at v4.15 1563 lines 35 kB view raw
1/* 2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 3 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License, version 2, as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 17 */ 18 19#include <linux/cpu_pm.h> 20#include <linux/errno.h> 21#include <linux/err.h> 22#include <linux/kvm_host.h> 23#include <linux/list.h> 24#include <linux/module.h> 25#include <linux/vmalloc.h> 26#include <linux/fs.h> 27#include <linux/mman.h> 28#include <linux/sched.h> 29#include <linux/kvm.h> 30#include <linux/kvm_irqfd.h> 31#include <linux/irqbypass.h> 32#include <trace/events/kvm.h> 33#include <kvm/arm_pmu.h> 34 35#define CREATE_TRACE_POINTS 36#include "trace.h" 37 38#include <linux/uaccess.h> 39#include <asm/ptrace.h> 40#include <asm/mman.h> 41#include <asm/tlbflush.h> 42#include <asm/cacheflush.h> 43#include <asm/virt.h> 44#include <asm/kvm_arm.h> 45#include <asm/kvm_asm.h> 46#include <asm/kvm_mmu.h> 47#include <asm/kvm_emulate.h> 48#include <asm/kvm_coproc.h> 49#include <asm/kvm_psci.h> 50#include <asm/sections.h> 51 52#ifdef REQUIRES_VIRT 53__asm__(".arch_extension virt"); 54#endif 55 56static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); 57static kvm_cpu_context_t __percpu *kvm_host_cpu_state; 58 59/* Per-CPU variable containing the currently running vcpu. */ 60static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu); 61 62/* The VMID used in the VTTBR */ 63static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1); 64static u32 kvm_next_vmid; 65static unsigned int kvm_vmid_bits __read_mostly; 66static DEFINE_SPINLOCK(kvm_vmid_lock); 67 68static bool vgic_present; 69 70static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled); 71 72static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu) 73{ 74 BUG_ON(preemptible()); 75 __this_cpu_write(kvm_arm_running_vcpu, vcpu); 76} 77 78/** 79 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU. 80 * Must be called from non-preemptible context 81 */ 82struct kvm_vcpu *kvm_arm_get_running_vcpu(void) 83{ 84 BUG_ON(preemptible()); 85 return __this_cpu_read(kvm_arm_running_vcpu); 86} 87 88/** 89 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus. 90 */ 91struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 92{ 93 return &kvm_arm_running_vcpu; 94} 95 96int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 97{ 98 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 99} 100 101int kvm_arch_hardware_setup(void) 102{ 103 return 0; 104} 105 106void kvm_arch_check_processor_compat(void *rtn) 107{ 108 *(int *)rtn = 0; 109} 110 111 112/** 113 * kvm_arch_init_vm - initializes a VM data structure 114 * @kvm: pointer to the KVM struct 115 */ 116int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 117{ 118 int ret, cpu; 119 120 if (type) 121 return -EINVAL; 122 123 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran)); 124 if (!kvm->arch.last_vcpu_ran) 125 return -ENOMEM; 126 127 for_each_possible_cpu(cpu) 128 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1; 129 130 ret = kvm_alloc_stage2_pgd(kvm); 131 if (ret) 132 goto out_fail_alloc; 133 134 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP); 135 if (ret) 136 goto out_free_stage2_pgd; 137 138 kvm_vgic_early_init(kvm); 139 140 /* Mark the initial VMID generation invalid */ 141 kvm->arch.vmid_gen = 0; 142 143 /* The maximum number of VCPUs is limited by the host's GIC model */ 144 kvm->arch.max_vcpus = vgic_present ? 145 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; 146 147 return ret; 148out_free_stage2_pgd: 149 kvm_free_stage2_pgd(kvm); 150out_fail_alloc: 151 free_percpu(kvm->arch.last_vcpu_ran); 152 kvm->arch.last_vcpu_ran = NULL; 153 return ret; 154} 155 156bool kvm_arch_has_vcpu_debugfs(void) 157{ 158 return false; 159} 160 161int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 162{ 163 return 0; 164} 165 166int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 167{ 168 return VM_FAULT_SIGBUS; 169} 170 171 172/** 173 * kvm_arch_destroy_vm - destroy the VM data structure 174 * @kvm: pointer to the KVM struct 175 */ 176void kvm_arch_destroy_vm(struct kvm *kvm) 177{ 178 int i; 179 180 kvm_vgic_destroy(kvm); 181 182 free_percpu(kvm->arch.last_vcpu_ran); 183 kvm->arch.last_vcpu_ran = NULL; 184 185 for (i = 0; i < KVM_MAX_VCPUS; ++i) { 186 if (kvm->vcpus[i]) { 187 kvm_arch_vcpu_free(kvm->vcpus[i]); 188 kvm->vcpus[i] = NULL; 189 } 190 } 191 atomic_set(&kvm->online_vcpus, 0); 192} 193 194int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 195{ 196 int r; 197 switch (ext) { 198 case KVM_CAP_IRQCHIP: 199 r = vgic_present; 200 break; 201 case KVM_CAP_IOEVENTFD: 202 case KVM_CAP_DEVICE_CTRL: 203 case KVM_CAP_USER_MEMORY: 204 case KVM_CAP_SYNC_MMU: 205 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 206 case KVM_CAP_ONE_REG: 207 case KVM_CAP_ARM_PSCI: 208 case KVM_CAP_ARM_PSCI_0_2: 209 case KVM_CAP_READONLY_MEM: 210 case KVM_CAP_MP_STATE: 211 case KVM_CAP_IMMEDIATE_EXIT: 212 r = 1; 213 break; 214 case KVM_CAP_ARM_SET_DEVICE_ADDR: 215 r = 1; 216 break; 217 case KVM_CAP_NR_VCPUS: 218 r = num_online_cpus(); 219 break; 220 case KVM_CAP_MAX_VCPUS: 221 r = KVM_MAX_VCPUS; 222 break; 223 case KVM_CAP_NR_MEMSLOTS: 224 r = KVM_USER_MEM_SLOTS; 225 break; 226 case KVM_CAP_MSI_DEVID: 227 if (!kvm) 228 r = -EINVAL; 229 else 230 r = kvm->arch.vgic.msis_require_devid; 231 break; 232 case KVM_CAP_ARM_USER_IRQ: 233 /* 234 * 1: EL1_VTIMER, EL1_PTIMER, and PMU. 235 * (bump this number if adding more devices) 236 */ 237 r = 1; 238 break; 239 default: 240 r = kvm_arch_dev_ioctl_check_extension(kvm, ext); 241 break; 242 } 243 return r; 244} 245 246long kvm_arch_dev_ioctl(struct file *filp, 247 unsigned int ioctl, unsigned long arg) 248{ 249 return -EINVAL; 250} 251 252 253struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) 254{ 255 int err; 256 struct kvm_vcpu *vcpu; 257 258 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) { 259 err = -EBUSY; 260 goto out; 261 } 262 263 if (id >= kvm->arch.max_vcpus) { 264 err = -EINVAL; 265 goto out; 266 } 267 268 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 269 if (!vcpu) { 270 err = -ENOMEM; 271 goto out; 272 } 273 274 err = kvm_vcpu_init(vcpu, kvm, id); 275 if (err) 276 goto free_vcpu; 277 278 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP); 279 if (err) 280 goto vcpu_uninit; 281 282 return vcpu; 283vcpu_uninit: 284 kvm_vcpu_uninit(vcpu); 285free_vcpu: 286 kmem_cache_free(kvm_vcpu_cache, vcpu); 287out: 288 return ERR_PTR(err); 289} 290 291void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 292{ 293 kvm_vgic_vcpu_early_init(vcpu); 294} 295 296void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 297{ 298 kvm_mmu_free_memory_caches(vcpu); 299 kvm_timer_vcpu_terminate(vcpu); 300 kvm_pmu_vcpu_destroy(vcpu); 301 kvm_vcpu_uninit(vcpu); 302 kmem_cache_free(kvm_vcpu_cache, vcpu); 303} 304 305void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 306{ 307 kvm_arch_vcpu_free(vcpu); 308} 309 310int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 311{ 312 return kvm_timer_is_pending(vcpu); 313} 314 315void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 316{ 317 kvm_timer_schedule(vcpu); 318 kvm_vgic_v4_enable_doorbell(vcpu); 319} 320 321void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 322{ 323 kvm_timer_unschedule(vcpu); 324 kvm_vgic_v4_disable_doorbell(vcpu); 325} 326 327int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 328{ 329 /* Force users to call KVM_ARM_VCPU_INIT */ 330 vcpu->arch.target = -1; 331 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); 332 333 /* Set up the timer */ 334 kvm_timer_vcpu_init(vcpu); 335 336 kvm_arm_reset_debug_ptr(vcpu); 337 338 return kvm_vgic_vcpu_init(vcpu); 339} 340 341void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 342{ 343 int *last_ran; 344 345 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran); 346 347 /* 348 * We might get preempted before the vCPU actually runs, but 349 * over-invalidation doesn't affect correctness. 350 */ 351 if (*last_ran != vcpu->vcpu_id) { 352 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu); 353 *last_ran = vcpu->vcpu_id; 354 } 355 356 vcpu->cpu = cpu; 357 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state); 358 359 kvm_arm_set_running_vcpu(vcpu); 360 kvm_vgic_load(vcpu); 361 kvm_timer_vcpu_load(vcpu); 362} 363 364void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 365{ 366 kvm_timer_vcpu_put(vcpu); 367 kvm_vgic_put(vcpu); 368 369 vcpu->cpu = -1; 370 371 kvm_arm_set_running_vcpu(NULL); 372} 373 374static void vcpu_power_off(struct kvm_vcpu *vcpu) 375{ 376 vcpu->arch.power_off = true; 377 kvm_make_request(KVM_REQ_SLEEP, vcpu); 378 kvm_vcpu_kick(vcpu); 379} 380 381int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 382 struct kvm_mp_state *mp_state) 383{ 384 if (vcpu->arch.power_off) 385 mp_state->mp_state = KVM_MP_STATE_STOPPED; 386 else 387 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 388 389 return 0; 390} 391 392int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 393 struct kvm_mp_state *mp_state) 394{ 395 switch (mp_state->mp_state) { 396 case KVM_MP_STATE_RUNNABLE: 397 vcpu->arch.power_off = false; 398 break; 399 case KVM_MP_STATE_STOPPED: 400 vcpu_power_off(vcpu); 401 break; 402 default: 403 return -EINVAL; 404 } 405 406 return 0; 407} 408 409/** 410 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled 411 * @v: The VCPU pointer 412 * 413 * If the guest CPU is not waiting for interrupts or an interrupt line is 414 * asserted, the CPU is by definition runnable. 415 */ 416int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 417{ 418 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v)) 419 && !v->arch.power_off && !v->arch.pause); 420} 421 422bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 423{ 424 return vcpu_mode_priv(vcpu); 425} 426 427/* Just ensure a guest exit from a particular CPU */ 428static void exit_vm_noop(void *info) 429{ 430} 431 432void force_vm_exit(const cpumask_t *mask) 433{ 434 preempt_disable(); 435 smp_call_function_many(mask, exit_vm_noop, NULL, true); 436 preempt_enable(); 437} 438 439/** 440 * need_new_vmid_gen - check that the VMID is still valid 441 * @kvm: The VM's VMID to check 442 * 443 * return true if there is a new generation of VMIDs being used 444 * 445 * The hardware supports only 256 values with the value zero reserved for the 446 * host, so we check if an assigned value belongs to a previous generation, 447 * which which requires us to assign a new value. If we're the first to use a 448 * VMID for the new generation, we must flush necessary caches and TLBs on all 449 * CPUs. 450 */ 451static bool need_new_vmid_gen(struct kvm *kvm) 452{ 453 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen)); 454} 455 456/** 457 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs 458 * @kvm The guest that we are about to run 459 * 460 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the 461 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding 462 * caches and TLBs. 463 */ 464static void update_vttbr(struct kvm *kvm) 465{ 466 phys_addr_t pgd_phys; 467 u64 vmid; 468 469 if (!need_new_vmid_gen(kvm)) 470 return; 471 472 spin_lock(&kvm_vmid_lock); 473 474 /* 475 * We need to re-check the vmid_gen here to ensure that if another vcpu 476 * already allocated a valid vmid for this vm, then this vcpu should 477 * use the same vmid. 478 */ 479 if (!need_new_vmid_gen(kvm)) { 480 spin_unlock(&kvm_vmid_lock); 481 return; 482 } 483 484 /* First user of a new VMID generation? */ 485 if (unlikely(kvm_next_vmid == 0)) { 486 atomic64_inc(&kvm_vmid_gen); 487 kvm_next_vmid = 1; 488 489 /* 490 * On SMP we know no other CPUs can use this CPU's or each 491 * other's VMID after force_vm_exit returns since the 492 * kvm_vmid_lock blocks them from reentry to the guest. 493 */ 494 force_vm_exit(cpu_all_mask); 495 /* 496 * Now broadcast TLB + ICACHE invalidation over the inner 497 * shareable domain to make sure all data structures are 498 * clean. 499 */ 500 kvm_call_hyp(__kvm_flush_vm_context); 501 } 502 503 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen); 504 kvm->arch.vmid = kvm_next_vmid; 505 kvm_next_vmid++; 506 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1; 507 508 /* update vttbr to be used with the new vmid */ 509 pgd_phys = virt_to_phys(kvm->arch.pgd); 510 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK); 511 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits); 512 kvm->arch.vttbr = pgd_phys | vmid; 513 514 spin_unlock(&kvm_vmid_lock); 515} 516 517static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu) 518{ 519 struct kvm *kvm = vcpu->kvm; 520 int ret = 0; 521 522 if (likely(vcpu->arch.has_run_once)) 523 return 0; 524 525 vcpu->arch.has_run_once = true; 526 527 /* 528 * Map the VGIC hardware resources before running a vcpu the first 529 * time on this VM. 530 */ 531 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) { 532 ret = kvm_vgic_map_resources(kvm); 533 if (ret) 534 return ret; 535 } 536 537 ret = kvm_timer_enable(vcpu); 538 if (ret) 539 return ret; 540 541 ret = kvm_arm_pmu_v3_enable(vcpu); 542 543 return ret; 544} 545 546bool kvm_arch_intc_initialized(struct kvm *kvm) 547{ 548 return vgic_initialized(kvm); 549} 550 551void kvm_arm_halt_guest(struct kvm *kvm) 552{ 553 int i; 554 struct kvm_vcpu *vcpu; 555 556 kvm_for_each_vcpu(i, vcpu, kvm) 557 vcpu->arch.pause = true; 558 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); 559} 560 561void kvm_arm_resume_guest(struct kvm *kvm) 562{ 563 int i; 564 struct kvm_vcpu *vcpu; 565 566 kvm_for_each_vcpu(i, vcpu, kvm) { 567 vcpu->arch.pause = false; 568 swake_up(kvm_arch_vcpu_wq(vcpu)); 569 } 570} 571 572static void vcpu_req_sleep(struct kvm_vcpu *vcpu) 573{ 574 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu); 575 576 swait_event_interruptible(*wq, ((!vcpu->arch.power_off) && 577 (!vcpu->arch.pause))); 578 579 if (vcpu->arch.power_off || vcpu->arch.pause) { 580 /* Awaken to handle a signal, request we sleep again later. */ 581 kvm_make_request(KVM_REQ_SLEEP, vcpu); 582 } 583} 584 585static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu) 586{ 587 return vcpu->arch.target >= 0; 588} 589 590static void check_vcpu_requests(struct kvm_vcpu *vcpu) 591{ 592 if (kvm_request_pending(vcpu)) { 593 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) 594 vcpu_req_sleep(vcpu); 595 596 /* 597 * Clear IRQ_PENDING requests that were made to guarantee 598 * that a VCPU sees new virtual interrupts. 599 */ 600 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); 601 } 602} 603 604/** 605 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code 606 * @vcpu: The VCPU pointer 607 * @run: The kvm_run structure pointer used for userspace state exchange 608 * 609 * This function is called through the VCPU_RUN ioctl called from user space. It 610 * will execute VM code in a loop until the time slice for the process is used 611 * or some emulation is needed from user space in which case the function will 612 * return with return value 0 and with the kvm_run structure filled in with the 613 * required data for the requested emulation. 614 */ 615int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) 616{ 617 int ret; 618 619 if (unlikely(!kvm_vcpu_initialized(vcpu))) 620 return -ENOEXEC; 621 622 ret = kvm_vcpu_first_run_init(vcpu); 623 if (ret) 624 return ret; 625 626 if (run->exit_reason == KVM_EXIT_MMIO) { 627 ret = kvm_handle_mmio_return(vcpu, vcpu->run); 628 if (ret) 629 return ret; 630 if (kvm_arm_handle_step_debug(vcpu, vcpu->run)) 631 return 0; 632 633 } 634 635 if (run->immediate_exit) 636 return -EINTR; 637 638 kvm_sigset_activate(vcpu); 639 640 ret = 1; 641 run->exit_reason = KVM_EXIT_UNKNOWN; 642 while (ret > 0) { 643 /* 644 * Check conditions before entering the guest 645 */ 646 cond_resched(); 647 648 update_vttbr(vcpu->kvm); 649 650 check_vcpu_requests(vcpu); 651 652 /* 653 * Preparing the interrupts to be injected also 654 * involves poking the GIC, which must be done in a 655 * non-preemptible context. 656 */ 657 preempt_disable(); 658 659 /* Flush FP/SIMD state that can't survive guest entry/exit */ 660 kvm_fpsimd_flush_cpu_state(); 661 662 kvm_pmu_flush_hwstate(vcpu); 663 664 local_irq_disable(); 665 666 kvm_vgic_flush_hwstate(vcpu); 667 668 /* 669 * If we have a singal pending, or need to notify a userspace 670 * irqchip about timer or PMU level changes, then we exit (and 671 * update the timer level state in kvm_timer_update_run 672 * below). 673 */ 674 if (signal_pending(current) || 675 kvm_timer_should_notify_user(vcpu) || 676 kvm_pmu_should_notify_user(vcpu)) { 677 ret = -EINTR; 678 run->exit_reason = KVM_EXIT_INTR; 679 } 680 681 /* 682 * Ensure we set mode to IN_GUEST_MODE after we disable 683 * interrupts and before the final VCPU requests check. 684 * See the comment in kvm_vcpu_exiting_guest_mode() and 685 * Documentation/virtual/kvm/vcpu-requests.rst 686 */ 687 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 688 689 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) || 690 kvm_request_pending(vcpu)) { 691 vcpu->mode = OUTSIDE_GUEST_MODE; 692 kvm_pmu_sync_hwstate(vcpu); 693 kvm_timer_sync_hwstate(vcpu); 694 kvm_vgic_sync_hwstate(vcpu); 695 local_irq_enable(); 696 preempt_enable(); 697 continue; 698 } 699 700 kvm_arm_setup_debug(vcpu); 701 702 /************************************************************** 703 * Enter the guest 704 */ 705 trace_kvm_entry(*vcpu_pc(vcpu)); 706 guest_enter_irqoff(); 707 708 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu); 709 710 vcpu->mode = OUTSIDE_GUEST_MODE; 711 vcpu->stat.exits++; 712 /* 713 * Back from guest 714 *************************************************************/ 715 716 kvm_arm_clear_debug(vcpu); 717 718 /* 719 * We must sync the PMU state before the vgic state so 720 * that the vgic can properly sample the updated state of the 721 * interrupt line. 722 */ 723 kvm_pmu_sync_hwstate(vcpu); 724 725 /* 726 * Sync the vgic state before syncing the timer state because 727 * the timer code needs to know if the virtual timer 728 * interrupts are active. 729 */ 730 kvm_vgic_sync_hwstate(vcpu); 731 732 /* 733 * Sync the timer hardware state before enabling interrupts as 734 * we don't want vtimer interrupts to race with syncing the 735 * timer virtual interrupt state. 736 */ 737 kvm_timer_sync_hwstate(vcpu); 738 739 /* 740 * We may have taken a host interrupt in HYP mode (ie 741 * while executing the guest). This interrupt is still 742 * pending, as we haven't serviced it yet! 743 * 744 * We're now back in SVC mode, with interrupts 745 * disabled. Enabling the interrupts now will have 746 * the effect of taking the interrupt again, in SVC 747 * mode this time. 748 */ 749 local_irq_enable(); 750 751 /* 752 * We do local_irq_enable() before calling guest_exit() so 753 * that if a timer interrupt hits while running the guest we 754 * account that tick as being spent in the guest. We enable 755 * preemption after calling guest_exit() so that if we get 756 * preempted we make sure ticks after that is not counted as 757 * guest time. 758 */ 759 guest_exit(); 760 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); 761 762 preempt_enable(); 763 764 ret = handle_exit(vcpu, run, ret); 765 } 766 767 /* Tell userspace about in-kernel device output levels */ 768 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 769 kvm_timer_update_run(vcpu); 770 kvm_pmu_update_run(vcpu); 771 } 772 773 kvm_sigset_deactivate(vcpu); 774 775 return ret; 776} 777 778static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) 779{ 780 int bit_index; 781 bool set; 782 unsigned long *ptr; 783 784 if (number == KVM_ARM_IRQ_CPU_IRQ) 785 bit_index = __ffs(HCR_VI); 786 else /* KVM_ARM_IRQ_CPU_FIQ */ 787 bit_index = __ffs(HCR_VF); 788 789 ptr = (unsigned long *)&vcpu->arch.irq_lines; 790 if (level) 791 set = test_and_set_bit(bit_index, ptr); 792 else 793 set = test_and_clear_bit(bit_index, ptr); 794 795 /* 796 * If we didn't change anything, no need to wake up or kick other CPUs 797 */ 798 if (set == level) 799 return 0; 800 801 /* 802 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and 803 * trigger a world-switch round on the running physical CPU to set the 804 * virtual IRQ/FIQ fields in the HCR appropriately. 805 */ 806 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 807 kvm_vcpu_kick(vcpu); 808 809 return 0; 810} 811 812int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 813 bool line_status) 814{ 815 u32 irq = irq_level->irq; 816 unsigned int irq_type, vcpu_idx, irq_num; 817 int nrcpus = atomic_read(&kvm->online_vcpus); 818 struct kvm_vcpu *vcpu = NULL; 819 bool level = irq_level->level; 820 821 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; 822 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; 823 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; 824 825 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level); 826 827 switch (irq_type) { 828 case KVM_ARM_IRQ_TYPE_CPU: 829 if (irqchip_in_kernel(kvm)) 830 return -ENXIO; 831 832 if (vcpu_idx >= nrcpus) 833 return -EINVAL; 834 835 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 836 if (!vcpu) 837 return -EINVAL; 838 839 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 840 return -EINVAL; 841 842 return vcpu_interrupt_line(vcpu, irq_num, level); 843 case KVM_ARM_IRQ_TYPE_PPI: 844 if (!irqchip_in_kernel(kvm)) 845 return -ENXIO; 846 847 if (vcpu_idx >= nrcpus) 848 return -EINVAL; 849 850 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 851 if (!vcpu) 852 return -EINVAL; 853 854 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) 855 return -EINVAL; 856 857 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL); 858 case KVM_ARM_IRQ_TYPE_SPI: 859 if (!irqchip_in_kernel(kvm)) 860 return -ENXIO; 861 862 if (irq_num < VGIC_NR_PRIVATE_IRQS) 863 return -EINVAL; 864 865 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL); 866 } 867 868 return -EINVAL; 869} 870 871static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 872 const struct kvm_vcpu_init *init) 873{ 874 unsigned int i; 875 int phys_target = kvm_target_cpu(); 876 877 if (init->target != phys_target) 878 return -EINVAL; 879 880 /* 881 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must 882 * use the same target. 883 */ 884 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target) 885 return -EINVAL; 886 887 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */ 888 for (i = 0; i < sizeof(init->features) * 8; i++) { 889 bool set = (init->features[i / 32] & (1 << (i % 32))); 890 891 if (set && i >= KVM_VCPU_MAX_FEATURES) 892 return -ENOENT; 893 894 /* 895 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must 896 * use the same feature set. 897 */ 898 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES && 899 test_bit(i, vcpu->arch.features) != set) 900 return -EINVAL; 901 902 if (set) 903 set_bit(i, vcpu->arch.features); 904 } 905 906 vcpu->arch.target = phys_target; 907 908 /* Now we know what it is, we can reset it. */ 909 return kvm_reset_vcpu(vcpu); 910} 911 912 913static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, 914 struct kvm_vcpu_init *init) 915{ 916 int ret; 917 918 ret = kvm_vcpu_set_target(vcpu, init); 919 if (ret) 920 return ret; 921 922 /* 923 * Ensure a rebooted VM will fault in RAM pages and detect if the 924 * guest MMU is turned off and flush the caches as needed. 925 */ 926 if (vcpu->arch.has_run_once) 927 stage2_unmap_vm(vcpu->kvm); 928 929 vcpu_reset_hcr(vcpu); 930 931 /* 932 * Handle the "start in power-off" case. 933 */ 934 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) 935 vcpu_power_off(vcpu); 936 else 937 vcpu->arch.power_off = false; 938 939 return 0; 940} 941 942static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, 943 struct kvm_device_attr *attr) 944{ 945 int ret = -ENXIO; 946 947 switch (attr->group) { 948 default: 949 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); 950 break; 951 } 952 953 return ret; 954} 955 956static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, 957 struct kvm_device_attr *attr) 958{ 959 int ret = -ENXIO; 960 961 switch (attr->group) { 962 default: 963 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); 964 break; 965 } 966 967 return ret; 968} 969 970static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, 971 struct kvm_device_attr *attr) 972{ 973 int ret = -ENXIO; 974 975 switch (attr->group) { 976 default: 977 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); 978 break; 979 } 980 981 return ret; 982} 983 984long kvm_arch_vcpu_ioctl(struct file *filp, 985 unsigned int ioctl, unsigned long arg) 986{ 987 struct kvm_vcpu *vcpu = filp->private_data; 988 void __user *argp = (void __user *)arg; 989 struct kvm_device_attr attr; 990 991 switch (ioctl) { 992 case KVM_ARM_VCPU_INIT: { 993 struct kvm_vcpu_init init; 994 995 if (copy_from_user(&init, argp, sizeof(init))) 996 return -EFAULT; 997 998 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); 999 } 1000 case KVM_SET_ONE_REG: 1001 case KVM_GET_ONE_REG: { 1002 struct kvm_one_reg reg; 1003 1004 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1005 return -ENOEXEC; 1006 1007 if (copy_from_user(&reg, argp, sizeof(reg))) 1008 return -EFAULT; 1009 if (ioctl == KVM_SET_ONE_REG) 1010 return kvm_arm_set_reg(vcpu, &reg); 1011 else 1012 return kvm_arm_get_reg(vcpu, &reg); 1013 } 1014 case KVM_GET_REG_LIST: { 1015 struct kvm_reg_list __user *user_list = argp; 1016 struct kvm_reg_list reg_list; 1017 unsigned n; 1018 1019 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1020 return -ENOEXEC; 1021 1022 if (copy_from_user(&reg_list, user_list, sizeof(reg_list))) 1023 return -EFAULT; 1024 n = reg_list.n; 1025 reg_list.n = kvm_arm_num_regs(vcpu); 1026 if (copy_to_user(user_list, &reg_list, sizeof(reg_list))) 1027 return -EFAULT; 1028 if (n < reg_list.n) 1029 return -E2BIG; 1030 return kvm_arm_copy_reg_indices(vcpu, user_list->reg); 1031 } 1032 case KVM_SET_DEVICE_ATTR: { 1033 if (copy_from_user(&attr, argp, sizeof(attr))) 1034 return -EFAULT; 1035 return kvm_arm_vcpu_set_attr(vcpu, &attr); 1036 } 1037 case KVM_GET_DEVICE_ATTR: { 1038 if (copy_from_user(&attr, argp, sizeof(attr))) 1039 return -EFAULT; 1040 return kvm_arm_vcpu_get_attr(vcpu, &attr); 1041 } 1042 case KVM_HAS_DEVICE_ATTR: { 1043 if (copy_from_user(&attr, argp, sizeof(attr))) 1044 return -EFAULT; 1045 return kvm_arm_vcpu_has_attr(vcpu, &attr); 1046 } 1047 default: 1048 return -EINVAL; 1049 } 1050} 1051 1052/** 1053 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 1054 * @kvm: kvm instance 1055 * @log: slot id and address to which we copy the log 1056 * 1057 * Steps 1-4 below provide general overview of dirty page logging. See 1058 * kvm_get_dirty_log_protect() function description for additional details. 1059 * 1060 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 1061 * always flush the TLB (step 4) even if previous step failed and the dirty 1062 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 1063 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 1064 * writes will be marked dirty for next log read. 1065 * 1066 * 1. Take a snapshot of the bit and clear it if needed. 1067 * 2. Write protect the corresponding page. 1068 * 3. Copy the snapshot to the userspace. 1069 * 4. Flush TLB's if needed. 1070 */ 1071int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 1072{ 1073 bool is_dirty = false; 1074 int r; 1075 1076 mutex_lock(&kvm->slots_lock); 1077 1078 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); 1079 1080 if (is_dirty) 1081 kvm_flush_remote_tlbs(kvm); 1082 1083 mutex_unlock(&kvm->slots_lock); 1084 return r; 1085} 1086 1087static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, 1088 struct kvm_arm_device_addr *dev_addr) 1089{ 1090 unsigned long dev_id, type; 1091 1092 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >> 1093 KVM_ARM_DEVICE_ID_SHIFT; 1094 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >> 1095 KVM_ARM_DEVICE_TYPE_SHIFT; 1096 1097 switch (dev_id) { 1098 case KVM_ARM_DEVICE_VGIC_V2: 1099 if (!vgic_present) 1100 return -ENXIO; 1101 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true); 1102 default: 1103 return -ENODEV; 1104 } 1105} 1106 1107long kvm_arch_vm_ioctl(struct file *filp, 1108 unsigned int ioctl, unsigned long arg) 1109{ 1110 struct kvm *kvm = filp->private_data; 1111 void __user *argp = (void __user *)arg; 1112 1113 switch (ioctl) { 1114 case KVM_CREATE_IRQCHIP: { 1115 int ret; 1116 if (!vgic_present) 1117 return -ENXIO; 1118 mutex_lock(&kvm->lock); 1119 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); 1120 mutex_unlock(&kvm->lock); 1121 return ret; 1122 } 1123 case KVM_ARM_SET_DEVICE_ADDR: { 1124 struct kvm_arm_device_addr dev_addr; 1125 1126 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) 1127 return -EFAULT; 1128 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); 1129 } 1130 case KVM_ARM_PREFERRED_TARGET: { 1131 int err; 1132 struct kvm_vcpu_init init; 1133 1134 err = kvm_vcpu_preferred_target(&init); 1135 if (err) 1136 return err; 1137 1138 if (copy_to_user(argp, &init, sizeof(init))) 1139 return -EFAULT; 1140 1141 return 0; 1142 } 1143 default: 1144 return -EINVAL; 1145 } 1146} 1147 1148static void cpu_init_hyp_mode(void *dummy) 1149{ 1150 phys_addr_t pgd_ptr; 1151 unsigned long hyp_stack_ptr; 1152 unsigned long stack_page; 1153 unsigned long vector_ptr; 1154 1155 /* Switch from the HYP stub to our own HYP init vector */ 1156 __hyp_set_vectors(kvm_get_idmap_vector()); 1157 1158 pgd_ptr = kvm_mmu_get_httbr(); 1159 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page); 1160 hyp_stack_ptr = stack_page + PAGE_SIZE; 1161 vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector); 1162 1163 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr); 1164 __cpu_init_stage2(); 1165 1166 kvm_arm_init_debug(); 1167} 1168 1169static void cpu_hyp_reset(void) 1170{ 1171 if (!is_kernel_in_hyp_mode()) 1172 __hyp_reset_vectors(); 1173} 1174 1175static void cpu_hyp_reinit(void) 1176{ 1177 cpu_hyp_reset(); 1178 1179 if (is_kernel_in_hyp_mode()) { 1180 /* 1181 * __cpu_init_stage2() is safe to call even if the PM 1182 * event was cancelled before the CPU was reset. 1183 */ 1184 __cpu_init_stage2(); 1185 kvm_timer_init_vhe(); 1186 } else { 1187 cpu_init_hyp_mode(NULL); 1188 } 1189 1190 if (vgic_present) 1191 kvm_vgic_init_cpu_hardware(); 1192} 1193 1194static void _kvm_arch_hardware_enable(void *discard) 1195{ 1196 if (!__this_cpu_read(kvm_arm_hardware_enabled)) { 1197 cpu_hyp_reinit(); 1198 __this_cpu_write(kvm_arm_hardware_enabled, 1); 1199 } 1200} 1201 1202int kvm_arch_hardware_enable(void) 1203{ 1204 _kvm_arch_hardware_enable(NULL); 1205 return 0; 1206} 1207 1208static void _kvm_arch_hardware_disable(void *discard) 1209{ 1210 if (__this_cpu_read(kvm_arm_hardware_enabled)) { 1211 cpu_hyp_reset(); 1212 __this_cpu_write(kvm_arm_hardware_enabled, 0); 1213 } 1214} 1215 1216void kvm_arch_hardware_disable(void) 1217{ 1218 _kvm_arch_hardware_disable(NULL); 1219} 1220 1221#ifdef CONFIG_CPU_PM 1222static int hyp_init_cpu_pm_notifier(struct notifier_block *self, 1223 unsigned long cmd, 1224 void *v) 1225{ 1226 /* 1227 * kvm_arm_hardware_enabled is left with its old value over 1228 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should 1229 * re-enable hyp. 1230 */ 1231 switch (cmd) { 1232 case CPU_PM_ENTER: 1233 if (__this_cpu_read(kvm_arm_hardware_enabled)) 1234 /* 1235 * don't update kvm_arm_hardware_enabled here 1236 * so that the hardware will be re-enabled 1237 * when we resume. See below. 1238 */ 1239 cpu_hyp_reset(); 1240 1241 return NOTIFY_OK; 1242 case CPU_PM_EXIT: 1243 if (__this_cpu_read(kvm_arm_hardware_enabled)) 1244 /* The hardware was enabled before suspend. */ 1245 cpu_hyp_reinit(); 1246 1247 return NOTIFY_OK; 1248 1249 default: 1250 return NOTIFY_DONE; 1251 } 1252} 1253 1254static struct notifier_block hyp_init_cpu_pm_nb = { 1255 .notifier_call = hyp_init_cpu_pm_notifier, 1256}; 1257 1258static void __init hyp_cpu_pm_init(void) 1259{ 1260 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); 1261} 1262static void __init hyp_cpu_pm_exit(void) 1263{ 1264 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); 1265} 1266#else 1267static inline void hyp_cpu_pm_init(void) 1268{ 1269} 1270static inline void hyp_cpu_pm_exit(void) 1271{ 1272} 1273#endif 1274 1275static void teardown_common_resources(void) 1276{ 1277 free_percpu(kvm_host_cpu_state); 1278} 1279 1280static int init_common_resources(void) 1281{ 1282 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t); 1283 if (!kvm_host_cpu_state) { 1284 kvm_err("Cannot allocate host CPU state\n"); 1285 return -ENOMEM; 1286 } 1287 1288 /* set size of VMID supported by CPU */ 1289 kvm_vmid_bits = kvm_get_vmid_bits(); 1290 kvm_info("%d-bit VMID\n", kvm_vmid_bits); 1291 1292 return 0; 1293} 1294 1295static int init_subsystems(void) 1296{ 1297 int err = 0; 1298 1299 /* 1300 * Enable hardware so that subsystem initialisation can access EL2. 1301 */ 1302 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1); 1303 1304 /* 1305 * Register CPU lower-power notifier 1306 */ 1307 hyp_cpu_pm_init(); 1308 1309 /* 1310 * Init HYP view of VGIC 1311 */ 1312 err = kvm_vgic_hyp_init(); 1313 switch (err) { 1314 case 0: 1315 vgic_present = true; 1316 break; 1317 case -ENODEV: 1318 case -ENXIO: 1319 vgic_present = false; 1320 err = 0; 1321 break; 1322 default: 1323 goto out; 1324 } 1325 1326 /* 1327 * Init HYP architected timer support 1328 */ 1329 err = kvm_timer_hyp_init(vgic_present); 1330 if (err) 1331 goto out; 1332 1333 kvm_perf_init(); 1334 kvm_coproc_table_init(); 1335 1336out: 1337 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1); 1338 1339 return err; 1340} 1341 1342static void teardown_hyp_mode(void) 1343{ 1344 int cpu; 1345 1346 free_hyp_pgds(); 1347 for_each_possible_cpu(cpu) 1348 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); 1349 hyp_cpu_pm_exit(); 1350} 1351 1352/** 1353 * Inits Hyp-mode on all online CPUs 1354 */ 1355static int init_hyp_mode(void) 1356{ 1357 int cpu; 1358 int err = 0; 1359 1360 /* 1361 * Allocate Hyp PGD and setup Hyp identity mapping 1362 */ 1363 err = kvm_mmu_init(); 1364 if (err) 1365 goto out_err; 1366 1367 /* 1368 * Allocate stack pages for Hypervisor-mode 1369 */ 1370 for_each_possible_cpu(cpu) { 1371 unsigned long stack_page; 1372 1373 stack_page = __get_free_page(GFP_KERNEL); 1374 if (!stack_page) { 1375 err = -ENOMEM; 1376 goto out_err; 1377 } 1378 1379 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; 1380 } 1381 1382 /* 1383 * Map the Hyp-code called directly from the host 1384 */ 1385 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), 1386 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); 1387 if (err) { 1388 kvm_err("Cannot map world-switch code\n"); 1389 goto out_err; 1390 } 1391 1392 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), 1393 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); 1394 if (err) { 1395 kvm_err("Cannot map rodata section\n"); 1396 goto out_err; 1397 } 1398 1399 err = create_hyp_mappings(kvm_ksym_ref(__bss_start), 1400 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); 1401 if (err) { 1402 kvm_err("Cannot map bss section\n"); 1403 goto out_err; 1404 } 1405 1406 /* 1407 * Map the Hyp stack pages 1408 */ 1409 for_each_possible_cpu(cpu) { 1410 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); 1411 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE, 1412 PAGE_HYP); 1413 1414 if (err) { 1415 kvm_err("Cannot map hyp stack\n"); 1416 goto out_err; 1417 } 1418 } 1419 1420 for_each_possible_cpu(cpu) { 1421 kvm_cpu_context_t *cpu_ctxt; 1422 1423 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu); 1424 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP); 1425 1426 if (err) { 1427 kvm_err("Cannot map host CPU state: %d\n", err); 1428 goto out_err; 1429 } 1430 } 1431 1432 return 0; 1433 1434out_err: 1435 teardown_hyp_mode(); 1436 kvm_err("error initializing Hyp mode: %d\n", err); 1437 return err; 1438} 1439 1440static void check_kvm_target_cpu(void *ret) 1441{ 1442 *(int *)ret = kvm_target_cpu(); 1443} 1444 1445struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) 1446{ 1447 struct kvm_vcpu *vcpu; 1448 int i; 1449 1450 mpidr &= MPIDR_HWID_BITMASK; 1451 kvm_for_each_vcpu(i, vcpu, kvm) { 1452 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) 1453 return vcpu; 1454 } 1455 return NULL; 1456} 1457 1458bool kvm_arch_has_irq_bypass(void) 1459{ 1460 return true; 1461} 1462 1463int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 1464 struct irq_bypass_producer *prod) 1465{ 1466 struct kvm_kernel_irqfd *irqfd = 1467 container_of(cons, struct kvm_kernel_irqfd, consumer); 1468 1469 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, 1470 &irqfd->irq_entry); 1471} 1472void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 1473 struct irq_bypass_producer *prod) 1474{ 1475 struct kvm_kernel_irqfd *irqfd = 1476 container_of(cons, struct kvm_kernel_irqfd, consumer); 1477 1478 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq, 1479 &irqfd->irq_entry); 1480} 1481 1482void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) 1483{ 1484 struct kvm_kernel_irqfd *irqfd = 1485 container_of(cons, struct kvm_kernel_irqfd, consumer); 1486 1487 kvm_arm_halt_guest(irqfd->kvm); 1488} 1489 1490void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) 1491{ 1492 struct kvm_kernel_irqfd *irqfd = 1493 container_of(cons, struct kvm_kernel_irqfd, consumer); 1494 1495 kvm_arm_resume_guest(irqfd->kvm); 1496} 1497 1498/** 1499 * Initialize Hyp-mode and memory mappings on all CPUs. 1500 */ 1501int kvm_arch_init(void *opaque) 1502{ 1503 int err; 1504 int ret, cpu; 1505 bool in_hyp_mode; 1506 1507 if (!is_hyp_mode_available()) { 1508 kvm_info("HYP mode not available\n"); 1509 return -ENODEV; 1510 } 1511 1512 for_each_online_cpu(cpu) { 1513 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1); 1514 if (ret < 0) { 1515 kvm_err("Error, CPU %d not supported!\n", cpu); 1516 return -ENODEV; 1517 } 1518 } 1519 1520 err = init_common_resources(); 1521 if (err) 1522 return err; 1523 1524 in_hyp_mode = is_kernel_in_hyp_mode(); 1525 1526 if (!in_hyp_mode) { 1527 err = init_hyp_mode(); 1528 if (err) 1529 goto out_err; 1530 } 1531 1532 err = init_subsystems(); 1533 if (err) 1534 goto out_hyp; 1535 1536 if (in_hyp_mode) 1537 kvm_info("VHE mode initialized successfully\n"); 1538 else 1539 kvm_info("Hyp mode initialized successfully\n"); 1540 1541 return 0; 1542 1543out_hyp: 1544 if (!in_hyp_mode) 1545 teardown_hyp_mode(); 1546out_err: 1547 teardown_common_resources(); 1548 return err; 1549} 1550 1551/* NOP: Compiling as a module not supported */ 1552void kvm_arch_exit(void) 1553{ 1554 kvm_perf_teardown(); 1555} 1556 1557static int arm_init(void) 1558{ 1559 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 1560 return rc; 1561} 1562 1563module_init(arm_init);