Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11#include <linux/device.h>
12#include <linux/err.h>
13#include <linux/fwnode.h>
14#include <linux/init.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/string.h>
18#include <linux/kdev_t.h>
19#include <linux/notifier.h>
20#include <linux/of.h>
21#include <linux/of_device.h>
22#include <linux/genhd.h>
23#include <linux/mutex.h>
24#include <linux/pm_runtime.h>
25#include <linux/netdevice.h>
26#include <linux/sched/signal.h>
27#include <linux/sysfs.h>
28
29#include "base.h"
30#include "power/power.h"
31
32#ifdef CONFIG_SYSFS_DEPRECATED
33#ifdef CONFIG_SYSFS_DEPRECATED_V2
34long sysfs_deprecated = 1;
35#else
36long sysfs_deprecated = 0;
37#endif
38static int __init sysfs_deprecated_setup(char *arg)
39{
40 return kstrtol(arg, 10, &sysfs_deprecated);
41}
42early_param("sysfs.deprecated", sysfs_deprecated_setup);
43#endif
44
45/* Device links support. */
46
47#ifdef CONFIG_SRCU
48static DEFINE_MUTEX(device_links_lock);
49DEFINE_STATIC_SRCU(device_links_srcu);
50
51static inline void device_links_write_lock(void)
52{
53 mutex_lock(&device_links_lock);
54}
55
56static inline void device_links_write_unlock(void)
57{
58 mutex_unlock(&device_links_lock);
59}
60
61int device_links_read_lock(void)
62{
63 return srcu_read_lock(&device_links_srcu);
64}
65
66void device_links_read_unlock(int idx)
67{
68 srcu_read_unlock(&device_links_srcu, idx);
69}
70#else /* !CONFIG_SRCU */
71static DECLARE_RWSEM(device_links_lock);
72
73static inline void device_links_write_lock(void)
74{
75 down_write(&device_links_lock);
76}
77
78static inline void device_links_write_unlock(void)
79{
80 up_write(&device_links_lock);
81}
82
83int device_links_read_lock(void)
84{
85 down_read(&device_links_lock);
86 return 0;
87}
88
89void device_links_read_unlock(int not_used)
90{
91 up_read(&device_links_lock);
92}
93#endif /* !CONFIG_SRCU */
94
95/**
96 * device_is_dependent - Check if one device depends on another one
97 * @dev: Device to check dependencies for.
98 * @target: Device to check against.
99 *
100 * Check if @target depends on @dev or any device dependent on it (its child or
101 * its consumer etc). Return 1 if that is the case or 0 otherwise.
102 */
103static int device_is_dependent(struct device *dev, void *target)
104{
105 struct device_link *link;
106 int ret;
107
108 if (WARN_ON(dev == target))
109 return 1;
110
111 ret = device_for_each_child(dev, target, device_is_dependent);
112 if (ret)
113 return ret;
114
115 list_for_each_entry(link, &dev->links.consumers, s_node) {
116 if (WARN_ON(link->consumer == target))
117 return 1;
118
119 ret = device_is_dependent(link->consumer, target);
120 if (ret)
121 break;
122 }
123 return ret;
124}
125
126static int device_reorder_to_tail(struct device *dev, void *not_used)
127{
128 struct device_link *link;
129
130 /*
131 * Devices that have not been registered yet will be put to the ends
132 * of the lists during the registration, so skip them here.
133 */
134 if (device_is_registered(dev))
135 devices_kset_move_last(dev);
136
137 if (device_pm_initialized(dev))
138 device_pm_move_last(dev);
139
140 device_for_each_child(dev, NULL, device_reorder_to_tail);
141 list_for_each_entry(link, &dev->links.consumers, s_node)
142 device_reorder_to_tail(link->consumer, NULL);
143
144 return 0;
145}
146
147/**
148 * device_link_add - Create a link between two devices.
149 * @consumer: Consumer end of the link.
150 * @supplier: Supplier end of the link.
151 * @flags: Link flags.
152 *
153 * The caller is responsible for the proper synchronization of the link creation
154 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
155 * runtime PM framework to take the link into account. Second, if the
156 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
157 * be forced into the active metastate and reference-counted upon the creation
158 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
159 * ignored.
160 *
161 * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically
162 * when the consumer device driver unbinds from it. The combination of both
163 * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL
164 * to be returned.
165 *
166 * A side effect of the link creation is re-ordering of dpm_list and the
167 * devices_kset list by moving the consumer device and all devices depending
168 * on it to the ends of these lists (that does not happen to devices that have
169 * not been registered when this function is called).
170 *
171 * The supplier device is required to be registered when this function is called
172 * and NULL will be returned if that is not the case. The consumer device need
173 * not be registered, however.
174 */
175struct device_link *device_link_add(struct device *consumer,
176 struct device *supplier, u32 flags)
177{
178 struct device_link *link;
179
180 if (!consumer || !supplier ||
181 ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE)))
182 return NULL;
183
184 device_links_write_lock();
185 device_pm_lock();
186
187 /*
188 * If the supplier has not been fully registered yet or there is a
189 * reverse dependency between the consumer and the supplier already in
190 * the graph, return NULL.
191 */
192 if (!device_pm_initialized(supplier)
193 || device_is_dependent(consumer, supplier)) {
194 link = NULL;
195 goto out;
196 }
197
198 list_for_each_entry(link, &supplier->links.consumers, s_node)
199 if (link->consumer == consumer)
200 goto out;
201
202 link = kzalloc(sizeof(*link), GFP_KERNEL);
203 if (!link)
204 goto out;
205
206 if (flags & DL_FLAG_PM_RUNTIME) {
207 if (flags & DL_FLAG_RPM_ACTIVE) {
208 if (pm_runtime_get_sync(supplier) < 0) {
209 pm_runtime_put_noidle(supplier);
210 kfree(link);
211 link = NULL;
212 goto out;
213 }
214 link->rpm_active = true;
215 }
216 pm_runtime_new_link(consumer);
217 }
218 get_device(supplier);
219 link->supplier = supplier;
220 INIT_LIST_HEAD(&link->s_node);
221 get_device(consumer);
222 link->consumer = consumer;
223 INIT_LIST_HEAD(&link->c_node);
224 link->flags = flags;
225
226 /* Determine the initial link state. */
227 if (flags & DL_FLAG_STATELESS) {
228 link->status = DL_STATE_NONE;
229 } else {
230 switch (supplier->links.status) {
231 case DL_DEV_DRIVER_BOUND:
232 switch (consumer->links.status) {
233 case DL_DEV_PROBING:
234 /*
235 * Balance the decrementation of the supplier's
236 * runtime PM usage counter after consumer probe
237 * in driver_probe_device().
238 */
239 if (flags & DL_FLAG_PM_RUNTIME)
240 pm_runtime_get_sync(supplier);
241
242 link->status = DL_STATE_CONSUMER_PROBE;
243 break;
244 case DL_DEV_DRIVER_BOUND:
245 link->status = DL_STATE_ACTIVE;
246 break;
247 default:
248 link->status = DL_STATE_AVAILABLE;
249 break;
250 }
251 break;
252 case DL_DEV_UNBINDING:
253 link->status = DL_STATE_SUPPLIER_UNBIND;
254 break;
255 default:
256 link->status = DL_STATE_DORMANT;
257 break;
258 }
259 }
260
261 /*
262 * Move the consumer and all of the devices depending on it to the end
263 * of dpm_list and the devices_kset list.
264 *
265 * It is necessary to hold dpm_list locked throughout all that or else
266 * we may end up suspending with a wrong ordering of it.
267 */
268 device_reorder_to_tail(consumer, NULL);
269
270 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
271 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
272
273 dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
274
275 out:
276 device_pm_unlock();
277 device_links_write_unlock();
278 return link;
279}
280EXPORT_SYMBOL_GPL(device_link_add);
281
282static void device_link_free(struct device_link *link)
283{
284 put_device(link->consumer);
285 put_device(link->supplier);
286 kfree(link);
287}
288
289#ifdef CONFIG_SRCU
290static void __device_link_free_srcu(struct rcu_head *rhead)
291{
292 device_link_free(container_of(rhead, struct device_link, rcu_head));
293}
294
295static void __device_link_del(struct device_link *link)
296{
297 dev_info(link->consumer, "Dropping the link to %s\n",
298 dev_name(link->supplier));
299
300 if (link->flags & DL_FLAG_PM_RUNTIME)
301 pm_runtime_drop_link(link->consumer);
302
303 list_del_rcu(&link->s_node);
304 list_del_rcu(&link->c_node);
305 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
306}
307#else /* !CONFIG_SRCU */
308static void __device_link_del(struct device_link *link)
309{
310 dev_info(link->consumer, "Dropping the link to %s\n",
311 dev_name(link->supplier));
312
313 list_del(&link->s_node);
314 list_del(&link->c_node);
315 device_link_free(link);
316}
317#endif /* !CONFIG_SRCU */
318
319/**
320 * device_link_del - Delete a link between two devices.
321 * @link: Device link to delete.
322 *
323 * The caller must ensure proper synchronization of this function with runtime
324 * PM.
325 */
326void device_link_del(struct device_link *link)
327{
328 device_links_write_lock();
329 device_pm_lock();
330 __device_link_del(link);
331 device_pm_unlock();
332 device_links_write_unlock();
333}
334EXPORT_SYMBOL_GPL(device_link_del);
335
336static void device_links_missing_supplier(struct device *dev)
337{
338 struct device_link *link;
339
340 list_for_each_entry(link, &dev->links.suppliers, c_node)
341 if (link->status == DL_STATE_CONSUMER_PROBE)
342 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
343}
344
345/**
346 * device_links_check_suppliers - Check presence of supplier drivers.
347 * @dev: Consumer device.
348 *
349 * Check links from this device to any suppliers. Walk the list of the device's
350 * links to suppliers and see if all of them are available. If not, simply
351 * return -EPROBE_DEFER.
352 *
353 * We need to guarantee that the supplier will not go away after the check has
354 * been positive here. It only can go away in __device_release_driver() and
355 * that function checks the device's links to consumers. This means we need to
356 * mark the link as "consumer probe in progress" to make the supplier removal
357 * wait for us to complete (or bad things may happen).
358 *
359 * Links with the DL_FLAG_STATELESS flag set are ignored.
360 */
361int device_links_check_suppliers(struct device *dev)
362{
363 struct device_link *link;
364 int ret = 0;
365
366 device_links_write_lock();
367
368 list_for_each_entry(link, &dev->links.suppliers, c_node) {
369 if (link->flags & DL_FLAG_STATELESS)
370 continue;
371
372 if (link->status != DL_STATE_AVAILABLE) {
373 device_links_missing_supplier(dev);
374 ret = -EPROBE_DEFER;
375 break;
376 }
377 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
378 }
379 dev->links.status = DL_DEV_PROBING;
380
381 device_links_write_unlock();
382 return ret;
383}
384
385/**
386 * device_links_driver_bound - Update device links after probing its driver.
387 * @dev: Device to update the links for.
388 *
389 * The probe has been successful, so update links from this device to any
390 * consumers by changing their status to "available".
391 *
392 * Also change the status of @dev's links to suppliers to "active".
393 *
394 * Links with the DL_FLAG_STATELESS flag set are ignored.
395 */
396void device_links_driver_bound(struct device *dev)
397{
398 struct device_link *link;
399
400 device_links_write_lock();
401
402 list_for_each_entry(link, &dev->links.consumers, s_node) {
403 if (link->flags & DL_FLAG_STATELESS)
404 continue;
405
406 WARN_ON(link->status != DL_STATE_DORMANT);
407 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
408 }
409
410 list_for_each_entry(link, &dev->links.suppliers, c_node) {
411 if (link->flags & DL_FLAG_STATELESS)
412 continue;
413
414 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
415 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
416 }
417
418 dev->links.status = DL_DEV_DRIVER_BOUND;
419
420 device_links_write_unlock();
421}
422
423/**
424 * __device_links_no_driver - Update links of a device without a driver.
425 * @dev: Device without a drvier.
426 *
427 * Delete all non-persistent links from this device to any suppliers.
428 *
429 * Persistent links stay around, but their status is changed to "available",
430 * unless they already are in the "supplier unbind in progress" state in which
431 * case they need not be updated.
432 *
433 * Links with the DL_FLAG_STATELESS flag set are ignored.
434 */
435static void __device_links_no_driver(struct device *dev)
436{
437 struct device_link *link, *ln;
438
439 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
440 if (link->flags & DL_FLAG_STATELESS)
441 continue;
442
443 if (link->flags & DL_FLAG_AUTOREMOVE)
444 __device_link_del(link);
445 else if (link->status != DL_STATE_SUPPLIER_UNBIND)
446 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
447 }
448
449 dev->links.status = DL_DEV_NO_DRIVER;
450}
451
452void device_links_no_driver(struct device *dev)
453{
454 device_links_write_lock();
455 __device_links_no_driver(dev);
456 device_links_write_unlock();
457}
458
459/**
460 * device_links_driver_cleanup - Update links after driver removal.
461 * @dev: Device whose driver has just gone away.
462 *
463 * Update links to consumers for @dev by changing their status to "dormant" and
464 * invoke %__device_links_no_driver() to update links to suppliers for it as
465 * appropriate.
466 *
467 * Links with the DL_FLAG_STATELESS flag set are ignored.
468 */
469void device_links_driver_cleanup(struct device *dev)
470{
471 struct device_link *link;
472
473 device_links_write_lock();
474
475 list_for_each_entry(link, &dev->links.consumers, s_node) {
476 if (link->flags & DL_FLAG_STATELESS)
477 continue;
478
479 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE);
480 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
481 WRITE_ONCE(link->status, DL_STATE_DORMANT);
482 }
483
484 __device_links_no_driver(dev);
485
486 device_links_write_unlock();
487}
488
489/**
490 * device_links_busy - Check if there are any busy links to consumers.
491 * @dev: Device to check.
492 *
493 * Check each consumer of the device and return 'true' if its link's status
494 * is one of "consumer probe" or "active" (meaning that the given consumer is
495 * probing right now or its driver is present). Otherwise, change the link
496 * state to "supplier unbind" to prevent the consumer from being probed
497 * successfully going forward.
498 *
499 * Return 'false' if there are no probing or active consumers.
500 *
501 * Links with the DL_FLAG_STATELESS flag set are ignored.
502 */
503bool device_links_busy(struct device *dev)
504{
505 struct device_link *link;
506 bool ret = false;
507
508 device_links_write_lock();
509
510 list_for_each_entry(link, &dev->links.consumers, s_node) {
511 if (link->flags & DL_FLAG_STATELESS)
512 continue;
513
514 if (link->status == DL_STATE_CONSUMER_PROBE
515 || link->status == DL_STATE_ACTIVE) {
516 ret = true;
517 break;
518 }
519 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
520 }
521
522 dev->links.status = DL_DEV_UNBINDING;
523
524 device_links_write_unlock();
525 return ret;
526}
527
528/**
529 * device_links_unbind_consumers - Force unbind consumers of the given device.
530 * @dev: Device to unbind the consumers of.
531 *
532 * Walk the list of links to consumers for @dev and if any of them is in the
533 * "consumer probe" state, wait for all device probes in progress to complete
534 * and start over.
535 *
536 * If that's not the case, change the status of the link to "supplier unbind"
537 * and check if the link was in the "active" state. If so, force the consumer
538 * driver to unbind and start over (the consumer will not re-probe as we have
539 * changed the state of the link already).
540 *
541 * Links with the DL_FLAG_STATELESS flag set are ignored.
542 */
543void device_links_unbind_consumers(struct device *dev)
544{
545 struct device_link *link;
546
547 start:
548 device_links_write_lock();
549
550 list_for_each_entry(link, &dev->links.consumers, s_node) {
551 enum device_link_state status;
552
553 if (link->flags & DL_FLAG_STATELESS)
554 continue;
555
556 status = link->status;
557 if (status == DL_STATE_CONSUMER_PROBE) {
558 device_links_write_unlock();
559
560 wait_for_device_probe();
561 goto start;
562 }
563 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
564 if (status == DL_STATE_ACTIVE) {
565 struct device *consumer = link->consumer;
566
567 get_device(consumer);
568
569 device_links_write_unlock();
570
571 device_release_driver_internal(consumer, NULL,
572 consumer->parent);
573 put_device(consumer);
574 goto start;
575 }
576 }
577
578 device_links_write_unlock();
579}
580
581/**
582 * device_links_purge - Delete existing links to other devices.
583 * @dev: Target device.
584 */
585static void device_links_purge(struct device *dev)
586{
587 struct device_link *link, *ln;
588
589 /*
590 * Delete all of the remaining links from this device to any other
591 * devices (either consumers or suppliers).
592 */
593 device_links_write_lock();
594
595 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
596 WARN_ON(link->status == DL_STATE_ACTIVE);
597 __device_link_del(link);
598 }
599
600 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
601 WARN_ON(link->status != DL_STATE_DORMANT &&
602 link->status != DL_STATE_NONE);
603 __device_link_del(link);
604 }
605
606 device_links_write_unlock();
607}
608
609/* Device links support end. */
610
611int (*platform_notify)(struct device *dev) = NULL;
612int (*platform_notify_remove)(struct device *dev) = NULL;
613static struct kobject *dev_kobj;
614struct kobject *sysfs_dev_char_kobj;
615struct kobject *sysfs_dev_block_kobj;
616
617static DEFINE_MUTEX(device_hotplug_lock);
618
619void lock_device_hotplug(void)
620{
621 mutex_lock(&device_hotplug_lock);
622}
623
624void unlock_device_hotplug(void)
625{
626 mutex_unlock(&device_hotplug_lock);
627}
628
629int lock_device_hotplug_sysfs(void)
630{
631 if (mutex_trylock(&device_hotplug_lock))
632 return 0;
633
634 /* Avoid busy looping (5 ms of sleep should do). */
635 msleep(5);
636 return restart_syscall();
637}
638
639#ifdef CONFIG_BLOCK
640static inline int device_is_not_partition(struct device *dev)
641{
642 return !(dev->type == &part_type);
643}
644#else
645static inline int device_is_not_partition(struct device *dev)
646{
647 return 1;
648}
649#endif
650
651/**
652 * dev_driver_string - Return a device's driver name, if at all possible
653 * @dev: struct device to get the name of
654 *
655 * Will return the device's driver's name if it is bound to a device. If
656 * the device is not bound to a driver, it will return the name of the bus
657 * it is attached to. If it is not attached to a bus either, an empty
658 * string will be returned.
659 */
660const char *dev_driver_string(const struct device *dev)
661{
662 struct device_driver *drv;
663
664 /* dev->driver can change to NULL underneath us because of unbinding,
665 * so be careful about accessing it. dev->bus and dev->class should
666 * never change once they are set, so they don't need special care.
667 */
668 drv = READ_ONCE(dev->driver);
669 return drv ? drv->name :
670 (dev->bus ? dev->bus->name :
671 (dev->class ? dev->class->name : ""));
672}
673EXPORT_SYMBOL(dev_driver_string);
674
675#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
676
677static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
678 char *buf)
679{
680 struct device_attribute *dev_attr = to_dev_attr(attr);
681 struct device *dev = kobj_to_dev(kobj);
682 ssize_t ret = -EIO;
683
684 if (dev_attr->show)
685 ret = dev_attr->show(dev, dev_attr, buf);
686 if (ret >= (ssize_t)PAGE_SIZE) {
687 printk("dev_attr_show: %pS returned bad count\n",
688 dev_attr->show);
689 }
690 return ret;
691}
692
693static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
694 const char *buf, size_t count)
695{
696 struct device_attribute *dev_attr = to_dev_attr(attr);
697 struct device *dev = kobj_to_dev(kobj);
698 ssize_t ret = -EIO;
699
700 if (dev_attr->store)
701 ret = dev_attr->store(dev, dev_attr, buf, count);
702 return ret;
703}
704
705static const struct sysfs_ops dev_sysfs_ops = {
706 .show = dev_attr_show,
707 .store = dev_attr_store,
708};
709
710#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
711
712ssize_t device_store_ulong(struct device *dev,
713 struct device_attribute *attr,
714 const char *buf, size_t size)
715{
716 struct dev_ext_attribute *ea = to_ext_attr(attr);
717 char *end;
718 unsigned long new = simple_strtoul(buf, &end, 0);
719 if (end == buf)
720 return -EINVAL;
721 *(unsigned long *)(ea->var) = new;
722 /* Always return full write size even if we didn't consume all */
723 return size;
724}
725EXPORT_SYMBOL_GPL(device_store_ulong);
726
727ssize_t device_show_ulong(struct device *dev,
728 struct device_attribute *attr,
729 char *buf)
730{
731 struct dev_ext_attribute *ea = to_ext_attr(attr);
732 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
733}
734EXPORT_SYMBOL_GPL(device_show_ulong);
735
736ssize_t device_store_int(struct device *dev,
737 struct device_attribute *attr,
738 const char *buf, size_t size)
739{
740 struct dev_ext_attribute *ea = to_ext_attr(attr);
741 char *end;
742 long new = simple_strtol(buf, &end, 0);
743 if (end == buf || new > INT_MAX || new < INT_MIN)
744 return -EINVAL;
745 *(int *)(ea->var) = new;
746 /* Always return full write size even if we didn't consume all */
747 return size;
748}
749EXPORT_SYMBOL_GPL(device_store_int);
750
751ssize_t device_show_int(struct device *dev,
752 struct device_attribute *attr,
753 char *buf)
754{
755 struct dev_ext_attribute *ea = to_ext_attr(attr);
756
757 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
758}
759EXPORT_SYMBOL_GPL(device_show_int);
760
761ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
762 const char *buf, size_t size)
763{
764 struct dev_ext_attribute *ea = to_ext_attr(attr);
765
766 if (strtobool(buf, ea->var) < 0)
767 return -EINVAL;
768
769 return size;
770}
771EXPORT_SYMBOL_GPL(device_store_bool);
772
773ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
774 char *buf)
775{
776 struct dev_ext_attribute *ea = to_ext_attr(attr);
777
778 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
779}
780EXPORT_SYMBOL_GPL(device_show_bool);
781
782/**
783 * device_release - free device structure.
784 * @kobj: device's kobject.
785 *
786 * This is called once the reference count for the object
787 * reaches 0. We forward the call to the device's release
788 * method, which should handle actually freeing the structure.
789 */
790static void device_release(struct kobject *kobj)
791{
792 struct device *dev = kobj_to_dev(kobj);
793 struct device_private *p = dev->p;
794
795 /*
796 * Some platform devices are driven without driver attached
797 * and managed resources may have been acquired. Make sure
798 * all resources are released.
799 *
800 * Drivers still can add resources into device after device
801 * is deleted but alive, so release devres here to avoid
802 * possible memory leak.
803 */
804 devres_release_all(dev);
805
806 if (dev->release)
807 dev->release(dev);
808 else if (dev->type && dev->type->release)
809 dev->type->release(dev);
810 else if (dev->class && dev->class->dev_release)
811 dev->class->dev_release(dev);
812 else
813 WARN(1, KERN_ERR "Device '%s' does not have a release() "
814 "function, it is broken and must be fixed.\n",
815 dev_name(dev));
816 kfree(p);
817}
818
819static const void *device_namespace(struct kobject *kobj)
820{
821 struct device *dev = kobj_to_dev(kobj);
822 const void *ns = NULL;
823
824 if (dev->class && dev->class->ns_type)
825 ns = dev->class->namespace(dev);
826
827 return ns;
828}
829
830static struct kobj_type device_ktype = {
831 .release = device_release,
832 .sysfs_ops = &dev_sysfs_ops,
833 .namespace = device_namespace,
834};
835
836
837static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
838{
839 struct kobj_type *ktype = get_ktype(kobj);
840
841 if (ktype == &device_ktype) {
842 struct device *dev = kobj_to_dev(kobj);
843 if (dev->bus)
844 return 1;
845 if (dev->class)
846 return 1;
847 }
848 return 0;
849}
850
851static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
852{
853 struct device *dev = kobj_to_dev(kobj);
854
855 if (dev->bus)
856 return dev->bus->name;
857 if (dev->class)
858 return dev->class->name;
859 return NULL;
860}
861
862static int dev_uevent(struct kset *kset, struct kobject *kobj,
863 struct kobj_uevent_env *env)
864{
865 struct device *dev = kobj_to_dev(kobj);
866 int retval = 0;
867
868 /* add device node properties if present */
869 if (MAJOR(dev->devt)) {
870 const char *tmp;
871 const char *name;
872 umode_t mode = 0;
873 kuid_t uid = GLOBAL_ROOT_UID;
874 kgid_t gid = GLOBAL_ROOT_GID;
875
876 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
877 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
878 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
879 if (name) {
880 add_uevent_var(env, "DEVNAME=%s", name);
881 if (mode)
882 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
883 if (!uid_eq(uid, GLOBAL_ROOT_UID))
884 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
885 if (!gid_eq(gid, GLOBAL_ROOT_GID))
886 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
887 kfree(tmp);
888 }
889 }
890
891 if (dev->type && dev->type->name)
892 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
893
894 if (dev->driver)
895 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
896
897 /* Add common DT information about the device */
898 of_device_uevent(dev, env);
899
900 /* have the bus specific function add its stuff */
901 if (dev->bus && dev->bus->uevent) {
902 retval = dev->bus->uevent(dev, env);
903 if (retval)
904 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
905 dev_name(dev), __func__, retval);
906 }
907
908 /* have the class specific function add its stuff */
909 if (dev->class && dev->class->dev_uevent) {
910 retval = dev->class->dev_uevent(dev, env);
911 if (retval)
912 pr_debug("device: '%s': %s: class uevent() "
913 "returned %d\n", dev_name(dev),
914 __func__, retval);
915 }
916
917 /* have the device type specific function add its stuff */
918 if (dev->type && dev->type->uevent) {
919 retval = dev->type->uevent(dev, env);
920 if (retval)
921 pr_debug("device: '%s': %s: dev_type uevent() "
922 "returned %d\n", dev_name(dev),
923 __func__, retval);
924 }
925
926 return retval;
927}
928
929static const struct kset_uevent_ops device_uevent_ops = {
930 .filter = dev_uevent_filter,
931 .name = dev_uevent_name,
932 .uevent = dev_uevent,
933};
934
935static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
936 char *buf)
937{
938 struct kobject *top_kobj;
939 struct kset *kset;
940 struct kobj_uevent_env *env = NULL;
941 int i;
942 size_t count = 0;
943 int retval;
944
945 /* search the kset, the device belongs to */
946 top_kobj = &dev->kobj;
947 while (!top_kobj->kset && top_kobj->parent)
948 top_kobj = top_kobj->parent;
949 if (!top_kobj->kset)
950 goto out;
951
952 kset = top_kobj->kset;
953 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
954 goto out;
955
956 /* respect filter */
957 if (kset->uevent_ops && kset->uevent_ops->filter)
958 if (!kset->uevent_ops->filter(kset, &dev->kobj))
959 goto out;
960
961 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
962 if (!env)
963 return -ENOMEM;
964
965 /* let the kset specific function add its keys */
966 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
967 if (retval)
968 goto out;
969
970 /* copy keys to file */
971 for (i = 0; i < env->envp_idx; i++)
972 count += sprintf(&buf[count], "%s\n", env->envp[i]);
973out:
974 kfree(env);
975 return count;
976}
977
978static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
979 const char *buf, size_t count)
980{
981 if (kobject_synth_uevent(&dev->kobj, buf, count))
982 dev_err(dev, "uevent: failed to send synthetic uevent\n");
983
984 return count;
985}
986static DEVICE_ATTR_RW(uevent);
987
988static ssize_t online_show(struct device *dev, struct device_attribute *attr,
989 char *buf)
990{
991 bool val;
992
993 device_lock(dev);
994 val = !dev->offline;
995 device_unlock(dev);
996 return sprintf(buf, "%u\n", val);
997}
998
999static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1000 const char *buf, size_t count)
1001{
1002 bool val;
1003 int ret;
1004
1005 ret = strtobool(buf, &val);
1006 if (ret < 0)
1007 return ret;
1008
1009 ret = lock_device_hotplug_sysfs();
1010 if (ret)
1011 return ret;
1012
1013 ret = val ? device_online(dev) : device_offline(dev);
1014 unlock_device_hotplug();
1015 return ret < 0 ? ret : count;
1016}
1017static DEVICE_ATTR_RW(online);
1018
1019int device_add_groups(struct device *dev, const struct attribute_group **groups)
1020{
1021 return sysfs_create_groups(&dev->kobj, groups);
1022}
1023EXPORT_SYMBOL_GPL(device_add_groups);
1024
1025void device_remove_groups(struct device *dev,
1026 const struct attribute_group **groups)
1027{
1028 sysfs_remove_groups(&dev->kobj, groups);
1029}
1030EXPORT_SYMBOL_GPL(device_remove_groups);
1031
1032union device_attr_group_devres {
1033 const struct attribute_group *group;
1034 const struct attribute_group **groups;
1035};
1036
1037static int devm_attr_group_match(struct device *dev, void *res, void *data)
1038{
1039 return ((union device_attr_group_devres *)res)->group == data;
1040}
1041
1042static void devm_attr_group_remove(struct device *dev, void *res)
1043{
1044 union device_attr_group_devres *devres = res;
1045 const struct attribute_group *group = devres->group;
1046
1047 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1048 sysfs_remove_group(&dev->kobj, group);
1049}
1050
1051static void devm_attr_groups_remove(struct device *dev, void *res)
1052{
1053 union device_attr_group_devres *devres = res;
1054 const struct attribute_group **groups = devres->groups;
1055
1056 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1057 sysfs_remove_groups(&dev->kobj, groups);
1058}
1059
1060/**
1061 * devm_device_add_group - given a device, create a managed attribute group
1062 * @dev: The device to create the group for
1063 * @grp: The attribute group to create
1064 *
1065 * This function creates a group for the first time. It will explicitly
1066 * warn and error if any of the attribute files being created already exist.
1067 *
1068 * Returns 0 on success or error code on failure.
1069 */
1070int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1071{
1072 union device_attr_group_devres *devres;
1073 int error;
1074
1075 devres = devres_alloc(devm_attr_group_remove,
1076 sizeof(*devres), GFP_KERNEL);
1077 if (!devres)
1078 return -ENOMEM;
1079
1080 error = sysfs_create_group(&dev->kobj, grp);
1081 if (error) {
1082 devres_free(devres);
1083 return error;
1084 }
1085
1086 devres->group = grp;
1087 devres_add(dev, devres);
1088 return 0;
1089}
1090EXPORT_SYMBOL_GPL(devm_device_add_group);
1091
1092/**
1093 * devm_device_remove_group: remove a managed group from a device
1094 * @dev: device to remove the group from
1095 * @grp: group to remove
1096 *
1097 * This function removes a group of attributes from a device. The attributes
1098 * previously have to have been created for this group, otherwise it will fail.
1099 */
1100void devm_device_remove_group(struct device *dev,
1101 const struct attribute_group *grp)
1102{
1103 WARN_ON(devres_release(dev, devm_attr_group_remove,
1104 devm_attr_group_match,
1105 /* cast away const */ (void *)grp));
1106}
1107EXPORT_SYMBOL_GPL(devm_device_remove_group);
1108
1109/**
1110 * devm_device_add_groups - create a bunch of managed attribute groups
1111 * @dev: The device to create the group for
1112 * @groups: The attribute groups to create, NULL terminated
1113 *
1114 * This function creates a bunch of managed attribute groups. If an error
1115 * occurs when creating a group, all previously created groups will be
1116 * removed, unwinding everything back to the original state when this
1117 * function was called. It will explicitly warn and error if any of the
1118 * attribute files being created already exist.
1119 *
1120 * Returns 0 on success or error code from sysfs_create_group on failure.
1121 */
1122int devm_device_add_groups(struct device *dev,
1123 const struct attribute_group **groups)
1124{
1125 union device_attr_group_devres *devres;
1126 int error;
1127
1128 devres = devres_alloc(devm_attr_groups_remove,
1129 sizeof(*devres), GFP_KERNEL);
1130 if (!devres)
1131 return -ENOMEM;
1132
1133 error = sysfs_create_groups(&dev->kobj, groups);
1134 if (error) {
1135 devres_free(devres);
1136 return error;
1137 }
1138
1139 devres->groups = groups;
1140 devres_add(dev, devres);
1141 return 0;
1142}
1143EXPORT_SYMBOL_GPL(devm_device_add_groups);
1144
1145/**
1146 * devm_device_remove_groups - remove a list of managed groups
1147 *
1148 * @dev: The device for the groups to be removed from
1149 * @groups: NULL terminated list of groups to be removed
1150 *
1151 * If groups is not NULL, remove the specified groups from the device.
1152 */
1153void devm_device_remove_groups(struct device *dev,
1154 const struct attribute_group **groups)
1155{
1156 WARN_ON(devres_release(dev, devm_attr_groups_remove,
1157 devm_attr_group_match,
1158 /* cast away const */ (void *)groups));
1159}
1160EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1161
1162static int device_add_attrs(struct device *dev)
1163{
1164 struct class *class = dev->class;
1165 const struct device_type *type = dev->type;
1166 int error;
1167
1168 if (class) {
1169 error = device_add_groups(dev, class->dev_groups);
1170 if (error)
1171 return error;
1172 }
1173
1174 if (type) {
1175 error = device_add_groups(dev, type->groups);
1176 if (error)
1177 goto err_remove_class_groups;
1178 }
1179
1180 error = device_add_groups(dev, dev->groups);
1181 if (error)
1182 goto err_remove_type_groups;
1183
1184 if (device_supports_offline(dev) && !dev->offline_disabled) {
1185 error = device_create_file(dev, &dev_attr_online);
1186 if (error)
1187 goto err_remove_dev_groups;
1188 }
1189
1190 return 0;
1191
1192 err_remove_dev_groups:
1193 device_remove_groups(dev, dev->groups);
1194 err_remove_type_groups:
1195 if (type)
1196 device_remove_groups(dev, type->groups);
1197 err_remove_class_groups:
1198 if (class)
1199 device_remove_groups(dev, class->dev_groups);
1200
1201 return error;
1202}
1203
1204static void device_remove_attrs(struct device *dev)
1205{
1206 struct class *class = dev->class;
1207 const struct device_type *type = dev->type;
1208
1209 device_remove_file(dev, &dev_attr_online);
1210 device_remove_groups(dev, dev->groups);
1211
1212 if (type)
1213 device_remove_groups(dev, type->groups);
1214
1215 if (class)
1216 device_remove_groups(dev, class->dev_groups);
1217}
1218
1219static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1220 char *buf)
1221{
1222 return print_dev_t(buf, dev->devt);
1223}
1224static DEVICE_ATTR_RO(dev);
1225
1226/* /sys/devices/ */
1227struct kset *devices_kset;
1228
1229/**
1230 * devices_kset_move_before - Move device in the devices_kset's list.
1231 * @deva: Device to move.
1232 * @devb: Device @deva should come before.
1233 */
1234static void devices_kset_move_before(struct device *deva, struct device *devb)
1235{
1236 if (!devices_kset)
1237 return;
1238 pr_debug("devices_kset: Moving %s before %s\n",
1239 dev_name(deva), dev_name(devb));
1240 spin_lock(&devices_kset->list_lock);
1241 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1242 spin_unlock(&devices_kset->list_lock);
1243}
1244
1245/**
1246 * devices_kset_move_after - Move device in the devices_kset's list.
1247 * @deva: Device to move
1248 * @devb: Device @deva should come after.
1249 */
1250static void devices_kset_move_after(struct device *deva, struct device *devb)
1251{
1252 if (!devices_kset)
1253 return;
1254 pr_debug("devices_kset: Moving %s after %s\n",
1255 dev_name(deva), dev_name(devb));
1256 spin_lock(&devices_kset->list_lock);
1257 list_move(&deva->kobj.entry, &devb->kobj.entry);
1258 spin_unlock(&devices_kset->list_lock);
1259}
1260
1261/**
1262 * devices_kset_move_last - move the device to the end of devices_kset's list.
1263 * @dev: device to move
1264 */
1265void devices_kset_move_last(struct device *dev)
1266{
1267 if (!devices_kset)
1268 return;
1269 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1270 spin_lock(&devices_kset->list_lock);
1271 list_move_tail(&dev->kobj.entry, &devices_kset->list);
1272 spin_unlock(&devices_kset->list_lock);
1273}
1274
1275/**
1276 * device_create_file - create sysfs attribute file for device.
1277 * @dev: device.
1278 * @attr: device attribute descriptor.
1279 */
1280int device_create_file(struct device *dev,
1281 const struct device_attribute *attr)
1282{
1283 int error = 0;
1284
1285 if (dev) {
1286 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1287 "Attribute %s: write permission without 'store'\n",
1288 attr->attr.name);
1289 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1290 "Attribute %s: read permission without 'show'\n",
1291 attr->attr.name);
1292 error = sysfs_create_file(&dev->kobj, &attr->attr);
1293 }
1294
1295 return error;
1296}
1297EXPORT_SYMBOL_GPL(device_create_file);
1298
1299/**
1300 * device_remove_file - remove sysfs attribute file.
1301 * @dev: device.
1302 * @attr: device attribute descriptor.
1303 */
1304void device_remove_file(struct device *dev,
1305 const struct device_attribute *attr)
1306{
1307 if (dev)
1308 sysfs_remove_file(&dev->kobj, &attr->attr);
1309}
1310EXPORT_SYMBOL_GPL(device_remove_file);
1311
1312/**
1313 * device_remove_file_self - remove sysfs attribute file from its own method.
1314 * @dev: device.
1315 * @attr: device attribute descriptor.
1316 *
1317 * See kernfs_remove_self() for details.
1318 */
1319bool device_remove_file_self(struct device *dev,
1320 const struct device_attribute *attr)
1321{
1322 if (dev)
1323 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1324 else
1325 return false;
1326}
1327EXPORT_SYMBOL_GPL(device_remove_file_self);
1328
1329/**
1330 * device_create_bin_file - create sysfs binary attribute file for device.
1331 * @dev: device.
1332 * @attr: device binary attribute descriptor.
1333 */
1334int device_create_bin_file(struct device *dev,
1335 const struct bin_attribute *attr)
1336{
1337 int error = -EINVAL;
1338 if (dev)
1339 error = sysfs_create_bin_file(&dev->kobj, attr);
1340 return error;
1341}
1342EXPORT_SYMBOL_GPL(device_create_bin_file);
1343
1344/**
1345 * device_remove_bin_file - remove sysfs binary attribute file
1346 * @dev: device.
1347 * @attr: device binary attribute descriptor.
1348 */
1349void device_remove_bin_file(struct device *dev,
1350 const struct bin_attribute *attr)
1351{
1352 if (dev)
1353 sysfs_remove_bin_file(&dev->kobj, attr);
1354}
1355EXPORT_SYMBOL_GPL(device_remove_bin_file);
1356
1357static void klist_children_get(struct klist_node *n)
1358{
1359 struct device_private *p = to_device_private_parent(n);
1360 struct device *dev = p->device;
1361
1362 get_device(dev);
1363}
1364
1365static void klist_children_put(struct klist_node *n)
1366{
1367 struct device_private *p = to_device_private_parent(n);
1368 struct device *dev = p->device;
1369
1370 put_device(dev);
1371}
1372
1373/**
1374 * device_initialize - init device structure.
1375 * @dev: device.
1376 *
1377 * This prepares the device for use by other layers by initializing
1378 * its fields.
1379 * It is the first half of device_register(), if called by
1380 * that function, though it can also be called separately, so one
1381 * may use @dev's fields. In particular, get_device()/put_device()
1382 * may be used for reference counting of @dev after calling this
1383 * function.
1384 *
1385 * All fields in @dev must be initialized by the caller to 0, except
1386 * for those explicitly set to some other value. The simplest
1387 * approach is to use kzalloc() to allocate the structure containing
1388 * @dev.
1389 *
1390 * NOTE: Use put_device() to give up your reference instead of freeing
1391 * @dev directly once you have called this function.
1392 */
1393void device_initialize(struct device *dev)
1394{
1395 dev->kobj.kset = devices_kset;
1396 kobject_init(&dev->kobj, &device_ktype);
1397 INIT_LIST_HEAD(&dev->dma_pools);
1398 mutex_init(&dev->mutex);
1399 lockdep_set_novalidate_class(&dev->mutex);
1400 spin_lock_init(&dev->devres_lock);
1401 INIT_LIST_HEAD(&dev->devres_head);
1402 device_pm_init(dev);
1403 set_dev_node(dev, -1);
1404#ifdef CONFIG_GENERIC_MSI_IRQ
1405 INIT_LIST_HEAD(&dev->msi_list);
1406#endif
1407 INIT_LIST_HEAD(&dev->links.consumers);
1408 INIT_LIST_HEAD(&dev->links.suppliers);
1409 dev->links.status = DL_DEV_NO_DRIVER;
1410}
1411EXPORT_SYMBOL_GPL(device_initialize);
1412
1413struct kobject *virtual_device_parent(struct device *dev)
1414{
1415 static struct kobject *virtual_dir = NULL;
1416
1417 if (!virtual_dir)
1418 virtual_dir = kobject_create_and_add("virtual",
1419 &devices_kset->kobj);
1420
1421 return virtual_dir;
1422}
1423
1424struct class_dir {
1425 struct kobject kobj;
1426 struct class *class;
1427};
1428
1429#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1430
1431static void class_dir_release(struct kobject *kobj)
1432{
1433 struct class_dir *dir = to_class_dir(kobj);
1434 kfree(dir);
1435}
1436
1437static const
1438struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1439{
1440 struct class_dir *dir = to_class_dir(kobj);
1441 return dir->class->ns_type;
1442}
1443
1444static struct kobj_type class_dir_ktype = {
1445 .release = class_dir_release,
1446 .sysfs_ops = &kobj_sysfs_ops,
1447 .child_ns_type = class_dir_child_ns_type
1448};
1449
1450static struct kobject *
1451class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1452{
1453 struct class_dir *dir;
1454 int retval;
1455
1456 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1457 if (!dir)
1458 return NULL;
1459
1460 dir->class = class;
1461 kobject_init(&dir->kobj, &class_dir_ktype);
1462
1463 dir->kobj.kset = &class->p->glue_dirs;
1464
1465 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1466 if (retval < 0) {
1467 kobject_put(&dir->kobj);
1468 return NULL;
1469 }
1470 return &dir->kobj;
1471}
1472
1473static DEFINE_MUTEX(gdp_mutex);
1474
1475static struct kobject *get_device_parent(struct device *dev,
1476 struct device *parent)
1477{
1478 if (dev->class) {
1479 struct kobject *kobj = NULL;
1480 struct kobject *parent_kobj;
1481 struct kobject *k;
1482
1483#ifdef CONFIG_BLOCK
1484 /* block disks show up in /sys/block */
1485 if (sysfs_deprecated && dev->class == &block_class) {
1486 if (parent && parent->class == &block_class)
1487 return &parent->kobj;
1488 return &block_class.p->subsys.kobj;
1489 }
1490#endif
1491
1492 /*
1493 * If we have no parent, we live in "virtual".
1494 * Class-devices with a non class-device as parent, live
1495 * in a "glue" directory to prevent namespace collisions.
1496 */
1497 if (parent == NULL)
1498 parent_kobj = virtual_device_parent(dev);
1499 else if (parent->class && !dev->class->ns_type)
1500 return &parent->kobj;
1501 else
1502 parent_kobj = &parent->kobj;
1503
1504 mutex_lock(&gdp_mutex);
1505
1506 /* find our class-directory at the parent and reference it */
1507 spin_lock(&dev->class->p->glue_dirs.list_lock);
1508 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1509 if (k->parent == parent_kobj) {
1510 kobj = kobject_get(k);
1511 break;
1512 }
1513 spin_unlock(&dev->class->p->glue_dirs.list_lock);
1514 if (kobj) {
1515 mutex_unlock(&gdp_mutex);
1516 return kobj;
1517 }
1518
1519 /* or create a new class-directory at the parent device */
1520 k = class_dir_create_and_add(dev->class, parent_kobj);
1521 /* do not emit an uevent for this simple "glue" directory */
1522 mutex_unlock(&gdp_mutex);
1523 return k;
1524 }
1525
1526 /* subsystems can specify a default root directory for their devices */
1527 if (!parent && dev->bus && dev->bus->dev_root)
1528 return &dev->bus->dev_root->kobj;
1529
1530 if (parent)
1531 return &parent->kobj;
1532 return NULL;
1533}
1534
1535static inline bool live_in_glue_dir(struct kobject *kobj,
1536 struct device *dev)
1537{
1538 if (!kobj || !dev->class ||
1539 kobj->kset != &dev->class->p->glue_dirs)
1540 return false;
1541 return true;
1542}
1543
1544static inline struct kobject *get_glue_dir(struct device *dev)
1545{
1546 return dev->kobj.parent;
1547}
1548
1549/*
1550 * make sure cleaning up dir as the last step, we need to make
1551 * sure .release handler of kobject is run with holding the
1552 * global lock
1553 */
1554static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1555{
1556 /* see if we live in a "glue" directory */
1557 if (!live_in_glue_dir(glue_dir, dev))
1558 return;
1559
1560 mutex_lock(&gdp_mutex);
1561 kobject_put(glue_dir);
1562 mutex_unlock(&gdp_mutex);
1563}
1564
1565static int device_add_class_symlinks(struct device *dev)
1566{
1567 struct device_node *of_node = dev_of_node(dev);
1568 int error;
1569
1570 if (of_node) {
1571 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1572 if (error)
1573 dev_warn(dev, "Error %d creating of_node link\n",error);
1574 /* An error here doesn't warrant bringing down the device */
1575 }
1576
1577 if (!dev->class)
1578 return 0;
1579
1580 error = sysfs_create_link(&dev->kobj,
1581 &dev->class->p->subsys.kobj,
1582 "subsystem");
1583 if (error)
1584 goto out_devnode;
1585
1586 if (dev->parent && device_is_not_partition(dev)) {
1587 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1588 "device");
1589 if (error)
1590 goto out_subsys;
1591 }
1592
1593#ifdef CONFIG_BLOCK
1594 /* /sys/block has directories and does not need symlinks */
1595 if (sysfs_deprecated && dev->class == &block_class)
1596 return 0;
1597#endif
1598
1599 /* link in the class directory pointing to the device */
1600 error = sysfs_create_link(&dev->class->p->subsys.kobj,
1601 &dev->kobj, dev_name(dev));
1602 if (error)
1603 goto out_device;
1604
1605 return 0;
1606
1607out_device:
1608 sysfs_remove_link(&dev->kobj, "device");
1609
1610out_subsys:
1611 sysfs_remove_link(&dev->kobj, "subsystem");
1612out_devnode:
1613 sysfs_remove_link(&dev->kobj, "of_node");
1614 return error;
1615}
1616
1617static void device_remove_class_symlinks(struct device *dev)
1618{
1619 if (dev_of_node(dev))
1620 sysfs_remove_link(&dev->kobj, "of_node");
1621
1622 if (!dev->class)
1623 return;
1624
1625 if (dev->parent && device_is_not_partition(dev))
1626 sysfs_remove_link(&dev->kobj, "device");
1627 sysfs_remove_link(&dev->kobj, "subsystem");
1628#ifdef CONFIG_BLOCK
1629 if (sysfs_deprecated && dev->class == &block_class)
1630 return;
1631#endif
1632 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1633}
1634
1635/**
1636 * dev_set_name - set a device name
1637 * @dev: device
1638 * @fmt: format string for the device's name
1639 */
1640int dev_set_name(struct device *dev, const char *fmt, ...)
1641{
1642 va_list vargs;
1643 int err;
1644
1645 va_start(vargs, fmt);
1646 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1647 va_end(vargs);
1648 return err;
1649}
1650EXPORT_SYMBOL_GPL(dev_set_name);
1651
1652/**
1653 * device_to_dev_kobj - select a /sys/dev/ directory for the device
1654 * @dev: device
1655 *
1656 * By default we select char/ for new entries. Setting class->dev_obj
1657 * to NULL prevents an entry from being created. class->dev_kobj must
1658 * be set (or cleared) before any devices are registered to the class
1659 * otherwise device_create_sys_dev_entry() and
1660 * device_remove_sys_dev_entry() will disagree about the presence of
1661 * the link.
1662 */
1663static struct kobject *device_to_dev_kobj(struct device *dev)
1664{
1665 struct kobject *kobj;
1666
1667 if (dev->class)
1668 kobj = dev->class->dev_kobj;
1669 else
1670 kobj = sysfs_dev_char_kobj;
1671
1672 return kobj;
1673}
1674
1675static int device_create_sys_dev_entry(struct device *dev)
1676{
1677 struct kobject *kobj = device_to_dev_kobj(dev);
1678 int error = 0;
1679 char devt_str[15];
1680
1681 if (kobj) {
1682 format_dev_t(devt_str, dev->devt);
1683 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1684 }
1685
1686 return error;
1687}
1688
1689static void device_remove_sys_dev_entry(struct device *dev)
1690{
1691 struct kobject *kobj = device_to_dev_kobj(dev);
1692 char devt_str[15];
1693
1694 if (kobj) {
1695 format_dev_t(devt_str, dev->devt);
1696 sysfs_remove_link(kobj, devt_str);
1697 }
1698}
1699
1700int device_private_init(struct device *dev)
1701{
1702 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1703 if (!dev->p)
1704 return -ENOMEM;
1705 dev->p->device = dev;
1706 klist_init(&dev->p->klist_children, klist_children_get,
1707 klist_children_put);
1708 INIT_LIST_HEAD(&dev->p->deferred_probe);
1709 return 0;
1710}
1711
1712/**
1713 * device_add - add device to device hierarchy.
1714 * @dev: device.
1715 *
1716 * This is part 2 of device_register(), though may be called
1717 * separately _iff_ device_initialize() has been called separately.
1718 *
1719 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1720 * to the global and sibling lists for the device, then
1721 * adds it to the other relevant subsystems of the driver model.
1722 *
1723 * Do not call this routine or device_register() more than once for
1724 * any device structure. The driver model core is not designed to work
1725 * with devices that get unregistered and then spring back to life.
1726 * (Among other things, it's very hard to guarantee that all references
1727 * to the previous incarnation of @dev have been dropped.) Allocate
1728 * and register a fresh new struct device instead.
1729 *
1730 * NOTE: _Never_ directly free @dev after calling this function, even
1731 * if it returned an error! Always use put_device() to give up your
1732 * reference instead.
1733 */
1734int device_add(struct device *dev)
1735{
1736 struct device *parent;
1737 struct kobject *kobj;
1738 struct class_interface *class_intf;
1739 int error = -EINVAL;
1740 struct kobject *glue_dir = NULL;
1741
1742 dev = get_device(dev);
1743 if (!dev)
1744 goto done;
1745
1746 if (!dev->p) {
1747 error = device_private_init(dev);
1748 if (error)
1749 goto done;
1750 }
1751
1752 /*
1753 * for statically allocated devices, which should all be converted
1754 * some day, we need to initialize the name. We prevent reading back
1755 * the name, and force the use of dev_name()
1756 */
1757 if (dev->init_name) {
1758 dev_set_name(dev, "%s", dev->init_name);
1759 dev->init_name = NULL;
1760 }
1761
1762 /* subsystems can specify simple device enumeration */
1763 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1764 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1765
1766 if (!dev_name(dev)) {
1767 error = -EINVAL;
1768 goto name_error;
1769 }
1770
1771 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1772
1773 parent = get_device(dev->parent);
1774 kobj = get_device_parent(dev, parent);
1775 if (kobj)
1776 dev->kobj.parent = kobj;
1777
1778 /* use parent numa_node */
1779 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1780 set_dev_node(dev, dev_to_node(parent));
1781
1782 /* first, register with generic layer. */
1783 /* we require the name to be set before, and pass NULL */
1784 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1785 if (error) {
1786 glue_dir = get_glue_dir(dev);
1787 goto Error;
1788 }
1789
1790 /* notify platform of device entry */
1791 if (platform_notify)
1792 platform_notify(dev);
1793
1794 error = device_create_file(dev, &dev_attr_uevent);
1795 if (error)
1796 goto attrError;
1797
1798 error = device_add_class_symlinks(dev);
1799 if (error)
1800 goto SymlinkError;
1801 error = device_add_attrs(dev);
1802 if (error)
1803 goto AttrsError;
1804 error = bus_add_device(dev);
1805 if (error)
1806 goto BusError;
1807 error = dpm_sysfs_add(dev);
1808 if (error)
1809 goto DPMError;
1810 device_pm_add(dev);
1811
1812 if (MAJOR(dev->devt)) {
1813 error = device_create_file(dev, &dev_attr_dev);
1814 if (error)
1815 goto DevAttrError;
1816
1817 error = device_create_sys_dev_entry(dev);
1818 if (error)
1819 goto SysEntryError;
1820
1821 devtmpfs_create_node(dev);
1822 }
1823
1824 /* Notify clients of device addition. This call must come
1825 * after dpm_sysfs_add() and before kobject_uevent().
1826 */
1827 if (dev->bus)
1828 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1829 BUS_NOTIFY_ADD_DEVICE, dev);
1830
1831 kobject_uevent(&dev->kobj, KOBJ_ADD);
1832 bus_probe_device(dev);
1833 if (parent)
1834 klist_add_tail(&dev->p->knode_parent,
1835 &parent->p->klist_children);
1836
1837 if (dev->class) {
1838 mutex_lock(&dev->class->p->mutex);
1839 /* tie the class to the device */
1840 klist_add_tail(&dev->knode_class,
1841 &dev->class->p->klist_devices);
1842
1843 /* notify any interfaces that the device is here */
1844 list_for_each_entry(class_intf,
1845 &dev->class->p->interfaces, node)
1846 if (class_intf->add_dev)
1847 class_intf->add_dev(dev, class_intf);
1848 mutex_unlock(&dev->class->p->mutex);
1849 }
1850done:
1851 put_device(dev);
1852 return error;
1853 SysEntryError:
1854 if (MAJOR(dev->devt))
1855 device_remove_file(dev, &dev_attr_dev);
1856 DevAttrError:
1857 device_pm_remove(dev);
1858 dpm_sysfs_remove(dev);
1859 DPMError:
1860 bus_remove_device(dev);
1861 BusError:
1862 device_remove_attrs(dev);
1863 AttrsError:
1864 device_remove_class_symlinks(dev);
1865 SymlinkError:
1866 device_remove_file(dev, &dev_attr_uevent);
1867 attrError:
1868 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1869 glue_dir = get_glue_dir(dev);
1870 kobject_del(&dev->kobj);
1871 Error:
1872 cleanup_glue_dir(dev, glue_dir);
1873 put_device(parent);
1874name_error:
1875 kfree(dev->p);
1876 dev->p = NULL;
1877 goto done;
1878}
1879EXPORT_SYMBOL_GPL(device_add);
1880
1881/**
1882 * device_register - register a device with the system.
1883 * @dev: pointer to the device structure
1884 *
1885 * This happens in two clean steps - initialize the device
1886 * and add it to the system. The two steps can be called
1887 * separately, but this is the easiest and most common.
1888 * I.e. you should only call the two helpers separately if
1889 * have a clearly defined need to use and refcount the device
1890 * before it is added to the hierarchy.
1891 *
1892 * For more information, see the kerneldoc for device_initialize()
1893 * and device_add().
1894 *
1895 * NOTE: _Never_ directly free @dev after calling this function, even
1896 * if it returned an error! Always use put_device() to give up the
1897 * reference initialized in this function instead.
1898 */
1899int device_register(struct device *dev)
1900{
1901 device_initialize(dev);
1902 return device_add(dev);
1903}
1904EXPORT_SYMBOL_GPL(device_register);
1905
1906/**
1907 * get_device - increment reference count for device.
1908 * @dev: device.
1909 *
1910 * This simply forwards the call to kobject_get(), though
1911 * we do take care to provide for the case that we get a NULL
1912 * pointer passed in.
1913 */
1914struct device *get_device(struct device *dev)
1915{
1916 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1917}
1918EXPORT_SYMBOL_GPL(get_device);
1919
1920/**
1921 * put_device - decrement reference count.
1922 * @dev: device in question.
1923 */
1924void put_device(struct device *dev)
1925{
1926 /* might_sleep(); */
1927 if (dev)
1928 kobject_put(&dev->kobj);
1929}
1930EXPORT_SYMBOL_GPL(put_device);
1931
1932/**
1933 * device_del - delete device from system.
1934 * @dev: device.
1935 *
1936 * This is the first part of the device unregistration
1937 * sequence. This removes the device from the lists we control
1938 * from here, has it removed from the other driver model
1939 * subsystems it was added to in device_add(), and removes it
1940 * from the kobject hierarchy.
1941 *
1942 * NOTE: this should be called manually _iff_ device_add() was
1943 * also called manually.
1944 */
1945void device_del(struct device *dev)
1946{
1947 struct device *parent = dev->parent;
1948 struct kobject *glue_dir = NULL;
1949 struct class_interface *class_intf;
1950
1951 /* Notify clients of device removal. This call must come
1952 * before dpm_sysfs_remove().
1953 */
1954 if (dev->bus)
1955 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1956 BUS_NOTIFY_DEL_DEVICE, dev);
1957
1958 dpm_sysfs_remove(dev);
1959 if (parent)
1960 klist_del(&dev->p->knode_parent);
1961 if (MAJOR(dev->devt)) {
1962 devtmpfs_delete_node(dev);
1963 device_remove_sys_dev_entry(dev);
1964 device_remove_file(dev, &dev_attr_dev);
1965 }
1966 if (dev->class) {
1967 device_remove_class_symlinks(dev);
1968
1969 mutex_lock(&dev->class->p->mutex);
1970 /* notify any interfaces that the device is now gone */
1971 list_for_each_entry(class_intf,
1972 &dev->class->p->interfaces, node)
1973 if (class_intf->remove_dev)
1974 class_intf->remove_dev(dev, class_intf);
1975 /* remove the device from the class list */
1976 klist_del(&dev->knode_class);
1977 mutex_unlock(&dev->class->p->mutex);
1978 }
1979 device_remove_file(dev, &dev_attr_uevent);
1980 device_remove_attrs(dev);
1981 bus_remove_device(dev);
1982 device_pm_remove(dev);
1983 driver_deferred_probe_del(dev);
1984 device_remove_properties(dev);
1985 device_links_purge(dev);
1986
1987 /* Notify the platform of the removal, in case they
1988 * need to do anything...
1989 */
1990 if (platform_notify_remove)
1991 platform_notify_remove(dev);
1992 if (dev->bus)
1993 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1994 BUS_NOTIFY_REMOVED_DEVICE, dev);
1995 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1996 glue_dir = get_glue_dir(dev);
1997 kobject_del(&dev->kobj);
1998 cleanup_glue_dir(dev, glue_dir);
1999 put_device(parent);
2000}
2001EXPORT_SYMBOL_GPL(device_del);
2002
2003/**
2004 * device_unregister - unregister device from system.
2005 * @dev: device going away.
2006 *
2007 * We do this in two parts, like we do device_register(). First,
2008 * we remove it from all the subsystems with device_del(), then
2009 * we decrement the reference count via put_device(). If that
2010 * is the final reference count, the device will be cleaned up
2011 * via device_release() above. Otherwise, the structure will
2012 * stick around until the final reference to the device is dropped.
2013 */
2014void device_unregister(struct device *dev)
2015{
2016 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2017 device_del(dev);
2018 put_device(dev);
2019}
2020EXPORT_SYMBOL_GPL(device_unregister);
2021
2022static struct device *prev_device(struct klist_iter *i)
2023{
2024 struct klist_node *n = klist_prev(i);
2025 struct device *dev = NULL;
2026 struct device_private *p;
2027
2028 if (n) {
2029 p = to_device_private_parent(n);
2030 dev = p->device;
2031 }
2032 return dev;
2033}
2034
2035static struct device *next_device(struct klist_iter *i)
2036{
2037 struct klist_node *n = klist_next(i);
2038 struct device *dev = NULL;
2039 struct device_private *p;
2040
2041 if (n) {
2042 p = to_device_private_parent(n);
2043 dev = p->device;
2044 }
2045 return dev;
2046}
2047
2048/**
2049 * device_get_devnode - path of device node file
2050 * @dev: device
2051 * @mode: returned file access mode
2052 * @uid: returned file owner
2053 * @gid: returned file group
2054 * @tmp: possibly allocated string
2055 *
2056 * Return the relative path of a possible device node.
2057 * Non-default names may need to allocate a memory to compose
2058 * a name. This memory is returned in tmp and needs to be
2059 * freed by the caller.
2060 */
2061const char *device_get_devnode(struct device *dev,
2062 umode_t *mode, kuid_t *uid, kgid_t *gid,
2063 const char **tmp)
2064{
2065 char *s;
2066
2067 *tmp = NULL;
2068
2069 /* the device type may provide a specific name */
2070 if (dev->type && dev->type->devnode)
2071 *tmp = dev->type->devnode(dev, mode, uid, gid);
2072 if (*tmp)
2073 return *tmp;
2074
2075 /* the class may provide a specific name */
2076 if (dev->class && dev->class->devnode)
2077 *tmp = dev->class->devnode(dev, mode);
2078 if (*tmp)
2079 return *tmp;
2080
2081 /* return name without allocation, tmp == NULL */
2082 if (strchr(dev_name(dev), '!') == NULL)
2083 return dev_name(dev);
2084
2085 /* replace '!' in the name with '/' */
2086 s = kstrdup(dev_name(dev), GFP_KERNEL);
2087 if (!s)
2088 return NULL;
2089 strreplace(s, '!', '/');
2090 return *tmp = s;
2091}
2092
2093/**
2094 * device_for_each_child - device child iterator.
2095 * @parent: parent struct device.
2096 * @fn: function to be called for each device.
2097 * @data: data for the callback.
2098 *
2099 * Iterate over @parent's child devices, and call @fn for each,
2100 * passing it @data.
2101 *
2102 * We check the return of @fn each time. If it returns anything
2103 * other than 0, we break out and return that value.
2104 */
2105int device_for_each_child(struct device *parent, void *data,
2106 int (*fn)(struct device *dev, void *data))
2107{
2108 struct klist_iter i;
2109 struct device *child;
2110 int error = 0;
2111
2112 if (!parent->p)
2113 return 0;
2114
2115 klist_iter_init(&parent->p->klist_children, &i);
2116 while (!error && (child = next_device(&i)))
2117 error = fn(child, data);
2118 klist_iter_exit(&i);
2119 return error;
2120}
2121EXPORT_SYMBOL_GPL(device_for_each_child);
2122
2123/**
2124 * device_for_each_child_reverse - device child iterator in reversed order.
2125 * @parent: parent struct device.
2126 * @fn: function to be called for each device.
2127 * @data: data for the callback.
2128 *
2129 * Iterate over @parent's child devices, and call @fn for each,
2130 * passing it @data.
2131 *
2132 * We check the return of @fn each time. If it returns anything
2133 * other than 0, we break out and return that value.
2134 */
2135int device_for_each_child_reverse(struct device *parent, void *data,
2136 int (*fn)(struct device *dev, void *data))
2137{
2138 struct klist_iter i;
2139 struct device *child;
2140 int error = 0;
2141
2142 if (!parent->p)
2143 return 0;
2144
2145 klist_iter_init(&parent->p->klist_children, &i);
2146 while ((child = prev_device(&i)) && !error)
2147 error = fn(child, data);
2148 klist_iter_exit(&i);
2149 return error;
2150}
2151EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2152
2153/**
2154 * device_find_child - device iterator for locating a particular device.
2155 * @parent: parent struct device
2156 * @match: Callback function to check device
2157 * @data: Data to pass to match function
2158 *
2159 * This is similar to the device_for_each_child() function above, but it
2160 * returns a reference to a device that is 'found' for later use, as
2161 * determined by the @match callback.
2162 *
2163 * The callback should return 0 if the device doesn't match and non-zero
2164 * if it does. If the callback returns non-zero and a reference to the
2165 * current device can be obtained, this function will return to the caller
2166 * and not iterate over any more devices.
2167 *
2168 * NOTE: you will need to drop the reference with put_device() after use.
2169 */
2170struct device *device_find_child(struct device *parent, void *data,
2171 int (*match)(struct device *dev, void *data))
2172{
2173 struct klist_iter i;
2174 struct device *child;
2175
2176 if (!parent)
2177 return NULL;
2178
2179 klist_iter_init(&parent->p->klist_children, &i);
2180 while ((child = next_device(&i)))
2181 if (match(child, data) && get_device(child))
2182 break;
2183 klist_iter_exit(&i);
2184 return child;
2185}
2186EXPORT_SYMBOL_GPL(device_find_child);
2187
2188int __init devices_init(void)
2189{
2190 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2191 if (!devices_kset)
2192 return -ENOMEM;
2193 dev_kobj = kobject_create_and_add("dev", NULL);
2194 if (!dev_kobj)
2195 goto dev_kobj_err;
2196 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2197 if (!sysfs_dev_block_kobj)
2198 goto block_kobj_err;
2199 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2200 if (!sysfs_dev_char_kobj)
2201 goto char_kobj_err;
2202
2203 return 0;
2204
2205 char_kobj_err:
2206 kobject_put(sysfs_dev_block_kobj);
2207 block_kobj_err:
2208 kobject_put(dev_kobj);
2209 dev_kobj_err:
2210 kset_unregister(devices_kset);
2211 return -ENOMEM;
2212}
2213
2214static int device_check_offline(struct device *dev, void *not_used)
2215{
2216 int ret;
2217
2218 ret = device_for_each_child(dev, NULL, device_check_offline);
2219 if (ret)
2220 return ret;
2221
2222 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2223}
2224
2225/**
2226 * device_offline - Prepare the device for hot-removal.
2227 * @dev: Device to be put offline.
2228 *
2229 * Execute the device bus type's .offline() callback, if present, to prepare
2230 * the device for a subsequent hot-removal. If that succeeds, the device must
2231 * not be used until either it is removed or its bus type's .online() callback
2232 * is executed.
2233 *
2234 * Call under device_hotplug_lock.
2235 */
2236int device_offline(struct device *dev)
2237{
2238 int ret;
2239
2240 if (dev->offline_disabled)
2241 return -EPERM;
2242
2243 ret = device_for_each_child(dev, NULL, device_check_offline);
2244 if (ret)
2245 return ret;
2246
2247 device_lock(dev);
2248 if (device_supports_offline(dev)) {
2249 if (dev->offline) {
2250 ret = 1;
2251 } else {
2252 ret = dev->bus->offline(dev);
2253 if (!ret) {
2254 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2255 dev->offline = true;
2256 }
2257 }
2258 }
2259 device_unlock(dev);
2260
2261 return ret;
2262}
2263
2264/**
2265 * device_online - Put the device back online after successful device_offline().
2266 * @dev: Device to be put back online.
2267 *
2268 * If device_offline() has been successfully executed for @dev, but the device
2269 * has not been removed subsequently, execute its bus type's .online() callback
2270 * to indicate that the device can be used again.
2271 *
2272 * Call under device_hotplug_lock.
2273 */
2274int device_online(struct device *dev)
2275{
2276 int ret = 0;
2277
2278 device_lock(dev);
2279 if (device_supports_offline(dev)) {
2280 if (dev->offline) {
2281 ret = dev->bus->online(dev);
2282 if (!ret) {
2283 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2284 dev->offline = false;
2285 }
2286 } else {
2287 ret = 1;
2288 }
2289 }
2290 device_unlock(dev);
2291
2292 return ret;
2293}
2294
2295struct root_device {
2296 struct device dev;
2297 struct module *owner;
2298};
2299
2300static inline struct root_device *to_root_device(struct device *d)
2301{
2302 return container_of(d, struct root_device, dev);
2303}
2304
2305static void root_device_release(struct device *dev)
2306{
2307 kfree(to_root_device(dev));
2308}
2309
2310/**
2311 * __root_device_register - allocate and register a root device
2312 * @name: root device name
2313 * @owner: owner module of the root device, usually THIS_MODULE
2314 *
2315 * This function allocates a root device and registers it
2316 * using device_register(). In order to free the returned
2317 * device, use root_device_unregister().
2318 *
2319 * Root devices are dummy devices which allow other devices
2320 * to be grouped under /sys/devices. Use this function to
2321 * allocate a root device and then use it as the parent of
2322 * any device which should appear under /sys/devices/{name}
2323 *
2324 * The /sys/devices/{name} directory will also contain a
2325 * 'module' symlink which points to the @owner directory
2326 * in sysfs.
2327 *
2328 * Returns &struct device pointer on success, or ERR_PTR() on error.
2329 *
2330 * Note: You probably want to use root_device_register().
2331 */
2332struct device *__root_device_register(const char *name, struct module *owner)
2333{
2334 struct root_device *root;
2335 int err = -ENOMEM;
2336
2337 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2338 if (!root)
2339 return ERR_PTR(err);
2340
2341 err = dev_set_name(&root->dev, "%s", name);
2342 if (err) {
2343 kfree(root);
2344 return ERR_PTR(err);
2345 }
2346
2347 root->dev.release = root_device_release;
2348
2349 err = device_register(&root->dev);
2350 if (err) {
2351 put_device(&root->dev);
2352 return ERR_PTR(err);
2353 }
2354
2355#ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
2356 if (owner) {
2357 struct module_kobject *mk = &owner->mkobj;
2358
2359 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2360 if (err) {
2361 device_unregister(&root->dev);
2362 return ERR_PTR(err);
2363 }
2364 root->owner = owner;
2365 }
2366#endif
2367
2368 return &root->dev;
2369}
2370EXPORT_SYMBOL_GPL(__root_device_register);
2371
2372/**
2373 * root_device_unregister - unregister and free a root device
2374 * @dev: device going away
2375 *
2376 * This function unregisters and cleans up a device that was created by
2377 * root_device_register().
2378 */
2379void root_device_unregister(struct device *dev)
2380{
2381 struct root_device *root = to_root_device(dev);
2382
2383 if (root->owner)
2384 sysfs_remove_link(&root->dev.kobj, "module");
2385
2386 device_unregister(dev);
2387}
2388EXPORT_SYMBOL_GPL(root_device_unregister);
2389
2390
2391static void device_create_release(struct device *dev)
2392{
2393 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2394 kfree(dev);
2395}
2396
2397static struct device *
2398device_create_groups_vargs(struct class *class, struct device *parent,
2399 dev_t devt, void *drvdata,
2400 const struct attribute_group **groups,
2401 const char *fmt, va_list args)
2402{
2403 struct device *dev = NULL;
2404 int retval = -ENODEV;
2405
2406 if (class == NULL || IS_ERR(class))
2407 goto error;
2408
2409 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2410 if (!dev) {
2411 retval = -ENOMEM;
2412 goto error;
2413 }
2414
2415 device_initialize(dev);
2416 dev->devt = devt;
2417 dev->class = class;
2418 dev->parent = parent;
2419 dev->groups = groups;
2420 dev->release = device_create_release;
2421 dev_set_drvdata(dev, drvdata);
2422
2423 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2424 if (retval)
2425 goto error;
2426
2427 retval = device_add(dev);
2428 if (retval)
2429 goto error;
2430
2431 return dev;
2432
2433error:
2434 put_device(dev);
2435 return ERR_PTR(retval);
2436}
2437
2438/**
2439 * device_create_vargs - creates a device and registers it with sysfs
2440 * @class: pointer to the struct class that this device should be registered to
2441 * @parent: pointer to the parent struct device of this new device, if any
2442 * @devt: the dev_t for the char device to be added
2443 * @drvdata: the data to be added to the device for callbacks
2444 * @fmt: string for the device's name
2445 * @args: va_list for the device's name
2446 *
2447 * This function can be used by char device classes. A struct device
2448 * will be created in sysfs, registered to the specified class.
2449 *
2450 * A "dev" file will be created, showing the dev_t for the device, if
2451 * the dev_t is not 0,0.
2452 * If a pointer to a parent struct device is passed in, the newly created
2453 * struct device will be a child of that device in sysfs.
2454 * The pointer to the struct device will be returned from the call.
2455 * Any further sysfs files that might be required can be created using this
2456 * pointer.
2457 *
2458 * Returns &struct device pointer on success, or ERR_PTR() on error.
2459 *
2460 * Note: the struct class passed to this function must have previously
2461 * been created with a call to class_create().
2462 */
2463struct device *device_create_vargs(struct class *class, struct device *parent,
2464 dev_t devt, void *drvdata, const char *fmt,
2465 va_list args)
2466{
2467 return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2468 fmt, args);
2469}
2470EXPORT_SYMBOL_GPL(device_create_vargs);
2471
2472/**
2473 * device_create - creates a device and registers it with sysfs
2474 * @class: pointer to the struct class that this device should be registered to
2475 * @parent: pointer to the parent struct device of this new device, if any
2476 * @devt: the dev_t for the char device to be added
2477 * @drvdata: the data to be added to the device for callbacks
2478 * @fmt: string for the device's name
2479 *
2480 * This function can be used by char device classes. A struct device
2481 * will be created in sysfs, registered to the specified class.
2482 *
2483 * A "dev" file will be created, showing the dev_t for the device, if
2484 * the dev_t is not 0,0.
2485 * If a pointer to a parent struct device is passed in, the newly created
2486 * struct device will be a child of that device in sysfs.
2487 * The pointer to the struct device will be returned from the call.
2488 * Any further sysfs files that might be required can be created using this
2489 * pointer.
2490 *
2491 * Returns &struct device pointer on success, or ERR_PTR() on error.
2492 *
2493 * Note: the struct class passed to this function must have previously
2494 * been created with a call to class_create().
2495 */
2496struct device *device_create(struct class *class, struct device *parent,
2497 dev_t devt, void *drvdata, const char *fmt, ...)
2498{
2499 va_list vargs;
2500 struct device *dev;
2501
2502 va_start(vargs, fmt);
2503 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2504 va_end(vargs);
2505 return dev;
2506}
2507EXPORT_SYMBOL_GPL(device_create);
2508
2509/**
2510 * device_create_with_groups - creates a device and registers it with sysfs
2511 * @class: pointer to the struct class that this device should be registered to
2512 * @parent: pointer to the parent struct device of this new device, if any
2513 * @devt: the dev_t for the char device to be added
2514 * @drvdata: the data to be added to the device for callbacks
2515 * @groups: NULL-terminated list of attribute groups to be created
2516 * @fmt: string for the device's name
2517 *
2518 * This function can be used by char device classes. A struct device
2519 * will be created in sysfs, registered to the specified class.
2520 * Additional attributes specified in the groups parameter will also
2521 * be created automatically.
2522 *
2523 * A "dev" file will be created, showing the dev_t for the device, if
2524 * the dev_t is not 0,0.
2525 * If a pointer to a parent struct device is passed in, the newly created
2526 * struct device will be a child of that device in sysfs.
2527 * The pointer to the struct device will be returned from the call.
2528 * Any further sysfs files that might be required can be created using this
2529 * pointer.
2530 *
2531 * Returns &struct device pointer on success, or ERR_PTR() on error.
2532 *
2533 * Note: the struct class passed to this function must have previously
2534 * been created with a call to class_create().
2535 */
2536struct device *device_create_with_groups(struct class *class,
2537 struct device *parent, dev_t devt,
2538 void *drvdata,
2539 const struct attribute_group **groups,
2540 const char *fmt, ...)
2541{
2542 va_list vargs;
2543 struct device *dev;
2544
2545 va_start(vargs, fmt);
2546 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2547 fmt, vargs);
2548 va_end(vargs);
2549 return dev;
2550}
2551EXPORT_SYMBOL_GPL(device_create_with_groups);
2552
2553static int __match_devt(struct device *dev, const void *data)
2554{
2555 const dev_t *devt = data;
2556
2557 return dev->devt == *devt;
2558}
2559
2560/**
2561 * device_destroy - removes a device that was created with device_create()
2562 * @class: pointer to the struct class that this device was registered with
2563 * @devt: the dev_t of the device that was previously registered
2564 *
2565 * This call unregisters and cleans up a device that was created with a
2566 * call to device_create().
2567 */
2568void device_destroy(struct class *class, dev_t devt)
2569{
2570 struct device *dev;
2571
2572 dev = class_find_device(class, NULL, &devt, __match_devt);
2573 if (dev) {
2574 put_device(dev);
2575 device_unregister(dev);
2576 }
2577}
2578EXPORT_SYMBOL_GPL(device_destroy);
2579
2580/**
2581 * device_rename - renames a device
2582 * @dev: the pointer to the struct device to be renamed
2583 * @new_name: the new name of the device
2584 *
2585 * It is the responsibility of the caller to provide mutual
2586 * exclusion between two different calls of device_rename
2587 * on the same device to ensure that new_name is valid and
2588 * won't conflict with other devices.
2589 *
2590 * Note: Don't call this function. Currently, the networking layer calls this
2591 * function, but that will change. The following text from Kay Sievers offers
2592 * some insight:
2593 *
2594 * Renaming devices is racy at many levels, symlinks and other stuff are not
2595 * replaced atomically, and you get a "move" uevent, but it's not easy to
2596 * connect the event to the old and new device. Device nodes are not renamed at
2597 * all, there isn't even support for that in the kernel now.
2598 *
2599 * In the meantime, during renaming, your target name might be taken by another
2600 * driver, creating conflicts. Or the old name is taken directly after you
2601 * renamed it -- then you get events for the same DEVPATH, before you even see
2602 * the "move" event. It's just a mess, and nothing new should ever rely on
2603 * kernel device renaming. Besides that, it's not even implemented now for
2604 * other things than (driver-core wise very simple) network devices.
2605 *
2606 * We are currently about to change network renaming in udev to completely
2607 * disallow renaming of devices in the same namespace as the kernel uses,
2608 * because we can't solve the problems properly, that arise with swapping names
2609 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2610 * be allowed to some other name than eth[0-9]*, for the aforementioned
2611 * reasons.
2612 *
2613 * Make up a "real" name in the driver before you register anything, or add
2614 * some other attributes for userspace to find the device, or use udev to add
2615 * symlinks -- but never rename kernel devices later, it's a complete mess. We
2616 * don't even want to get into that and try to implement the missing pieces in
2617 * the core. We really have other pieces to fix in the driver core mess. :)
2618 */
2619int device_rename(struct device *dev, const char *new_name)
2620{
2621 struct kobject *kobj = &dev->kobj;
2622 char *old_device_name = NULL;
2623 int error;
2624
2625 dev = get_device(dev);
2626 if (!dev)
2627 return -EINVAL;
2628
2629 dev_dbg(dev, "renaming to %s\n", new_name);
2630
2631 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2632 if (!old_device_name) {
2633 error = -ENOMEM;
2634 goto out;
2635 }
2636
2637 if (dev->class) {
2638 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2639 kobj, old_device_name,
2640 new_name, kobject_namespace(kobj));
2641 if (error)
2642 goto out;
2643 }
2644
2645 error = kobject_rename(kobj, new_name);
2646 if (error)
2647 goto out;
2648
2649out:
2650 put_device(dev);
2651
2652 kfree(old_device_name);
2653
2654 return error;
2655}
2656EXPORT_SYMBOL_GPL(device_rename);
2657
2658static int device_move_class_links(struct device *dev,
2659 struct device *old_parent,
2660 struct device *new_parent)
2661{
2662 int error = 0;
2663
2664 if (old_parent)
2665 sysfs_remove_link(&dev->kobj, "device");
2666 if (new_parent)
2667 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2668 "device");
2669 return error;
2670}
2671
2672/**
2673 * device_move - moves a device to a new parent
2674 * @dev: the pointer to the struct device to be moved
2675 * @new_parent: the new parent of the device (can by NULL)
2676 * @dpm_order: how to reorder the dpm_list
2677 */
2678int device_move(struct device *dev, struct device *new_parent,
2679 enum dpm_order dpm_order)
2680{
2681 int error;
2682 struct device *old_parent;
2683 struct kobject *new_parent_kobj;
2684
2685 dev = get_device(dev);
2686 if (!dev)
2687 return -EINVAL;
2688
2689 device_pm_lock();
2690 new_parent = get_device(new_parent);
2691 new_parent_kobj = get_device_parent(dev, new_parent);
2692
2693 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2694 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2695 error = kobject_move(&dev->kobj, new_parent_kobj);
2696 if (error) {
2697 cleanup_glue_dir(dev, new_parent_kobj);
2698 put_device(new_parent);
2699 goto out;
2700 }
2701 old_parent = dev->parent;
2702 dev->parent = new_parent;
2703 if (old_parent)
2704 klist_remove(&dev->p->knode_parent);
2705 if (new_parent) {
2706 klist_add_tail(&dev->p->knode_parent,
2707 &new_parent->p->klist_children);
2708 set_dev_node(dev, dev_to_node(new_parent));
2709 }
2710
2711 if (dev->class) {
2712 error = device_move_class_links(dev, old_parent, new_parent);
2713 if (error) {
2714 /* We ignore errors on cleanup since we're hosed anyway... */
2715 device_move_class_links(dev, new_parent, old_parent);
2716 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2717 if (new_parent)
2718 klist_remove(&dev->p->knode_parent);
2719 dev->parent = old_parent;
2720 if (old_parent) {
2721 klist_add_tail(&dev->p->knode_parent,
2722 &old_parent->p->klist_children);
2723 set_dev_node(dev, dev_to_node(old_parent));
2724 }
2725 }
2726 cleanup_glue_dir(dev, new_parent_kobj);
2727 put_device(new_parent);
2728 goto out;
2729 }
2730 }
2731 switch (dpm_order) {
2732 case DPM_ORDER_NONE:
2733 break;
2734 case DPM_ORDER_DEV_AFTER_PARENT:
2735 device_pm_move_after(dev, new_parent);
2736 devices_kset_move_after(dev, new_parent);
2737 break;
2738 case DPM_ORDER_PARENT_BEFORE_DEV:
2739 device_pm_move_before(new_parent, dev);
2740 devices_kset_move_before(new_parent, dev);
2741 break;
2742 case DPM_ORDER_DEV_LAST:
2743 device_pm_move_last(dev);
2744 devices_kset_move_last(dev);
2745 break;
2746 }
2747
2748 put_device(old_parent);
2749out:
2750 device_pm_unlock();
2751 put_device(dev);
2752 return error;
2753}
2754EXPORT_SYMBOL_GPL(device_move);
2755
2756/**
2757 * device_shutdown - call ->shutdown() on each device to shutdown.
2758 */
2759void device_shutdown(void)
2760{
2761 struct device *dev, *parent;
2762
2763 spin_lock(&devices_kset->list_lock);
2764 /*
2765 * Walk the devices list backward, shutting down each in turn.
2766 * Beware that device unplug events may also start pulling
2767 * devices offline, even as the system is shutting down.
2768 */
2769 while (!list_empty(&devices_kset->list)) {
2770 dev = list_entry(devices_kset->list.prev, struct device,
2771 kobj.entry);
2772
2773 /*
2774 * hold reference count of device's parent to
2775 * prevent it from being freed because parent's
2776 * lock is to be held
2777 */
2778 parent = get_device(dev->parent);
2779 get_device(dev);
2780 /*
2781 * Make sure the device is off the kset list, in the
2782 * event that dev->*->shutdown() doesn't remove it.
2783 */
2784 list_del_init(&dev->kobj.entry);
2785 spin_unlock(&devices_kset->list_lock);
2786
2787 /* hold lock to avoid race with probe/release */
2788 if (parent)
2789 device_lock(parent);
2790 device_lock(dev);
2791
2792 /* Don't allow any more runtime suspends */
2793 pm_runtime_get_noresume(dev);
2794 pm_runtime_barrier(dev);
2795
2796 if (dev->class && dev->class->shutdown_pre) {
2797 if (initcall_debug)
2798 dev_info(dev, "shutdown_pre\n");
2799 dev->class->shutdown_pre(dev);
2800 }
2801 if (dev->bus && dev->bus->shutdown) {
2802 if (initcall_debug)
2803 dev_info(dev, "shutdown\n");
2804 dev->bus->shutdown(dev);
2805 } else if (dev->driver && dev->driver->shutdown) {
2806 if (initcall_debug)
2807 dev_info(dev, "shutdown\n");
2808 dev->driver->shutdown(dev);
2809 }
2810
2811 device_unlock(dev);
2812 if (parent)
2813 device_unlock(parent);
2814
2815 put_device(dev);
2816 put_device(parent);
2817
2818 spin_lock(&devices_kset->list_lock);
2819 }
2820 spin_unlock(&devices_kset->list_lock);
2821}
2822
2823/*
2824 * Device logging functions
2825 */
2826
2827#ifdef CONFIG_PRINTK
2828static int
2829create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2830{
2831 const char *subsys;
2832 size_t pos = 0;
2833
2834 if (dev->class)
2835 subsys = dev->class->name;
2836 else if (dev->bus)
2837 subsys = dev->bus->name;
2838 else
2839 return 0;
2840
2841 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2842 if (pos >= hdrlen)
2843 goto overflow;
2844
2845 /*
2846 * Add device identifier DEVICE=:
2847 * b12:8 block dev_t
2848 * c127:3 char dev_t
2849 * n8 netdev ifindex
2850 * +sound:card0 subsystem:devname
2851 */
2852 if (MAJOR(dev->devt)) {
2853 char c;
2854
2855 if (strcmp(subsys, "block") == 0)
2856 c = 'b';
2857 else
2858 c = 'c';
2859 pos++;
2860 pos += snprintf(hdr + pos, hdrlen - pos,
2861 "DEVICE=%c%u:%u",
2862 c, MAJOR(dev->devt), MINOR(dev->devt));
2863 } else if (strcmp(subsys, "net") == 0) {
2864 struct net_device *net = to_net_dev(dev);
2865
2866 pos++;
2867 pos += snprintf(hdr + pos, hdrlen - pos,
2868 "DEVICE=n%u", net->ifindex);
2869 } else {
2870 pos++;
2871 pos += snprintf(hdr + pos, hdrlen - pos,
2872 "DEVICE=+%s:%s", subsys, dev_name(dev));
2873 }
2874
2875 if (pos >= hdrlen)
2876 goto overflow;
2877
2878 return pos;
2879
2880overflow:
2881 dev_WARN(dev, "device/subsystem name too long");
2882 return 0;
2883}
2884
2885int dev_vprintk_emit(int level, const struct device *dev,
2886 const char *fmt, va_list args)
2887{
2888 char hdr[128];
2889 size_t hdrlen;
2890
2891 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2892
2893 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2894}
2895EXPORT_SYMBOL(dev_vprintk_emit);
2896
2897int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2898{
2899 va_list args;
2900 int r;
2901
2902 va_start(args, fmt);
2903
2904 r = dev_vprintk_emit(level, dev, fmt, args);
2905
2906 va_end(args);
2907
2908 return r;
2909}
2910EXPORT_SYMBOL(dev_printk_emit);
2911
2912static void __dev_printk(const char *level, const struct device *dev,
2913 struct va_format *vaf)
2914{
2915 if (dev)
2916 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2917 dev_driver_string(dev), dev_name(dev), vaf);
2918 else
2919 printk("%s(NULL device *): %pV", level, vaf);
2920}
2921
2922void dev_printk(const char *level, const struct device *dev,
2923 const char *fmt, ...)
2924{
2925 struct va_format vaf;
2926 va_list args;
2927
2928 va_start(args, fmt);
2929
2930 vaf.fmt = fmt;
2931 vaf.va = &args;
2932
2933 __dev_printk(level, dev, &vaf);
2934
2935 va_end(args);
2936}
2937EXPORT_SYMBOL(dev_printk);
2938
2939#define define_dev_printk_level(func, kern_level) \
2940void func(const struct device *dev, const char *fmt, ...) \
2941{ \
2942 struct va_format vaf; \
2943 va_list args; \
2944 \
2945 va_start(args, fmt); \
2946 \
2947 vaf.fmt = fmt; \
2948 vaf.va = &args; \
2949 \
2950 __dev_printk(kern_level, dev, &vaf); \
2951 \
2952 va_end(args); \
2953} \
2954EXPORT_SYMBOL(func);
2955
2956define_dev_printk_level(dev_emerg, KERN_EMERG);
2957define_dev_printk_level(dev_alert, KERN_ALERT);
2958define_dev_printk_level(dev_crit, KERN_CRIT);
2959define_dev_printk_level(dev_err, KERN_ERR);
2960define_dev_printk_level(dev_warn, KERN_WARNING);
2961define_dev_printk_level(dev_notice, KERN_NOTICE);
2962define_dev_printk_level(_dev_info, KERN_INFO);
2963
2964#endif
2965
2966static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
2967{
2968 return fwnode && !IS_ERR(fwnode->secondary);
2969}
2970
2971/**
2972 * set_primary_fwnode - Change the primary firmware node of a given device.
2973 * @dev: Device to handle.
2974 * @fwnode: New primary firmware node of the device.
2975 *
2976 * Set the device's firmware node pointer to @fwnode, but if a secondary
2977 * firmware node of the device is present, preserve it.
2978 */
2979void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2980{
2981 if (fwnode) {
2982 struct fwnode_handle *fn = dev->fwnode;
2983
2984 if (fwnode_is_primary(fn))
2985 fn = fn->secondary;
2986
2987 if (fn) {
2988 WARN_ON(fwnode->secondary);
2989 fwnode->secondary = fn;
2990 }
2991 dev->fwnode = fwnode;
2992 } else {
2993 dev->fwnode = fwnode_is_primary(dev->fwnode) ?
2994 dev->fwnode->secondary : NULL;
2995 }
2996}
2997EXPORT_SYMBOL_GPL(set_primary_fwnode);
2998
2999/**
3000 * set_secondary_fwnode - Change the secondary firmware node of a given device.
3001 * @dev: Device to handle.
3002 * @fwnode: New secondary firmware node of the device.
3003 *
3004 * If a primary firmware node of the device is present, set its secondary
3005 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
3006 * @fwnode.
3007 */
3008void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3009{
3010 if (fwnode)
3011 fwnode->secondary = ERR_PTR(-ENODEV);
3012
3013 if (fwnode_is_primary(dev->fwnode))
3014 dev->fwnode->secondary = fwnode;
3015 else
3016 dev->fwnode = fwnode;
3017}
3018
3019/**
3020 * device_set_of_node_from_dev - reuse device-tree node of another device
3021 * @dev: device whose device-tree node is being set
3022 * @dev2: device whose device-tree node is being reused
3023 *
3024 * Takes another reference to the new device-tree node after first dropping
3025 * any reference held to the old node.
3026 */
3027void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3028{
3029 of_node_put(dev->of_node);
3030 dev->of_node = of_node_get(dev2->of_node);
3031 dev->of_node_reused = true;
3032}
3033EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);