at v4.15 951 lines 25 kB view raw
1/* 2 * Copyright (C) 2012 ARM Ltd. 3 * Author: Marc Zyngier <marc.zyngier@arm.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 */ 18 19#include <linux/cpu.h> 20#include <linux/kvm.h> 21#include <linux/kvm_host.h> 22#include <linux/interrupt.h> 23#include <linux/irq.h> 24#include <linux/uaccess.h> 25 26#include <clocksource/arm_arch_timer.h> 27#include <asm/arch_timer.h> 28#include <asm/kvm_hyp.h> 29 30#include <kvm/arm_vgic.h> 31#include <kvm/arm_arch_timer.h> 32 33#include "trace.h" 34 35static struct timecounter *timecounter; 36static unsigned int host_vtimer_irq; 37static u32 host_vtimer_irq_flags; 38 39static const struct kvm_irq_level default_ptimer_irq = { 40 .irq = 30, 41 .level = 1, 42}; 43 44static const struct kvm_irq_level default_vtimer_irq = { 45 .irq = 27, 46 .level = 1, 47}; 48 49static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx); 50static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level, 51 struct arch_timer_context *timer_ctx); 52static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx); 53 54u64 kvm_phys_timer_read(void) 55{ 56 return timecounter->cc->read(timecounter->cc); 57} 58 59static void soft_timer_start(struct hrtimer *hrt, u64 ns) 60{ 61 hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns), 62 HRTIMER_MODE_ABS); 63} 64 65static void soft_timer_cancel(struct hrtimer *hrt, struct work_struct *work) 66{ 67 hrtimer_cancel(hrt); 68 if (work) 69 cancel_work_sync(work); 70} 71 72static void kvm_vtimer_update_mask_user(struct kvm_vcpu *vcpu) 73{ 74 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 75 76 /* 77 * When using a userspace irqchip with the architected timers, we must 78 * prevent continuously exiting from the guest, and therefore mask the 79 * physical interrupt by disabling it on the host interrupt controller 80 * when the virtual level is high, such that the guest can make 81 * forward progress. Once we detect the output level being 82 * de-asserted, we unmask the interrupt again so that we exit from the 83 * guest when the timer fires. 84 */ 85 if (vtimer->irq.level) 86 disable_percpu_irq(host_vtimer_irq); 87 else 88 enable_percpu_irq(host_vtimer_irq, 0); 89} 90 91static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id) 92{ 93 struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id; 94 struct arch_timer_context *vtimer; 95 u32 cnt_ctl; 96 97 /* 98 * We may see a timer interrupt after vcpu_put() has been called which 99 * sets the CPU's vcpu pointer to NULL, because even though the timer 100 * has been disabled in vtimer_save_state(), the hardware interrupt 101 * signal may not have been retired from the interrupt controller yet. 102 */ 103 if (!vcpu) 104 return IRQ_HANDLED; 105 106 vtimer = vcpu_vtimer(vcpu); 107 if (!vtimer->irq.level) { 108 cnt_ctl = read_sysreg_el0(cntv_ctl); 109 cnt_ctl &= ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT | 110 ARCH_TIMER_CTRL_IT_MASK; 111 if (cnt_ctl == (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT)) 112 kvm_timer_update_irq(vcpu, true, vtimer); 113 } 114 115 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) 116 kvm_vtimer_update_mask_user(vcpu); 117 118 return IRQ_HANDLED; 119} 120 121/* 122 * Work function for handling the backup timer that we schedule when a vcpu is 123 * no longer running, but had a timer programmed to fire in the future. 124 */ 125static void kvm_timer_inject_irq_work(struct work_struct *work) 126{ 127 struct kvm_vcpu *vcpu; 128 129 vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired); 130 131 /* 132 * If the vcpu is blocked we want to wake it up so that it will see 133 * the timer has expired when entering the guest. 134 */ 135 kvm_vcpu_wake_up(vcpu); 136} 137 138static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx) 139{ 140 u64 cval, now; 141 142 cval = timer_ctx->cnt_cval; 143 now = kvm_phys_timer_read() - timer_ctx->cntvoff; 144 145 if (now < cval) { 146 u64 ns; 147 148 ns = cyclecounter_cyc2ns(timecounter->cc, 149 cval - now, 150 timecounter->mask, 151 &timecounter->frac); 152 return ns; 153 } 154 155 return 0; 156} 157 158static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx) 159{ 160 return !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) && 161 (timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE); 162} 163 164/* 165 * Returns the earliest expiration time in ns among guest timers. 166 * Note that it will return 0 if none of timers can fire. 167 */ 168static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu) 169{ 170 u64 min_virt = ULLONG_MAX, min_phys = ULLONG_MAX; 171 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 172 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 173 174 if (kvm_timer_irq_can_fire(vtimer)) 175 min_virt = kvm_timer_compute_delta(vtimer); 176 177 if (kvm_timer_irq_can_fire(ptimer)) 178 min_phys = kvm_timer_compute_delta(ptimer); 179 180 /* If none of timers can fire, then return 0 */ 181 if ((min_virt == ULLONG_MAX) && (min_phys == ULLONG_MAX)) 182 return 0; 183 184 return min(min_virt, min_phys); 185} 186 187static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt) 188{ 189 struct arch_timer_cpu *timer; 190 struct kvm_vcpu *vcpu; 191 u64 ns; 192 193 timer = container_of(hrt, struct arch_timer_cpu, bg_timer); 194 vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu); 195 196 /* 197 * Check that the timer has really expired from the guest's 198 * PoV (NTP on the host may have forced it to expire 199 * early). If we should have slept longer, restart it. 200 */ 201 ns = kvm_timer_earliest_exp(vcpu); 202 if (unlikely(ns)) { 203 hrtimer_forward_now(hrt, ns_to_ktime(ns)); 204 return HRTIMER_RESTART; 205 } 206 207 schedule_work(&timer->expired); 208 return HRTIMER_NORESTART; 209} 210 211static enum hrtimer_restart kvm_phys_timer_expire(struct hrtimer *hrt) 212{ 213 struct arch_timer_context *ptimer; 214 struct arch_timer_cpu *timer; 215 struct kvm_vcpu *vcpu; 216 u64 ns; 217 218 timer = container_of(hrt, struct arch_timer_cpu, phys_timer); 219 vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu); 220 ptimer = vcpu_ptimer(vcpu); 221 222 /* 223 * Check that the timer has really expired from the guest's 224 * PoV (NTP on the host may have forced it to expire 225 * early). If not ready, schedule for a later time. 226 */ 227 ns = kvm_timer_compute_delta(ptimer); 228 if (unlikely(ns)) { 229 hrtimer_forward_now(hrt, ns_to_ktime(ns)); 230 return HRTIMER_RESTART; 231 } 232 233 kvm_timer_update_irq(vcpu, true, ptimer); 234 return HRTIMER_NORESTART; 235} 236 237static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx) 238{ 239 u64 cval, now; 240 241 if (!kvm_timer_irq_can_fire(timer_ctx)) 242 return false; 243 244 cval = timer_ctx->cnt_cval; 245 now = kvm_phys_timer_read() - timer_ctx->cntvoff; 246 247 return cval <= now; 248} 249 250bool kvm_timer_is_pending(struct kvm_vcpu *vcpu) 251{ 252 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 253 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 254 255 if (vtimer->irq.level || ptimer->irq.level) 256 return true; 257 258 /* 259 * When this is called from withing the wait loop of kvm_vcpu_block(), 260 * the software view of the timer state is up to date (timer->loaded 261 * is false), and so we can simply check if the timer should fire now. 262 */ 263 if (!vtimer->loaded && kvm_timer_should_fire(vtimer)) 264 return true; 265 266 return kvm_timer_should_fire(ptimer); 267} 268 269/* 270 * Reflect the timer output level into the kvm_run structure 271 */ 272void kvm_timer_update_run(struct kvm_vcpu *vcpu) 273{ 274 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 275 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 276 struct kvm_sync_regs *regs = &vcpu->run->s.regs; 277 278 /* Populate the device bitmap with the timer states */ 279 regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER | 280 KVM_ARM_DEV_EL1_PTIMER); 281 if (vtimer->irq.level) 282 regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER; 283 if (ptimer->irq.level) 284 regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER; 285} 286 287static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level, 288 struct arch_timer_context *timer_ctx) 289{ 290 int ret; 291 292 timer_ctx->irq.level = new_level; 293 trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq, 294 timer_ctx->irq.level); 295 296 if (likely(irqchip_in_kernel(vcpu->kvm))) { 297 ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id, 298 timer_ctx->irq.irq, 299 timer_ctx->irq.level, 300 timer_ctx); 301 WARN_ON(ret); 302 } 303} 304 305/* Schedule the background timer for the emulated timer. */ 306static void phys_timer_emulate(struct kvm_vcpu *vcpu) 307{ 308 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 309 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 310 311 /* 312 * If the timer can fire now we have just raised the IRQ line and we 313 * don't need to have a soft timer scheduled for the future. If the 314 * timer cannot fire at all, then we also don't need a soft timer. 315 */ 316 if (kvm_timer_should_fire(ptimer) || !kvm_timer_irq_can_fire(ptimer)) { 317 soft_timer_cancel(&timer->phys_timer, NULL); 318 return; 319 } 320 321 soft_timer_start(&timer->phys_timer, kvm_timer_compute_delta(ptimer)); 322} 323 324/* 325 * Check if there was a change in the timer state, so that we should either 326 * raise or lower the line level to the GIC or schedule a background timer to 327 * emulate the physical timer. 328 */ 329static void kvm_timer_update_state(struct kvm_vcpu *vcpu) 330{ 331 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 332 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 333 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 334 335 if (unlikely(!timer->enabled)) 336 return; 337 338 if (kvm_timer_should_fire(vtimer) != vtimer->irq.level) 339 kvm_timer_update_irq(vcpu, !vtimer->irq.level, vtimer); 340 341 if (kvm_timer_should_fire(ptimer) != ptimer->irq.level) 342 kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer); 343 344 phys_timer_emulate(vcpu); 345} 346 347static void vtimer_save_state(struct kvm_vcpu *vcpu) 348{ 349 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 350 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 351 unsigned long flags; 352 353 local_irq_save(flags); 354 355 if (!vtimer->loaded) 356 goto out; 357 358 if (timer->enabled) { 359 vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl); 360 vtimer->cnt_cval = read_sysreg_el0(cntv_cval); 361 } 362 363 /* Disable the virtual timer */ 364 write_sysreg_el0(0, cntv_ctl); 365 isb(); 366 367 vtimer->loaded = false; 368out: 369 local_irq_restore(flags); 370} 371 372/* 373 * Schedule the background timer before calling kvm_vcpu_block, so that this 374 * thread is removed from its waitqueue and made runnable when there's a timer 375 * interrupt to handle. 376 */ 377void kvm_timer_schedule(struct kvm_vcpu *vcpu) 378{ 379 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 380 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 381 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 382 383 vtimer_save_state(vcpu); 384 385 /* 386 * No need to schedule a background timer if any guest timer has 387 * already expired, because kvm_vcpu_block will return before putting 388 * the thread to sleep. 389 */ 390 if (kvm_timer_should_fire(vtimer) || kvm_timer_should_fire(ptimer)) 391 return; 392 393 /* 394 * If both timers are not capable of raising interrupts (disabled or 395 * masked), then there's no more work for us to do. 396 */ 397 if (!kvm_timer_irq_can_fire(vtimer) && !kvm_timer_irq_can_fire(ptimer)) 398 return; 399 400 /* 401 * The guest timers have not yet expired, schedule a background timer. 402 * Set the earliest expiration time among the guest timers. 403 */ 404 soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu)); 405} 406 407static void vtimer_restore_state(struct kvm_vcpu *vcpu) 408{ 409 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 410 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 411 unsigned long flags; 412 413 local_irq_save(flags); 414 415 if (vtimer->loaded) 416 goto out; 417 418 if (timer->enabled) { 419 write_sysreg_el0(vtimer->cnt_cval, cntv_cval); 420 isb(); 421 write_sysreg_el0(vtimer->cnt_ctl, cntv_ctl); 422 } 423 424 vtimer->loaded = true; 425out: 426 local_irq_restore(flags); 427} 428 429void kvm_timer_unschedule(struct kvm_vcpu *vcpu) 430{ 431 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 432 433 vtimer_restore_state(vcpu); 434 435 soft_timer_cancel(&timer->bg_timer, &timer->expired); 436} 437 438static void set_cntvoff(u64 cntvoff) 439{ 440 u32 low = lower_32_bits(cntvoff); 441 u32 high = upper_32_bits(cntvoff); 442 443 /* 444 * Since kvm_call_hyp doesn't fully support the ARM PCS especially on 445 * 32-bit systems, but rather passes register by register shifted one 446 * place (we put the function address in r0/x0), we cannot simply pass 447 * a 64-bit value as an argument, but have to split the value in two 448 * 32-bit halves. 449 */ 450 kvm_call_hyp(__kvm_timer_set_cntvoff, low, high); 451} 452 453static void kvm_timer_vcpu_load_vgic(struct kvm_vcpu *vcpu) 454{ 455 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 456 bool phys_active; 457 int ret; 458 459 phys_active = vtimer->irq.level || 460 kvm_vgic_map_is_active(vcpu, vtimer->irq.irq); 461 462 ret = irq_set_irqchip_state(host_vtimer_irq, 463 IRQCHIP_STATE_ACTIVE, 464 phys_active); 465 WARN_ON(ret); 466} 467 468static void kvm_timer_vcpu_load_user(struct kvm_vcpu *vcpu) 469{ 470 kvm_vtimer_update_mask_user(vcpu); 471} 472 473void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu) 474{ 475 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 476 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 477 478 if (unlikely(!timer->enabled)) 479 return; 480 481 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) 482 kvm_timer_vcpu_load_user(vcpu); 483 else 484 kvm_timer_vcpu_load_vgic(vcpu); 485 486 set_cntvoff(vtimer->cntvoff); 487 488 vtimer_restore_state(vcpu); 489 490 /* Set the background timer for the physical timer emulation. */ 491 phys_timer_emulate(vcpu); 492} 493 494bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu) 495{ 496 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 497 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 498 struct kvm_sync_regs *sregs = &vcpu->run->s.regs; 499 bool vlevel, plevel; 500 501 if (likely(irqchip_in_kernel(vcpu->kvm))) 502 return false; 503 504 vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER; 505 plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER; 506 507 return vtimer->irq.level != vlevel || 508 ptimer->irq.level != plevel; 509} 510 511void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu) 512{ 513 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 514 515 if (unlikely(!timer->enabled)) 516 return; 517 518 vtimer_save_state(vcpu); 519 520 /* 521 * Cancel the physical timer emulation, because the only case where we 522 * need it after a vcpu_put is in the context of a sleeping VCPU, and 523 * in that case we already factor in the deadline for the physical 524 * timer when scheduling the bg_timer. 525 * 526 * In any case, we re-schedule the hrtimer for the physical timer when 527 * coming back to the VCPU thread in kvm_timer_vcpu_load(). 528 */ 529 soft_timer_cancel(&timer->phys_timer, NULL); 530 531 /* 532 * The kernel may decide to run userspace after calling vcpu_put, so 533 * we reset cntvoff to 0 to ensure a consistent read between user 534 * accesses to the virtual counter and kernel access to the physical 535 * counter. 536 */ 537 set_cntvoff(0); 538} 539 540static void unmask_vtimer_irq(struct kvm_vcpu *vcpu) 541{ 542 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 543 544 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 545 kvm_vtimer_update_mask_user(vcpu); 546 return; 547 } 548 549 /* 550 * If the guest disabled the timer without acking the interrupt, then 551 * we must make sure the physical and virtual active states are in 552 * sync by deactivating the physical interrupt, because otherwise we 553 * wouldn't see the next timer interrupt in the host. 554 */ 555 if (!kvm_vgic_map_is_active(vcpu, vtimer->irq.irq)) { 556 int ret; 557 ret = irq_set_irqchip_state(host_vtimer_irq, 558 IRQCHIP_STATE_ACTIVE, 559 false); 560 WARN_ON(ret); 561 } 562} 563 564/** 565 * kvm_timer_sync_hwstate - sync timer state from cpu 566 * @vcpu: The vcpu pointer 567 * 568 * Check if any of the timers have expired while we were running in the guest, 569 * and inject an interrupt if that was the case. 570 */ 571void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu) 572{ 573 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 574 575 /* 576 * If we entered the guest with the vtimer output asserted we have to 577 * check if the guest has modified the timer so that we should lower 578 * the line at this point. 579 */ 580 if (vtimer->irq.level) { 581 vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl); 582 vtimer->cnt_cval = read_sysreg_el0(cntv_cval); 583 if (!kvm_timer_should_fire(vtimer)) { 584 kvm_timer_update_irq(vcpu, false, vtimer); 585 unmask_vtimer_irq(vcpu); 586 } 587 } 588} 589 590int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu) 591{ 592 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 593 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 594 595 /* 596 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8 597 * and to 0 for ARMv7. We provide an implementation that always 598 * resets the timer to be disabled and unmasked and is compliant with 599 * the ARMv7 architecture. 600 */ 601 vtimer->cnt_ctl = 0; 602 ptimer->cnt_ctl = 0; 603 kvm_timer_update_state(vcpu); 604 605 return 0; 606} 607 608/* Make the updates of cntvoff for all vtimer contexts atomic */ 609static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff) 610{ 611 int i; 612 struct kvm *kvm = vcpu->kvm; 613 struct kvm_vcpu *tmp; 614 615 mutex_lock(&kvm->lock); 616 kvm_for_each_vcpu(i, tmp, kvm) 617 vcpu_vtimer(tmp)->cntvoff = cntvoff; 618 619 /* 620 * When called from the vcpu create path, the CPU being created is not 621 * included in the loop above, so we just set it here as well. 622 */ 623 vcpu_vtimer(vcpu)->cntvoff = cntvoff; 624 mutex_unlock(&kvm->lock); 625} 626 627void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu) 628{ 629 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 630 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 631 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 632 633 /* Synchronize cntvoff across all vtimers of a VM. */ 634 update_vtimer_cntvoff(vcpu, kvm_phys_timer_read()); 635 vcpu_ptimer(vcpu)->cntvoff = 0; 636 637 INIT_WORK(&timer->expired, kvm_timer_inject_irq_work); 638 hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 639 timer->bg_timer.function = kvm_bg_timer_expire; 640 641 hrtimer_init(&timer->phys_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 642 timer->phys_timer.function = kvm_phys_timer_expire; 643 644 vtimer->irq.irq = default_vtimer_irq.irq; 645 ptimer->irq.irq = default_ptimer_irq.irq; 646} 647 648static void kvm_timer_init_interrupt(void *info) 649{ 650 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags); 651} 652 653int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value) 654{ 655 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 656 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 657 658 switch (regid) { 659 case KVM_REG_ARM_TIMER_CTL: 660 vtimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT; 661 break; 662 case KVM_REG_ARM_TIMER_CNT: 663 update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value); 664 break; 665 case KVM_REG_ARM_TIMER_CVAL: 666 vtimer->cnt_cval = value; 667 break; 668 case KVM_REG_ARM_PTIMER_CTL: 669 ptimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT; 670 break; 671 case KVM_REG_ARM_PTIMER_CVAL: 672 ptimer->cnt_cval = value; 673 break; 674 675 default: 676 return -1; 677 } 678 679 kvm_timer_update_state(vcpu); 680 return 0; 681} 682 683static u64 read_timer_ctl(struct arch_timer_context *timer) 684{ 685 /* 686 * Set ISTATUS bit if it's expired. 687 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is 688 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit 689 * regardless of ENABLE bit for our implementation convenience. 690 */ 691 if (!kvm_timer_compute_delta(timer)) 692 return timer->cnt_ctl | ARCH_TIMER_CTRL_IT_STAT; 693 else 694 return timer->cnt_ctl; 695} 696 697u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid) 698{ 699 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 700 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 701 702 switch (regid) { 703 case KVM_REG_ARM_TIMER_CTL: 704 return read_timer_ctl(vtimer); 705 case KVM_REG_ARM_TIMER_CNT: 706 return kvm_phys_timer_read() - vtimer->cntvoff; 707 case KVM_REG_ARM_TIMER_CVAL: 708 return vtimer->cnt_cval; 709 case KVM_REG_ARM_PTIMER_CTL: 710 return read_timer_ctl(ptimer); 711 case KVM_REG_ARM_PTIMER_CVAL: 712 return ptimer->cnt_cval; 713 case KVM_REG_ARM_PTIMER_CNT: 714 return kvm_phys_timer_read(); 715 } 716 return (u64)-1; 717} 718 719static int kvm_timer_starting_cpu(unsigned int cpu) 720{ 721 kvm_timer_init_interrupt(NULL); 722 return 0; 723} 724 725static int kvm_timer_dying_cpu(unsigned int cpu) 726{ 727 disable_percpu_irq(host_vtimer_irq); 728 return 0; 729} 730 731int kvm_timer_hyp_init(bool has_gic) 732{ 733 struct arch_timer_kvm_info *info; 734 int err; 735 736 info = arch_timer_get_kvm_info(); 737 timecounter = &info->timecounter; 738 739 if (!timecounter->cc) { 740 kvm_err("kvm_arch_timer: uninitialized timecounter\n"); 741 return -ENODEV; 742 } 743 744 if (info->virtual_irq <= 0) { 745 kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n", 746 info->virtual_irq); 747 return -ENODEV; 748 } 749 host_vtimer_irq = info->virtual_irq; 750 751 host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq); 752 if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH && 753 host_vtimer_irq_flags != IRQF_TRIGGER_LOW) { 754 kvm_err("Invalid trigger for IRQ%d, assuming level low\n", 755 host_vtimer_irq); 756 host_vtimer_irq_flags = IRQF_TRIGGER_LOW; 757 } 758 759 err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler, 760 "kvm guest timer", kvm_get_running_vcpus()); 761 if (err) { 762 kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n", 763 host_vtimer_irq, err); 764 return err; 765 } 766 767 if (has_gic) { 768 err = irq_set_vcpu_affinity(host_vtimer_irq, 769 kvm_get_running_vcpus()); 770 if (err) { 771 kvm_err("kvm_arch_timer: error setting vcpu affinity\n"); 772 goto out_free_irq; 773 } 774 } 775 776 kvm_info("virtual timer IRQ%d\n", host_vtimer_irq); 777 778 cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING, 779 "kvm/arm/timer:starting", kvm_timer_starting_cpu, 780 kvm_timer_dying_cpu); 781 return 0; 782out_free_irq: 783 free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus()); 784 return err; 785} 786 787void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu) 788{ 789 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 790 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 791 792 soft_timer_cancel(&timer->bg_timer, &timer->expired); 793 soft_timer_cancel(&timer->phys_timer, NULL); 794 kvm_vgic_unmap_phys_irq(vcpu, vtimer->irq.irq); 795} 796 797static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu) 798{ 799 int vtimer_irq, ptimer_irq; 800 int i, ret; 801 802 vtimer_irq = vcpu_vtimer(vcpu)->irq.irq; 803 ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu)); 804 if (ret) 805 return false; 806 807 ptimer_irq = vcpu_ptimer(vcpu)->irq.irq; 808 ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu)); 809 if (ret) 810 return false; 811 812 kvm_for_each_vcpu(i, vcpu, vcpu->kvm) { 813 if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq || 814 vcpu_ptimer(vcpu)->irq.irq != ptimer_irq) 815 return false; 816 } 817 818 return true; 819} 820 821int kvm_timer_enable(struct kvm_vcpu *vcpu) 822{ 823 struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu; 824 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 825 int ret; 826 827 if (timer->enabled) 828 return 0; 829 830 /* Without a VGIC we do not map virtual IRQs to physical IRQs */ 831 if (!irqchip_in_kernel(vcpu->kvm)) 832 goto no_vgic; 833 834 if (!vgic_initialized(vcpu->kvm)) 835 return -ENODEV; 836 837 if (!timer_irqs_are_valid(vcpu)) { 838 kvm_debug("incorrectly configured timer irqs\n"); 839 return -EINVAL; 840 } 841 842 ret = kvm_vgic_map_phys_irq(vcpu, host_vtimer_irq, vtimer->irq.irq); 843 if (ret) 844 return ret; 845 846no_vgic: 847 preempt_disable(); 848 timer->enabled = 1; 849 kvm_timer_vcpu_load(vcpu); 850 preempt_enable(); 851 852 return 0; 853} 854 855/* 856 * On VHE system, we only need to configure trap on physical timer and counter 857 * accesses in EL0 and EL1 once, not for every world switch. 858 * The host kernel runs at EL2 with HCR_EL2.TGE == 1, 859 * and this makes those bits have no effect for the host kernel execution. 860 */ 861void kvm_timer_init_vhe(void) 862{ 863 /* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */ 864 u32 cnthctl_shift = 10; 865 u64 val; 866 867 /* 868 * Disallow physical timer access for the guest. 869 * Physical counter access is allowed. 870 */ 871 val = read_sysreg(cnthctl_el2); 872 val &= ~(CNTHCTL_EL1PCEN << cnthctl_shift); 873 val |= (CNTHCTL_EL1PCTEN << cnthctl_shift); 874 write_sysreg(val, cnthctl_el2); 875} 876 877static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq) 878{ 879 struct kvm_vcpu *vcpu; 880 int i; 881 882 kvm_for_each_vcpu(i, vcpu, kvm) { 883 vcpu_vtimer(vcpu)->irq.irq = vtimer_irq; 884 vcpu_ptimer(vcpu)->irq.irq = ptimer_irq; 885 } 886} 887 888int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) 889{ 890 int __user *uaddr = (int __user *)(long)attr->addr; 891 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 892 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 893 int irq; 894 895 if (!irqchip_in_kernel(vcpu->kvm)) 896 return -EINVAL; 897 898 if (get_user(irq, uaddr)) 899 return -EFAULT; 900 901 if (!(irq_is_ppi(irq))) 902 return -EINVAL; 903 904 if (vcpu->arch.timer_cpu.enabled) 905 return -EBUSY; 906 907 switch (attr->attr) { 908 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER: 909 set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq); 910 break; 911 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER: 912 set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq); 913 break; 914 default: 915 return -ENXIO; 916 } 917 918 return 0; 919} 920 921int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) 922{ 923 int __user *uaddr = (int __user *)(long)attr->addr; 924 struct arch_timer_context *timer; 925 int irq; 926 927 switch (attr->attr) { 928 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER: 929 timer = vcpu_vtimer(vcpu); 930 break; 931 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER: 932 timer = vcpu_ptimer(vcpu); 933 break; 934 default: 935 return -ENXIO; 936 } 937 938 irq = timer->irq.irq; 939 return put_user(irq, uaddr); 940} 941 942int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) 943{ 944 switch (attr->attr) { 945 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER: 946 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER: 947 return 0; 948 } 949 950 return -ENXIO; 951}