_workarounds(buf, &rc);
740
741 /* There might be extra junk at the end of the descriptor */
742 if (buf[0] < rc)
743 rc = buf[0];
744
745 rc = rc - (rc & 1); /* force a multiple of two */
746 }
747
748 if (rc < 2)
749 rc = (rc < 0 ? rc : -EINVAL);
750
751 return rc;
752}
753
754static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
755{
756 int err;
757
758 if (dev->have_langid)
759 return 0;
760
761 if (dev->string_langid < 0)
762 return -EPIPE;
763
764 err = usb_string_sub(dev, 0, 0, tbuf);
765
766 /* If the string was reported but is malformed, default to english
767 * (0x0409) */
768 if (err == -ENODATA || (err > 0 && err < 4)) {
769 dev->string_langid = 0x0409;
770 dev->have_langid = 1;
771 dev_err(&dev->dev,
772 "language id specifier not provided by device, defaulting to English\n");
773 return 0;
774 }
775
776 /* In case of all other errors, we assume the device is not able to
777 * deal with strings at all. Set string_langid to -1 in order to
778 * prevent any string to be retrieved from the device */
779 if (err < 0) {
780 dev_info(&dev->dev, "string descriptor 0 read error: %d\n",
781 err);
782 dev->string_langid = -1;
783 return -EPIPE;
784 }
785
786 /* always use the first langid listed */
787 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
788 dev->have_langid = 1;
789 dev_dbg(&dev->dev, "default language 0x%04x\n",
790 dev->string_langid);
791 return 0;
792}
793
794/**
795 * usb_string - returns UTF-8 version of a string descriptor
796 * @dev: the device whose string descriptor is being retrieved
797 * @index: the number of the descriptor
798 * @buf: where to put the string
799 * @size: how big is "buf"?
800 * Context: !in_interrupt ()
801 *
802 * This converts the UTF-16LE encoded strings returned by devices, from
803 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
804 * that are more usable in most kernel contexts. Note that this function
805 * chooses strings in the first language supported by the device.
806 *
807 * This call is synchronous, and may not be used in an interrupt context.
808 *
809 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
810 */
811int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
812{
813 unsigned char *tbuf;
814 int err;
815
816 if (dev->state == USB_STATE_SUSPENDED)
817 return -EHOSTUNREACH;
818 if (size <= 0 || !buf || !index)
819 return -EINVAL;
820 buf[0] = 0;
821 tbuf = kmalloc(256, GFP_NOIO);
822 if (!tbuf)
823 return -ENOMEM;
824
825 err = usb_get_langid(dev, tbuf);
826 if (err < 0)
827 goto errout;
828
829 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
830 if (err < 0)
831 goto errout;
832
833 size--; /* leave room for trailing NULL char in output buffer */
834 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
835 UTF16_LITTLE_ENDIAN, buf, size);
836 buf[err] = 0;
837
838 if (tbuf[1] != USB_DT_STRING)
839 dev_dbg(&dev->dev,
840 "wrong descriptor type %02x for string %d (\"%s\")\n",
841 tbuf[1], index, buf);
842
843 errout:
844 kfree(tbuf);
845 return err;
846}
847EXPORT_SYMBOL_GPL(usb_string);
848
849/* one UTF-8-encoded 16-bit character has at most three bytes */
850#define MAX_USB_STRING_SIZE (127 * 3 + 1)
851
852/**
853 * usb_cache_string - read a string descriptor and cache it for later use
854 * @udev: the device whose string descriptor is being read
855 * @index: the descriptor index
856 *
857 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
858 * or %NULL if the index is 0 or the string could not be read.
859 */
860char *usb_cache_string(struct usb_device *udev, int index)
861{
862 char *buf;
863 char *smallbuf = NULL;
864 int len;
865
866 if (index <= 0)
867 return NULL;
868
869 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
870 if (buf) {
871 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
872 if (len > 0) {
873 smallbuf = kmalloc(++len, GFP_NOIO);
874 if (!smallbuf)
875 return buf;
876 memcpy(smallbuf, buf, len);
877 }
878 kfree(buf);
879 }
880 return smallbuf;
881}
882
883/*
884 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
885 * @dev: the device whose device descriptor is being updated
886 * @size: how much of the descriptor to read
887 * Context: !in_interrupt ()
888 *
889 * Updates the copy of the device descriptor stored in the device structure,
890 * which dedicates space for this purpose.
891 *
892 * Not exported, only for use by the core. If drivers really want to read
893 * the device descriptor directly, they can call usb_get_descriptor() with
894 * type = USB_DT_DEVICE and index = 0.
895 *
896 * This call is synchronous, and may not be used in an interrupt context.
897 *
898 * Return: The number of bytes received on success, or else the status code
899 * returned by the underlying usb_control_msg() call.
900 */
901int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
902{
903 struct usb_device_descriptor *desc;
904 int ret;
905
906 if (size > sizeof(*desc))
907 return -EINVAL;
908 desc = kmalloc(sizeof(*desc), GFP_NOIO);
909 if (!desc)
910 return -ENOMEM;
911
912 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
913 if (ret >= 0)
914 memcpy(&dev->descriptor, desc, size);
915 kfree(desc);
916 return ret;
917}
918
919/*
920 * usb_set_isoch_delay - informs the device of the packet transmit delay
921 * @dev: the device whose delay is to be informed
922 * Context: !in_interrupt()
923 *
924 * Since this is an optional request, we don't bother if it fails.
925 */
926int usb_set_isoch_delay(struct usb_device *dev)
927{
928 /* skip hub devices */
929 if (dev->descriptor.bDeviceClass == USB_CLASS_HUB)
930 return 0;
931
932 /* skip non-SS/non-SSP devices */
933 if (dev->speed < USB_SPEED_SUPER)
934 return 0;
935
936 return usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
937 USB_REQ_SET_ISOCH_DELAY,
938 USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
939 cpu_to_le16(dev->hub_delay), 0, NULL, 0,
940 USB_CTRL_SET_TIMEOUT);
941}
942
943/**
944 * usb_get_status - issues a GET_STATUS call
945 * @dev: the device whose status is being checked
946 * @recip: USB_RECIP_*; for device, interface, or endpoint
947 * @type: USB_STATUS_TYPE_*; for standard or PTM status types
948 * @target: zero (for device), else interface or endpoint number
949 * @data: pointer to two bytes of bitmap data
950 * Context: !in_interrupt ()
951 *
952 * Returns device, interface, or endpoint status. Normally only of
953 * interest to see if the device is self powered, or has enabled the
954 * remote wakeup facility; or whether a bulk or interrupt endpoint
955 * is halted ("stalled").
956 *
957 * Bits in these status bitmaps are set using the SET_FEATURE request,
958 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
959 * function should be used to clear halt ("stall") status.
960 *
961 * This call is synchronous, and may not be used in an interrupt context.
962 *
963 * Returns 0 and the status value in *@data (in host byte order) on success,
964 * or else the status code from the underlying usb_control_msg() call.
965 */
966int usb_get_status(struct usb_device *dev, int recip, int type, int target,
967 void *data)
968{
969 int ret;
970 void *status;
971 int length;
972
973 switch (type) {
974 case USB_STATUS_TYPE_STANDARD:
975 length = 2;
976 break;
977 case USB_STATUS_TYPE_PTM:
978 if (recip != USB_RECIP_DEVICE)
979 return -EINVAL;
980
981 length = 4;
982 break;
983 default:
984 return -EINVAL;
985 }
986
987 status = kmalloc(length, GFP_KERNEL);
988 if (!status)
989 return -ENOMEM;
990
991 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
992 USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
993 target, status, length, USB_CTRL_GET_TIMEOUT);
994
995 switch (ret) {
996 case 4:
997 if (type != USB_STATUS_TYPE_PTM) {
998 ret = -EIO;
999 break;
1000 }
1001
1002 *(u32 *) data = le32_to_cpu(*(__le32 *) status);
1003 ret = 0;
1004 break;
1005 case 2:
1006 if (type != USB_STATUS_TYPE_STANDARD) {
1007 ret = -EIO;
1008 break;
1009 }
1010
1011 *(u16 *) data = le16_to_cpu(*(__le16 *) status);
1012 ret = 0;
1013 break;
1014 default:
1015 ret = -EIO;
1016 }
1017
1018 kfree(status);
1019 return ret;
1020}
1021EXPORT_SYMBOL_GPL(usb_get_status);
1022
1023/**
1024 * usb_clear_halt - tells device to clear endpoint halt/stall condition
1025 * @dev: device whose endpoint is halted
1026 * @pipe: endpoint "pipe" being cleared
1027 * Context: !in_interrupt ()
1028 *
1029 * This is used to clear halt conditions for bulk and interrupt endpoints,
1030 * as reported by URB completion status. Endpoints that are halted are
1031 * sometimes referred to as being "stalled". Such endpoints are unable
1032 * to transmit or receive data until the halt status is cleared. Any URBs
1033 * queued for such an endpoint should normally be unlinked by the driver
1034 * before clearing the halt condition, as described in sections 5.7.5
1035 * and 5.8.5 of the USB 2.0 spec.
1036 *
1037 * Note that control and isochronous endpoints don't halt, although control
1038 * endpoints report "protocol stall" (for unsupported requests) using the
1039 * same status code used to report a true stall.
1040 *
1041 * This call is synchronous, and may not be used in an interrupt context.
1042 *
1043 * Return: Zero on success, or else the status code returned by the
1044 * underlying usb_control_msg() call.
1045 */
1046int usb_clear_halt(struct usb_device *dev, int pipe)
1047{
1048 int result;
1049 int endp = usb_pipeendpoint(pipe);
1050
1051 if (usb_pipein(pipe))
1052 endp |= USB_DIR_IN;
1053
1054 /* we don't care if it wasn't halted first. in fact some devices
1055 * (like some ibmcam model 1 units) seem to expect hosts to make
1056 * this request for iso endpoints, which can't halt!
1057 */
1058 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1059 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1060 USB_ENDPOINT_HALT, endp, NULL, 0,
1061 USB_CTRL_SET_TIMEOUT);
1062
1063 /* don't un-halt or force to DATA0 except on success */
1064 if (result < 0)
1065 return result;
1066
1067 /* NOTE: seems like Microsoft and Apple don't bother verifying
1068 * the clear "took", so some devices could lock up if you check...
1069 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1070 *
1071 * NOTE: make sure the logic here doesn't diverge much from
1072 * the copy in usb-storage, for as long as we need two copies.
1073 */
1074
1075 usb_reset_endpoint(dev, endp);
1076
1077 return 0;
1078}
1079EXPORT_SYMBOL_GPL(usb_clear_halt);
1080
1081static int create_intf_ep_devs(struct usb_interface *intf)
1082{
1083 struct usb_device *udev = interface_to_usbdev(intf);
1084 struct usb_host_interface *alt = intf->cur_altsetting;
1085 int i;
1086
1087 if (intf->ep_devs_created || intf->unregistering)
1088 return 0;
1089
1090 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1091 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1092 intf->ep_devs_created = 1;
1093 return 0;
1094}
1095
1096static void remove_intf_ep_devs(struct usb_interface *intf)
1097{
1098 struct usb_host_interface *alt = intf->cur_altsetting;
1099 int i;
1100
1101 if (!intf->ep_devs_created)
1102 return;
1103
1104 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1105 usb_remove_ep_devs(&alt->endpoint[i]);
1106 intf->ep_devs_created = 0;
1107}
1108
1109/**
1110 * usb_disable_endpoint -- Disable an endpoint by address
1111 * @dev: the device whose endpoint is being disabled
1112 * @epaddr: the endpoint's address. Endpoint number for output,
1113 * endpoint number + USB_DIR_IN for input
1114 * @reset_hardware: flag to erase any endpoint state stored in the
1115 * controller hardware
1116 *
1117 * Disables the endpoint for URB submission and nukes all pending URBs.
1118 * If @reset_hardware is set then also deallocates hcd/hardware state
1119 * for the endpoint.
1120 */
1121void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1122 bool reset_hardware)
1123{
1124 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1125 struct usb_host_endpoint *ep;
1126
1127 if (!dev)
1128 return;
1129
1130 if (usb_endpoint_out(epaddr)) {
1131 ep = dev->ep_out[epnum];
1132 if (reset_hardware)
1133 dev->ep_out[epnum] = NULL;
1134 } else {
1135 ep = dev->ep_in[epnum];
1136 if (reset_hardware)
1137 dev->ep_in[epnum] = NULL;
1138 }
1139 if (ep) {
1140 ep->enabled = 0;
1141 usb_hcd_flush_endpoint(dev, ep);
1142 if (reset_hardware)
1143 usb_hcd_disable_endpoint(dev, ep);
1144 }
1145}
1146
1147/**
1148 * usb_reset_endpoint - Reset an endpoint's state.
1149 * @dev: the device whose endpoint is to be reset
1150 * @epaddr: the endpoint's address. Endpoint number for output,
1151 * endpoint number + USB_DIR_IN for input
1152 *
1153 * Resets any host-side endpoint state such as the toggle bit,
1154 * sequence number or current window.
1155 */
1156void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1157{
1158 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1159 struct usb_host_endpoint *ep;
1160
1161 if (usb_endpoint_out(epaddr))
1162 ep = dev->ep_out[epnum];
1163 else
1164 ep = dev->ep_in[epnum];
1165 if (ep)
1166 usb_hcd_reset_endpoint(dev, ep);
1167}
1168EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1169
1170
1171/**
1172 * usb_disable_interface -- Disable all endpoints for an interface
1173 * @dev: the device whose interface is being disabled
1174 * @intf: pointer to the interface descriptor
1175 * @reset_hardware: flag to erase any endpoint state stored in the
1176 * controller hardware
1177 *
1178 * Disables all the endpoints for the interface's current altsetting.
1179 */
1180void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1181 bool reset_hardware)
1182{
1183 struct usb_host_interface *alt = intf->cur_altsetting;
1184 int i;
1185
1186 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1187 usb_disable_endpoint(dev,
1188 alt->endpoint[i].desc.bEndpointAddress,
1189 reset_hardware);
1190 }
1191}
1192
1193/**
1194 * usb_disable_device - Disable all the endpoints for a USB device
1195 * @dev: the device whose endpoints are being disabled
1196 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1197 *
1198 * Disables all the device's endpoints, potentially including endpoint 0.
1199 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1200 * pending urbs) and usbcore state for the interfaces, so that usbcore
1201 * must usb_set_configuration() before any interfaces could be used.
1202 */
1203void usb_disable_device(struct usb_device *dev, int skip_ep0)
1204{
1205 int i;
1206 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1207
1208 /* getting rid of interfaces will disconnect
1209 * any drivers bound to them (a key side effect)
1210 */
1211 if (dev->actconfig) {
1212 /*
1213 * FIXME: In order to avoid self-deadlock involving the
1214 * bandwidth_mutex, we have to mark all the interfaces
1215 * before unregistering any of them.
1216 */
1217 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1218 dev->actconfig->interface[i]->unregistering = 1;
1219
1220 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1221 struct usb_interface *interface;
1222
1223 /* remove this interface if it has been registered */
1224 interface = dev->actconfig->interface[i];
1225 if (!device_is_registered(&interface->dev))
1226 continue;
1227 dev_dbg(&dev->dev, "unregistering interface %s\n",
1228 dev_name(&interface->dev));
1229 remove_intf_ep_devs(interface);
1230 device_del(&interface->dev);
1231 }
1232
1233 /* Now that the interfaces are unbound, nobody should
1234 * try to access them.
1235 */
1236 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1237 put_device(&dev->actconfig->interface[i]->dev);
1238 dev->actconfig->interface[i] = NULL;
1239 }
1240
1241 if (dev->usb2_hw_lpm_enabled == 1)
1242 usb_set_usb2_hardware_lpm(dev, 0);
1243 usb_unlocked_disable_lpm(dev);
1244 usb_disable_ltm(dev);
1245
1246 dev->actconfig = NULL;
1247 if (dev->state == USB_STATE_CONFIGURED)
1248 usb_set_device_state(dev, USB_STATE_ADDRESS);
1249 }
1250
1251 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1252 skip_ep0 ? "non-ep0" : "all");
1253 if (hcd->driver->check_bandwidth) {
1254 /* First pass: Cancel URBs, leave endpoint pointers intact. */
1255 for (i = skip_ep0; i < 16; ++i) {
1256 usb_disable_endpoint(dev, i, false);
1257 usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1258 }
1259 /* Remove endpoints from the host controller internal state */
1260 mutex_lock(hcd->bandwidth_mutex);
1261 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1262 mutex_unlock(hcd->bandwidth_mutex);
1263 /* Second pass: remove endpoint pointers */
1264 }
1265 for (i = skip_ep0; i < 16; ++i) {
1266 usb_disable_endpoint(dev, i, true);
1267 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1268 }
1269}
1270
1271/**
1272 * usb_enable_endpoint - Enable an endpoint for USB communications
1273 * @dev: the device whose interface is being enabled
1274 * @ep: the endpoint
1275 * @reset_ep: flag to reset the endpoint state
1276 *
1277 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1278 * For control endpoints, both the input and output sides are handled.
1279 */
1280void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1281 bool reset_ep)
1282{
1283 int epnum = usb_endpoint_num(&ep->desc);
1284 int is_out = usb_endpoint_dir_out(&ep->desc);
1285 int is_control = usb_endpoint_xfer_control(&ep->desc);
1286
1287 if (reset_ep)
1288 usb_hcd_reset_endpoint(dev, ep);
1289 if (is_out || is_control)
1290 dev->ep_out[epnum] = ep;
1291 if (!is_out || is_control)
1292 dev->ep_in[epnum] = ep;
1293 ep->enabled = 1;
1294}
1295
1296/**
1297 * usb_enable_interface - Enable all the endpoints for an interface
1298 * @dev: the device whose interface is being enabled
1299 * @intf: pointer to the interface descriptor
1300 * @reset_eps: flag to reset the endpoints' state
1301 *
1302 * Enables all the endpoints for the interface's current altsetting.
1303 */
1304void usb_enable_interface(struct usb_device *dev,
1305 struct usb_interface *intf, bool reset_eps)
1306{
1307 struct usb_host_interface *alt = intf->cur_altsetting;
1308 int i;
1309
1310 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1311 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1312}
1313
1314/**
1315 * usb_set_interface - Makes a particular alternate setting be current
1316 * @dev: the device whose interface is being updated
1317 * @interface: the interface being updated
1318 * @alternate: the setting being chosen.
1319 * Context: !in_interrupt ()
1320 *
1321 * This is used to enable data transfers on interfaces that may not
1322 * be enabled by default. Not all devices support such configurability.
1323 * Only the driver bound to an interface may change its setting.
1324 *
1325 * Within any given configuration, each interface may have several
1326 * alternative settings. These are often used to control levels of
1327 * bandwidth consumption. For example, the default setting for a high
1328 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1329 * while interrupt transfers of up to 3KBytes per microframe are legal.
1330 * Also, isochronous endpoints may never be part of an
1331 * interface's default setting. To access such bandwidth, alternate
1332 * interface settings must be made current.
1333 *
1334 * Note that in the Linux USB subsystem, bandwidth associated with
1335 * an endpoint in a given alternate setting is not reserved until an URB
1336 * is submitted that needs that bandwidth. Some other operating systems
1337 * allocate bandwidth early, when a configuration is chosen.
1338 *
1339 * This call is synchronous, and may not be used in an interrupt context.
1340 * Also, drivers must not change altsettings while urbs are scheduled for
1341 * endpoints in that interface; all such urbs must first be completed
1342 * (perhaps forced by unlinking).
1343 *
1344 * Return: Zero on success, or else the status code returned by the
1345 * underlying usb_control_msg() call.
1346 */
1347int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1348{
1349 struct usb_interface *iface;
1350 struct usb_host_interface *alt;
1351 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1352 int i, ret, manual = 0;
1353 unsigned int epaddr;
1354 unsigned int pipe;
1355
1356 if (dev->state == USB_STATE_SUSPENDED)
1357 return -EHOSTUNREACH;
1358
1359 iface = usb_ifnum_to_if(dev, interface);
1360 if (!iface) {
1361 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1362 interface);
1363 return -EINVAL;
1364 }
1365 if (iface->unregistering)
1366 return -ENODEV;
1367
1368 alt = usb_altnum_to_altsetting(iface, alternate);
1369 if (!alt) {
1370 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1371 alternate);
1372 return -EINVAL;
1373 }
1374
1375 /* Make sure we have enough bandwidth for this alternate interface.
1376 * Remove the current alt setting and add the new alt setting.
1377 */
1378 mutex_lock(hcd->bandwidth_mutex);
1379 /* Disable LPM, and re-enable it once the new alt setting is installed,
1380 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1381 */
1382 if (usb_disable_lpm(dev)) {
1383 dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__);
1384 mutex_unlock(hcd->bandwidth_mutex);
1385 return -ENOMEM;
1386 }
1387 /* Changing alt-setting also frees any allocated streams */
1388 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1389 iface->cur_altsetting->endpoint[i].streams = 0;
1390
1391 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1392 if (ret < 0) {
1393 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1394 alternate);
1395 usb_enable_lpm(dev);
1396 mutex_unlock(hcd->bandwidth_mutex);
1397 return ret;
1398 }
1399
1400 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1401 ret = -EPIPE;
1402 else
1403 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1404 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1405 alternate, interface, NULL, 0, 5000);
1406
1407 /* 9.4.10 says devices don't need this and are free to STALL the
1408 * request if the interface only has one alternate setting.
1409 */
1410 if (ret == -EPIPE && iface->num_altsetting == 1) {
1411 dev_dbg(&dev->dev,
1412 "manual set_interface for iface %d, alt %d\n",
1413 interface, alternate);
1414 manual = 1;
1415 } else if (ret < 0) {
1416 /* Re-instate the old alt setting */
1417 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1418 usb_enable_lpm(dev);
1419 mutex_unlock(hcd->bandwidth_mutex);
1420 return ret;
1421 }
1422 mutex_unlock(hcd->bandwidth_mutex);
1423
1424 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1425 * when they implement async or easily-killable versions of this or
1426 * other "should-be-internal" functions (like clear_halt).
1427 * should hcd+usbcore postprocess control requests?
1428 */
1429
1430 /* prevent submissions using previous endpoint settings */
1431 if (iface->cur_altsetting != alt) {
1432 remove_intf_ep_devs(iface);
1433 usb_remove_sysfs_intf_files(iface);
1434 }
1435 usb_disable_interface(dev, iface, true);
1436
1437 iface->cur_altsetting = alt;
1438
1439 /* Now that the interface is installed, re-enable LPM. */
1440 usb_unlocked_enable_lpm(dev);
1441
1442 /* If the interface only has one altsetting and the device didn't
1443 * accept the request, we attempt to carry out the equivalent action
1444 * by manually clearing the HALT feature for each endpoint in the
1445 * new altsetting.
1446 */
1447 if (manual) {
1448 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1449 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1450 pipe = __create_pipe(dev,
1451 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1452 (usb_endpoint_out(epaddr) ?
1453 USB_DIR_OUT : USB_DIR_IN);
1454
1455 usb_clear_halt(dev, pipe);
1456 }
1457 }
1458
1459 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1460 *
1461 * Note:
1462 * Despite EP0 is always present in all interfaces/AS, the list of
1463 * endpoints from the descriptor does not contain EP0. Due to its
1464 * omnipresence one might expect EP0 being considered "affected" by
1465 * any SetInterface request and hence assume toggles need to be reset.
1466 * However, EP0 toggles are re-synced for every individual transfer
1467 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1468 * (Likewise, EP0 never "halts" on well designed devices.)
1469 */
1470 usb_enable_interface(dev, iface, true);
1471 if (device_is_registered(&iface->dev)) {
1472 usb_create_sysfs_intf_files(iface);
1473 create_intf_ep_devs(iface);
1474 }
1475 return 0;
1476}
1477EXPORT_SYMBOL_GPL(usb_set_interface);
1478
1479/**
1480 * usb_reset_configuration - lightweight device reset
1481 * @dev: the device whose configuration is being reset
1482 *
1483 * This issues a standard SET_CONFIGURATION request to the device using
1484 * the current configuration. The effect is to reset most USB-related
1485 * state in the device, including interface altsettings (reset to zero),
1486 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1487 * endpoints). Other usbcore state is unchanged, including bindings of
1488 * usb device drivers to interfaces.
1489 *
1490 * Because this affects multiple interfaces, avoid using this with composite
1491 * (multi-interface) devices. Instead, the driver for each interface may
1492 * use usb_set_interface() on the interfaces it claims. Be careful though;
1493 * some devices don't support the SET_INTERFACE request, and others won't
1494 * reset all the interface state (notably endpoint state). Resetting the whole
1495 * configuration would affect other drivers' interfaces.
1496 *
1497 * The caller must own the device lock.
1498 *
1499 * Return: Zero on success, else a negative error code.
1500 */
1501int usb_reset_configuration(struct usb_device *dev)
1502{
1503 int i, retval;
1504 struct usb_host_config *config;
1505 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1506
1507 if (dev->state == USB_STATE_SUSPENDED)
1508 return -EHOSTUNREACH;
1509
1510 /* caller must have locked the device and must own
1511 * the usb bus readlock (so driver bindings are stable);
1512 * calls during probe() are fine
1513 */
1514
1515 for (i = 1; i < 16; ++i) {
1516 usb_disable_endpoint(dev, i, true);
1517 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1518 }
1519
1520 config = dev->actconfig;
1521 retval = 0;
1522 mutex_lock(hcd->bandwidth_mutex);
1523 /* Disable LPM, and re-enable it once the configuration is reset, so
1524 * that the xHCI driver can recalculate the U1/U2 timeouts.
1525 */
1526 if (usb_disable_lpm(dev)) {
1527 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1528 mutex_unlock(hcd->bandwidth_mutex);
1529 return -ENOMEM;
1530 }
1531 /* Make sure we have enough bandwidth for each alternate setting 0 */
1532 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1533 struct usb_interface *intf = config->interface[i];
1534 struct usb_host_interface *alt;
1535
1536 alt = usb_altnum_to_altsetting(intf, 0);
1537 if (!alt)
1538 alt = &intf->altsetting[0];
1539 if (alt != intf->cur_altsetting)
1540 retval = usb_hcd_alloc_bandwidth(dev, NULL,
1541 intf->cur_altsetting, alt);
1542 if (retval < 0)
1543 break;
1544 }
1545 /* If not, reinstate the old alternate settings */
1546 if (retval < 0) {
1547reset_old_alts:
1548 for (i--; i >= 0; i--) {
1549 struct usb_interface *intf = config->interface[i];
1550 struct usb_host_interface *alt;
1551
1552 alt = usb_altnum_to_altsetting(intf, 0);
1553 if (!alt)
1554 alt = &intf->altsetting[0];
1555 if (alt != intf->cur_altsetting)
1556 usb_hcd_alloc_bandwidth(dev, NULL,
1557 alt, intf->cur_altsetting);
1558 }
1559 usb_enable_lpm(dev);
1560 mutex_unlock(hcd->bandwidth_mutex);
1561 return retval;
1562 }
1563 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1564 USB_REQ_SET_CONFIGURATION, 0,
1565 config->desc.bConfigurationValue, 0,
1566 NULL, 0, USB_CTRL_SET_TIMEOUT);
1567 if (retval < 0)
1568 goto reset_old_alts;
1569 mutex_unlock(hcd->bandwidth_mutex);
1570
1571 /* re-init hc/hcd interface/endpoint state */
1572 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1573 struct usb_interface *intf = config->interface[i];
1574 struct usb_host_interface *alt;
1575
1576 alt = usb_altnum_to_altsetting(intf, 0);
1577
1578 /* No altsetting 0? We'll assume the first altsetting.
1579 * We could use a GetInterface call, but if a device is
1580 * so non-compliant that it doesn't have altsetting 0
1581 * then I wouldn't trust its reply anyway.
1582 */
1583 if (!alt)
1584 alt = &intf->altsetting[0];
1585
1586 if (alt != intf->cur_altsetting) {
1587 remove_intf_ep_devs(intf);
1588 usb_remove_sysfs_intf_files(intf);
1589 }
1590 intf->cur_altsetting = alt;
1591 usb_enable_interface(dev, intf, true);
1592 if (device_is_registered(&intf->dev)) {
1593 usb_create_sysfs_intf_files(intf);
1594 create_intf_ep_devs(intf);
1595 }
1596 }
1597 /* Now that the interfaces are installed, re-enable LPM. */
1598 usb_unlocked_enable_lpm(dev);
1599 return 0;
1600}
1601EXPORT_SYMBOL_GPL(usb_reset_configuration);
1602
1603static void usb_release_interface(struct device *dev)
1604{
1605 struct usb_interface *intf = to_usb_interface(dev);
1606 struct usb_interface_cache *intfc =
1607 altsetting_to_usb_interface_cache(intf->altsetting);
1608
1609 kref_put(&intfc->ref, usb_release_interface_cache);
1610 usb_put_dev(interface_to_usbdev(intf));
1611 of_node_put(dev->of_node);
1612 kfree(intf);
1613}
1614
1615/*
1616 * usb_deauthorize_interface - deauthorize an USB interface
1617 *
1618 * @intf: USB interface structure
1619 */
1620void usb_deauthorize_interface(struct usb_interface *intf)
1621{
1622 struct device *dev = &intf->dev;
1623
1624 device_lock(dev->parent);
1625
1626 if (intf->authorized) {
1627 device_lock(dev);
1628 intf->authorized = 0;
1629 device_unlock(dev);
1630
1631 usb_forced_unbind_intf(intf);
1632 }
1633
1634 device_unlock(dev->parent);
1635}
1636
1637/*
1638 * usb_authorize_interface - authorize an USB interface
1639 *
1640 * @intf: USB interface structure
1641 */
1642void usb_authorize_interface(struct usb_interface *intf)
1643{
1644 struct device *dev = &intf->dev;
1645
1646 if (!intf->authorized) {
1647 device_lock(dev);
1648 intf->authorized = 1; /* authorize interface */
1649 device_unlock(dev);
1650 }
1651}
1652
1653static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1654{
1655 struct usb_device *usb_dev;
1656 struct usb_interface *intf;
1657 struct usb_host_interface *alt;
1658
1659 intf = to_usb_interface(dev);
1660 usb_dev = interface_to_usbdev(intf);
1661 alt = intf->cur_altsetting;
1662
1663 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1664 alt->desc.bInterfaceClass,
1665 alt->desc.bInterfaceSubClass,
1666 alt->desc.bInterfaceProtocol))
1667 return -ENOMEM;
1668
1669 if (add_uevent_var(env,
1670 "MODALIAS=usb:"
1671 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1672 le16_to_cpu(usb_dev->descriptor.idVendor),
1673 le16_to_cpu(usb_dev->descriptor.idProduct),
1674 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1675 usb_dev->descriptor.bDeviceClass,
1676 usb_dev->descriptor.bDeviceSubClass,
1677 usb_dev->descriptor.bDeviceProtocol,
1678 alt->desc.bInterfaceClass,
1679 alt->desc.bInterfaceSubClass,
1680 alt->desc.bInterfaceProtocol,
1681 alt->desc.bInterfaceNumber))
1682 return -ENOMEM;
1683
1684 return 0;
1685}
1686
1687struct device_type usb_if_device_type = {
1688 .name = "usb_interface",
1689 .release = usb_release_interface,
1690 .uevent = usb_if_uevent,
1691};
1692
1693static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1694 struct usb_host_config *config,
1695 u8 inum)
1696{
1697 struct usb_interface_assoc_descriptor *retval = NULL;
1698 struct usb_interface_assoc_descriptor *intf_assoc;
1699 int first_intf;
1700 int last_intf;
1701 int i;
1702
1703 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1704 intf_assoc = config->intf_assoc[i];
1705 if (intf_assoc->bInterfaceCount == 0)
1706 continue;
1707
1708 first_intf = intf_assoc->bFirstInterface;
1709 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1710 if (inum >= first_intf && inum <= last_intf) {
1711 if (!retval)
1712 retval = intf_assoc;
1713 else
1714 dev_err(&dev->dev, "Interface #%d referenced"
1715 " by multiple IADs\n", inum);
1716 }
1717 }
1718
1719 return retval;
1720}
1721
1722
1723/*
1724 * Internal function to queue a device reset
1725 * See usb_queue_reset_device() for more details
1726 */
1727static void __usb_queue_reset_device(struct work_struct *ws)
1728{
1729 int rc;
1730 struct usb_interface *iface =
1731 container_of(ws, struct usb_interface, reset_ws);
1732 struct usb_device *udev = interface_to_usbdev(iface);
1733
1734 rc = usb_lock_device_for_reset(udev, iface);
1735 if (rc >= 0) {
1736 usb_reset_device(udev);
1737 usb_unlock_device(udev);
1738 }
1739 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */
1740}
1741
1742
1743/*
1744 * usb_set_configuration - Makes a particular device setting be current
1745 * @dev: the device whose configuration is being updated
1746 * @configuration: the configuration being chosen.
1747 * Context: !in_interrupt(), caller owns the device lock
1748 *
1749 * This is used to enable non-default device modes. Not all devices
1750 * use this kind of configurability; many devices only have one
1751 * configuration.
1752 *
1753 * @configuration is the value of the configuration to be installed.
1754 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1755 * must be non-zero; a value of zero indicates that the device in
1756 * unconfigured. However some devices erroneously use 0 as one of their
1757 * configuration values. To help manage such devices, this routine will
1758 * accept @configuration = -1 as indicating the device should be put in
1759 * an unconfigured state.
1760 *
1761 * USB device configurations may affect Linux interoperability,
1762 * power consumption and the functionality available. For example,
1763 * the default configuration is limited to using 100mA of bus power,
1764 * so that when certain device functionality requires more power,
1765 * and the device is bus powered, that functionality should be in some
1766 * non-default device configuration. Other device modes may also be
1767 * reflected as configuration options, such as whether two ISDN
1768 * channels are available independently; and choosing between open
1769 * standard device protocols (like CDC) or proprietary ones.
1770 *
1771 * Note that a non-authorized device (dev->authorized == 0) will only
1772 * be put in unconfigured mode.
1773 *
1774 * Note that USB has an additional level of device configurability,
1775 * associated with interfaces. That configurability is accessed using
1776 * usb_set_interface().
1777 *
1778 * This call is synchronous. The calling context must be able to sleep,
1779 * must own the device lock, and must not hold the driver model's USB
1780 * bus mutex; usb interface driver probe() methods cannot use this routine.
1781 *
1782 * Returns zero on success, or else the status code returned by the
1783 * underlying call that failed. On successful completion, each interface
1784 * in the original device configuration has been destroyed, and each one
1785 * in the new configuration has been probed by all relevant usb device
1786 * drivers currently known to the kernel.
1787 */
1788int usb_set_configuration(struct usb_device *dev, int configuration)
1789{
1790 int i, ret;
1791 struct usb_host_config *cp = NULL;
1792 struct usb_interface **new_interfaces = NULL;
1793 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1794 int n, nintf;
1795
1796 if (dev->authorized == 0 || configuration == -1)
1797 configuration = 0;
1798 else {
1799 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1800 if (dev->config[i].desc.bConfigurationValue ==
1801 configuration) {
1802 cp = &dev->config[i];
1803 break;
1804 }
1805 }
1806 }
1807 if ((!cp && configuration != 0))
1808 return -EINVAL;
1809
1810 /* The USB spec says configuration 0 means unconfigured.
1811 * But if a device includes a configuration numbered 0,
1812 * we will accept it as a correctly configured state.
1813 * Use -1 if you really want to unconfigure the device.
1814 */
1815 if (cp && configuration == 0)
1816 dev_warn(&dev->dev, "config 0 descriptor??\n");
1817
1818 /* Allocate memory for new interfaces before doing anything else,
1819 * so that if we run out then nothing will have changed. */
1820 n = nintf = 0;
1821 if (cp) {
1822 nintf = cp->desc.bNumInterfaces;
1823 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1824 GFP_NOIO);
1825 if (!new_interfaces)
1826 return -ENOMEM;
1827
1828 for (; n < nintf; ++n) {
1829 new_interfaces[n] = kzalloc(
1830 sizeof(struct usb_interface),
1831 GFP_NOIO);
1832 if (!new_interfaces[n]) {
1833 ret = -ENOMEM;
1834free_interfaces:
1835 while (--n >= 0)
1836 kfree(new_interfaces[n]);
1837 kfree(new_interfaces);
1838 return ret;
1839 }
1840 }
1841
1842 i = dev->bus_mA - usb_get_max_power(dev, cp);
1843 if (i < 0)
1844 dev_warn(&dev->dev, "new config #%d exceeds power "
1845 "limit by %dmA\n",
1846 configuration, -i);
1847 }
1848
1849 /* Wake up the device so we can send it the Set-Config request */
1850 ret = usb_autoresume_device(dev);
1851 if (ret)
1852 goto free_interfaces;
1853
1854 /* if it's already configured, clear out old state first.
1855 * getting rid of old interfaces means unbinding their drivers.
1856 */
1857 if (dev->state != USB_STATE_ADDRESS)
1858 usb_disable_device(dev, 1); /* Skip ep0 */
1859
1860 /* Get rid of pending async Set-Config requests for this device */
1861 cancel_async_set_config(dev);
1862
1863 /* Make sure we have bandwidth (and available HCD resources) for this
1864 * configuration. Remove endpoints from the schedule if we're dropping
1865 * this configuration to set configuration 0. After this point, the
1866 * host controller will not allow submissions to dropped endpoints. If
1867 * this call fails, the device state is unchanged.
1868 */
1869 mutex_lock(hcd->bandwidth_mutex);
1870 /* Disable LPM, and re-enable it once the new configuration is
1871 * installed, so that the xHCI driver can recalculate the U1/U2
1872 * timeouts.
1873 */
1874 if (dev->actconfig && usb_disable_lpm(dev)) {
1875 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1876 mutex_unlock(hcd->bandwidth_mutex);
1877 ret = -ENOMEM;
1878 goto free_interfaces;
1879 }
1880 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1881 if (ret < 0) {
1882 if (dev->actconfig)
1883 usb_enable_lpm(dev);
1884 mutex_unlock(hcd->bandwidth_mutex);
1885 usb_autosuspend_device(dev);
1886 goto free_interfaces;
1887 }
1888
1889 /*
1890 * Initialize the new interface structures and the
1891 * hc/hcd/usbcore interface/endpoint state.
1892 */
1893 for (i = 0; i < nintf; ++i) {
1894 struct usb_interface_cache *intfc;
1895 struct usb_interface *intf;
1896 struct usb_host_interface *alt;
1897 u8 ifnum;
1898
1899 cp->interface[i] = intf = new_interfaces[i];
1900 intfc = cp->intf_cache[i];
1901 intf->altsetting = intfc->altsetting;
1902 intf->num_altsetting = intfc->num_altsetting;
1903 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1904 kref_get(&intfc->ref);
1905
1906 alt = usb_altnum_to_altsetting(intf, 0);
1907
1908 /* No altsetting 0? We'll assume the first altsetting.
1909 * We could use a GetInterface call, but if a device is
1910 * so non-compliant that it doesn't have altsetting 0
1911 * then I wouldn't trust its reply anyway.
1912 */
1913 if (!alt)
1914 alt = &intf->altsetting[0];
1915
1916 ifnum = alt->desc.bInterfaceNumber;
1917 intf->intf_assoc = find_iad(dev, cp, ifnum);
1918 intf->cur_altsetting = alt;
1919 usb_enable_interface(dev, intf, true);
1920 intf->dev.parent = &dev->dev;
1921 if (usb_of_has_combined_node(dev)) {
1922 device_set_of_node_from_dev(&intf->dev, &dev->dev);
1923 } else {
1924 intf->dev.of_node = usb_of_get_interface_node(dev,
1925 configuration, ifnum);
1926 }
1927 intf->dev.driver = NULL;
1928 intf->dev.bus = &usb_bus_type;
1929 intf->dev.type = &usb_if_device_type;
1930 intf->dev.groups = usb_interface_groups;
1931 /*
1932 * Please refer to usb_alloc_dev() to see why we set
1933 * dma_mask and dma_pfn_offset.
1934 */
1935 intf->dev.dma_mask = dev->dev.dma_mask;
1936 intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset;
1937 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1938 intf->minor = -1;
1939 device_initialize(&intf->dev);
1940 pm_runtime_no_callbacks(&intf->dev);
1941 dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum,
1942 dev->devpath, configuration, ifnum);
1943 usb_get_dev(dev);
1944 }
1945 kfree(new_interfaces);
1946
1947 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1948 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1949 NULL, 0, USB_CTRL_SET_TIMEOUT);
1950 if (ret < 0 && cp) {
1951 /*
1952 * All the old state is gone, so what else can we do?
1953 * The device is probably useless now anyway.
1954 */
1955 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1956 for (i = 0; i < nintf; ++i) {
1957 usb_disable_interface(dev, cp->interface[i], true);
1958 put_device(&cp->interface[i]->dev);
1959 cp->interface[i] = NULL;
1960 }
1961 cp = NULL;
1962 }
1963
1964 dev->actconfig = cp;
1965 mutex_unlock(hcd->bandwidth_mutex);
1966
1967 if (!cp) {
1968 usb_set_device_state(dev, USB_STATE_ADDRESS);
1969
1970 /* Leave LPM disabled while the device is unconfigured. */
1971 usb_autosuspend_device(dev);
1972 return ret;
1973 }
1974 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1975
1976 if (cp->string == NULL &&
1977 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1978 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1979
1980 /* Now that the interfaces are installed, re-enable LPM. */
1981 usb_unlocked_enable_lpm(dev);
1982 /* Enable LTM if it was turned off by usb_disable_device. */
1983 usb_enable_ltm(dev);
1984
1985 /* Now that all the interfaces are set up, register them
1986 * to trigger binding of drivers to interfaces. probe()
1987 * routines may install different altsettings and may
1988 * claim() any interfaces not yet bound. Many class drivers
1989 * need that: CDC, audio, video, etc.
1990 */
1991 for (i = 0; i < nintf; ++i) {
1992 struct usb_interface *intf = cp->interface[i];
1993
1994 dev_dbg(&dev->dev,
1995 "adding %s (config #%d, interface %d)\n",
1996 dev_name(&intf->dev), configuration,
1997 intf->cur_altsetting->desc.bInterfaceNumber);
1998 device_enable_async_suspend(&intf->dev);
1999 ret = device_add(&intf->dev);
2000 if (ret != 0) {
2001 dev_err(&dev->dev, "device_add(%s) --> %d\n",
2002 dev_name(&intf->dev), ret);
2003 continue;
2004 }
2005 create_intf_ep_devs(intf);
2006 }
2007
2008 usb_autosuspend_device(dev);
2009 return 0;
2010}
2011EXPORT_SYMBOL_GPL(usb_set_configuration);
2012
2013static LIST_HEAD(set_config_list);
2014static DEFINE_SPINLOCK(set_config_lock);
2015
2016struct set_config_request {
2017 struct usb_device *udev;
2018 int config;
2019 struct work_struct work;
2020 struct list_head node;
2021};
2022
2023/* Worker routine for usb_driver_set_configuration() */
2024static void driver_set_config_work(struct work_struct *work)
2025{
2026 struct set_config_request *req =
2027 container_of(work, struct set_config_request, work);
2028 struct usb_device *udev = req->udev;
2029
2030 usb_lock_device(udev);
2031 spin_lock(&set_config_lock);
2032 list_del(&req->node);
2033 spin_unlock(&set_config_lock);
2034
2035 if (req->config >= -1) /* Is req still valid? */
2036 usb_set_configuration(udev, req->config);
2037 usb_unlock_device(udev);
2038 usb_put_dev(udev);
2039 kfree(req);
2040}
2041
2042/* Cancel pending Set-Config requests for a device whose configuration
2043 * was just changed
2044 */
2045static void cancel_async_set_config(struct usb_device *udev)
2046{
2047 struct set_config_request *req;
2048
2049 spin_lock(&set_config_lock);
2050 list_for_each_entry(req, &set_config_list, node) {
2051 if (req->udev == udev)
2052 req->config = -999; /* Mark as cancelled */
2053 }
2054 spin_unlock(&set_config_lock);
2055}
2056
2057/**
2058 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2059 * @udev: the device whose configuration is being updated
2060 * @config: the configuration being chosen.
2061 * Context: In process context, must be able to sleep
2062 *
2063 * Device interface drivers are not allowed to change device configurations.
2064 * This is because changing configurations will destroy the interface the
2065 * driver is bound to and create new ones; it would be like a floppy-disk
2066 * driver telling the computer to replace the floppy-disk drive with a
2067 * tape drive!
2068 *
2069 * Still, in certain specialized circumstances the need may arise. This
2070 * routine gets around the normal restrictions by using a work thread to
2071 * submit the change-config request.
2072 *
2073 * Return: 0 if the request was successfully queued, error code otherwise.
2074 * The caller has no way to know whether the queued request will eventually
2075 * succeed.
2076 */
2077int usb_driver_set_configuration(struct usb_device *udev, int config)
2078{
2079 struct set_config_request *req;
2080
2081 req = kmalloc(sizeof(*req), GFP_KERNEL);
2082 if (!req)
2083 return -ENOMEM;
2084 req->udev = udev;
2085 req->config = config;
2086 INIT_WORK(&req->work, driver_set_config_work);
2087
2088 spin_lock(&set_config_lock);
2089 list_add(&req->node, &set_config_list);
2090 spin_unlock(&set_config_lock);
2091
2092 usb_get_dev(udev);
2093 schedule_work(&req->work);
2094 return 0;
2095}
2096EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2097
2098/**
2099 * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2100 * @hdr: the place to put the results of the parsing
2101 * @intf: the interface for which parsing is requested
2102 * @buffer: pointer to the extra headers to be parsed
2103 * @buflen: length of the extra headers
2104 *
2105 * This evaluates the extra headers present in CDC devices which
2106 * bind the interfaces for data and control and provide details
2107 * about the capabilities of the device.
2108 *
2109 * Return: number of descriptors parsed or -EINVAL
2110 * if the header is contradictory beyond salvage
2111 */
2112
2113int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2114 struct usb_interface *intf,
2115 u8 *buffer,
2116 int buflen)
2117{
2118 /* duplicates are ignored */
2119 struct usb_cdc_union_desc *union_header = NULL;
2120
2121 /* duplicates are not tolerated */
2122 struct usb_cdc_header_desc *header = NULL;
2123 struct usb_cdc_ether_desc *ether = NULL;
2124 struct usb_cdc_mdlm_detail_desc *detail = NULL;
2125 struct usb_cdc_mdlm_desc *desc = NULL;
2126
2127 unsigned int elength;
2128 int cnt = 0;
2129
2130 memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2131 hdr->phonet_magic_present = false;
2132 while (buflen > 0) {
2133 elength = buffer[0];
2134 if (!elength) {
2135 dev_err(&intf->dev, "skipping garbage byte\n");
2136 elength = 1;
2137 goto next_desc;
2138 }
2139 if ((buflen < elength) || (elength < 3)) {
2140 dev_err(&intf->dev, "invalid descriptor buffer length\n");
2141 break;
2142 }
2143 if (buffer[1] != USB_DT_CS_INTERFACE) {
2144 dev_err(&intf->dev, "skipping garbage\n");
2145 goto next_desc;
2146 }
2147
2148 switch (buffer[2]) {
2149 case USB_CDC_UNION_TYPE: /* we've found it */
2150 if (elength < sizeof(struct usb_cdc_union_desc))
2151 goto next_desc;
2152 if (union_header) {
2153 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2154 goto next_desc;
2155 }
2156 union_header = (struct usb_cdc_union_desc *)buffer;
2157 break;
2158 case USB_CDC_COUNTRY_TYPE:
2159 if (elength < sizeof(struct usb_cdc_country_functional_desc))
2160 goto next_desc;
2161 hdr->usb_cdc_country_functional_desc =
2162 (struct usb_cdc_country_functional_desc *)buffer;
2163 break;
2164 case USB_CDC_HEADER_TYPE:
2165 if (elength != sizeof(struct usb_cdc_header_desc))
2166 goto next_desc;
2167 if (header)
2168 return -EINVAL;
2169 header = (struct usb_cdc_header_desc *)buffer;
2170 break;
2171 case USB_CDC_ACM_TYPE:
2172 if (elength < sizeof(struct usb_cdc_acm_descriptor))
2173 goto next_desc;
2174 hdr->usb_cdc_acm_descriptor =
2175 (struct usb_cdc_acm_descriptor *)buffer;
2176 break;
2177 case USB_CDC_ETHERNET_TYPE:
2178 if (elength != sizeof(struct usb_cdc_ether_desc))
2179 goto next_desc;
2180 if (ether)
2181 return -EINVAL;
2182 ether = (struct usb_cdc_ether_desc *)buffer;
2183 break;
2184 case USB_CDC_CALL_MANAGEMENT_TYPE:
2185 if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2186 goto next_desc;
2187 hdr->usb_cdc_call_mgmt_descriptor =
2188 (struct usb_cdc_call_mgmt_descriptor *)buffer;
2189 break;
2190 case USB_CDC_DMM_TYPE:
2191 if (elength < sizeof(struct usb_cdc_dmm_desc))
2192 goto next_desc;
2193 hdr->usb_cdc_dmm_desc =
2194 (struct usb_cdc_dmm_desc *)buffer;
2195 break;
2196 case USB_CDC_MDLM_TYPE:
2197 if (elength < sizeof(struct usb_cdc_mdlm_desc *))
2198 goto next_desc;
2199 if (desc)
2200 return -EINVAL;
2201 desc = (struct usb_cdc_mdlm_desc *)buffer;
2202 break;
2203 case USB_CDC_MDLM_DETAIL_TYPE:
2204 if (elength < sizeof(struct usb_cdc_mdlm_detail_desc *))
2205 goto next_desc;
2206 if (detail)
2207 return -EINVAL;
2208 detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2209 break;
2210 case USB_CDC_NCM_TYPE:
2211 if (elength < sizeof(struct usb_cdc_ncm_desc))
2212 goto next_desc;
2213 hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2214 break;
2215 case USB_CDC_MBIM_TYPE:
2216 if (elength < sizeof(struct usb_cdc_mbim_desc))
2217 goto next_desc;
2218
2219 hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2220 break;
2221 case USB_CDC_MBIM_EXTENDED_TYPE:
2222 if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2223 break;
2224 hdr->usb_cdc_mbim_extended_desc =
2225 (struct usb_cdc_mbim_extended_desc *)buffer;
2226 break;
2227 case CDC_PHONET_MAGIC_NUMBER:
2228 hdr->phonet_magic_present = true;
2229 break;
2230 default:
2231 /*
2232 * there are LOTS more CDC descriptors that
2233 * could legitimately be found here.
2234 */
2235 dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2236 buffer[2], elength);
2237 goto next_desc;
2238 }
2239 cnt++;
2240next_desc:
2241 buflen -= elength;
2242 buffer += elength;
2243 }
2244 hdr->usb_cdc_union_desc = union_header;
2245 hdr->usb_cdc_header_desc = header;
2246 hdr->usb_cdc_mdlm_detail_desc = detail;
2247 hdr->usb_cdc_mdlm_desc = desc;
2248 hdr->usb_cdc_ether_desc = ether;
2249 return cnt;
2250}
2251
2252EXPORT_SYMBOL(cdc_parse_cdc_header);