Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <linux/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/sched/mm.h>
85#include <linux/mutex.h>
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
95#include <linux/ethtool.h>
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
98#include <linux/bpf.h>
99#include <linux/bpf_trace.h>
100#include <net/net_namespace.h>
101#include <net/sock.h>
102#include <net/busy_poll.h>
103#include <linux/rtnetlink.h>
104#include <linux/stat.h>
105#include <net/dst.h>
106#include <net/dst_metadata.h>
107#include <net/pkt_sched.h>
108#include <net/pkt_cls.h>
109#include <net/checksum.h>
110#include <net/xfrm.h>
111#include <linux/highmem.h>
112#include <linux/init.h>
113#include <linux/module.h>
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
117#include <net/iw_handler.h>
118#include <asm/current.h>
119#include <linux/audit.h>
120#include <linux/dmaengine.h>
121#include <linux/err.h>
122#include <linux/ctype.h>
123#include <linux/if_arp.h>
124#include <linux/if_vlan.h>
125#include <linux/ip.h>
126#include <net/ip.h>
127#include <net/mpls.h>
128#include <linux/ipv6.h>
129#include <linux/in.h>
130#include <linux/jhash.h>
131#include <linux/random.h>
132#include <trace/events/napi.h>
133#include <trace/events/net.h>
134#include <trace/events/skb.h>
135#include <linux/pci.h>
136#include <linux/inetdevice.h>
137#include <linux/cpu_rmap.h>
138#include <linux/static_key.h>
139#include <linux/hashtable.h>
140#include <linux/vmalloc.h>
141#include <linux/if_macvlan.h>
142#include <linux/errqueue.h>
143#include <linux/hrtimer.h>
144#include <linux/netfilter_ingress.h>
145#include <linux/crash_dump.h>
146#include <linux/sctp.h>
147#include <net/udp_tunnel.h>
148#include <linux/net_namespace.h>
149
150#include "net-sysfs.h"
151
152/* Instead of increasing this, you should create a hash table. */
153#define MAX_GRO_SKBS 8
154
155/* This should be increased if a protocol with a bigger head is added. */
156#define GRO_MAX_HEAD (MAX_HEADER + 128)
157
158static DEFINE_SPINLOCK(ptype_lock);
159static DEFINE_SPINLOCK(offload_lock);
160struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161struct list_head ptype_all __read_mostly; /* Taps */
162static struct list_head offload_base __read_mostly;
163
164static int netif_rx_internal(struct sk_buff *skb);
165static int call_netdevice_notifiers_info(unsigned long val,
166 struct netdev_notifier_info *info);
167static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169/*
170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171 * semaphore.
172 *
173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
176 * dev_base_head list, and hold dev_base_lock for writing when they do the
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
188DEFINE_RWLOCK(dev_base_lock);
189EXPORT_SYMBOL(dev_base_lock);
190
191static DEFINE_MUTEX(ifalias_mutex);
192
193/* protects napi_hash addition/deletion and napi_gen_id */
194static DEFINE_SPINLOCK(napi_hash_lock);
195
196static unsigned int napi_gen_id = NR_CPUS;
197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199static seqcount_t devnet_rename_seq;
200
201static inline void dev_base_seq_inc(struct net *net)
202{
203 while (++net->dev_base_seq == 0)
204 ;
205}
206
207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208{
209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212}
213
214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215{
216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217}
218
219static inline void rps_lock(struct softnet_data *sd)
220{
221#ifdef CONFIG_RPS
222 spin_lock(&sd->input_pkt_queue.lock);
223#endif
224}
225
226static inline void rps_unlock(struct softnet_data *sd)
227{
228#ifdef CONFIG_RPS
229 spin_unlock(&sd->input_pkt_queue.lock);
230#endif
231}
232
233/* Device list insertion */
234static void list_netdevice(struct net_device *dev)
235{
236 struct net *net = dev_net(dev);
237
238 ASSERT_RTNL();
239
240 write_lock_bh(&dev_base_lock);
241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 hlist_add_head_rcu(&dev->index_hlist,
244 dev_index_hash(net, dev->ifindex));
245 write_unlock_bh(&dev_base_lock);
246
247 dev_base_seq_inc(net);
248}
249
250/* Device list removal
251 * caller must respect a RCU grace period before freeing/reusing dev
252 */
253static void unlist_netdevice(struct net_device *dev)
254{
255 ASSERT_RTNL();
256
257 /* Unlink dev from the device chain */
258 write_lock_bh(&dev_base_lock);
259 list_del_rcu(&dev->dev_list);
260 hlist_del_rcu(&dev->name_hlist);
261 hlist_del_rcu(&dev->index_hlist);
262 write_unlock_bh(&dev_base_lock);
263
264 dev_base_seq_inc(dev_net(dev));
265}
266
267/*
268 * Our notifier list
269 */
270
271static RAW_NOTIFIER_HEAD(netdev_chain);
272
273/*
274 * Device drivers call our routines to queue packets here. We empty the
275 * queue in the local softnet handler.
276 */
277
278DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279EXPORT_PER_CPU_SYMBOL(softnet_data);
280
281#ifdef CONFIG_LOCKDEP
282/*
283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284 * according to dev->type
285 */
286static const unsigned short netdev_lock_type[] = {
287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302
303static const char *const netdev_lock_name[] = {
304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319
320static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322
323static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324{
325 int i;
326
327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 if (netdev_lock_type[i] == dev_type)
329 return i;
330 /* the last key is used by default */
331 return ARRAY_SIZE(netdev_lock_type) - 1;
332}
333
334static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
336{
337 int i;
338
339 i = netdev_lock_pos(dev_type);
340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 netdev_lock_name[i]);
342}
343
344static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345{
346 int i;
347
348 i = netdev_lock_pos(dev->type);
349 lockdep_set_class_and_name(&dev->addr_list_lock,
350 &netdev_addr_lock_key[i],
351 netdev_lock_name[i]);
352}
353#else
354static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 unsigned short dev_type)
356{
357}
358static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359{
360}
361#endif
362
363/*******************************************************************************
364 *
365 * Protocol management and registration routines
366 *
367 *******************************************************************************/
368
369
370/*
371 * Add a protocol ID to the list. Now that the input handler is
372 * smarter we can dispense with all the messy stuff that used to be
373 * here.
374 *
375 * BEWARE!!! Protocol handlers, mangling input packets,
376 * MUST BE last in hash buckets and checking protocol handlers
377 * MUST start from promiscuous ptype_all chain in net_bh.
378 * It is true now, do not change it.
379 * Explanation follows: if protocol handler, mangling packet, will
380 * be the first on list, it is not able to sense, that packet
381 * is cloned and should be copied-on-write, so that it will
382 * change it and subsequent readers will get broken packet.
383 * --ANK (980803)
384 */
385
386static inline struct list_head *ptype_head(const struct packet_type *pt)
387{
388 if (pt->type == htons(ETH_P_ALL))
389 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 else
391 return pt->dev ? &pt->dev->ptype_specific :
392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393}
394
395/**
396 * dev_add_pack - add packet handler
397 * @pt: packet type declaration
398 *
399 * Add a protocol handler to the networking stack. The passed &packet_type
400 * is linked into kernel lists and may not be freed until it has been
401 * removed from the kernel lists.
402 *
403 * This call does not sleep therefore it can not
404 * guarantee all CPU's that are in middle of receiving packets
405 * will see the new packet type (until the next received packet).
406 */
407
408void dev_add_pack(struct packet_type *pt)
409{
410 struct list_head *head = ptype_head(pt);
411
412 spin_lock(&ptype_lock);
413 list_add_rcu(&pt->list, head);
414 spin_unlock(&ptype_lock);
415}
416EXPORT_SYMBOL(dev_add_pack);
417
418/**
419 * __dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
426 *
427 * The packet type might still be in use by receivers
428 * and must not be freed until after all the CPU's have gone
429 * through a quiescent state.
430 */
431void __dev_remove_pack(struct packet_type *pt)
432{
433 struct list_head *head = ptype_head(pt);
434 struct packet_type *pt1;
435
436 spin_lock(&ptype_lock);
437
438 list_for_each_entry(pt1, head, list) {
439 if (pt == pt1) {
440 list_del_rcu(&pt->list);
441 goto out;
442 }
443 }
444
445 pr_warn("dev_remove_pack: %p not found\n", pt);
446out:
447 spin_unlock(&ptype_lock);
448}
449EXPORT_SYMBOL(__dev_remove_pack);
450
451/**
452 * dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
454 *
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
458 * returns.
459 *
460 * This call sleeps to guarantee that no CPU is looking at the packet
461 * type after return.
462 */
463void dev_remove_pack(struct packet_type *pt)
464{
465 __dev_remove_pack(pt);
466
467 synchronize_net();
468}
469EXPORT_SYMBOL(dev_remove_pack);
470
471
472/**
473 * dev_add_offload - register offload handlers
474 * @po: protocol offload declaration
475 *
476 * Add protocol offload handlers to the networking stack. The passed
477 * &proto_offload is linked into kernel lists and may not be freed until
478 * it has been removed from the kernel lists.
479 *
480 * This call does not sleep therefore it can not
481 * guarantee all CPU's that are in middle of receiving packets
482 * will see the new offload handlers (until the next received packet).
483 */
484void dev_add_offload(struct packet_offload *po)
485{
486 struct packet_offload *elem;
487
488 spin_lock(&offload_lock);
489 list_for_each_entry(elem, &offload_base, list) {
490 if (po->priority < elem->priority)
491 break;
492 }
493 list_add_rcu(&po->list, elem->list.prev);
494 spin_unlock(&offload_lock);
495}
496EXPORT_SYMBOL(dev_add_offload);
497
498/**
499 * __dev_remove_offload - remove offload handler
500 * @po: packet offload declaration
501 *
502 * Remove a protocol offload handler that was previously added to the
503 * kernel offload handlers by dev_add_offload(). The passed &offload_type
504 * is removed from the kernel lists and can be freed or reused once this
505 * function returns.
506 *
507 * The packet type might still be in use by receivers
508 * and must not be freed until after all the CPU's have gone
509 * through a quiescent state.
510 */
511static void __dev_remove_offload(struct packet_offload *po)
512{
513 struct list_head *head = &offload_base;
514 struct packet_offload *po1;
515
516 spin_lock(&offload_lock);
517
518 list_for_each_entry(po1, head, list) {
519 if (po == po1) {
520 list_del_rcu(&po->list);
521 goto out;
522 }
523 }
524
525 pr_warn("dev_remove_offload: %p not found\n", po);
526out:
527 spin_unlock(&offload_lock);
528}
529
530/**
531 * dev_remove_offload - remove packet offload handler
532 * @po: packet offload declaration
533 *
534 * Remove a packet offload handler that was previously added to the kernel
535 * offload handlers by dev_add_offload(). The passed &offload_type is
536 * removed from the kernel lists and can be freed or reused once this
537 * function returns.
538 *
539 * This call sleeps to guarantee that no CPU is looking at the packet
540 * type after return.
541 */
542void dev_remove_offload(struct packet_offload *po)
543{
544 __dev_remove_offload(po);
545
546 synchronize_net();
547}
548EXPORT_SYMBOL(dev_remove_offload);
549
550/******************************************************************************
551 *
552 * Device Boot-time Settings Routines
553 *
554 ******************************************************************************/
555
556/* Boot time configuration table */
557static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559/**
560 * netdev_boot_setup_add - add new setup entry
561 * @name: name of the device
562 * @map: configured settings for the device
563 *
564 * Adds new setup entry to the dev_boot_setup list. The function
565 * returns 0 on error and 1 on success. This is a generic routine to
566 * all netdevices.
567 */
568static int netdev_boot_setup_add(char *name, struct ifmap *map)
569{
570 struct netdev_boot_setup *s;
571 int i;
572
573 s = dev_boot_setup;
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 memset(s[i].name, 0, sizeof(s[i].name));
577 strlcpy(s[i].name, name, IFNAMSIZ);
578 memcpy(&s[i].map, map, sizeof(s[i].map));
579 break;
580 }
581 }
582
583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584}
585
586/**
587 * netdev_boot_setup_check - check boot time settings
588 * @dev: the netdevice
589 *
590 * Check boot time settings for the device.
591 * The found settings are set for the device to be used
592 * later in the device probing.
593 * Returns 0 if no settings found, 1 if they are.
594 */
595int netdev_boot_setup_check(struct net_device *dev)
596{
597 struct netdev_boot_setup *s = dev_boot_setup;
598 int i;
599
600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 !strcmp(dev->name, s[i].name)) {
603 dev->irq = s[i].map.irq;
604 dev->base_addr = s[i].map.base_addr;
605 dev->mem_start = s[i].map.mem_start;
606 dev->mem_end = s[i].map.mem_end;
607 return 1;
608 }
609 }
610 return 0;
611}
612EXPORT_SYMBOL(netdev_boot_setup_check);
613
614
615/**
616 * netdev_boot_base - get address from boot time settings
617 * @prefix: prefix for network device
618 * @unit: id for network device
619 *
620 * Check boot time settings for the base address of device.
621 * The found settings are set for the device to be used
622 * later in the device probing.
623 * Returns 0 if no settings found.
624 */
625unsigned long netdev_boot_base(const char *prefix, int unit)
626{
627 const struct netdev_boot_setup *s = dev_boot_setup;
628 char name[IFNAMSIZ];
629 int i;
630
631 sprintf(name, "%s%d", prefix, unit);
632
633 /*
634 * If device already registered then return base of 1
635 * to indicate not to probe for this interface
636 */
637 if (__dev_get_by_name(&init_net, name))
638 return 1;
639
640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 if (!strcmp(name, s[i].name))
642 return s[i].map.base_addr;
643 return 0;
644}
645
646/*
647 * Saves at boot time configured settings for any netdevice.
648 */
649int __init netdev_boot_setup(char *str)
650{
651 int ints[5];
652 struct ifmap map;
653
654 str = get_options(str, ARRAY_SIZE(ints), ints);
655 if (!str || !*str)
656 return 0;
657
658 /* Save settings */
659 memset(&map, 0, sizeof(map));
660 if (ints[0] > 0)
661 map.irq = ints[1];
662 if (ints[0] > 1)
663 map.base_addr = ints[2];
664 if (ints[0] > 2)
665 map.mem_start = ints[3];
666 if (ints[0] > 3)
667 map.mem_end = ints[4];
668
669 /* Add new entry to the list */
670 return netdev_boot_setup_add(str, &map);
671}
672
673__setup("netdev=", netdev_boot_setup);
674
675/*******************************************************************************
676 *
677 * Device Interface Subroutines
678 *
679 *******************************************************************************/
680
681/**
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
684 *
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 */
688
689int dev_get_iflink(const struct net_device *dev)
690{
691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 return dev->netdev_ops->ndo_get_iflink(dev);
693
694 return dev->ifindex;
695}
696EXPORT_SYMBOL(dev_get_iflink);
697
698/**
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
701 * @skb: The packet.
702 *
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
706 */
707int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708{
709 struct ip_tunnel_info *info;
710
711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 return -EINVAL;
713
714 info = skb_tunnel_info_unclone(skb);
715 if (!info)
716 return -ENOMEM;
717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return -EINVAL;
719
720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721}
722EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
724/**
725 * __dev_get_by_name - find a device by its name
726 * @net: the applicable net namespace
727 * @name: name to find
728 *
729 * Find an interface by name. Must be called under RTNL semaphore
730 * or @dev_base_lock. If the name is found a pointer to the device
731 * is returned. If the name is not found then %NULL is returned. The
732 * reference counters are not incremented so the caller must be
733 * careful with locks.
734 */
735
736struct net_device *__dev_get_by_name(struct net *net, const char *name)
737{
738 struct net_device *dev;
739 struct hlist_head *head = dev_name_hash(net, name);
740
741 hlist_for_each_entry(dev, head, name_hlist)
742 if (!strncmp(dev->name, name, IFNAMSIZ))
743 return dev;
744
745 return NULL;
746}
747EXPORT_SYMBOL(__dev_get_by_name);
748
749/**
750 * dev_get_by_name_rcu - find a device by its name
751 * @net: the applicable net namespace
752 * @name: name to find
753 *
754 * Find an interface by name.
755 * If the name is found a pointer to the device is returned.
756 * If the name is not found then %NULL is returned.
757 * The reference counters are not incremented so the caller must be
758 * careful with locks. The caller must hold RCU lock.
759 */
760
761struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762{
763 struct net_device *dev;
764 struct hlist_head *head = dev_name_hash(net, name);
765
766 hlist_for_each_entry_rcu(dev, head, name_hlist)
767 if (!strncmp(dev->name, name, IFNAMSIZ))
768 return dev;
769
770 return NULL;
771}
772EXPORT_SYMBOL(dev_get_by_name_rcu);
773
774/**
775 * dev_get_by_name - find a device by its name
776 * @net: the applicable net namespace
777 * @name: name to find
778 *
779 * Find an interface by name. This can be called from any
780 * context and does its own locking. The returned handle has
781 * the usage count incremented and the caller must use dev_put() to
782 * release it when it is no longer needed. %NULL is returned if no
783 * matching device is found.
784 */
785
786struct net_device *dev_get_by_name(struct net *net, const char *name)
787{
788 struct net_device *dev;
789
790 rcu_read_lock();
791 dev = dev_get_by_name_rcu(net, name);
792 if (dev)
793 dev_hold(dev);
794 rcu_read_unlock();
795 return dev;
796}
797EXPORT_SYMBOL(dev_get_by_name);
798
799/**
800 * __dev_get_by_index - find a device by its ifindex
801 * @net: the applicable net namespace
802 * @ifindex: index of device
803 *
804 * Search for an interface by index. Returns %NULL if the device
805 * is not found or a pointer to the device. The device has not
806 * had its reference counter increased so the caller must be careful
807 * about locking. The caller must hold either the RTNL semaphore
808 * or @dev_base_lock.
809 */
810
811struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812{
813 struct net_device *dev;
814 struct hlist_head *head = dev_index_hash(net, ifindex);
815
816 hlist_for_each_entry(dev, head, index_hlist)
817 if (dev->ifindex == ifindex)
818 return dev;
819
820 return NULL;
821}
822EXPORT_SYMBOL(__dev_get_by_index);
823
824/**
825 * dev_get_by_index_rcu - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
828 *
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold RCU lock.
833 */
834
835struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836{
837 struct net_device *dev;
838 struct hlist_head *head = dev_index_hash(net, ifindex);
839
840 hlist_for_each_entry_rcu(dev, head, index_hlist)
841 if (dev->ifindex == ifindex)
842 return dev;
843
844 return NULL;
845}
846EXPORT_SYMBOL(dev_get_by_index_rcu);
847
848
849/**
850 * dev_get_by_index - find a device by its ifindex
851 * @net: the applicable net namespace
852 * @ifindex: index of device
853 *
854 * Search for an interface by index. Returns NULL if the device
855 * is not found or a pointer to the device. The device returned has
856 * had a reference added and the pointer is safe until the user calls
857 * dev_put to indicate they have finished with it.
858 */
859
860struct net_device *dev_get_by_index(struct net *net, int ifindex)
861{
862 struct net_device *dev;
863
864 rcu_read_lock();
865 dev = dev_get_by_index_rcu(net, ifindex);
866 if (dev)
867 dev_hold(dev);
868 rcu_read_unlock();
869 return dev;
870}
871EXPORT_SYMBOL(dev_get_by_index);
872
873/**
874 * dev_get_by_napi_id - find a device by napi_id
875 * @napi_id: ID of the NAPI struct
876 *
877 * Search for an interface by NAPI ID. Returns %NULL if the device
878 * is not found or a pointer to the device. The device has not had
879 * its reference counter increased so the caller must be careful
880 * about locking. The caller must hold RCU lock.
881 */
882
883struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884{
885 struct napi_struct *napi;
886
887 WARN_ON_ONCE(!rcu_read_lock_held());
888
889 if (napi_id < MIN_NAPI_ID)
890 return NULL;
891
892 napi = napi_by_id(napi_id);
893
894 return napi ? napi->dev : NULL;
895}
896EXPORT_SYMBOL(dev_get_by_napi_id);
897
898/**
899 * netdev_get_name - get a netdevice name, knowing its ifindex.
900 * @net: network namespace
901 * @name: a pointer to the buffer where the name will be stored.
902 * @ifindex: the ifindex of the interface to get the name from.
903 *
904 * The use of raw_seqcount_begin() and cond_resched() before
905 * retrying is required as we want to give the writers a chance
906 * to complete when CONFIG_PREEMPT is not set.
907 */
908int netdev_get_name(struct net *net, char *name, int ifindex)
909{
910 struct net_device *dev;
911 unsigned int seq;
912
913retry:
914 seq = raw_seqcount_begin(&devnet_rename_seq);
915 rcu_read_lock();
916 dev = dev_get_by_index_rcu(net, ifindex);
917 if (!dev) {
918 rcu_read_unlock();
919 return -ENODEV;
920 }
921
922 strcpy(name, dev->name);
923 rcu_read_unlock();
924 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 cond_resched();
926 goto retry;
927 }
928
929 return 0;
930}
931
932/**
933 * dev_getbyhwaddr_rcu - find a device by its hardware address
934 * @net: the applicable net namespace
935 * @type: media type of device
936 * @ha: hardware address
937 *
938 * Search for an interface by MAC address. Returns NULL if the device
939 * is not found or a pointer to the device.
940 * The caller must hold RCU or RTNL.
941 * The returned device has not had its ref count increased
942 * and the caller must therefore be careful about locking
943 *
944 */
945
946struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 const char *ha)
948{
949 struct net_device *dev;
950
951 for_each_netdev_rcu(net, dev)
952 if (dev->type == type &&
953 !memcmp(dev->dev_addr, ha, dev->addr_len))
954 return dev;
955
956 return NULL;
957}
958EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959
960struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961{
962 struct net_device *dev;
963
964 ASSERT_RTNL();
965 for_each_netdev(net, dev)
966 if (dev->type == type)
967 return dev;
968
969 return NULL;
970}
971EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972
973struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974{
975 struct net_device *dev, *ret = NULL;
976
977 rcu_read_lock();
978 for_each_netdev_rcu(net, dev)
979 if (dev->type == type) {
980 dev_hold(dev);
981 ret = dev;
982 break;
983 }
984 rcu_read_unlock();
985 return ret;
986}
987EXPORT_SYMBOL(dev_getfirstbyhwtype);
988
989/**
990 * __dev_get_by_flags - find any device with given flags
991 * @net: the applicable net namespace
992 * @if_flags: IFF_* values
993 * @mask: bitmask of bits in if_flags to check
994 *
995 * Search for any interface with the given flags. Returns NULL if a device
996 * is not found or a pointer to the device. Must be called inside
997 * rtnl_lock(), and result refcount is unchanged.
998 */
999
1000struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 unsigned short mask)
1002{
1003 struct net_device *dev, *ret;
1004
1005 ASSERT_RTNL();
1006
1007 ret = NULL;
1008 for_each_netdev(net, dev) {
1009 if (((dev->flags ^ if_flags) & mask) == 0) {
1010 ret = dev;
1011 break;
1012 }
1013 }
1014 return ret;
1015}
1016EXPORT_SYMBOL(__dev_get_by_flags);
1017
1018/**
1019 * dev_valid_name - check if name is okay for network device
1020 * @name: name string
1021 *
1022 * Network device names need to be valid file names to
1023 * to allow sysfs to work. We also disallow any kind of
1024 * whitespace.
1025 */
1026bool dev_valid_name(const char *name)
1027{
1028 if (*name == '\0')
1029 return false;
1030 if (strlen(name) >= IFNAMSIZ)
1031 return false;
1032 if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 return false;
1034
1035 while (*name) {
1036 if (*name == '/' || *name == ':' || isspace(*name))
1037 return false;
1038 name++;
1039 }
1040 return true;
1041}
1042EXPORT_SYMBOL(dev_valid_name);
1043
1044/**
1045 * __dev_alloc_name - allocate a name for a device
1046 * @net: network namespace to allocate the device name in
1047 * @name: name format string
1048 * @buf: scratch buffer and result name string
1049 *
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1054 * duplicates.
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1057 */
1058
1059static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060{
1061 int i = 0;
1062 const char *p;
1063 const int max_netdevices = 8*PAGE_SIZE;
1064 unsigned long *inuse;
1065 struct net_device *d;
1066
1067 if (!dev_valid_name(name))
1068 return -EINVAL;
1069
1070 p = strchr(name, '%');
1071 if (p) {
1072 /*
1073 * Verify the string as this thing may have come from
1074 * the user. There must be either one "%d" and no other "%"
1075 * characters.
1076 */
1077 if (p[1] != 'd' || strchr(p + 2, '%'))
1078 return -EINVAL;
1079
1080 /* Use one page as a bit array of possible slots */
1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082 if (!inuse)
1083 return -ENOMEM;
1084
1085 for_each_netdev(net, d) {
1086 if (!sscanf(d->name, name, &i))
1087 continue;
1088 if (i < 0 || i >= max_netdevices)
1089 continue;
1090
1091 /* avoid cases where sscanf is not exact inverse of printf */
1092 snprintf(buf, IFNAMSIZ, name, i);
1093 if (!strncmp(buf, d->name, IFNAMSIZ))
1094 set_bit(i, inuse);
1095 }
1096
1097 i = find_first_zero_bit(inuse, max_netdevices);
1098 free_page((unsigned long) inuse);
1099 }
1100
1101 snprintf(buf, IFNAMSIZ, name, i);
1102 if (!__dev_get_by_name(net, buf))
1103 return i;
1104
1105 /* It is possible to run out of possible slots
1106 * when the name is long and there isn't enough space left
1107 * for the digits, or if all bits are used.
1108 */
1109 return -ENFILE;
1110}
1111
1112static int dev_alloc_name_ns(struct net *net,
1113 struct net_device *dev,
1114 const char *name)
1115{
1116 char buf[IFNAMSIZ];
1117 int ret;
1118
1119 BUG_ON(!net);
1120 ret = __dev_alloc_name(net, name, buf);
1121 if (ret >= 0)
1122 strlcpy(dev->name, buf, IFNAMSIZ);
1123 return ret;
1124}
1125
1126/**
1127 * dev_alloc_name - allocate a name for a device
1128 * @dev: device
1129 * @name: name format string
1130 *
1131 * Passed a format string - eg "lt%d" it will try and find a suitable
1132 * id. It scans list of devices to build up a free map, then chooses
1133 * the first empty slot. The caller must hold the dev_base or rtnl lock
1134 * while allocating the name and adding the device in order to avoid
1135 * duplicates.
1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137 * Returns the number of the unit assigned or a negative errno code.
1138 */
1139
1140int dev_alloc_name(struct net_device *dev, const char *name)
1141{
1142 return dev_alloc_name_ns(dev_net(dev), dev, name);
1143}
1144EXPORT_SYMBOL(dev_alloc_name);
1145
1146int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 const char *name)
1148{
1149 BUG_ON(!net);
1150
1151 if (!dev_valid_name(name))
1152 return -EINVAL;
1153
1154 if (strchr(name, '%'))
1155 return dev_alloc_name_ns(net, dev, name);
1156 else if (__dev_get_by_name(net, name))
1157 return -EEXIST;
1158 else if (dev->name != name)
1159 strlcpy(dev->name, name, IFNAMSIZ);
1160
1161 return 0;
1162}
1163EXPORT_SYMBOL(dev_get_valid_name);
1164
1165/**
1166 * dev_change_name - change name of a device
1167 * @dev: device
1168 * @newname: name (or format string) must be at least IFNAMSIZ
1169 *
1170 * Change name of a device, can pass format strings "eth%d".
1171 * for wildcarding.
1172 */
1173int dev_change_name(struct net_device *dev, const char *newname)
1174{
1175 unsigned char old_assign_type;
1176 char oldname[IFNAMSIZ];
1177 int err = 0;
1178 int ret;
1179 struct net *net;
1180
1181 ASSERT_RTNL();
1182 BUG_ON(!dev_net(dev));
1183
1184 net = dev_net(dev);
1185 if (dev->flags & IFF_UP)
1186 return -EBUSY;
1187
1188 write_seqcount_begin(&devnet_rename_seq);
1189
1190 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191 write_seqcount_end(&devnet_rename_seq);
1192 return 0;
1193 }
1194
1195 memcpy(oldname, dev->name, IFNAMSIZ);
1196
1197 err = dev_get_valid_name(net, dev, newname);
1198 if (err < 0) {
1199 write_seqcount_end(&devnet_rename_seq);
1200 return err;
1201 }
1202
1203 if (oldname[0] && !strchr(oldname, '%'))
1204 netdev_info(dev, "renamed from %s\n", oldname);
1205
1206 old_assign_type = dev->name_assign_type;
1207 dev->name_assign_type = NET_NAME_RENAMED;
1208
1209rollback:
1210 ret = device_rename(&dev->dev, dev->name);
1211 if (ret) {
1212 memcpy(dev->name, oldname, IFNAMSIZ);
1213 dev->name_assign_type = old_assign_type;
1214 write_seqcount_end(&devnet_rename_seq);
1215 return ret;
1216 }
1217
1218 write_seqcount_end(&devnet_rename_seq);
1219
1220 netdev_adjacent_rename_links(dev, oldname);
1221
1222 write_lock_bh(&dev_base_lock);
1223 hlist_del_rcu(&dev->name_hlist);
1224 write_unlock_bh(&dev_base_lock);
1225
1226 synchronize_rcu();
1227
1228 write_lock_bh(&dev_base_lock);
1229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230 write_unlock_bh(&dev_base_lock);
1231
1232 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233 ret = notifier_to_errno(ret);
1234
1235 if (ret) {
1236 /* err >= 0 after dev_alloc_name() or stores the first errno */
1237 if (err >= 0) {
1238 err = ret;
1239 write_seqcount_begin(&devnet_rename_seq);
1240 memcpy(dev->name, oldname, IFNAMSIZ);
1241 memcpy(oldname, newname, IFNAMSIZ);
1242 dev->name_assign_type = old_assign_type;
1243 old_assign_type = NET_NAME_RENAMED;
1244 goto rollback;
1245 } else {
1246 pr_err("%s: name change rollback failed: %d\n",
1247 dev->name, ret);
1248 }
1249 }
1250
1251 return err;
1252}
1253
1254/**
1255 * dev_set_alias - change ifalias of a device
1256 * @dev: device
1257 * @alias: name up to IFALIASZ
1258 * @len: limit of bytes to copy from info
1259 *
1260 * Set ifalias for a device,
1261 */
1262int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263{
1264 struct dev_ifalias *new_alias = NULL;
1265
1266 if (len >= IFALIASZ)
1267 return -EINVAL;
1268
1269 if (len) {
1270 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271 if (!new_alias)
1272 return -ENOMEM;
1273
1274 memcpy(new_alias->ifalias, alias, len);
1275 new_alias->ifalias[len] = 0;
1276 }
1277
1278 mutex_lock(&ifalias_mutex);
1279 rcu_swap_protected(dev->ifalias, new_alias,
1280 mutex_is_locked(&ifalias_mutex));
1281 mutex_unlock(&ifalias_mutex);
1282
1283 if (new_alias)
1284 kfree_rcu(new_alias, rcuhead);
1285
1286 return len;
1287}
1288
1289/**
1290 * dev_get_alias - get ifalias of a device
1291 * @dev: device
1292 * @name: buffer to store name of ifalias
1293 * @len: size of buffer
1294 *
1295 * get ifalias for a device. Caller must make sure dev cannot go
1296 * away, e.g. rcu read lock or own a reference count to device.
1297 */
1298int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299{
1300 const struct dev_ifalias *alias;
1301 int ret = 0;
1302
1303 rcu_read_lock();
1304 alias = rcu_dereference(dev->ifalias);
1305 if (alias)
1306 ret = snprintf(name, len, "%s", alias->ifalias);
1307 rcu_read_unlock();
1308
1309 return ret;
1310}
1311
1312/**
1313 * netdev_features_change - device changes features
1314 * @dev: device to cause notification
1315 *
1316 * Called to indicate a device has changed features.
1317 */
1318void netdev_features_change(struct net_device *dev)
1319{
1320 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1321}
1322EXPORT_SYMBOL(netdev_features_change);
1323
1324/**
1325 * netdev_state_change - device changes state
1326 * @dev: device to cause notification
1327 *
1328 * Called to indicate a device has changed state. This function calls
1329 * the notifier chains for netdev_chain and sends a NEWLINK message
1330 * to the routing socket.
1331 */
1332void netdev_state_change(struct net_device *dev)
1333{
1334 if (dev->flags & IFF_UP) {
1335 struct netdev_notifier_change_info change_info = {
1336 .info.dev = dev,
1337 };
1338
1339 call_netdevice_notifiers_info(NETDEV_CHANGE,
1340 &change_info.info);
1341 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1342 }
1343}
1344EXPORT_SYMBOL(netdev_state_change);
1345
1346/**
1347 * netdev_notify_peers - notify network peers about existence of @dev
1348 * @dev: network device
1349 *
1350 * Generate traffic such that interested network peers are aware of
1351 * @dev, such as by generating a gratuitous ARP. This may be used when
1352 * a device wants to inform the rest of the network about some sort of
1353 * reconfiguration such as a failover event or virtual machine
1354 * migration.
1355 */
1356void netdev_notify_peers(struct net_device *dev)
1357{
1358 rtnl_lock();
1359 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361 rtnl_unlock();
1362}
1363EXPORT_SYMBOL(netdev_notify_peers);
1364
1365static int __dev_open(struct net_device *dev)
1366{
1367 const struct net_device_ops *ops = dev->netdev_ops;
1368 int ret;
1369
1370 ASSERT_RTNL();
1371
1372 if (!netif_device_present(dev))
1373 return -ENODEV;
1374
1375 /* Block netpoll from trying to do any rx path servicing.
1376 * If we don't do this there is a chance ndo_poll_controller
1377 * or ndo_poll may be running while we open the device
1378 */
1379 netpoll_poll_disable(dev);
1380
1381 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382 ret = notifier_to_errno(ret);
1383 if (ret)
1384 return ret;
1385
1386 set_bit(__LINK_STATE_START, &dev->state);
1387
1388 if (ops->ndo_validate_addr)
1389 ret = ops->ndo_validate_addr(dev);
1390
1391 if (!ret && ops->ndo_open)
1392 ret = ops->ndo_open(dev);
1393
1394 netpoll_poll_enable(dev);
1395
1396 if (ret)
1397 clear_bit(__LINK_STATE_START, &dev->state);
1398 else {
1399 dev->flags |= IFF_UP;
1400 dev_set_rx_mode(dev);
1401 dev_activate(dev);
1402 add_device_randomness(dev->dev_addr, dev->addr_len);
1403 }
1404
1405 return ret;
1406}
1407
1408/**
1409 * dev_open - prepare an interface for use.
1410 * @dev: device to open
1411 *
1412 * Takes a device from down to up state. The device's private open
1413 * function is invoked and then the multicast lists are loaded. Finally
1414 * the device is moved into the up state and a %NETDEV_UP message is
1415 * sent to the netdev notifier chain.
1416 *
1417 * Calling this function on an active interface is a nop. On a failure
1418 * a negative errno code is returned.
1419 */
1420int dev_open(struct net_device *dev)
1421{
1422 int ret;
1423
1424 if (dev->flags & IFF_UP)
1425 return 0;
1426
1427 ret = __dev_open(dev);
1428 if (ret < 0)
1429 return ret;
1430
1431 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432 call_netdevice_notifiers(NETDEV_UP, dev);
1433
1434 return ret;
1435}
1436EXPORT_SYMBOL(dev_open);
1437
1438static void __dev_close_many(struct list_head *head)
1439{
1440 struct net_device *dev;
1441
1442 ASSERT_RTNL();
1443 might_sleep();
1444
1445 list_for_each_entry(dev, head, close_list) {
1446 /* Temporarily disable netpoll until the interface is down */
1447 netpoll_poll_disable(dev);
1448
1449 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450
1451 clear_bit(__LINK_STATE_START, &dev->state);
1452
1453 /* Synchronize to scheduled poll. We cannot touch poll list, it
1454 * can be even on different cpu. So just clear netif_running().
1455 *
1456 * dev->stop() will invoke napi_disable() on all of it's
1457 * napi_struct instances on this device.
1458 */
1459 smp_mb__after_atomic(); /* Commit netif_running(). */
1460 }
1461
1462 dev_deactivate_many(head);
1463
1464 list_for_each_entry(dev, head, close_list) {
1465 const struct net_device_ops *ops = dev->netdev_ops;
1466
1467 /*
1468 * Call the device specific close. This cannot fail.
1469 * Only if device is UP
1470 *
1471 * We allow it to be called even after a DETACH hot-plug
1472 * event.
1473 */
1474 if (ops->ndo_stop)
1475 ops->ndo_stop(dev);
1476
1477 dev->flags &= ~IFF_UP;
1478 netpoll_poll_enable(dev);
1479 }
1480}
1481
1482static void __dev_close(struct net_device *dev)
1483{
1484 LIST_HEAD(single);
1485
1486 list_add(&dev->close_list, &single);
1487 __dev_close_many(&single);
1488 list_del(&single);
1489}
1490
1491void dev_close_many(struct list_head *head, bool unlink)
1492{
1493 struct net_device *dev, *tmp;
1494
1495 /* Remove the devices that don't need to be closed */
1496 list_for_each_entry_safe(dev, tmp, head, close_list)
1497 if (!(dev->flags & IFF_UP))
1498 list_del_init(&dev->close_list);
1499
1500 __dev_close_many(head);
1501
1502 list_for_each_entry_safe(dev, tmp, head, close_list) {
1503 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504 call_netdevice_notifiers(NETDEV_DOWN, dev);
1505 if (unlink)
1506 list_del_init(&dev->close_list);
1507 }
1508}
1509EXPORT_SYMBOL(dev_close_many);
1510
1511/**
1512 * dev_close - shutdown an interface.
1513 * @dev: device to shutdown
1514 *
1515 * This function moves an active device into down state. A
1516 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518 * chain.
1519 */
1520void dev_close(struct net_device *dev)
1521{
1522 if (dev->flags & IFF_UP) {
1523 LIST_HEAD(single);
1524
1525 list_add(&dev->close_list, &single);
1526 dev_close_many(&single, true);
1527 list_del(&single);
1528 }
1529}
1530EXPORT_SYMBOL(dev_close);
1531
1532
1533/**
1534 * dev_disable_lro - disable Large Receive Offload on a device
1535 * @dev: device
1536 *
1537 * Disable Large Receive Offload (LRO) on a net device. Must be
1538 * called under RTNL. This is needed if received packets may be
1539 * forwarded to another interface.
1540 */
1541void dev_disable_lro(struct net_device *dev)
1542{
1543 struct net_device *lower_dev;
1544 struct list_head *iter;
1545
1546 dev->wanted_features &= ~NETIF_F_LRO;
1547 netdev_update_features(dev);
1548
1549 if (unlikely(dev->features & NETIF_F_LRO))
1550 netdev_WARN(dev, "failed to disable LRO!\n");
1551
1552 netdev_for_each_lower_dev(dev, lower_dev, iter)
1553 dev_disable_lro(lower_dev);
1554}
1555EXPORT_SYMBOL(dev_disable_lro);
1556
1557static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1558 struct net_device *dev)
1559{
1560 struct netdev_notifier_info info = {
1561 .dev = dev,
1562 };
1563
1564 return nb->notifier_call(nb, val, &info);
1565}
1566
1567static int dev_boot_phase = 1;
1568
1569/**
1570 * register_netdevice_notifier - register a network notifier block
1571 * @nb: notifier
1572 *
1573 * Register a notifier to be called when network device events occur.
1574 * The notifier passed is linked into the kernel structures and must
1575 * not be reused until it has been unregistered. A negative errno code
1576 * is returned on a failure.
1577 *
1578 * When registered all registration and up events are replayed
1579 * to the new notifier to allow device to have a race free
1580 * view of the network device list.
1581 */
1582
1583int register_netdevice_notifier(struct notifier_block *nb)
1584{
1585 struct net_device *dev;
1586 struct net_device *last;
1587 struct net *net;
1588 int err;
1589
1590 rtnl_lock();
1591 err = raw_notifier_chain_register(&netdev_chain, nb);
1592 if (err)
1593 goto unlock;
1594 if (dev_boot_phase)
1595 goto unlock;
1596 for_each_net(net) {
1597 for_each_netdev(net, dev) {
1598 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1599 err = notifier_to_errno(err);
1600 if (err)
1601 goto rollback;
1602
1603 if (!(dev->flags & IFF_UP))
1604 continue;
1605
1606 call_netdevice_notifier(nb, NETDEV_UP, dev);
1607 }
1608 }
1609
1610unlock:
1611 rtnl_unlock();
1612 return err;
1613
1614rollback:
1615 last = dev;
1616 for_each_net(net) {
1617 for_each_netdev(net, dev) {
1618 if (dev == last)
1619 goto outroll;
1620
1621 if (dev->flags & IFF_UP) {
1622 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1623 dev);
1624 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1625 }
1626 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1627 }
1628 }
1629
1630outroll:
1631 raw_notifier_chain_unregister(&netdev_chain, nb);
1632 goto unlock;
1633}
1634EXPORT_SYMBOL(register_netdevice_notifier);
1635
1636/**
1637 * unregister_netdevice_notifier - unregister a network notifier block
1638 * @nb: notifier
1639 *
1640 * Unregister a notifier previously registered by
1641 * register_netdevice_notifier(). The notifier is unlinked into the
1642 * kernel structures and may then be reused. A negative errno code
1643 * is returned on a failure.
1644 *
1645 * After unregistering unregister and down device events are synthesized
1646 * for all devices on the device list to the removed notifier to remove
1647 * the need for special case cleanup code.
1648 */
1649
1650int unregister_netdevice_notifier(struct notifier_block *nb)
1651{
1652 struct net_device *dev;
1653 struct net *net;
1654 int err;
1655
1656 rtnl_lock();
1657 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1658 if (err)
1659 goto unlock;
1660
1661 for_each_net(net) {
1662 for_each_netdev(net, dev) {
1663 if (dev->flags & IFF_UP) {
1664 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1665 dev);
1666 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1667 }
1668 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1669 }
1670 }
1671unlock:
1672 rtnl_unlock();
1673 return err;
1674}
1675EXPORT_SYMBOL(unregister_netdevice_notifier);
1676
1677/**
1678 * call_netdevice_notifiers_info - call all network notifier blocks
1679 * @val: value passed unmodified to notifier function
1680 * @dev: net_device pointer passed unmodified to notifier function
1681 * @info: notifier information data
1682 *
1683 * Call all network notifier blocks. Parameters and return value
1684 * are as for raw_notifier_call_chain().
1685 */
1686
1687static int call_netdevice_notifiers_info(unsigned long val,
1688 struct netdev_notifier_info *info)
1689{
1690 ASSERT_RTNL();
1691 return raw_notifier_call_chain(&netdev_chain, val, info);
1692}
1693
1694/**
1695 * call_netdevice_notifiers - call all network notifier blocks
1696 * @val: value passed unmodified to notifier function
1697 * @dev: net_device pointer passed unmodified to notifier function
1698 *
1699 * Call all network notifier blocks. Parameters and return value
1700 * are as for raw_notifier_call_chain().
1701 */
1702
1703int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1704{
1705 struct netdev_notifier_info info = {
1706 .dev = dev,
1707 };
1708
1709 return call_netdevice_notifiers_info(val, &info);
1710}
1711EXPORT_SYMBOL(call_netdevice_notifiers);
1712
1713#ifdef CONFIG_NET_INGRESS
1714static struct static_key ingress_needed __read_mostly;
1715
1716void net_inc_ingress_queue(void)
1717{
1718 static_key_slow_inc(&ingress_needed);
1719}
1720EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1721
1722void net_dec_ingress_queue(void)
1723{
1724 static_key_slow_dec(&ingress_needed);
1725}
1726EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1727#endif
1728
1729#ifdef CONFIG_NET_EGRESS
1730static struct static_key egress_needed __read_mostly;
1731
1732void net_inc_egress_queue(void)
1733{
1734 static_key_slow_inc(&egress_needed);
1735}
1736EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1737
1738void net_dec_egress_queue(void)
1739{
1740 static_key_slow_dec(&egress_needed);
1741}
1742EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1743#endif
1744
1745static struct static_key netstamp_needed __read_mostly;
1746#ifdef HAVE_JUMP_LABEL
1747static atomic_t netstamp_needed_deferred;
1748static atomic_t netstamp_wanted;
1749static void netstamp_clear(struct work_struct *work)
1750{
1751 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1752 int wanted;
1753
1754 wanted = atomic_add_return(deferred, &netstamp_wanted);
1755 if (wanted > 0)
1756 static_key_enable(&netstamp_needed);
1757 else
1758 static_key_disable(&netstamp_needed);
1759}
1760static DECLARE_WORK(netstamp_work, netstamp_clear);
1761#endif
1762
1763void net_enable_timestamp(void)
1764{
1765#ifdef HAVE_JUMP_LABEL
1766 int wanted;
1767
1768 while (1) {
1769 wanted = atomic_read(&netstamp_wanted);
1770 if (wanted <= 0)
1771 break;
1772 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1773 return;
1774 }
1775 atomic_inc(&netstamp_needed_deferred);
1776 schedule_work(&netstamp_work);
1777#else
1778 static_key_slow_inc(&netstamp_needed);
1779#endif
1780}
1781EXPORT_SYMBOL(net_enable_timestamp);
1782
1783void net_disable_timestamp(void)
1784{
1785#ifdef HAVE_JUMP_LABEL
1786 int wanted;
1787
1788 while (1) {
1789 wanted = atomic_read(&netstamp_wanted);
1790 if (wanted <= 1)
1791 break;
1792 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1793 return;
1794 }
1795 atomic_dec(&netstamp_needed_deferred);
1796 schedule_work(&netstamp_work);
1797#else
1798 static_key_slow_dec(&netstamp_needed);
1799#endif
1800}
1801EXPORT_SYMBOL(net_disable_timestamp);
1802
1803static inline void net_timestamp_set(struct sk_buff *skb)
1804{
1805 skb->tstamp = 0;
1806 if (static_key_false(&netstamp_needed))
1807 __net_timestamp(skb);
1808}
1809
1810#define net_timestamp_check(COND, SKB) \
1811 if (static_key_false(&netstamp_needed)) { \
1812 if ((COND) && !(SKB)->tstamp) \
1813 __net_timestamp(SKB); \
1814 } \
1815
1816bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1817{
1818 unsigned int len;
1819
1820 if (!(dev->flags & IFF_UP))
1821 return false;
1822
1823 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1824 if (skb->len <= len)
1825 return true;
1826
1827 /* if TSO is enabled, we don't care about the length as the packet
1828 * could be forwarded without being segmented before
1829 */
1830 if (skb_is_gso(skb))
1831 return true;
1832
1833 return false;
1834}
1835EXPORT_SYMBOL_GPL(is_skb_forwardable);
1836
1837int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1838{
1839 int ret = ____dev_forward_skb(dev, skb);
1840
1841 if (likely(!ret)) {
1842 skb->protocol = eth_type_trans(skb, dev);
1843 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1844 }
1845
1846 return ret;
1847}
1848EXPORT_SYMBOL_GPL(__dev_forward_skb);
1849
1850/**
1851 * dev_forward_skb - loopback an skb to another netif
1852 *
1853 * @dev: destination network device
1854 * @skb: buffer to forward
1855 *
1856 * return values:
1857 * NET_RX_SUCCESS (no congestion)
1858 * NET_RX_DROP (packet was dropped, but freed)
1859 *
1860 * dev_forward_skb can be used for injecting an skb from the
1861 * start_xmit function of one device into the receive queue
1862 * of another device.
1863 *
1864 * The receiving device may be in another namespace, so
1865 * we have to clear all information in the skb that could
1866 * impact namespace isolation.
1867 */
1868int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1869{
1870 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1871}
1872EXPORT_SYMBOL_GPL(dev_forward_skb);
1873
1874static inline int deliver_skb(struct sk_buff *skb,
1875 struct packet_type *pt_prev,
1876 struct net_device *orig_dev)
1877{
1878 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1879 return -ENOMEM;
1880 refcount_inc(&skb->users);
1881 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1882}
1883
1884static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1885 struct packet_type **pt,
1886 struct net_device *orig_dev,
1887 __be16 type,
1888 struct list_head *ptype_list)
1889{
1890 struct packet_type *ptype, *pt_prev = *pt;
1891
1892 list_for_each_entry_rcu(ptype, ptype_list, list) {
1893 if (ptype->type != type)
1894 continue;
1895 if (pt_prev)
1896 deliver_skb(skb, pt_prev, orig_dev);
1897 pt_prev = ptype;
1898 }
1899 *pt = pt_prev;
1900}
1901
1902static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1903{
1904 if (!ptype->af_packet_priv || !skb->sk)
1905 return false;
1906
1907 if (ptype->id_match)
1908 return ptype->id_match(ptype, skb->sk);
1909 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1910 return true;
1911
1912 return false;
1913}
1914
1915/*
1916 * Support routine. Sends outgoing frames to any network
1917 * taps currently in use.
1918 */
1919
1920void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1921{
1922 struct packet_type *ptype;
1923 struct sk_buff *skb2 = NULL;
1924 struct packet_type *pt_prev = NULL;
1925 struct list_head *ptype_list = &ptype_all;
1926
1927 rcu_read_lock();
1928again:
1929 list_for_each_entry_rcu(ptype, ptype_list, list) {
1930 /* Never send packets back to the socket
1931 * they originated from - MvS (miquels@drinkel.ow.org)
1932 */
1933 if (skb_loop_sk(ptype, skb))
1934 continue;
1935
1936 if (pt_prev) {
1937 deliver_skb(skb2, pt_prev, skb->dev);
1938 pt_prev = ptype;
1939 continue;
1940 }
1941
1942 /* need to clone skb, done only once */
1943 skb2 = skb_clone(skb, GFP_ATOMIC);
1944 if (!skb2)
1945 goto out_unlock;
1946
1947 net_timestamp_set(skb2);
1948
1949 /* skb->nh should be correctly
1950 * set by sender, so that the second statement is
1951 * just protection against buggy protocols.
1952 */
1953 skb_reset_mac_header(skb2);
1954
1955 if (skb_network_header(skb2) < skb2->data ||
1956 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1957 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1958 ntohs(skb2->protocol),
1959 dev->name);
1960 skb_reset_network_header(skb2);
1961 }
1962
1963 skb2->transport_header = skb2->network_header;
1964 skb2->pkt_type = PACKET_OUTGOING;
1965 pt_prev = ptype;
1966 }
1967
1968 if (ptype_list == &ptype_all) {
1969 ptype_list = &dev->ptype_all;
1970 goto again;
1971 }
1972out_unlock:
1973 if (pt_prev) {
1974 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1975 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1976 else
1977 kfree_skb(skb2);
1978 }
1979 rcu_read_unlock();
1980}
1981EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1982
1983/**
1984 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1985 * @dev: Network device
1986 * @txq: number of queues available
1987 *
1988 * If real_num_tx_queues is changed the tc mappings may no longer be
1989 * valid. To resolve this verify the tc mapping remains valid and if
1990 * not NULL the mapping. With no priorities mapping to this
1991 * offset/count pair it will no longer be used. In the worst case TC0
1992 * is invalid nothing can be done so disable priority mappings. If is
1993 * expected that drivers will fix this mapping if they can before
1994 * calling netif_set_real_num_tx_queues.
1995 */
1996static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1997{
1998 int i;
1999 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2000
2001 /* If TC0 is invalidated disable TC mapping */
2002 if (tc->offset + tc->count > txq) {
2003 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2004 dev->num_tc = 0;
2005 return;
2006 }
2007
2008 /* Invalidated prio to tc mappings set to TC0 */
2009 for (i = 1; i < TC_BITMASK + 1; i++) {
2010 int q = netdev_get_prio_tc_map(dev, i);
2011
2012 tc = &dev->tc_to_txq[q];
2013 if (tc->offset + tc->count > txq) {
2014 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2015 i, q);
2016 netdev_set_prio_tc_map(dev, i, 0);
2017 }
2018 }
2019}
2020
2021int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2022{
2023 if (dev->num_tc) {
2024 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2025 int i;
2026
2027 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2028 if ((txq - tc->offset) < tc->count)
2029 return i;
2030 }
2031
2032 return -1;
2033 }
2034
2035 return 0;
2036}
2037EXPORT_SYMBOL(netdev_txq_to_tc);
2038
2039#ifdef CONFIG_XPS
2040static DEFINE_MUTEX(xps_map_mutex);
2041#define xmap_dereference(P) \
2042 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2043
2044static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2045 int tci, u16 index)
2046{
2047 struct xps_map *map = NULL;
2048 int pos;
2049
2050 if (dev_maps)
2051 map = xmap_dereference(dev_maps->cpu_map[tci]);
2052 if (!map)
2053 return false;
2054
2055 for (pos = map->len; pos--;) {
2056 if (map->queues[pos] != index)
2057 continue;
2058
2059 if (map->len > 1) {
2060 map->queues[pos] = map->queues[--map->len];
2061 break;
2062 }
2063
2064 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2065 kfree_rcu(map, rcu);
2066 return false;
2067 }
2068
2069 return true;
2070}
2071
2072static bool remove_xps_queue_cpu(struct net_device *dev,
2073 struct xps_dev_maps *dev_maps,
2074 int cpu, u16 offset, u16 count)
2075{
2076 int num_tc = dev->num_tc ? : 1;
2077 bool active = false;
2078 int tci;
2079
2080 for (tci = cpu * num_tc; num_tc--; tci++) {
2081 int i, j;
2082
2083 for (i = count, j = offset; i--; j++) {
2084 if (!remove_xps_queue(dev_maps, cpu, j))
2085 break;
2086 }
2087
2088 active |= i < 0;
2089 }
2090
2091 return active;
2092}
2093
2094static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2095 u16 count)
2096{
2097 struct xps_dev_maps *dev_maps;
2098 int cpu, i;
2099 bool active = false;
2100
2101 mutex_lock(&xps_map_mutex);
2102 dev_maps = xmap_dereference(dev->xps_maps);
2103
2104 if (!dev_maps)
2105 goto out_no_maps;
2106
2107 for_each_possible_cpu(cpu)
2108 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2109 offset, count);
2110
2111 if (!active) {
2112 RCU_INIT_POINTER(dev->xps_maps, NULL);
2113 kfree_rcu(dev_maps, rcu);
2114 }
2115
2116 for (i = offset + (count - 1); count--; i--)
2117 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2118 NUMA_NO_NODE);
2119
2120out_no_maps:
2121 mutex_unlock(&xps_map_mutex);
2122}
2123
2124static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2125{
2126 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2127}
2128
2129static struct xps_map *expand_xps_map(struct xps_map *map,
2130 int cpu, u16 index)
2131{
2132 struct xps_map *new_map;
2133 int alloc_len = XPS_MIN_MAP_ALLOC;
2134 int i, pos;
2135
2136 for (pos = 0; map && pos < map->len; pos++) {
2137 if (map->queues[pos] != index)
2138 continue;
2139 return map;
2140 }
2141
2142 /* Need to add queue to this CPU's existing map */
2143 if (map) {
2144 if (pos < map->alloc_len)
2145 return map;
2146
2147 alloc_len = map->alloc_len * 2;
2148 }
2149
2150 /* Need to allocate new map to store queue on this CPU's map */
2151 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2152 cpu_to_node(cpu));
2153 if (!new_map)
2154 return NULL;
2155
2156 for (i = 0; i < pos; i++)
2157 new_map->queues[i] = map->queues[i];
2158 new_map->alloc_len = alloc_len;
2159 new_map->len = pos;
2160
2161 return new_map;
2162}
2163
2164int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2165 u16 index)
2166{
2167 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2168 int i, cpu, tci, numa_node_id = -2;
2169 int maps_sz, num_tc = 1, tc = 0;
2170 struct xps_map *map, *new_map;
2171 bool active = false;
2172
2173 if (dev->num_tc) {
2174 num_tc = dev->num_tc;
2175 tc = netdev_txq_to_tc(dev, index);
2176 if (tc < 0)
2177 return -EINVAL;
2178 }
2179
2180 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2181 if (maps_sz < L1_CACHE_BYTES)
2182 maps_sz = L1_CACHE_BYTES;
2183
2184 mutex_lock(&xps_map_mutex);
2185
2186 dev_maps = xmap_dereference(dev->xps_maps);
2187
2188 /* allocate memory for queue storage */
2189 for_each_cpu_and(cpu, cpu_online_mask, mask) {
2190 if (!new_dev_maps)
2191 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2192 if (!new_dev_maps) {
2193 mutex_unlock(&xps_map_mutex);
2194 return -ENOMEM;
2195 }
2196
2197 tci = cpu * num_tc + tc;
2198 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2199 NULL;
2200
2201 map = expand_xps_map(map, cpu, index);
2202 if (!map)
2203 goto error;
2204
2205 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2206 }
2207
2208 if (!new_dev_maps)
2209 goto out_no_new_maps;
2210
2211 for_each_possible_cpu(cpu) {
2212 /* copy maps belonging to foreign traffic classes */
2213 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2214 /* fill in the new device map from the old device map */
2215 map = xmap_dereference(dev_maps->cpu_map[tci]);
2216 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2217 }
2218
2219 /* We need to explicitly update tci as prevous loop
2220 * could break out early if dev_maps is NULL.
2221 */
2222 tci = cpu * num_tc + tc;
2223
2224 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2225 /* add queue to CPU maps */
2226 int pos = 0;
2227
2228 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2229 while ((pos < map->len) && (map->queues[pos] != index))
2230 pos++;
2231
2232 if (pos == map->len)
2233 map->queues[map->len++] = index;
2234#ifdef CONFIG_NUMA
2235 if (numa_node_id == -2)
2236 numa_node_id = cpu_to_node(cpu);
2237 else if (numa_node_id != cpu_to_node(cpu))
2238 numa_node_id = -1;
2239#endif
2240 } else if (dev_maps) {
2241 /* fill in the new device map from the old device map */
2242 map = xmap_dereference(dev_maps->cpu_map[tci]);
2243 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2244 }
2245
2246 /* copy maps belonging to foreign traffic classes */
2247 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2248 /* fill in the new device map from the old device map */
2249 map = xmap_dereference(dev_maps->cpu_map[tci]);
2250 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2251 }
2252 }
2253
2254 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2255
2256 /* Cleanup old maps */
2257 if (!dev_maps)
2258 goto out_no_old_maps;
2259
2260 for_each_possible_cpu(cpu) {
2261 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2262 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2263 map = xmap_dereference(dev_maps->cpu_map[tci]);
2264 if (map && map != new_map)
2265 kfree_rcu(map, rcu);
2266 }
2267 }
2268
2269 kfree_rcu(dev_maps, rcu);
2270
2271out_no_old_maps:
2272 dev_maps = new_dev_maps;
2273 active = true;
2274
2275out_no_new_maps:
2276 /* update Tx queue numa node */
2277 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2278 (numa_node_id >= 0) ? numa_node_id :
2279 NUMA_NO_NODE);
2280
2281 if (!dev_maps)
2282 goto out_no_maps;
2283
2284 /* removes queue from unused CPUs */
2285 for_each_possible_cpu(cpu) {
2286 for (i = tc, tci = cpu * num_tc; i--; tci++)
2287 active |= remove_xps_queue(dev_maps, tci, index);
2288 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2289 active |= remove_xps_queue(dev_maps, tci, index);
2290 for (i = num_tc - tc, tci++; --i; tci++)
2291 active |= remove_xps_queue(dev_maps, tci, index);
2292 }
2293
2294 /* free map if not active */
2295 if (!active) {
2296 RCU_INIT_POINTER(dev->xps_maps, NULL);
2297 kfree_rcu(dev_maps, rcu);
2298 }
2299
2300out_no_maps:
2301 mutex_unlock(&xps_map_mutex);
2302
2303 return 0;
2304error:
2305 /* remove any maps that we added */
2306 for_each_possible_cpu(cpu) {
2307 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2308 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2309 map = dev_maps ?
2310 xmap_dereference(dev_maps->cpu_map[tci]) :
2311 NULL;
2312 if (new_map && new_map != map)
2313 kfree(new_map);
2314 }
2315 }
2316
2317 mutex_unlock(&xps_map_mutex);
2318
2319 kfree(new_dev_maps);
2320 return -ENOMEM;
2321}
2322EXPORT_SYMBOL(netif_set_xps_queue);
2323
2324#endif
2325void netdev_reset_tc(struct net_device *dev)
2326{
2327#ifdef CONFIG_XPS
2328 netif_reset_xps_queues_gt(dev, 0);
2329#endif
2330 dev->num_tc = 0;
2331 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2332 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2333}
2334EXPORT_SYMBOL(netdev_reset_tc);
2335
2336int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2337{
2338 if (tc >= dev->num_tc)
2339 return -EINVAL;
2340
2341#ifdef CONFIG_XPS
2342 netif_reset_xps_queues(dev, offset, count);
2343#endif
2344 dev->tc_to_txq[tc].count = count;
2345 dev->tc_to_txq[tc].offset = offset;
2346 return 0;
2347}
2348EXPORT_SYMBOL(netdev_set_tc_queue);
2349
2350int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2351{
2352 if (num_tc > TC_MAX_QUEUE)
2353 return -EINVAL;
2354
2355#ifdef CONFIG_XPS
2356 netif_reset_xps_queues_gt(dev, 0);
2357#endif
2358 dev->num_tc = num_tc;
2359 return 0;
2360}
2361EXPORT_SYMBOL(netdev_set_num_tc);
2362
2363/*
2364 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2365 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2366 */
2367int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2368{
2369 int rc;
2370
2371 if (txq < 1 || txq > dev->num_tx_queues)
2372 return -EINVAL;
2373
2374 if (dev->reg_state == NETREG_REGISTERED ||
2375 dev->reg_state == NETREG_UNREGISTERING) {
2376 ASSERT_RTNL();
2377
2378 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2379 txq);
2380 if (rc)
2381 return rc;
2382
2383 if (dev->num_tc)
2384 netif_setup_tc(dev, txq);
2385
2386 if (txq < dev->real_num_tx_queues) {
2387 qdisc_reset_all_tx_gt(dev, txq);
2388#ifdef CONFIG_XPS
2389 netif_reset_xps_queues_gt(dev, txq);
2390#endif
2391 }
2392 }
2393
2394 dev->real_num_tx_queues = txq;
2395 return 0;
2396}
2397EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2398
2399#ifdef CONFIG_SYSFS
2400/**
2401 * netif_set_real_num_rx_queues - set actual number of RX queues used
2402 * @dev: Network device
2403 * @rxq: Actual number of RX queues
2404 *
2405 * This must be called either with the rtnl_lock held or before
2406 * registration of the net device. Returns 0 on success, or a
2407 * negative error code. If called before registration, it always
2408 * succeeds.
2409 */
2410int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2411{
2412 int rc;
2413
2414 if (rxq < 1 || rxq > dev->num_rx_queues)
2415 return -EINVAL;
2416
2417 if (dev->reg_state == NETREG_REGISTERED) {
2418 ASSERT_RTNL();
2419
2420 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2421 rxq);
2422 if (rc)
2423 return rc;
2424 }
2425
2426 dev->real_num_rx_queues = rxq;
2427 return 0;
2428}
2429EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2430#endif
2431
2432/**
2433 * netif_get_num_default_rss_queues - default number of RSS queues
2434 *
2435 * This routine should set an upper limit on the number of RSS queues
2436 * used by default by multiqueue devices.
2437 */
2438int netif_get_num_default_rss_queues(void)
2439{
2440 return is_kdump_kernel() ?
2441 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2442}
2443EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2444
2445static void __netif_reschedule(struct Qdisc *q)
2446{
2447 struct softnet_data *sd;
2448 unsigned long flags;
2449
2450 local_irq_save(flags);
2451 sd = this_cpu_ptr(&softnet_data);
2452 q->next_sched = NULL;
2453 *sd->output_queue_tailp = q;
2454 sd->output_queue_tailp = &q->next_sched;
2455 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2456 local_irq_restore(flags);
2457}
2458
2459void __netif_schedule(struct Qdisc *q)
2460{
2461 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2462 __netif_reschedule(q);
2463}
2464EXPORT_SYMBOL(__netif_schedule);
2465
2466struct dev_kfree_skb_cb {
2467 enum skb_free_reason reason;
2468};
2469
2470static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2471{
2472 return (struct dev_kfree_skb_cb *)skb->cb;
2473}
2474
2475void netif_schedule_queue(struct netdev_queue *txq)
2476{
2477 rcu_read_lock();
2478 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2479 struct Qdisc *q = rcu_dereference(txq->qdisc);
2480
2481 __netif_schedule(q);
2482 }
2483 rcu_read_unlock();
2484}
2485EXPORT_SYMBOL(netif_schedule_queue);
2486
2487void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2488{
2489 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2490 struct Qdisc *q;
2491
2492 rcu_read_lock();
2493 q = rcu_dereference(dev_queue->qdisc);
2494 __netif_schedule(q);
2495 rcu_read_unlock();
2496 }
2497}
2498EXPORT_SYMBOL(netif_tx_wake_queue);
2499
2500void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2501{
2502 unsigned long flags;
2503
2504 if (unlikely(!skb))
2505 return;
2506
2507 if (likely(refcount_read(&skb->users) == 1)) {
2508 smp_rmb();
2509 refcount_set(&skb->users, 0);
2510 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2511 return;
2512 }
2513 get_kfree_skb_cb(skb)->reason = reason;
2514 local_irq_save(flags);
2515 skb->next = __this_cpu_read(softnet_data.completion_queue);
2516 __this_cpu_write(softnet_data.completion_queue, skb);
2517 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2518 local_irq_restore(flags);
2519}
2520EXPORT_SYMBOL(__dev_kfree_skb_irq);
2521
2522void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2523{
2524 if (in_irq() || irqs_disabled())
2525 __dev_kfree_skb_irq(skb, reason);
2526 else
2527 dev_kfree_skb(skb);
2528}
2529EXPORT_SYMBOL(__dev_kfree_skb_any);
2530
2531
2532/**
2533 * netif_device_detach - mark device as removed
2534 * @dev: network device
2535 *
2536 * Mark device as removed from system and therefore no longer available.
2537 */
2538void netif_device_detach(struct net_device *dev)
2539{
2540 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2541 netif_running(dev)) {
2542 netif_tx_stop_all_queues(dev);
2543 }
2544}
2545EXPORT_SYMBOL(netif_device_detach);
2546
2547/**
2548 * netif_device_attach - mark device as attached
2549 * @dev: network device
2550 *
2551 * Mark device as attached from system and restart if needed.
2552 */
2553void netif_device_attach(struct net_device *dev)
2554{
2555 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2556 netif_running(dev)) {
2557 netif_tx_wake_all_queues(dev);
2558 __netdev_watchdog_up(dev);
2559 }
2560}
2561EXPORT_SYMBOL(netif_device_attach);
2562
2563/*
2564 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2565 * to be used as a distribution range.
2566 */
2567u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2568 unsigned int num_tx_queues)
2569{
2570 u32 hash;
2571 u16 qoffset = 0;
2572 u16 qcount = num_tx_queues;
2573
2574 if (skb_rx_queue_recorded(skb)) {
2575 hash = skb_get_rx_queue(skb);
2576 while (unlikely(hash >= num_tx_queues))
2577 hash -= num_tx_queues;
2578 return hash;
2579 }
2580
2581 if (dev->num_tc) {
2582 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2583
2584 qoffset = dev->tc_to_txq[tc].offset;
2585 qcount = dev->tc_to_txq[tc].count;
2586 }
2587
2588 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2589}
2590EXPORT_SYMBOL(__skb_tx_hash);
2591
2592static void skb_warn_bad_offload(const struct sk_buff *skb)
2593{
2594 static const netdev_features_t null_features;
2595 struct net_device *dev = skb->dev;
2596 const char *name = "";
2597
2598 if (!net_ratelimit())
2599 return;
2600
2601 if (dev) {
2602 if (dev->dev.parent)
2603 name = dev_driver_string(dev->dev.parent);
2604 else
2605 name = netdev_name(dev);
2606 }
2607 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2608 "gso_type=%d ip_summed=%d\n",
2609 name, dev ? &dev->features : &null_features,
2610 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2611 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2612 skb_shinfo(skb)->gso_type, skb->ip_summed);
2613}
2614
2615/*
2616 * Invalidate hardware checksum when packet is to be mangled, and
2617 * complete checksum manually on outgoing path.
2618 */
2619int skb_checksum_help(struct sk_buff *skb)
2620{
2621 __wsum csum;
2622 int ret = 0, offset;
2623
2624 if (skb->ip_summed == CHECKSUM_COMPLETE)
2625 goto out_set_summed;
2626
2627 if (unlikely(skb_shinfo(skb)->gso_size)) {
2628 skb_warn_bad_offload(skb);
2629 return -EINVAL;
2630 }
2631
2632 /* Before computing a checksum, we should make sure no frag could
2633 * be modified by an external entity : checksum could be wrong.
2634 */
2635 if (skb_has_shared_frag(skb)) {
2636 ret = __skb_linearize(skb);
2637 if (ret)
2638 goto out;
2639 }
2640
2641 offset = skb_checksum_start_offset(skb);
2642 BUG_ON(offset >= skb_headlen(skb));
2643 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2644
2645 offset += skb->csum_offset;
2646 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2647
2648 if (skb_cloned(skb) &&
2649 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2650 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2651 if (ret)
2652 goto out;
2653 }
2654
2655 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2656out_set_summed:
2657 skb->ip_summed = CHECKSUM_NONE;
2658out:
2659 return ret;
2660}
2661EXPORT_SYMBOL(skb_checksum_help);
2662
2663int skb_crc32c_csum_help(struct sk_buff *skb)
2664{
2665 __le32 crc32c_csum;
2666 int ret = 0, offset, start;
2667
2668 if (skb->ip_summed != CHECKSUM_PARTIAL)
2669 goto out;
2670
2671 if (unlikely(skb_is_gso(skb)))
2672 goto out;
2673
2674 /* Before computing a checksum, we should make sure no frag could
2675 * be modified by an external entity : checksum could be wrong.
2676 */
2677 if (unlikely(skb_has_shared_frag(skb))) {
2678 ret = __skb_linearize(skb);
2679 if (ret)
2680 goto out;
2681 }
2682 start = skb_checksum_start_offset(skb);
2683 offset = start + offsetof(struct sctphdr, checksum);
2684 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2685 ret = -EINVAL;
2686 goto out;
2687 }
2688 if (skb_cloned(skb) &&
2689 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2690 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2691 if (ret)
2692 goto out;
2693 }
2694 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2695 skb->len - start, ~(__u32)0,
2696 crc32c_csum_stub));
2697 *(__le32 *)(skb->data + offset) = crc32c_csum;
2698 skb->ip_summed = CHECKSUM_NONE;
2699 skb->csum_not_inet = 0;
2700out:
2701 return ret;
2702}
2703
2704__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2705{
2706 __be16 type = skb->protocol;
2707
2708 /* Tunnel gso handlers can set protocol to ethernet. */
2709 if (type == htons(ETH_P_TEB)) {
2710 struct ethhdr *eth;
2711
2712 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2713 return 0;
2714
2715 eth = (struct ethhdr *)skb_mac_header(skb);
2716 type = eth->h_proto;
2717 }
2718
2719 return __vlan_get_protocol(skb, type, depth);
2720}
2721
2722/**
2723 * skb_mac_gso_segment - mac layer segmentation handler.
2724 * @skb: buffer to segment
2725 * @features: features for the output path (see dev->features)
2726 */
2727struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2728 netdev_features_t features)
2729{
2730 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2731 struct packet_offload *ptype;
2732 int vlan_depth = skb->mac_len;
2733 __be16 type = skb_network_protocol(skb, &vlan_depth);
2734
2735 if (unlikely(!type))
2736 return ERR_PTR(-EINVAL);
2737
2738 __skb_pull(skb, vlan_depth);
2739
2740 rcu_read_lock();
2741 list_for_each_entry_rcu(ptype, &offload_base, list) {
2742 if (ptype->type == type && ptype->callbacks.gso_segment) {
2743 segs = ptype->callbacks.gso_segment(skb, features);
2744 break;
2745 }
2746 }
2747 rcu_read_unlock();
2748
2749 __skb_push(skb, skb->data - skb_mac_header(skb));
2750
2751 return segs;
2752}
2753EXPORT_SYMBOL(skb_mac_gso_segment);
2754
2755
2756/* openvswitch calls this on rx path, so we need a different check.
2757 */
2758static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2759{
2760 if (tx_path)
2761 return skb->ip_summed != CHECKSUM_PARTIAL &&
2762 skb->ip_summed != CHECKSUM_UNNECESSARY;
2763
2764 return skb->ip_summed == CHECKSUM_NONE;
2765}
2766
2767/**
2768 * __skb_gso_segment - Perform segmentation on skb.
2769 * @skb: buffer to segment
2770 * @features: features for the output path (see dev->features)
2771 * @tx_path: whether it is called in TX path
2772 *
2773 * This function segments the given skb and returns a list of segments.
2774 *
2775 * It may return NULL if the skb requires no segmentation. This is
2776 * only possible when GSO is used for verifying header integrity.
2777 *
2778 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2779 */
2780struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2781 netdev_features_t features, bool tx_path)
2782{
2783 struct sk_buff *segs;
2784
2785 if (unlikely(skb_needs_check(skb, tx_path))) {
2786 int err;
2787
2788 /* We're going to init ->check field in TCP or UDP header */
2789 err = skb_cow_head(skb, 0);
2790 if (err < 0)
2791 return ERR_PTR(err);
2792 }
2793
2794 /* Only report GSO partial support if it will enable us to
2795 * support segmentation on this frame without needing additional
2796 * work.
2797 */
2798 if (features & NETIF_F_GSO_PARTIAL) {
2799 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2800 struct net_device *dev = skb->dev;
2801
2802 partial_features |= dev->features & dev->gso_partial_features;
2803 if (!skb_gso_ok(skb, features | partial_features))
2804 features &= ~NETIF_F_GSO_PARTIAL;
2805 }
2806
2807 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2808 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2809
2810 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2811 SKB_GSO_CB(skb)->encap_level = 0;
2812
2813 skb_reset_mac_header(skb);
2814 skb_reset_mac_len(skb);
2815
2816 segs = skb_mac_gso_segment(skb, features);
2817
2818 if (unlikely(skb_needs_check(skb, tx_path)))
2819 skb_warn_bad_offload(skb);
2820
2821 return segs;
2822}
2823EXPORT_SYMBOL(__skb_gso_segment);
2824
2825/* Take action when hardware reception checksum errors are detected. */
2826#ifdef CONFIG_BUG
2827void netdev_rx_csum_fault(struct net_device *dev)
2828{
2829 if (net_ratelimit()) {
2830 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2831 dump_stack();
2832 }
2833}
2834EXPORT_SYMBOL(netdev_rx_csum_fault);
2835#endif
2836
2837/* Actually, we should eliminate this check as soon as we know, that:
2838 * 1. IOMMU is present and allows to map all the memory.
2839 * 2. No high memory really exists on this machine.
2840 */
2841
2842static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2843{
2844#ifdef CONFIG_HIGHMEM
2845 int i;
2846
2847 if (!(dev->features & NETIF_F_HIGHDMA)) {
2848 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2849 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2850
2851 if (PageHighMem(skb_frag_page(frag)))
2852 return 1;
2853 }
2854 }
2855
2856 if (PCI_DMA_BUS_IS_PHYS) {
2857 struct device *pdev = dev->dev.parent;
2858
2859 if (!pdev)
2860 return 0;
2861 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2862 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2863 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2864
2865 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2866 return 1;
2867 }
2868 }
2869#endif
2870 return 0;
2871}
2872
2873/* If MPLS offload request, verify we are testing hardware MPLS features
2874 * instead of standard features for the netdev.
2875 */
2876#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2877static netdev_features_t net_mpls_features(struct sk_buff *skb,
2878 netdev_features_t features,
2879 __be16 type)
2880{
2881 if (eth_p_mpls(type))
2882 features &= skb->dev->mpls_features;
2883
2884 return features;
2885}
2886#else
2887static netdev_features_t net_mpls_features(struct sk_buff *skb,
2888 netdev_features_t features,
2889 __be16 type)
2890{
2891 return features;
2892}
2893#endif
2894
2895static netdev_features_t harmonize_features(struct sk_buff *skb,
2896 netdev_features_t features)
2897{
2898 int tmp;
2899 __be16 type;
2900
2901 type = skb_network_protocol(skb, &tmp);
2902 features = net_mpls_features(skb, features, type);
2903
2904 if (skb->ip_summed != CHECKSUM_NONE &&
2905 !can_checksum_protocol(features, type)) {
2906 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2907 }
2908 if (illegal_highdma(skb->dev, skb))
2909 features &= ~NETIF_F_SG;
2910
2911 return features;
2912}
2913
2914netdev_features_t passthru_features_check(struct sk_buff *skb,
2915 struct net_device *dev,
2916 netdev_features_t features)
2917{
2918 return features;
2919}
2920EXPORT_SYMBOL(passthru_features_check);
2921
2922static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2923 struct net_device *dev,
2924 netdev_features_t features)
2925{
2926 return vlan_features_check(skb, features);
2927}
2928
2929static netdev_features_t gso_features_check(const struct sk_buff *skb,
2930 struct net_device *dev,
2931 netdev_features_t features)
2932{
2933 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2934
2935 if (gso_segs > dev->gso_max_segs)
2936 return features & ~NETIF_F_GSO_MASK;
2937
2938 /* Support for GSO partial features requires software
2939 * intervention before we can actually process the packets
2940 * so we need to strip support for any partial features now
2941 * and we can pull them back in after we have partially
2942 * segmented the frame.
2943 */
2944 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2945 features &= ~dev->gso_partial_features;
2946
2947 /* Make sure to clear the IPv4 ID mangling feature if the
2948 * IPv4 header has the potential to be fragmented.
2949 */
2950 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2951 struct iphdr *iph = skb->encapsulation ?
2952 inner_ip_hdr(skb) : ip_hdr(skb);
2953
2954 if (!(iph->frag_off & htons(IP_DF)))
2955 features &= ~NETIF_F_TSO_MANGLEID;
2956 }
2957
2958 return features;
2959}
2960
2961netdev_features_t netif_skb_features(struct sk_buff *skb)
2962{
2963 struct net_device *dev = skb->dev;
2964 netdev_features_t features = dev->features;
2965
2966 if (skb_is_gso(skb))
2967 features = gso_features_check(skb, dev, features);
2968
2969 /* If encapsulation offload request, verify we are testing
2970 * hardware encapsulation features instead of standard
2971 * features for the netdev
2972 */
2973 if (skb->encapsulation)
2974 features &= dev->hw_enc_features;
2975
2976 if (skb_vlan_tagged(skb))
2977 features = netdev_intersect_features(features,
2978 dev->vlan_features |
2979 NETIF_F_HW_VLAN_CTAG_TX |
2980 NETIF_F_HW_VLAN_STAG_TX);
2981
2982 if (dev->netdev_ops->ndo_features_check)
2983 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2984 features);
2985 else
2986 features &= dflt_features_check(skb, dev, features);
2987
2988 return harmonize_features(skb, features);
2989}
2990EXPORT_SYMBOL(netif_skb_features);
2991
2992static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2993 struct netdev_queue *txq, bool more)
2994{
2995 unsigned int len;
2996 int rc;
2997
2998 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2999 dev_queue_xmit_nit(skb, dev);
3000
3001 len = skb->len;
3002 trace_net_dev_start_xmit(skb, dev);
3003 rc = netdev_start_xmit(skb, dev, txq, more);
3004 trace_net_dev_xmit(skb, rc, dev, len);
3005
3006 return rc;
3007}
3008
3009struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3010 struct netdev_queue *txq, int *ret)
3011{
3012 struct sk_buff *skb = first;
3013 int rc = NETDEV_TX_OK;
3014
3015 while (skb) {
3016 struct sk_buff *next = skb->next;
3017
3018 skb->next = NULL;
3019 rc = xmit_one(skb, dev, txq, next != NULL);
3020 if (unlikely(!dev_xmit_complete(rc))) {
3021 skb->next = next;
3022 goto out;
3023 }
3024
3025 skb = next;
3026 if (netif_xmit_stopped(txq) && skb) {
3027 rc = NETDEV_TX_BUSY;
3028 break;
3029 }
3030 }
3031
3032out:
3033 *ret = rc;
3034 return skb;
3035}
3036
3037static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3038 netdev_features_t features)
3039{
3040 if (skb_vlan_tag_present(skb) &&
3041 !vlan_hw_offload_capable(features, skb->vlan_proto))
3042 skb = __vlan_hwaccel_push_inside(skb);
3043 return skb;
3044}
3045
3046int skb_csum_hwoffload_help(struct sk_buff *skb,
3047 const netdev_features_t features)
3048{
3049 if (unlikely(skb->csum_not_inet))
3050 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3051 skb_crc32c_csum_help(skb);
3052
3053 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3054}
3055EXPORT_SYMBOL(skb_csum_hwoffload_help);
3056
3057static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3058{
3059 netdev_features_t features;
3060
3061 features = netif_skb_features(skb);
3062 skb = validate_xmit_vlan(skb, features);
3063 if (unlikely(!skb))
3064 goto out_null;
3065
3066 if (netif_needs_gso(skb, features)) {
3067 struct sk_buff *segs;
3068
3069 segs = skb_gso_segment(skb, features);
3070 if (IS_ERR(segs)) {
3071 goto out_kfree_skb;
3072 } else if (segs) {
3073 consume_skb(skb);
3074 skb = segs;
3075 }
3076 } else {
3077 if (skb_needs_linearize(skb, features) &&
3078 __skb_linearize(skb))
3079 goto out_kfree_skb;
3080
3081 if (validate_xmit_xfrm(skb, features))
3082 goto out_kfree_skb;
3083
3084 /* If packet is not checksummed and device does not
3085 * support checksumming for this protocol, complete
3086 * checksumming here.
3087 */
3088 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3089 if (skb->encapsulation)
3090 skb_set_inner_transport_header(skb,
3091 skb_checksum_start_offset(skb));
3092 else
3093 skb_set_transport_header(skb,
3094 skb_checksum_start_offset(skb));
3095 if (skb_csum_hwoffload_help(skb, features))
3096 goto out_kfree_skb;
3097 }
3098 }
3099
3100 return skb;
3101
3102out_kfree_skb:
3103 kfree_skb(skb);
3104out_null:
3105 atomic_long_inc(&dev->tx_dropped);
3106 return NULL;
3107}
3108
3109struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3110{
3111 struct sk_buff *next, *head = NULL, *tail;
3112
3113 for (; skb != NULL; skb = next) {
3114 next = skb->next;
3115 skb->next = NULL;
3116
3117 /* in case skb wont be segmented, point to itself */
3118 skb->prev = skb;
3119
3120 skb = validate_xmit_skb(skb, dev);
3121 if (!skb)
3122 continue;
3123
3124 if (!head)
3125 head = skb;
3126 else
3127 tail->next = skb;
3128 /* If skb was segmented, skb->prev points to
3129 * the last segment. If not, it still contains skb.
3130 */
3131 tail = skb->prev;
3132 }
3133 return head;
3134}
3135EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3136
3137static void qdisc_pkt_len_init(struct sk_buff *skb)
3138{
3139 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3140
3141 qdisc_skb_cb(skb)->pkt_len = skb->len;
3142
3143 /* To get more precise estimation of bytes sent on wire,
3144 * we add to pkt_len the headers size of all segments
3145 */
3146 if (shinfo->gso_size) {
3147 unsigned int hdr_len;
3148 u16 gso_segs = shinfo->gso_segs;
3149
3150 /* mac layer + network layer */
3151 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3152
3153 /* + transport layer */
3154 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3155 const struct tcphdr *th;
3156 struct tcphdr _tcphdr;
3157
3158 th = skb_header_pointer(skb, skb_transport_offset(skb),
3159 sizeof(_tcphdr), &_tcphdr);
3160 if (likely(th))
3161 hdr_len += __tcp_hdrlen(th);
3162 } else {
3163 struct udphdr _udphdr;
3164
3165 if (skb_header_pointer(skb, skb_transport_offset(skb),
3166 sizeof(_udphdr), &_udphdr))
3167 hdr_len += sizeof(struct udphdr);
3168 }
3169
3170 if (shinfo->gso_type & SKB_GSO_DODGY)
3171 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3172 shinfo->gso_size);
3173
3174 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3175 }
3176}
3177
3178static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3179 struct net_device *dev,
3180 struct netdev_queue *txq)
3181{
3182 spinlock_t *root_lock = qdisc_lock(q);
3183 struct sk_buff *to_free = NULL;
3184 bool contended;
3185 int rc;
3186
3187 qdisc_calculate_pkt_len(skb, q);
3188 /*
3189 * Heuristic to force contended enqueues to serialize on a
3190 * separate lock before trying to get qdisc main lock.
3191 * This permits qdisc->running owner to get the lock more
3192 * often and dequeue packets faster.
3193 */
3194 contended = qdisc_is_running(q);
3195 if (unlikely(contended))
3196 spin_lock(&q->busylock);
3197
3198 spin_lock(root_lock);
3199 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3200 __qdisc_drop(skb, &to_free);
3201 rc = NET_XMIT_DROP;
3202 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3203 qdisc_run_begin(q)) {
3204 /*
3205 * This is a work-conserving queue; there are no old skbs
3206 * waiting to be sent out; and the qdisc is not running -
3207 * xmit the skb directly.
3208 */
3209
3210 qdisc_bstats_update(q, skb);
3211
3212 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3213 if (unlikely(contended)) {
3214 spin_unlock(&q->busylock);
3215 contended = false;
3216 }
3217 __qdisc_run(q);
3218 } else
3219 qdisc_run_end(q);
3220
3221 rc = NET_XMIT_SUCCESS;
3222 } else {
3223 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3224 if (qdisc_run_begin(q)) {
3225 if (unlikely(contended)) {
3226 spin_unlock(&q->busylock);
3227 contended = false;
3228 }
3229 __qdisc_run(q);
3230 }
3231 }
3232 spin_unlock(root_lock);
3233 if (unlikely(to_free))
3234 kfree_skb_list(to_free);
3235 if (unlikely(contended))
3236 spin_unlock(&q->busylock);
3237 return rc;
3238}
3239
3240#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3241static void skb_update_prio(struct sk_buff *skb)
3242{
3243 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3244
3245 if (!skb->priority && skb->sk && map) {
3246 unsigned int prioidx =
3247 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3248
3249 if (prioidx < map->priomap_len)
3250 skb->priority = map->priomap[prioidx];
3251 }
3252}
3253#else
3254#define skb_update_prio(skb)
3255#endif
3256
3257DEFINE_PER_CPU(int, xmit_recursion);
3258EXPORT_SYMBOL(xmit_recursion);
3259
3260/**
3261 * dev_loopback_xmit - loop back @skb
3262 * @net: network namespace this loopback is happening in
3263 * @sk: sk needed to be a netfilter okfn
3264 * @skb: buffer to transmit
3265 */
3266int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3267{
3268 skb_reset_mac_header(skb);
3269 __skb_pull(skb, skb_network_offset(skb));
3270 skb->pkt_type = PACKET_LOOPBACK;
3271 skb->ip_summed = CHECKSUM_UNNECESSARY;
3272 WARN_ON(!skb_dst(skb));
3273 skb_dst_force(skb);
3274 netif_rx_ni(skb);
3275 return 0;
3276}
3277EXPORT_SYMBOL(dev_loopback_xmit);
3278
3279#ifdef CONFIG_NET_EGRESS
3280static struct sk_buff *
3281sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3282{
3283 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3284 struct tcf_result cl_res;
3285
3286 if (!miniq)
3287 return skb;
3288
3289 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3290 mini_qdisc_bstats_cpu_update(miniq, skb);
3291
3292 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3293 case TC_ACT_OK:
3294 case TC_ACT_RECLASSIFY:
3295 skb->tc_index = TC_H_MIN(cl_res.classid);
3296 break;
3297 case TC_ACT_SHOT:
3298 mini_qdisc_qstats_cpu_drop(miniq);
3299 *ret = NET_XMIT_DROP;
3300 kfree_skb(skb);
3301 return NULL;
3302 case TC_ACT_STOLEN:
3303 case TC_ACT_QUEUED:
3304 case TC_ACT_TRAP:
3305 *ret = NET_XMIT_SUCCESS;
3306 consume_skb(skb);
3307 return NULL;
3308 case TC_ACT_REDIRECT:
3309 /* No need to push/pop skb's mac_header here on egress! */
3310 skb_do_redirect(skb);
3311 *ret = NET_XMIT_SUCCESS;
3312 return NULL;
3313 default:
3314 break;
3315 }
3316
3317 return skb;
3318}
3319#endif /* CONFIG_NET_EGRESS */
3320
3321static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3322{
3323#ifdef CONFIG_XPS
3324 struct xps_dev_maps *dev_maps;
3325 struct xps_map *map;
3326 int queue_index = -1;
3327
3328 rcu_read_lock();
3329 dev_maps = rcu_dereference(dev->xps_maps);
3330 if (dev_maps) {
3331 unsigned int tci = skb->sender_cpu - 1;
3332
3333 if (dev->num_tc) {
3334 tci *= dev->num_tc;
3335 tci += netdev_get_prio_tc_map(dev, skb->priority);
3336 }
3337
3338 map = rcu_dereference(dev_maps->cpu_map[tci]);
3339 if (map) {
3340 if (map->len == 1)
3341 queue_index = map->queues[0];
3342 else
3343 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3344 map->len)];
3345 if (unlikely(queue_index >= dev->real_num_tx_queues))
3346 queue_index = -1;
3347 }
3348 }
3349 rcu_read_unlock();
3350
3351 return queue_index;
3352#else
3353 return -1;
3354#endif
3355}
3356
3357static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3358{
3359 struct sock *sk = skb->sk;
3360 int queue_index = sk_tx_queue_get(sk);
3361
3362 if (queue_index < 0 || skb->ooo_okay ||
3363 queue_index >= dev->real_num_tx_queues) {
3364 int new_index = get_xps_queue(dev, skb);
3365
3366 if (new_index < 0)
3367 new_index = skb_tx_hash(dev, skb);
3368
3369 if (queue_index != new_index && sk &&
3370 sk_fullsock(sk) &&
3371 rcu_access_pointer(sk->sk_dst_cache))
3372 sk_tx_queue_set(sk, new_index);
3373
3374 queue_index = new_index;
3375 }
3376
3377 return queue_index;
3378}
3379
3380struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3381 struct sk_buff *skb,
3382 void *accel_priv)
3383{
3384 int queue_index = 0;
3385
3386#ifdef CONFIG_XPS
3387 u32 sender_cpu = skb->sender_cpu - 1;
3388
3389 if (sender_cpu >= (u32)NR_CPUS)
3390 skb->sender_cpu = raw_smp_processor_id() + 1;
3391#endif
3392
3393 if (dev->real_num_tx_queues != 1) {
3394 const struct net_device_ops *ops = dev->netdev_ops;
3395
3396 if (ops->ndo_select_queue)
3397 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3398 __netdev_pick_tx);
3399 else
3400 queue_index = __netdev_pick_tx(dev, skb);
3401
3402 if (!accel_priv)
3403 queue_index = netdev_cap_txqueue(dev, queue_index);
3404 }
3405
3406 skb_set_queue_mapping(skb, queue_index);
3407 return netdev_get_tx_queue(dev, queue_index);
3408}
3409
3410/**
3411 * __dev_queue_xmit - transmit a buffer
3412 * @skb: buffer to transmit
3413 * @accel_priv: private data used for L2 forwarding offload
3414 *
3415 * Queue a buffer for transmission to a network device. The caller must
3416 * have set the device and priority and built the buffer before calling
3417 * this function. The function can be called from an interrupt.
3418 *
3419 * A negative errno code is returned on a failure. A success does not
3420 * guarantee the frame will be transmitted as it may be dropped due
3421 * to congestion or traffic shaping.
3422 *
3423 * -----------------------------------------------------------------------------------
3424 * I notice this method can also return errors from the queue disciplines,
3425 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3426 * be positive.
3427 *
3428 * Regardless of the return value, the skb is consumed, so it is currently
3429 * difficult to retry a send to this method. (You can bump the ref count
3430 * before sending to hold a reference for retry if you are careful.)
3431 *
3432 * When calling this method, interrupts MUST be enabled. This is because
3433 * the BH enable code must have IRQs enabled so that it will not deadlock.
3434 * --BLG
3435 */
3436static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3437{
3438 struct net_device *dev = skb->dev;
3439 struct netdev_queue *txq;
3440 struct Qdisc *q;
3441 int rc = -ENOMEM;
3442
3443 skb_reset_mac_header(skb);
3444
3445 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3446 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3447
3448 /* Disable soft irqs for various locks below. Also
3449 * stops preemption for RCU.
3450 */
3451 rcu_read_lock_bh();
3452
3453 skb_update_prio(skb);
3454
3455 qdisc_pkt_len_init(skb);
3456#ifdef CONFIG_NET_CLS_ACT
3457 skb->tc_at_ingress = 0;
3458# ifdef CONFIG_NET_EGRESS
3459 if (static_key_false(&egress_needed)) {
3460 skb = sch_handle_egress(skb, &rc, dev);
3461 if (!skb)
3462 goto out;
3463 }
3464# endif
3465#endif
3466 /* If device/qdisc don't need skb->dst, release it right now while
3467 * its hot in this cpu cache.
3468 */
3469 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3470 skb_dst_drop(skb);
3471 else
3472 skb_dst_force(skb);
3473
3474 txq = netdev_pick_tx(dev, skb, accel_priv);
3475 q = rcu_dereference_bh(txq->qdisc);
3476
3477 trace_net_dev_queue(skb);
3478 if (q->enqueue) {
3479 rc = __dev_xmit_skb(skb, q, dev, txq);
3480 goto out;
3481 }
3482
3483 /* The device has no queue. Common case for software devices:
3484 * loopback, all the sorts of tunnels...
3485
3486 * Really, it is unlikely that netif_tx_lock protection is necessary
3487 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3488 * counters.)
3489 * However, it is possible, that they rely on protection
3490 * made by us here.
3491
3492 * Check this and shot the lock. It is not prone from deadlocks.
3493 *Either shot noqueue qdisc, it is even simpler 8)
3494 */
3495 if (dev->flags & IFF_UP) {
3496 int cpu = smp_processor_id(); /* ok because BHs are off */
3497
3498 if (txq->xmit_lock_owner != cpu) {
3499 if (unlikely(__this_cpu_read(xmit_recursion) >
3500 XMIT_RECURSION_LIMIT))
3501 goto recursion_alert;
3502
3503 skb = validate_xmit_skb(skb, dev);
3504 if (!skb)
3505 goto out;
3506
3507 HARD_TX_LOCK(dev, txq, cpu);
3508
3509 if (!netif_xmit_stopped(txq)) {
3510 __this_cpu_inc(xmit_recursion);
3511 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3512 __this_cpu_dec(xmit_recursion);
3513 if (dev_xmit_complete(rc)) {
3514 HARD_TX_UNLOCK(dev, txq);
3515 goto out;
3516 }
3517 }
3518 HARD_TX_UNLOCK(dev, txq);
3519 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3520 dev->name);
3521 } else {
3522 /* Recursion is detected! It is possible,
3523 * unfortunately
3524 */
3525recursion_alert:
3526 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3527 dev->name);
3528 }
3529 }
3530
3531 rc = -ENETDOWN;
3532 rcu_read_unlock_bh();
3533
3534 atomic_long_inc(&dev->tx_dropped);
3535 kfree_skb_list(skb);
3536 return rc;
3537out:
3538 rcu_read_unlock_bh();
3539 return rc;
3540}
3541
3542int dev_queue_xmit(struct sk_buff *skb)
3543{
3544 return __dev_queue_xmit(skb, NULL);
3545}
3546EXPORT_SYMBOL(dev_queue_xmit);
3547
3548int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3549{
3550 return __dev_queue_xmit(skb, accel_priv);
3551}
3552EXPORT_SYMBOL(dev_queue_xmit_accel);
3553
3554
3555/*************************************************************************
3556 * Receiver routines
3557 *************************************************************************/
3558
3559int netdev_max_backlog __read_mostly = 1000;
3560EXPORT_SYMBOL(netdev_max_backlog);
3561
3562int netdev_tstamp_prequeue __read_mostly = 1;
3563int netdev_budget __read_mostly = 300;
3564unsigned int __read_mostly netdev_budget_usecs = 2000;
3565int weight_p __read_mostly = 64; /* old backlog weight */
3566int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3567int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3568int dev_rx_weight __read_mostly = 64;
3569int dev_tx_weight __read_mostly = 64;
3570
3571/* Called with irq disabled */
3572static inline void ____napi_schedule(struct softnet_data *sd,
3573 struct napi_struct *napi)
3574{
3575 list_add_tail(&napi->poll_list, &sd->poll_list);
3576 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3577}
3578
3579#ifdef CONFIG_RPS
3580
3581/* One global table that all flow-based protocols share. */
3582struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3583EXPORT_SYMBOL(rps_sock_flow_table);
3584u32 rps_cpu_mask __read_mostly;
3585EXPORT_SYMBOL(rps_cpu_mask);
3586
3587struct static_key rps_needed __read_mostly;
3588EXPORT_SYMBOL(rps_needed);
3589struct static_key rfs_needed __read_mostly;
3590EXPORT_SYMBOL(rfs_needed);
3591
3592static struct rps_dev_flow *
3593set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3594 struct rps_dev_flow *rflow, u16 next_cpu)
3595{
3596 if (next_cpu < nr_cpu_ids) {
3597#ifdef CONFIG_RFS_ACCEL
3598 struct netdev_rx_queue *rxqueue;
3599 struct rps_dev_flow_table *flow_table;
3600 struct rps_dev_flow *old_rflow;
3601 u32 flow_id;
3602 u16 rxq_index;
3603 int rc;
3604
3605 /* Should we steer this flow to a different hardware queue? */
3606 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3607 !(dev->features & NETIF_F_NTUPLE))
3608 goto out;
3609 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3610 if (rxq_index == skb_get_rx_queue(skb))
3611 goto out;
3612
3613 rxqueue = dev->_rx + rxq_index;
3614 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3615 if (!flow_table)
3616 goto out;
3617 flow_id = skb_get_hash(skb) & flow_table->mask;
3618 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3619 rxq_index, flow_id);
3620 if (rc < 0)
3621 goto out;
3622 old_rflow = rflow;
3623 rflow = &flow_table->flows[flow_id];
3624 rflow->filter = rc;
3625 if (old_rflow->filter == rflow->filter)
3626 old_rflow->filter = RPS_NO_FILTER;
3627 out:
3628#endif
3629 rflow->last_qtail =
3630 per_cpu(softnet_data, next_cpu).input_queue_head;
3631 }
3632
3633 rflow->cpu = next_cpu;
3634 return rflow;
3635}
3636
3637/*
3638 * get_rps_cpu is called from netif_receive_skb and returns the target
3639 * CPU from the RPS map of the receiving queue for a given skb.
3640 * rcu_read_lock must be held on entry.
3641 */
3642static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3643 struct rps_dev_flow **rflowp)
3644{
3645 const struct rps_sock_flow_table *sock_flow_table;
3646 struct netdev_rx_queue *rxqueue = dev->_rx;
3647 struct rps_dev_flow_table *flow_table;
3648 struct rps_map *map;
3649 int cpu = -1;
3650 u32 tcpu;
3651 u32 hash;
3652
3653 if (skb_rx_queue_recorded(skb)) {
3654 u16 index = skb_get_rx_queue(skb);
3655
3656 if (unlikely(index >= dev->real_num_rx_queues)) {
3657 WARN_ONCE(dev->real_num_rx_queues > 1,
3658 "%s received packet on queue %u, but number "
3659 "of RX queues is %u\n",
3660 dev->name, index, dev->real_num_rx_queues);
3661 goto done;
3662 }
3663 rxqueue += index;
3664 }
3665
3666 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3667
3668 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3669 map = rcu_dereference(rxqueue->rps_map);
3670 if (!flow_table && !map)
3671 goto done;
3672
3673 skb_reset_network_header(skb);
3674 hash = skb_get_hash(skb);
3675 if (!hash)
3676 goto done;
3677
3678 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3679 if (flow_table && sock_flow_table) {
3680 struct rps_dev_flow *rflow;
3681 u32 next_cpu;
3682 u32 ident;
3683
3684 /* First check into global flow table if there is a match */
3685 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3686 if ((ident ^ hash) & ~rps_cpu_mask)
3687 goto try_rps;
3688
3689 next_cpu = ident & rps_cpu_mask;
3690
3691 /* OK, now we know there is a match,
3692 * we can look at the local (per receive queue) flow table
3693 */
3694 rflow = &flow_table->flows[hash & flow_table->mask];
3695 tcpu = rflow->cpu;
3696
3697 /*
3698 * If the desired CPU (where last recvmsg was done) is
3699 * different from current CPU (one in the rx-queue flow
3700 * table entry), switch if one of the following holds:
3701 * - Current CPU is unset (>= nr_cpu_ids).
3702 * - Current CPU is offline.
3703 * - The current CPU's queue tail has advanced beyond the
3704 * last packet that was enqueued using this table entry.
3705 * This guarantees that all previous packets for the flow
3706 * have been dequeued, thus preserving in order delivery.
3707 */
3708 if (unlikely(tcpu != next_cpu) &&
3709 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3710 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3711 rflow->last_qtail)) >= 0)) {
3712 tcpu = next_cpu;
3713 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3714 }
3715
3716 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3717 *rflowp = rflow;
3718 cpu = tcpu;
3719 goto done;
3720 }
3721 }
3722
3723try_rps:
3724
3725 if (map) {
3726 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3727 if (cpu_online(tcpu)) {
3728 cpu = tcpu;
3729 goto done;
3730 }
3731 }
3732
3733done:
3734 return cpu;
3735}
3736
3737#ifdef CONFIG_RFS_ACCEL
3738
3739/**
3740 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3741 * @dev: Device on which the filter was set
3742 * @rxq_index: RX queue index
3743 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3744 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3745 *
3746 * Drivers that implement ndo_rx_flow_steer() should periodically call
3747 * this function for each installed filter and remove the filters for
3748 * which it returns %true.
3749 */
3750bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3751 u32 flow_id, u16 filter_id)
3752{
3753 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3754 struct rps_dev_flow_table *flow_table;
3755 struct rps_dev_flow *rflow;
3756 bool expire = true;
3757 unsigned int cpu;
3758
3759 rcu_read_lock();
3760 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3761 if (flow_table && flow_id <= flow_table->mask) {
3762 rflow = &flow_table->flows[flow_id];
3763 cpu = READ_ONCE(rflow->cpu);
3764 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3765 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3766 rflow->last_qtail) <
3767 (int)(10 * flow_table->mask)))
3768 expire = false;
3769 }
3770 rcu_read_unlock();
3771 return expire;
3772}
3773EXPORT_SYMBOL(rps_may_expire_flow);
3774
3775#endif /* CONFIG_RFS_ACCEL */
3776
3777/* Called from hardirq (IPI) context */
3778static void rps_trigger_softirq(void *data)
3779{
3780 struct softnet_data *sd = data;
3781
3782 ____napi_schedule(sd, &sd->backlog);
3783 sd->received_rps++;
3784}
3785
3786#endif /* CONFIG_RPS */
3787
3788/*
3789 * Check if this softnet_data structure is another cpu one
3790 * If yes, queue it to our IPI list and return 1
3791 * If no, return 0
3792 */
3793static int rps_ipi_queued(struct softnet_data *sd)
3794{
3795#ifdef CONFIG_RPS
3796 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3797
3798 if (sd != mysd) {
3799 sd->rps_ipi_next = mysd->rps_ipi_list;
3800 mysd->rps_ipi_list = sd;
3801
3802 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3803 return 1;
3804 }
3805#endif /* CONFIG_RPS */
3806 return 0;
3807}
3808
3809#ifdef CONFIG_NET_FLOW_LIMIT
3810int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3811#endif
3812
3813static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3814{
3815#ifdef CONFIG_NET_FLOW_LIMIT
3816 struct sd_flow_limit *fl;
3817 struct softnet_data *sd;
3818 unsigned int old_flow, new_flow;
3819
3820 if (qlen < (netdev_max_backlog >> 1))
3821 return false;
3822
3823 sd = this_cpu_ptr(&softnet_data);
3824
3825 rcu_read_lock();
3826 fl = rcu_dereference(sd->flow_limit);
3827 if (fl) {
3828 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3829 old_flow = fl->history[fl->history_head];
3830 fl->history[fl->history_head] = new_flow;
3831
3832 fl->history_head++;
3833 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3834
3835 if (likely(fl->buckets[old_flow]))
3836 fl->buckets[old_flow]--;
3837
3838 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3839 fl->count++;
3840 rcu_read_unlock();
3841 return true;
3842 }
3843 }
3844 rcu_read_unlock();
3845#endif
3846 return false;
3847}
3848
3849/*
3850 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3851 * queue (may be a remote CPU queue).
3852 */
3853static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3854 unsigned int *qtail)
3855{
3856 struct softnet_data *sd;
3857 unsigned long flags;
3858 unsigned int qlen;
3859
3860 sd = &per_cpu(softnet_data, cpu);
3861
3862 local_irq_save(flags);
3863
3864 rps_lock(sd);
3865 if (!netif_running(skb->dev))
3866 goto drop;
3867 qlen = skb_queue_len(&sd->input_pkt_queue);
3868 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3869 if (qlen) {
3870enqueue:
3871 __skb_queue_tail(&sd->input_pkt_queue, skb);
3872 input_queue_tail_incr_save(sd, qtail);
3873 rps_unlock(sd);
3874 local_irq_restore(flags);
3875 return NET_RX_SUCCESS;
3876 }
3877
3878 /* Schedule NAPI for backlog device
3879 * We can use non atomic operation since we own the queue lock
3880 */
3881 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3882 if (!rps_ipi_queued(sd))
3883 ____napi_schedule(sd, &sd->backlog);
3884 }
3885 goto enqueue;
3886 }
3887
3888drop:
3889 sd->dropped++;
3890 rps_unlock(sd);
3891
3892 local_irq_restore(flags);
3893
3894 atomic_long_inc(&skb->dev->rx_dropped);
3895 kfree_skb(skb);
3896 return NET_RX_DROP;
3897}
3898
3899static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3900 struct bpf_prog *xdp_prog)
3901{
3902 u32 metalen, act = XDP_DROP;
3903 struct xdp_buff xdp;
3904 void *orig_data;
3905 int hlen, off;
3906 u32 mac_len;
3907
3908 /* Reinjected packets coming from act_mirred or similar should
3909 * not get XDP generic processing.
3910 */
3911 if (skb_cloned(skb))
3912 return XDP_PASS;
3913
3914 /* XDP packets must be linear and must have sufficient headroom
3915 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3916 * native XDP provides, thus we need to do it here as well.
3917 */
3918 if (skb_is_nonlinear(skb) ||
3919 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3920 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3921 int troom = skb->tail + skb->data_len - skb->end;
3922
3923 /* In case we have to go down the path and also linearize,
3924 * then lets do the pskb_expand_head() work just once here.
3925 */
3926 if (pskb_expand_head(skb,
3927 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3928 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3929 goto do_drop;
3930 if (skb_linearize(skb))
3931 goto do_drop;
3932 }
3933
3934 /* The XDP program wants to see the packet starting at the MAC
3935 * header.
3936 */
3937 mac_len = skb->data - skb_mac_header(skb);
3938 hlen = skb_headlen(skb) + mac_len;
3939 xdp.data = skb->data - mac_len;
3940 xdp.data_meta = xdp.data;
3941 xdp.data_end = xdp.data + hlen;
3942 xdp.data_hard_start = skb->data - skb_headroom(skb);
3943 orig_data = xdp.data;
3944
3945 act = bpf_prog_run_xdp(xdp_prog, &xdp);
3946
3947 off = xdp.data - orig_data;
3948 if (off > 0)
3949 __skb_pull(skb, off);
3950 else if (off < 0)
3951 __skb_push(skb, -off);
3952 skb->mac_header += off;
3953
3954 switch (act) {
3955 case XDP_REDIRECT:
3956 case XDP_TX:
3957 __skb_push(skb, mac_len);
3958 break;
3959 case XDP_PASS:
3960 metalen = xdp.data - xdp.data_meta;
3961 if (metalen)
3962 skb_metadata_set(skb, metalen);
3963 break;
3964 default:
3965 bpf_warn_invalid_xdp_action(act);
3966 /* fall through */
3967 case XDP_ABORTED:
3968 trace_xdp_exception(skb->dev, xdp_prog, act);
3969 /* fall through */
3970 case XDP_DROP:
3971 do_drop:
3972 kfree_skb(skb);
3973 break;
3974 }
3975
3976 return act;
3977}
3978
3979/* When doing generic XDP we have to bypass the qdisc layer and the
3980 * network taps in order to match in-driver-XDP behavior.
3981 */
3982void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
3983{
3984 struct net_device *dev = skb->dev;
3985 struct netdev_queue *txq;
3986 bool free_skb = true;
3987 int cpu, rc;
3988
3989 txq = netdev_pick_tx(dev, skb, NULL);
3990 cpu = smp_processor_id();
3991 HARD_TX_LOCK(dev, txq, cpu);
3992 if (!netif_xmit_stopped(txq)) {
3993 rc = netdev_start_xmit(skb, dev, txq, 0);
3994 if (dev_xmit_complete(rc))
3995 free_skb = false;
3996 }
3997 HARD_TX_UNLOCK(dev, txq);
3998 if (free_skb) {
3999 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4000 kfree_skb(skb);
4001 }
4002}
4003EXPORT_SYMBOL_GPL(generic_xdp_tx);
4004
4005static struct static_key generic_xdp_needed __read_mostly;
4006
4007int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4008{
4009 if (xdp_prog) {
4010 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4011 int err;
4012
4013 if (act != XDP_PASS) {
4014 switch (act) {
4015 case XDP_REDIRECT:
4016 err = xdp_do_generic_redirect(skb->dev, skb,
4017 xdp_prog);
4018 if (err)
4019 goto out_redir;
4020 /* fallthru to submit skb */
4021 case XDP_TX:
4022 generic_xdp_tx(skb, xdp_prog);
4023 break;
4024 }
4025 return XDP_DROP;
4026 }
4027 }
4028 return XDP_PASS;
4029out_redir:
4030 kfree_skb(skb);
4031 return XDP_DROP;
4032}
4033EXPORT_SYMBOL_GPL(do_xdp_generic);
4034
4035static int netif_rx_internal(struct sk_buff *skb)
4036{
4037 int ret;
4038
4039 net_timestamp_check(netdev_tstamp_prequeue, skb);
4040
4041 trace_netif_rx(skb);
4042
4043 if (static_key_false(&generic_xdp_needed)) {
4044 int ret;
4045
4046 preempt_disable();
4047 rcu_read_lock();
4048 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4049 rcu_read_unlock();
4050 preempt_enable();
4051
4052 /* Consider XDP consuming the packet a success from
4053 * the netdev point of view we do not want to count
4054 * this as an error.
4055 */
4056 if (ret != XDP_PASS)
4057 return NET_RX_SUCCESS;
4058 }
4059
4060#ifdef CONFIG_RPS
4061 if (static_key_false(&rps_needed)) {
4062 struct rps_dev_flow voidflow, *rflow = &voidflow;
4063 int cpu;
4064
4065 preempt_disable();
4066 rcu_read_lock();
4067
4068 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4069 if (cpu < 0)
4070 cpu = smp_processor_id();
4071
4072 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4073
4074 rcu_read_unlock();
4075 preempt_enable();
4076 } else
4077#endif
4078 {
4079 unsigned int qtail;
4080
4081 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4082 put_cpu();
4083 }
4084 return ret;
4085}
4086
4087/**
4088 * netif_rx - post buffer to the network code
4089 * @skb: buffer to post
4090 *
4091 * This function receives a packet from a device driver and queues it for
4092 * the upper (protocol) levels to process. It always succeeds. The buffer
4093 * may be dropped during processing for congestion control or by the
4094 * protocol layers.
4095 *
4096 * return values:
4097 * NET_RX_SUCCESS (no congestion)
4098 * NET_RX_DROP (packet was dropped)
4099 *
4100 */
4101
4102int netif_rx(struct sk_buff *skb)
4103{
4104 trace_netif_rx_entry(skb);
4105
4106 return netif_rx_internal(skb);
4107}
4108EXPORT_SYMBOL(netif_rx);
4109
4110int netif_rx_ni(struct sk_buff *skb)
4111{
4112 int err;
4113
4114 trace_netif_rx_ni_entry(skb);
4115
4116 preempt_disable();
4117 err = netif_rx_internal(skb);
4118 if (local_softirq_pending())
4119 do_softirq();
4120 preempt_enable();
4121
4122 return err;
4123}
4124EXPORT_SYMBOL(netif_rx_ni);
4125
4126static __latent_entropy void net_tx_action(struct softirq_action *h)
4127{
4128 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4129
4130 if (sd->completion_queue) {
4131 struct sk_buff *clist;
4132
4133 local_irq_disable();
4134 clist = sd->completion_queue;
4135 sd->completion_queue = NULL;
4136 local_irq_enable();
4137
4138 while (clist) {
4139 struct sk_buff *skb = clist;
4140
4141 clist = clist->next;
4142
4143 WARN_ON(refcount_read(&skb->users));
4144 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4145 trace_consume_skb(skb);
4146 else
4147 trace_kfree_skb(skb, net_tx_action);
4148
4149 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4150 __kfree_skb(skb);
4151 else
4152 __kfree_skb_defer(skb);
4153 }
4154
4155 __kfree_skb_flush();
4156 }
4157
4158 if (sd->output_queue) {
4159 struct Qdisc *head;
4160
4161 local_irq_disable();
4162 head = sd->output_queue;
4163 sd->output_queue = NULL;
4164 sd->output_queue_tailp = &sd->output_queue;
4165 local_irq_enable();
4166
4167 while (head) {
4168 struct Qdisc *q = head;
4169 spinlock_t *root_lock;
4170
4171 head = head->next_sched;
4172
4173 root_lock = qdisc_lock(q);
4174 spin_lock(root_lock);
4175 /* We need to make sure head->next_sched is read
4176 * before clearing __QDISC_STATE_SCHED
4177 */
4178 smp_mb__before_atomic();
4179 clear_bit(__QDISC_STATE_SCHED, &q->state);
4180 qdisc_run(q);
4181 spin_unlock(root_lock);
4182 }
4183 }
4184}
4185
4186#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4187/* This hook is defined here for ATM LANE */
4188int (*br_fdb_test_addr_hook)(struct net_device *dev,
4189 unsigned char *addr) __read_mostly;
4190EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4191#endif
4192
4193static inline struct sk_buff *
4194sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4195 struct net_device *orig_dev)
4196{
4197#ifdef CONFIG_NET_CLS_ACT
4198 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4199 struct tcf_result cl_res;
4200
4201 /* If there's at least one ingress present somewhere (so
4202 * we get here via enabled static key), remaining devices
4203 * that are not configured with an ingress qdisc will bail
4204 * out here.
4205 */
4206 if (!miniq)
4207 return skb;
4208
4209 if (*pt_prev) {
4210 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4211 *pt_prev = NULL;
4212 }
4213
4214 qdisc_skb_cb(skb)->pkt_len = skb->len;
4215 skb->tc_at_ingress = 1;
4216 mini_qdisc_bstats_cpu_update(miniq, skb);
4217
4218 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4219 case TC_ACT_OK:
4220 case TC_ACT_RECLASSIFY:
4221 skb->tc_index = TC_H_MIN(cl_res.classid);
4222 break;
4223 case TC_ACT_SHOT:
4224 mini_qdisc_qstats_cpu_drop(miniq);
4225 kfree_skb(skb);
4226 return NULL;
4227 case TC_ACT_STOLEN:
4228 case TC_ACT_QUEUED:
4229 case TC_ACT_TRAP:
4230 consume_skb(skb);
4231 return NULL;
4232 case TC_ACT_REDIRECT:
4233 /* skb_mac_header check was done by cls/act_bpf, so
4234 * we can safely push the L2 header back before
4235 * redirecting to another netdev
4236 */
4237 __skb_push(skb, skb->mac_len);
4238 skb_do_redirect(skb);
4239 return NULL;
4240 default:
4241 break;
4242 }
4243#endif /* CONFIG_NET_CLS_ACT */
4244 return skb;
4245}
4246
4247/**
4248 * netdev_is_rx_handler_busy - check if receive handler is registered
4249 * @dev: device to check
4250 *
4251 * Check if a receive handler is already registered for a given device.
4252 * Return true if there one.
4253 *
4254 * The caller must hold the rtnl_mutex.
4255 */
4256bool netdev_is_rx_handler_busy(struct net_device *dev)
4257{
4258 ASSERT_RTNL();
4259 return dev && rtnl_dereference(dev->rx_handler);
4260}
4261EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4262
4263/**
4264 * netdev_rx_handler_register - register receive handler
4265 * @dev: device to register a handler for
4266 * @rx_handler: receive handler to register
4267 * @rx_handler_data: data pointer that is used by rx handler
4268 *
4269 * Register a receive handler for a device. This handler will then be
4270 * called from __netif_receive_skb. A negative errno code is returned
4271 * on a failure.
4272 *
4273 * The caller must hold the rtnl_mutex.
4274 *
4275 * For a general description of rx_handler, see enum rx_handler_result.
4276 */
4277int netdev_rx_handler_register(struct net_device *dev,
4278 rx_handler_func_t *rx_handler,
4279 void *rx_handler_data)
4280{
4281 if (netdev_is_rx_handler_busy(dev))
4282 return -EBUSY;
4283
4284 /* Note: rx_handler_data must be set before rx_handler */
4285 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4286 rcu_assign_pointer(dev->rx_handler, rx_handler);
4287
4288 return 0;
4289}
4290EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4291
4292/**
4293 * netdev_rx_handler_unregister - unregister receive handler
4294 * @dev: device to unregister a handler from
4295 *
4296 * Unregister a receive handler from a device.
4297 *
4298 * The caller must hold the rtnl_mutex.
4299 */
4300void netdev_rx_handler_unregister(struct net_device *dev)
4301{
4302
4303 ASSERT_RTNL();
4304 RCU_INIT_POINTER(dev->rx_handler, NULL);
4305 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4306 * section has a guarantee to see a non NULL rx_handler_data
4307 * as well.
4308 */
4309 synchronize_net();
4310 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4311}
4312EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4313
4314/*
4315 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4316 * the special handling of PFMEMALLOC skbs.
4317 */
4318static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4319{
4320 switch (skb->protocol) {
4321 case htons(ETH_P_ARP):
4322 case htons(ETH_P_IP):
4323 case htons(ETH_P_IPV6):
4324 case htons(ETH_P_8021Q):
4325 case htons(ETH_P_8021AD):
4326 return true;
4327 default:
4328 return false;
4329 }
4330}
4331
4332static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4333 int *ret, struct net_device *orig_dev)
4334{
4335#ifdef CONFIG_NETFILTER_INGRESS
4336 if (nf_hook_ingress_active(skb)) {
4337 int ingress_retval;
4338
4339 if (*pt_prev) {
4340 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4341 *pt_prev = NULL;
4342 }
4343
4344 rcu_read_lock();
4345 ingress_retval = nf_hook_ingress(skb);
4346 rcu_read_unlock();
4347 return ingress_retval;
4348 }
4349#endif /* CONFIG_NETFILTER_INGRESS */
4350 return 0;
4351}
4352
4353static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4354{
4355 struct packet_type *ptype, *pt_prev;
4356 rx_handler_func_t *rx_handler;
4357 struct net_device *orig_dev;
4358 bool deliver_exact = false;
4359 int ret = NET_RX_DROP;
4360 __be16 type;
4361
4362 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4363
4364 trace_netif_receive_skb(skb);
4365
4366 orig_dev = skb->dev;
4367
4368 skb_reset_network_header(skb);
4369 if (!skb_transport_header_was_set(skb))
4370 skb_reset_transport_header(skb);
4371 skb_reset_mac_len(skb);
4372
4373 pt_prev = NULL;
4374
4375another_round:
4376 skb->skb_iif = skb->dev->ifindex;
4377
4378 __this_cpu_inc(softnet_data.processed);
4379
4380 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4381 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4382 skb = skb_vlan_untag(skb);
4383 if (unlikely(!skb))
4384 goto out;
4385 }
4386
4387 if (skb_skip_tc_classify(skb))
4388 goto skip_classify;
4389
4390 if (pfmemalloc)
4391 goto skip_taps;
4392
4393 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4394 if (pt_prev)
4395 ret = deliver_skb(skb, pt_prev, orig_dev);
4396 pt_prev = ptype;
4397 }
4398
4399 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4400 if (pt_prev)
4401 ret = deliver_skb(skb, pt_prev, orig_dev);
4402 pt_prev = ptype;
4403 }
4404
4405skip_taps:
4406#ifdef CONFIG_NET_INGRESS
4407 if (static_key_false(&ingress_needed)) {
4408 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4409 if (!skb)
4410 goto out;
4411
4412 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4413 goto out;
4414 }
4415#endif
4416 skb_reset_tc(skb);
4417skip_classify:
4418 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4419 goto drop;
4420
4421 if (skb_vlan_tag_present(skb)) {
4422 if (pt_prev) {
4423 ret = deliver_skb(skb, pt_prev, orig_dev);
4424 pt_prev = NULL;
4425 }
4426 if (vlan_do_receive(&skb))
4427 goto another_round;
4428 else if (unlikely(!skb))
4429 goto out;
4430 }
4431
4432 rx_handler = rcu_dereference(skb->dev->rx_handler);
4433 if (rx_handler) {
4434 if (pt_prev) {
4435 ret = deliver_skb(skb, pt_prev, orig_dev);
4436 pt_prev = NULL;
4437 }
4438 switch (rx_handler(&skb)) {
4439 case RX_HANDLER_CONSUMED:
4440 ret = NET_RX_SUCCESS;
4441 goto out;
4442 case RX_HANDLER_ANOTHER:
4443 goto another_round;
4444 case RX_HANDLER_EXACT:
4445 deliver_exact = true;
4446 case RX_HANDLER_PASS:
4447 break;
4448 default:
4449 BUG();
4450 }
4451 }
4452
4453 if (unlikely(skb_vlan_tag_present(skb))) {
4454 if (skb_vlan_tag_get_id(skb))
4455 skb->pkt_type = PACKET_OTHERHOST;
4456 /* Note: we might in the future use prio bits
4457 * and set skb->priority like in vlan_do_receive()
4458 * For the time being, just ignore Priority Code Point
4459 */
4460 skb->vlan_tci = 0;
4461 }
4462
4463 type = skb->protocol;
4464
4465 /* deliver only exact match when indicated */
4466 if (likely(!deliver_exact)) {
4467 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4468 &ptype_base[ntohs(type) &
4469 PTYPE_HASH_MASK]);
4470 }
4471
4472 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4473 &orig_dev->ptype_specific);
4474
4475 if (unlikely(skb->dev != orig_dev)) {
4476 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4477 &skb->dev->ptype_specific);
4478 }
4479
4480 if (pt_prev) {
4481 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4482 goto drop;
4483 else
4484 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4485 } else {
4486drop:
4487 if (!deliver_exact)
4488 atomic_long_inc(&skb->dev->rx_dropped);
4489 else
4490 atomic_long_inc(&skb->dev->rx_nohandler);
4491 kfree_skb(skb);
4492 /* Jamal, now you will not able to escape explaining
4493 * me how you were going to use this. :-)
4494 */
4495 ret = NET_RX_DROP;
4496 }
4497
4498out:
4499 return ret;
4500}
4501
4502/**
4503 * netif_receive_skb_core - special purpose version of netif_receive_skb
4504 * @skb: buffer to process
4505 *
4506 * More direct receive version of netif_receive_skb(). It should
4507 * only be used by callers that have a need to skip RPS and Generic XDP.
4508 * Caller must also take care of handling if (page_is_)pfmemalloc.
4509 *
4510 * This function may only be called from softirq context and interrupts
4511 * should be enabled.
4512 *
4513 * Return values (usually ignored):
4514 * NET_RX_SUCCESS: no congestion
4515 * NET_RX_DROP: packet was dropped
4516 */
4517int netif_receive_skb_core(struct sk_buff *skb)
4518{
4519 int ret;
4520
4521 rcu_read_lock();
4522 ret = __netif_receive_skb_core(skb, false);
4523 rcu_read_unlock();
4524
4525 return ret;
4526}
4527EXPORT_SYMBOL(netif_receive_skb_core);
4528
4529static int __netif_receive_skb(struct sk_buff *skb)
4530{
4531 int ret;
4532
4533 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4534 unsigned int noreclaim_flag;
4535
4536 /*
4537 * PFMEMALLOC skbs are special, they should
4538 * - be delivered to SOCK_MEMALLOC sockets only
4539 * - stay away from userspace
4540 * - have bounded memory usage
4541 *
4542 * Use PF_MEMALLOC as this saves us from propagating the allocation
4543 * context down to all allocation sites.
4544 */
4545 noreclaim_flag = memalloc_noreclaim_save();
4546 ret = __netif_receive_skb_core(skb, true);
4547 memalloc_noreclaim_restore(noreclaim_flag);
4548 } else
4549 ret = __netif_receive_skb_core(skb, false);
4550
4551 return ret;
4552}
4553
4554static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4555{
4556 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4557 struct bpf_prog *new = xdp->prog;
4558 int ret = 0;
4559
4560 switch (xdp->command) {
4561 case XDP_SETUP_PROG:
4562 rcu_assign_pointer(dev->xdp_prog, new);
4563 if (old)
4564 bpf_prog_put(old);
4565
4566 if (old && !new) {
4567 static_key_slow_dec(&generic_xdp_needed);
4568 } else if (new && !old) {
4569 static_key_slow_inc(&generic_xdp_needed);
4570 dev_disable_lro(dev);
4571 }
4572 break;
4573
4574 case XDP_QUERY_PROG:
4575 xdp->prog_attached = !!old;
4576 xdp->prog_id = old ? old->aux->id : 0;
4577 break;
4578
4579 default:
4580 ret = -EINVAL;
4581 break;
4582 }
4583
4584 return ret;
4585}
4586
4587static int netif_receive_skb_internal(struct sk_buff *skb)
4588{
4589 int ret;
4590
4591 net_timestamp_check(netdev_tstamp_prequeue, skb);
4592
4593 if (skb_defer_rx_timestamp(skb))
4594 return NET_RX_SUCCESS;
4595
4596 if (static_key_false(&generic_xdp_needed)) {
4597 int ret;
4598
4599 preempt_disable();
4600 rcu_read_lock();
4601 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4602 rcu_read_unlock();
4603 preempt_enable();
4604
4605 if (ret != XDP_PASS)
4606 return NET_RX_DROP;
4607 }
4608
4609 rcu_read_lock();
4610#ifdef CONFIG_RPS
4611 if (static_key_false(&rps_needed)) {
4612 struct rps_dev_flow voidflow, *rflow = &voidflow;
4613 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4614
4615 if (cpu >= 0) {
4616 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4617 rcu_read_unlock();
4618 return ret;
4619 }
4620 }
4621#endif
4622 ret = __netif_receive_skb(skb);
4623 rcu_read_unlock();
4624 return ret;
4625}
4626
4627/**
4628 * netif_receive_skb - process receive buffer from network
4629 * @skb: buffer to process
4630 *
4631 * netif_receive_skb() is the main receive data processing function.
4632 * It always succeeds. The buffer may be dropped during processing
4633 * for congestion control or by the protocol layers.
4634 *
4635 * This function may only be called from softirq context and interrupts
4636 * should be enabled.
4637 *
4638 * Return values (usually ignored):
4639 * NET_RX_SUCCESS: no congestion
4640 * NET_RX_DROP: packet was dropped
4641 */
4642int netif_receive_skb(struct sk_buff *skb)
4643{
4644 trace_netif_receive_skb_entry(skb);
4645
4646 return netif_receive_skb_internal(skb);
4647}
4648EXPORT_SYMBOL(netif_receive_skb);
4649
4650DEFINE_PER_CPU(struct work_struct, flush_works);
4651
4652/* Network device is going away, flush any packets still pending */
4653static void flush_backlog(struct work_struct *work)
4654{
4655 struct sk_buff *skb, *tmp;
4656 struct softnet_data *sd;
4657
4658 local_bh_disable();
4659 sd = this_cpu_ptr(&softnet_data);
4660
4661 local_irq_disable();
4662 rps_lock(sd);
4663 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4664 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4665 __skb_unlink(skb, &sd->input_pkt_queue);
4666 kfree_skb(skb);
4667 input_queue_head_incr(sd);
4668 }
4669 }
4670 rps_unlock(sd);
4671 local_irq_enable();
4672
4673 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4674 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4675 __skb_unlink(skb, &sd->process_queue);
4676 kfree_skb(skb);
4677 input_queue_head_incr(sd);
4678 }
4679 }
4680 local_bh_enable();
4681}
4682
4683static void flush_all_backlogs(void)
4684{
4685 unsigned int cpu;
4686
4687 get_online_cpus();
4688
4689 for_each_online_cpu(cpu)
4690 queue_work_on(cpu, system_highpri_wq,
4691 per_cpu_ptr(&flush_works, cpu));
4692
4693 for_each_online_cpu(cpu)
4694 flush_work(per_cpu_ptr(&flush_works, cpu));
4695
4696 put_online_cpus();
4697}
4698
4699static int napi_gro_complete(struct sk_buff *skb)
4700{
4701 struct packet_offload *ptype;
4702 __be16 type = skb->protocol;
4703 struct list_head *head = &offload_base;
4704 int err = -ENOENT;
4705
4706 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4707
4708 if (NAPI_GRO_CB(skb)->count == 1) {
4709 skb_shinfo(skb)->gso_size = 0;
4710 goto out;
4711 }
4712
4713 rcu_read_lock();
4714 list_for_each_entry_rcu(ptype, head, list) {
4715 if (ptype->type != type || !ptype->callbacks.gro_complete)
4716 continue;
4717
4718 err = ptype->callbacks.gro_complete(skb, 0);
4719 break;
4720 }
4721 rcu_read_unlock();
4722
4723 if (err) {
4724 WARN_ON(&ptype->list == head);
4725 kfree_skb(skb);
4726 return NET_RX_SUCCESS;
4727 }
4728
4729out:
4730 return netif_receive_skb_internal(skb);
4731}
4732
4733/* napi->gro_list contains packets ordered by age.
4734 * youngest packets at the head of it.
4735 * Complete skbs in reverse order to reduce latencies.
4736 */
4737void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4738{
4739 struct sk_buff *skb, *prev = NULL;
4740
4741 /* scan list and build reverse chain */
4742 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4743 skb->prev = prev;
4744 prev = skb;
4745 }
4746
4747 for (skb = prev; skb; skb = prev) {
4748 skb->next = NULL;
4749
4750 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4751 return;
4752
4753 prev = skb->prev;
4754 napi_gro_complete(skb);
4755 napi->gro_count--;
4756 }
4757
4758 napi->gro_list = NULL;
4759}
4760EXPORT_SYMBOL(napi_gro_flush);
4761
4762static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4763{
4764 struct sk_buff *p;
4765 unsigned int maclen = skb->dev->hard_header_len;
4766 u32 hash = skb_get_hash_raw(skb);
4767
4768 for (p = napi->gro_list; p; p = p->next) {
4769 unsigned long diffs;
4770
4771 NAPI_GRO_CB(p)->flush = 0;
4772
4773 if (hash != skb_get_hash_raw(p)) {
4774 NAPI_GRO_CB(p)->same_flow = 0;
4775 continue;
4776 }
4777
4778 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4779 diffs |= p->vlan_tci ^ skb->vlan_tci;
4780 diffs |= skb_metadata_dst_cmp(p, skb);
4781 diffs |= skb_metadata_differs(p, skb);
4782 if (maclen == ETH_HLEN)
4783 diffs |= compare_ether_header(skb_mac_header(p),
4784 skb_mac_header(skb));
4785 else if (!diffs)
4786 diffs = memcmp(skb_mac_header(p),
4787 skb_mac_header(skb),
4788 maclen);
4789 NAPI_GRO_CB(p)->same_flow = !diffs;
4790 }
4791}
4792
4793static void skb_gro_reset_offset(struct sk_buff *skb)
4794{
4795 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4796 const skb_frag_t *frag0 = &pinfo->frags[0];
4797
4798 NAPI_GRO_CB(skb)->data_offset = 0;
4799 NAPI_GRO_CB(skb)->frag0 = NULL;
4800 NAPI_GRO_CB(skb)->frag0_len = 0;
4801
4802 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4803 pinfo->nr_frags &&
4804 !PageHighMem(skb_frag_page(frag0))) {
4805 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4806 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4807 skb_frag_size(frag0),
4808 skb->end - skb->tail);
4809 }
4810}
4811
4812static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4813{
4814 struct skb_shared_info *pinfo = skb_shinfo(skb);
4815
4816 BUG_ON(skb->end - skb->tail < grow);
4817
4818 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4819
4820 skb->data_len -= grow;
4821 skb->tail += grow;
4822
4823 pinfo->frags[0].page_offset += grow;
4824 skb_frag_size_sub(&pinfo->frags[0], grow);
4825
4826 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4827 skb_frag_unref(skb, 0);
4828 memmove(pinfo->frags, pinfo->frags + 1,
4829 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4830 }
4831}
4832
4833static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4834{
4835 struct sk_buff **pp = NULL;
4836 struct packet_offload *ptype;
4837 __be16 type = skb->protocol;
4838 struct list_head *head = &offload_base;
4839 int same_flow;
4840 enum gro_result ret;
4841 int grow;
4842
4843 if (netif_elide_gro(skb->dev))
4844 goto normal;
4845
4846 gro_list_prepare(napi, skb);
4847
4848 rcu_read_lock();
4849 list_for_each_entry_rcu(ptype, head, list) {
4850 if (ptype->type != type || !ptype->callbacks.gro_receive)
4851 continue;
4852
4853 skb_set_network_header(skb, skb_gro_offset(skb));
4854 skb_reset_mac_len(skb);
4855 NAPI_GRO_CB(skb)->same_flow = 0;
4856 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4857 NAPI_GRO_CB(skb)->free = 0;
4858 NAPI_GRO_CB(skb)->encap_mark = 0;
4859 NAPI_GRO_CB(skb)->recursion_counter = 0;
4860 NAPI_GRO_CB(skb)->is_fou = 0;
4861 NAPI_GRO_CB(skb)->is_atomic = 1;
4862 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4863
4864 /* Setup for GRO checksum validation */
4865 switch (skb->ip_summed) {
4866 case CHECKSUM_COMPLETE:
4867 NAPI_GRO_CB(skb)->csum = skb->csum;
4868 NAPI_GRO_CB(skb)->csum_valid = 1;
4869 NAPI_GRO_CB(skb)->csum_cnt = 0;
4870 break;
4871 case CHECKSUM_UNNECESSARY:
4872 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4873 NAPI_GRO_CB(skb)->csum_valid = 0;
4874 break;
4875 default:
4876 NAPI_GRO_CB(skb)->csum_cnt = 0;
4877 NAPI_GRO_CB(skb)->csum_valid = 0;
4878 }
4879
4880 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4881 break;
4882 }
4883 rcu_read_unlock();
4884
4885 if (&ptype->list == head)
4886 goto normal;
4887
4888 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4889 ret = GRO_CONSUMED;
4890 goto ok;
4891 }
4892
4893 same_flow = NAPI_GRO_CB(skb)->same_flow;
4894 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4895
4896 if (pp) {
4897 struct sk_buff *nskb = *pp;
4898
4899 *pp = nskb->next;
4900 nskb->next = NULL;
4901 napi_gro_complete(nskb);
4902 napi->gro_count--;
4903 }
4904
4905 if (same_flow)
4906 goto ok;
4907
4908 if (NAPI_GRO_CB(skb)->flush)
4909 goto normal;
4910
4911 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4912 struct sk_buff *nskb = napi->gro_list;
4913
4914 /* locate the end of the list to select the 'oldest' flow */
4915 while (nskb->next) {
4916 pp = &nskb->next;
4917 nskb = *pp;
4918 }
4919 *pp = NULL;
4920 nskb->next = NULL;
4921 napi_gro_complete(nskb);
4922 } else {
4923 napi->gro_count++;
4924 }
4925 NAPI_GRO_CB(skb)->count = 1;
4926 NAPI_GRO_CB(skb)->age = jiffies;
4927 NAPI_GRO_CB(skb)->last = skb;
4928 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4929 skb->next = napi->gro_list;
4930 napi->gro_list = skb;
4931 ret = GRO_HELD;
4932
4933pull:
4934 grow = skb_gro_offset(skb) - skb_headlen(skb);
4935 if (grow > 0)
4936 gro_pull_from_frag0(skb, grow);
4937ok:
4938 return ret;
4939
4940normal:
4941 ret = GRO_NORMAL;
4942 goto pull;
4943}
4944
4945struct packet_offload *gro_find_receive_by_type(__be16 type)
4946{
4947 struct list_head *offload_head = &offload_base;
4948 struct packet_offload *ptype;
4949
4950 list_for_each_entry_rcu(ptype, offload_head, list) {
4951 if (ptype->type != type || !ptype->callbacks.gro_receive)
4952 continue;
4953 return ptype;
4954 }
4955 return NULL;
4956}
4957EXPORT_SYMBOL(gro_find_receive_by_type);
4958
4959struct packet_offload *gro_find_complete_by_type(__be16 type)
4960{
4961 struct list_head *offload_head = &offload_base;
4962 struct packet_offload *ptype;
4963
4964 list_for_each_entry_rcu(ptype, offload_head, list) {
4965 if (ptype->type != type || !ptype->callbacks.gro_complete)
4966 continue;
4967 return ptype;
4968 }
4969 return NULL;
4970}
4971EXPORT_SYMBOL(gro_find_complete_by_type);
4972
4973static void napi_skb_free_stolen_head(struct sk_buff *skb)
4974{
4975 skb_dst_drop(skb);
4976 secpath_reset(skb);
4977 kmem_cache_free(skbuff_head_cache, skb);
4978}
4979
4980static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4981{
4982 switch (ret) {
4983 case GRO_NORMAL:
4984 if (netif_receive_skb_internal(skb))
4985 ret = GRO_DROP;
4986 break;
4987
4988 case GRO_DROP:
4989 kfree_skb(skb);
4990 break;
4991
4992 case GRO_MERGED_FREE:
4993 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4994 napi_skb_free_stolen_head(skb);
4995 else
4996 __kfree_skb(skb);
4997 break;
4998
4999 case GRO_HELD:
5000 case GRO_MERGED:
5001 case GRO_CONSUMED:
5002 break;
5003 }
5004
5005 return ret;
5006}
5007
5008gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5009{
5010 skb_mark_napi_id(skb, napi);
5011 trace_napi_gro_receive_entry(skb);
5012
5013 skb_gro_reset_offset(skb);
5014
5015 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5016}
5017EXPORT_SYMBOL(napi_gro_receive);
5018
5019static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5020{
5021 if (unlikely(skb->pfmemalloc)) {
5022 consume_skb(skb);
5023 return;
5024 }
5025 __skb_pull(skb, skb_headlen(skb));
5026 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5027 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5028 skb->vlan_tci = 0;
5029 skb->dev = napi->dev;
5030 skb->skb_iif = 0;
5031 skb->encapsulation = 0;
5032 skb_shinfo(skb)->gso_type = 0;
5033 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5034 secpath_reset(skb);
5035
5036 napi->skb = skb;
5037}
5038
5039struct sk_buff *napi_get_frags(struct napi_struct *napi)
5040{
5041 struct sk_buff *skb = napi->skb;
5042
5043 if (!skb) {
5044 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5045 if (skb) {
5046 napi->skb = skb;
5047 skb_mark_napi_id(skb, napi);
5048 }
5049 }
5050 return skb;
5051}
5052EXPORT_SYMBOL(napi_get_frags);
5053
5054static gro_result_t napi_frags_finish(struct napi_struct *napi,
5055 struct sk_buff *skb,
5056 gro_result_t ret)
5057{
5058 switch (ret) {
5059 case GRO_NORMAL:
5060 case GRO_HELD:
5061 __skb_push(skb, ETH_HLEN);
5062 skb->protocol = eth_type_trans(skb, skb->dev);
5063 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5064 ret = GRO_DROP;
5065 break;
5066
5067 case GRO_DROP:
5068 napi_reuse_skb(napi, skb);
5069 break;
5070
5071 case GRO_MERGED_FREE:
5072 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5073 napi_skb_free_stolen_head(skb);
5074 else
5075 napi_reuse_skb(napi, skb);
5076 break;
5077
5078 case GRO_MERGED:
5079 case GRO_CONSUMED:
5080 break;
5081 }
5082
5083 return ret;
5084}
5085
5086/* Upper GRO stack assumes network header starts at gro_offset=0
5087 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5088 * We copy ethernet header into skb->data to have a common layout.
5089 */
5090static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5091{
5092 struct sk_buff *skb = napi->skb;
5093 const struct ethhdr *eth;
5094 unsigned int hlen = sizeof(*eth);
5095
5096 napi->skb = NULL;
5097
5098 skb_reset_mac_header(skb);
5099 skb_gro_reset_offset(skb);
5100
5101 eth = skb_gro_header_fast(skb, 0);
5102 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5103 eth = skb_gro_header_slow(skb, hlen, 0);
5104 if (unlikely(!eth)) {
5105 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5106 __func__, napi->dev->name);
5107 napi_reuse_skb(napi, skb);
5108 return NULL;
5109 }
5110 } else {
5111 gro_pull_from_frag0(skb, hlen);
5112 NAPI_GRO_CB(skb)->frag0 += hlen;
5113 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5114 }
5115 __skb_pull(skb, hlen);
5116
5117 /*
5118 * This works because the only protocols we care about don't require
5119 * special handling.
5120 * We'll fix it up properly in napi_frags_finish()
5121 */
5122 skb->protocol = eth->h_proto;
5123
5124 return skb;
5125}
5126
5127gro_result_t napi_gro_frags(struct napi_struct *napi)
5128{
5129 struct sk_buff *skb = napi_frags_skb(napi);
5130
5131 if (!skb)
5132 return GRO_DROP;
5133
5134 trace_napi_gro_frags_entry(skb);
5135
5136 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5137}
5138EXPORT_SYMBOL(napi_gro_frags);
5139
5140/* Compute the checksum from gro_offset and return the folded value
5141 * after adding in any pseudo checksum.
5142 */
5143__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5144{
5145 __wsum wsum;
5146 __sum16 sum;
5147
5148 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5149
5150 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5151 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5152 if (likely(!sum)) {
5153 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5154 !skb->csum_complete_sw)
5155 netdev_rx_csum_fault(skb->dev);
5156 }
5157
5158 NAPI_GRO_CB(skb)->csum = wsum;
5159 NAPI_GRO_CB(skb)->csum_valid = 1;
5160
5161 return sum;
5162}
5163EXPORT_SYMBOL(__skb_gro_checksum_complete);
5164
5165static void net_rps_send_ipi(struct softnet_data *remsd)
5166{
5167#ifdef CONFIG_RPS
5168 while (remsd) {
5169 struct softnet_data *next = remsd->rps_ipi_next;
5170
5171 if (cpu_online(remsd->cpu))
5172 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5173 remsd = next;
5174 }
5175#endif
5176}
5177
5178/*
5179 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5180 * Note: called with local irq disabled, but exits with local irq enabled.
5181 */
5182static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5183{
5184#ifdef CONFIG_RPS
5185 struct softnet_data *remsd = sd->rps_ipi_list;
5186
5187 if (remsd) {
5188 sd->rps_ipi_list = NULL;
5189
5190 local_irq_enable();
5191
5192 /* Send pending IPI's to kick RPS processing on remote cpus. */
5193 net_rps_send_ipi(remsd);
5194 } else
5195#endif
5196 local_irq_enable();
5197}
5198
5199static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5200{
5201#ifdef CONFIG_RPS
5202 return sd->rps_ipi_list != NULL;
5203#else
5204 return false;
5205#endif
5206}
5207
5208static int process_backlog(struct napi_struct *napi, int quota)
5209{
5210 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5211 bool again = true;
5212 int work = 0;
5213
5214 /* Check if we have pending ipi, its better to send them now,
5215 * not waiting net_rx_action() end.
5216 */
5217 if (sd_has_rps_ipi_waiting(sd)) {
5218 local_irq_disable();
5219 net_rps_action_and_irq_enable(sd);
5220 }
5221
5222 napi->weight = dev_rx_weight;
5223 while (again) {
5224 struct sk_buff *skb;
5225
5226 while ((skb = __skb_dequeue(&sd->process_queue))) {
5227 rcu_read_lock();
5228 __netif_receive_skb(skb);
5229 rcu_read_unlock();
5230 input_queue_head_incr(sd);
5231 if (++work >= quota)
5232 return work;
5233
5234 }
5235
5236 local_irq_disable();
5237 rps_lock(sd);
5238 if (skb_queue_empty(&sd->input_pkt_queue)) {
5239 /*
5240 * Inline a custom version of __napi_complete().
5241 * only current cpu owns and manipulates this napi,
5242 * and NAPI_STATE_SCHED is the only possible flag set
5243 * on backlog.
5244 * We can use a plain write instead of clear_bit(),
5245 * and we dont need an smp_mb() memory barrier.
5246 */
5247 napi->state = 0;
5248 again = false;
5249 } else {
5250 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5251 &sd->process_queue);
5252 }
5253 rps_unlock(sd);
5254 local_irq_enable();
5255 }
5256
5257 return work;
5258}
5259
5260/**
5261 * __napi_schedule - schedule for receive
5262 * @n: entry to schedule
5263 *
5264 * The entry's receive function will be scheduled to run.
5265 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5266 */
5267void __napi_schedule(struct napi_struct *n)
5268{
5269 unsigned long flags;
5270
5271 local_irq_save(flags);
5272 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5273 local_irq_restore(flags);
5274}
5275EXPORT_SYMBOL(__napi_schedule);
5276
5277/**
5278 * napi_schedule_prep - check if napi can be scheduled
5279 * @n: napi context
5280 *
5281 * Test if NAPI routine is already running, and if not mark
5282 * it as running. This is used as a condition variable
5283 * insure only one NAPI poll instance runs. We also make
5284 * sure there is no pending NAPI disable.
5285 */
5286bool napi_schedule_prep(struct napi_struct *n)
5287{
5288 unsigned long val, new;
5289
5290 do {
5291 val = READ_ONCE(n->state);
5292 if (unlikely(val & NAPIF_STATE_DISABLE))
5293 return false;
5294 new = val | NAPIF_STATE_SCHED;
5295
5296 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5297 * This was suggested by Alexander Duyck, as compiler
5298 * emits better code than :
5299 * if (val & NAPIF_STATE_SCHED)
5300 * new |= NAPIF_STATE_MISSED;
5301 */
5302 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5303 NAPIF_STATE_MISSED;
5304 } while (cmpxchg(&n->state, val, new) != val);
5305
5306 return !(val & NAPIF_STATE_SCHED);
5307}
5308EXPORT_SYMBOL(napi_schedule_prep);
5309
5310/**
5311 * __napi_schedule_irqoff - schedule for receive
5312 * @n: entry to schedule
5313 *
5314 * Variant of __napi_schedule() assuming hard irqs are masked
5315 */
5316void __napi_schedule_irqoff(struct napi_struct *n)
5317{
5318 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5319}
5320EXPORT_SYMBOL(__napi_schedule_irqoff);
5321
5322bool napi_complete_done(struct napi_struct *n, int work_done)
5323{
5324 unsigned long flags, val, new;
5325
5326 /*
5327 * 1) Don't let napi dequeue from the cpu poll list
5328 * just in case its running on a different cpu.
5329 * 2) If we are busy polling, do nothing here, we have
5330 * the guarantee we will be called later.
5331 */
5332 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5333 NAPIF_STATE_IN_BUSY_POLL)))
5334 return false;
5335
5336 if (n->gro_list) {
5337 unsigned long timeout = 0;
5338
5339 if (work_done)
5340 timeout = n->dev->gro_flush_timeout;
5341
5342 if (timeout)
5343 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5344 HRTIMER_MODE_REL_PINNED);
5345 else
5346 napi_gro_flush(n, false);
5347 }
5348 if (unlikely(!list_empty(&n->poll_list))) {
5349 /* If n->poll_list is not empty, we need to mask irqs */
5350 local_irq_save(flags);
5351 list_del_init(&n->poll_list);
5352 local_irq_restore(flags);
5353 }
5354
5355 do {
5356 val = READ_ONCE(n->state);
5357
5358 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5359
5360 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5361
5362 /* If STATE_MISSED was set, leave STATE_SCHED set,
5363 * because we will call napi->poll() one more time.
5364 * This C code was suggested by Alexander Duyck to help gcc.
5365 */
5366 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5367 NAPIF_STATE_SCHED;
5368 } while (cmpxchg(&n->state, val, new) != val);
5369
5370 if (unlikely(val & NAPIF_STATE_MISSED)) {
5371 __napi_schedule(n);
5372 return false;
5373 }
5374
5375 return true;
5376}
5377EXPORT_SYMBOL(napi_complete_done);
5378
5379/* must be called under rcu_read_lock(), as we dont take a reference */
5380static struct napi_struct *napi_by_id(unsigned int napi_id)
5381{
5382 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5383 struct napi_struct *napi;
5384
5385 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5386 if (napi->napi_id == napi_id)
5387 return napi;
5388
5389 return NULL;
5390}
5391
5392#if defined(CONFIG_NET_RX_BUSY_POLL)
5393
5394#define BUSY_POLL_BUDGET 8
5395
5396static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5397{
5398 int rc;
5399
5400 /* Busy polling means there is a high chance device driver hard irq
5401 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5402 * set in napi_schedule_prep().
5403 * Since we are about to call napi->poll() once more, we can safely
5404 * clear NAPI_STATE_MISSED.
5405 *
5406 * Note: x86 could use a single "lock and ..." instruction
5407 * to perform these two clear_bit()
5408 */
5409 clear_bit(NAPI_STATE_MISSED, &napi->state);
5410 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5411
5412 local_bh_disable();
5413
5414 /* All we really want here is to re-enable device interrupts.
5415 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5416 */
5417 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5418 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5419 netpoll_poll_unlock(have_poll_lock);
5420 if (rc == BUSY_POLL_BUDGET)
5421 __napi_schedule(napi);
5422 local_bh_enable();
5423}
5424
5425void napi_busy_loop(unsigned int napi_id,
5426 bool (*loop_end)(void *, unsigned long),
5427 void *loop_end_arg)
5428{
5429 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5430 int (*napi_poll)(struct napi_struct *napi, int budget);
5431 void *have_poll_lock = NULL;
5432 struct napi_struct *napi;
5433
5434restart:
5435 napi_poll = NULL;
5436
5437 rcu_read_lock();
5438
5439 napi = napi_by_id(napi_id);
5440 if (!napi)
5441 goto out;
5442
5443 preempt_disable();
5444 for (;;) {
5445 int work = 0;
5446
5447 local_bh_disable();
5448 if (!napi_poll) {
5449 unsigned long val = READ_ONCE(napi->state);
5450
5451 /* If multiple threads are competing for this napi,
5452 * we avoid dirtying napi->state as much as we can.
5453 */
5454 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5455 NAPIF_STATE_IN_BUSY_POLL))
5456 goto count;
5457 if (cmpxchg(&napi->state, val,
5458 val | NAPIF_STATE_IN_BUSY_POLL |
5459 NAPIF_STATE_SCHED) != val)
5460 goto count;
5461 have_poll_lock = netpoll_poll_lock(napi);
5462 napi_poll = napi->poll;
5463 }
5464 work = napi_poll(napi, BUSY_POLL_BUDGET);
5465 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5466count:
5467 if (work > 0)
5468 __NET_ADD_STATS(dev_net(napi->dev),
5469 LINUX_MIB_BUSYPOLLRXPACKETS, work);
5470 local_bh_enable();
5471
5472 if (!loop_end || loop_end(loop_end_arg, start_time))
5473 break;
5474
5475 if (unlikely(need_resched())) {
5476 if (napi_poll)
5477 busy_poll_stop(napi, have_poll_lock);
5478 preempt_enable();
5479 rcu_read_unlock();
5480 cond_resched();
5481 if (loop_end(loop_end_arg, start_time))
5482 return;
5483 goto restart;
5484 }
5485 cpu_relax();
5486 }
5487 if (napi_poll)
5488 busy_poll_stop(napi, have_poll_lock);
5489 preempt_enable();
5490out:
5491 rcu_read_unlock();
5492}
5493EXPORT_SYMBOL(napi_busy_loop);
5494
5495#endif /* CONFIG_NET_RX_BUSY_POLL */
5496
5497static void napi_hash_add(struct napi_struct *napi)
5498{
5499 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5500 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5501 return;
5502
5503 spin_lock(&napi_hash_lock);
5504
5505 /* 0..NR_CPUS range is reserved for sender_cpu use */
5506 do {
5507 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5508 napi_gen_id = MIN_NAPI_ID;
5509 } while (napi_by_id(napi_gen_id));
5510 napi->napi_id = napi_gen_id;
5511
5512 hlist_add_head_rcu(&napi->napi_hash_node,
5513 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5514
5515 spin_unlock(&napi_hash_lock);
5516}
5517
5518/* Warning : caller is responsible to make sure rcu grace period
5519 * is respected before freeing memory containing @napi
5520 */
5521bool napi_hash_del(struct napi_struct *napi)
5522{
5523 bool rcu_sync_needed = false;
5524
5525 spin_lock(&napi_hash_lock);
5526
5527 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5528 rcu_sync_needed = true;
5529 hlist_del_rcu(&napi->napi_hash_node);
5530 }
5531 spin_unlock(&napi_hash_lock);
5532 return rcu_sync_needed;
5533}
5534EXPORT_SYMBOL_GPL(napi_hash_del);
5535
5536static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5537{
5538 struct napi_struct *napi;
5539
5540 napi = container_of(timer, struct napi_struct, timer);
5541
5542 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5543 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5544 */
5545 if (napi->gro_list && !napi_disable_pending(napi) &&
5546 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5547 __napi_schedule_irqoff(napi);
5548
5549 return HRTIMER_NORESTART;
5550}
5551
5552void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5553 int (*poll)(struct napi_struct *, int), int weight)
5554{
5555 INIT_LIST_HEAD(&napi->poll_list);
5556 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5557 napi->timer.function = napi_watchdog;
5558 napi->gro_count = 0;
5559 napi->gro_list = NULL;
5560 napi->skb = NULL;
5561 napi->poll = poll;
5562 if (weight > NAPI_POLL_WEIGHT)
5563 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5564 weight, dev->name);
5565 napi->weight = weight;
5566 list_add(&napi->dev_list, &dev->napi_list);
5567 napi->dev = dev;
5568#ifdef CONFIG_NETPOLL
5569 napi->poll_owner = -1;
5570#endif
5571 set_bit(NAPI_STATE_SCHED, &napi->state);
5572 napi_hash_add(napi);
5573}
5574EXPORT_SYMBOL(netif_napi_add);
5575
5576void napi_disable(struct napi_struct *n)
5577{
5578 might_sleep();
5579 set_bit(NAPI_STATE_DISABLE, &n->state);
5580
5581 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5582 msleep(1);
5583 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5584 msleep(1);
5585
5586 hrtimer_cancel(&n->timer);
5587
5588 clear_bit(NAPI_STATE_DISABLE, &n->state);
5589}
5590EXPORT_SYMBOL(napi_disable);
5591
5592/* Must be called in process context */
5593void netif_napi_del(struct napi_struct *napi)
5594{
5595 might_sleep();
5596 if (napi_hash_del(napi))
5597 synchronize_net();
5598 list_del_init(&napi->dev_list);
5599 napi_free_frags(napi);
5600
5601 kfree_skb_list(napi->gro_list);
5602 napi->gro_list = NULL;
5603 napi->gro_count = 0;
5604}
5605EXPORT_SYMBOL(netif_napi_del);
5606
5607static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5608{
5609 void *have;
5610 int work, weight;
5611
5612 list_del_init(&n->poll_list);
5613
5614 have = netpoll_poll_lock(n);
5615
5616 weight = n->weight;
5617
5618 /* This NAPI_STATE_SCHED test is for avoiding a race
5619 * with netpoll's poll_napi(). Only the entity which
5620 * obtains the lock and sees NAPI_STATE_SCHED set will
5621 * actually make the ->poll() call. Therefore we avoid
5622 * accidentally calling ->poll() when NAPI is not scheduled.
5623 */
5624 work = 0;
5625 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5626 work = n->poll(n, weight);
5627 trace_napi_poll(n, work, weight);
5628 }
5629
5630 WARN_ON_ONCE(work > weight);
5631
5632 if (likely(work < weight))
5633 goto out_unlock;
5634
5635 /* Drivers must not modify the NAPI state if they
5636 * consume the entire weight. In such cases this code
5637 * still "owns" the NAPI instance and therefore can
5638 * move the instance around on the list at-will.
5639 */
5640 if (unlikely(napi_disable_pending(n))) {
5641 napi_complete(n);
5642 goto out_unlock;
5643 }
5644
5645 if (n->gro_list) {
5646 /* flush too old packets
5647 * If HZ < 1000, flush all packets.
5648 */
5649 napi_gro_flush(n, HZ >= 1000);
5650 }
5651
5652 /* Some drivers may have called napi_schedule
5653 * prior to exhausting their budget.
5654 */
5655 if (unlikely(!list_empty(&n->poll_list))) {
5656 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5657 n->dev ? n->dev->name : "backlog");
5658 goto out_unlock;
5659 }
5660
5661 list_add_tail(&n->poll_list, repoll);
5662
5663out_unlock:
5664 netpoll_poll_unlock(have);
5665
5666 return work;
5667}
5668
5669static __latent_entropy void net_rx_action(struct softirq_action *h)
5670{
5671 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5672 unsigned long time_limit = jiffies +
5673 usecs_to_jiffies(netdev_budget_usecs);
5674 int budget = netdev_budget;
5675 LIST_HEAD(list);
5676 LIST_HEAD(repoll);
5677
5678 local_irq_disable();
5679 list_splice_init(&sd->poll_list, &list);
5680 local_irq_enable();
5681
5682 for (;;) {
5683 struct napi_struct *n;
5684
5685 if (list_empty(&list)) {
5686 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5687 goto out;
5688 break;
5689 }
5690
5691 n = list_first_entry(&list, struct napi_struct, poll_list);
5692 budget -= napi_poll(n, &repoll);
5693
5694 /* If softirq window is exhausted then punt.
5695 * Allow this to run for 2 jiffies since which will allow
5696 * an average latency of 1.5/HZ.
5697 */
5698 if (unlikely(budget <= 0 ||
5699 time_after_eq(jiffies, time_limit))) {
5700 sd->time_squeeze++;
5701 break;
5702 }
5703 }
5704
5705 local_irq_disable();
5706
5707 list_splice_tail_init(&sd->poll_list, &list);
5708 list_splice_tail(&repoll, &list);
5709 list_splice(&list, &sd->poll_list);
5710 if (!list_empty(&sd->poll_list))
5711 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5712
5713 net_rps_action_and_irq_enable(sd);
5714out:
5715 __kfree_skb_flush();
5716}
5717
5718struct netdev_adjacent {
5719 struct net_device *dev;
5720
5721 /* upper master flag, there can only be one master device per list */
5722 bool master;
5723
5724 /* counter for the number of times this device was added to us */
5725 u16 ref_nr;
5726
5727 /* private field for the users */
5728 void *private;
5729
5730 struct list_head list;
5731 struct rcu_head rcu;
5732};
5733
5734static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5735 struct list_head *adj_list)
5736{
5737 struct netdev_adjacent *adj;
5738
5739 list_for_each_entry(adj, adj_list, list) {
5740 if (adj->dev == adj_dev)
5741 return adj;
5742 }
5743 return NULL;
5744}
5745
5746static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5747{
5748 struct net_device *dev = data;
5749
5750 return upper_dev == dev;
5751}
5752
5753/**
5754 * netdev_has_upper_dev - Check if device is linked to an upper device
5755 * @dev: device
5756 * @upper_dev: upper device to check
5757 *
5758 * Find out if a device is linked to specified upper device and return true
5759 * in case it is. Note that this checks only immediate upper device,
5760 * not through a complete stack of devices. The caller must hold the RTNL lock.
5761 */
5762bool netdev_has_upper_dev(struct net_device *dev,
5763 struct net_device *upper_dev)
5764{
5765 ASSERT_RTNL();
5766
5767 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5768 upper_dev);
5769}
5770EXPORT_SYMBOL(netdev_has_upper_dev);
5771
5772/**
5773 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5774 * @dev: device
5775 * @upper_dev: upper device to check
5776 *
5777 * Find out if a device is linked to specified upper device and return true
5778 * in case it is. Note that this checks the entire upper device chain.
5779 * The caller must hold rcu lock.
5780 */
5781
5782bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5783 struct net_device *upper_dev)
5784{
5785 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5786 upper_dev);
5787}
5788EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5789
5790/**
5791 * netdev_has_any_upper_dev - Check if device is linked to some device
5792 * @dev: device
5793 *
5794 * Find out if a device is linked to an upper device and return true in case
5795 * it is. The caller must hold the RTNL lock.
5796 */
5797bool netdev_has_any_upper_dev(struct net_device *dev)
5798{
5799 ASSERT_RTNL();
5800
5801 return !list_empty(&dev->adj_list.upper);
5802}
5803EXPORT_SYMBOL(netdev_has_any_upper_dev);
5804
5805/**
5806 * netdev_master_upper_dev_get - Get master upper device
5807 * @dev: device
5808 *
5809 * Find a master upper device and return pointer to it or NULL in case
5810 * it's not there. The caller must hold the RTNL lock.
5811 */
5812struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5813{
5814 struct netdev_adjacent *upper;
5815
5816 ASSERT_RTNL();
5817
5818 if (list_empty(&dev->adj_list.upper))
5819 return NULL;
5820
5821 upper = list_first_entry(&dev->adj_list.upper,
5822 struct netdev_adjacent, list);
5823 if (likely(upper->master))
5824 return upper->dev;
5825 return NULL;
5826}
5827EXPORT_SYMBOL(netdev_master_upper_dev_get);
5828
5829/**
5830 * netdev_has_any_lower_dev - Check if device is linked to some device
5831 * @dev: device
5832 *
5833 * Find out if a device is linked to a lower device and return true in case
5834 * it is. The caller must hold the RTNL lock.
5835 */
5836static bool netdev_has_any_lower_dev(struct net_device *dev)
5837{
5838 ASSERT_RTNL();
5839
5840 return !list_empty(&dev->adj_list.lower);
5841}
5842
5843void *netdev_adjacent_get_private(struct list_head *adj_list)
5844{
5845 struct netdev_adjacent *adj;
5846
5847 adj = list_entry(adj_list, struct netdev_adjacent, list);
5848
5849 return adj->private;
5850}
5851EXPORT_SYMBOL(netdev_adjacent_get_private);
5852
5853/**
5854 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5855 * @dev: device
5856 * @iter: list_head ** of the current position
5857 *
5858 * Gets the next device from the dev's upper list, starting from iter
5859 * position. The caller must hold RCU read lock.
5860 */
5861struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5862 struct list_head **iter)
5863{
5864 struct netdev_adjacent *upper;
5865
5866 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5867
5868 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5869
5870 if (&upper->list == &dev->adj_list.upper)
5871 return NULL;
5872
5873 *iter = &upper->list;
5874
5875 return upper->dev;
5876}
5877EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5878
5879static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5880 struct list_head **iter)
5881{
5882 struct netdev_adjacent *upper;
5883
5884 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5885
5886 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5887
5888 if (&upper->list == &dev->adj_list.upper)
5889 return NULL;
5890
5891 *iter = &upper->list;
5892
5893 return upper->dev;
5894}
5895
5896int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5897 int (*fn)(struct net_device *dev,
5898 void *data),
5899 void *data)
5900{
5901 struct net_device *udev;
5902 struct list_head *iter;
5903 int ret;
5904
5905 for (iter = &dev->adj_list.upper,
5906 udev = netdev_next_upper_dev_rcu(dev, &iter);
5907 udev;
5908 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5909 /* first is the upper device itself */
5910 ret = fn(udev, data);
5911 if (ret)
5912 return ret;
5913
5914 /* then look at all of its upper devices */
5915 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5916 if (ret)
5917 return ret;
5918 }
5919
5920 return 0;
5921}
5922EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5923
5924/**
5925 * netdev_lower_get_next_private - Get the next ->private from the
5926 * lower neighbour list
5927 * @dev: device
5928 * @iter: list_head ** of the current position
5929 *
5930 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5931 * list, starting from iter position. The caller must hold either hold the
5932 * RTNL lock or its own locking that guarantees that the neighbour lower
5933 * list will remain unchanged.
5934 */
5935void *netdev_lower_get_next_private(struct net_device *dev,
5936 struct list_head **iter)
5937{
5938 struct netdev_adjacent *lower;
5939
5940 lower = list_entry(*iter, struct netdev_adjacent, list);
5941
5942 if (&lower->list == &dev->adj_list.lower)
5943 return NULL;
5944
5945 *iter = lower->list.next;
5946
5947 return lower->private;
5948}
5949EXPORT_SYMBOL(netdev_lower_get_next_private);
5950
5951/**
5952 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5953 * lower neighbour list, RCU
5954 * variant
5955 * @dev: device
5956 * @iter: list_head ** of the current position
5957 *
5958 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5959 * list, starting from iter position. The caller must hold RCU read lock.
5960 */
5961void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5962 struct list_head **iter)
5963{
5964 struct netdev_adjacent *lower;
5965
5966 WARN_ON_ONCE(!rcu_read_lock_held());
5967
5968 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5969
5970 if (&lower->list == &dev->adj_list.lower)
5971 return NULL;
5972
5973 *iter = &lower->list;
5974
5975 return lower->private;
5976}
5977EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5978
5979/**
5980 * netdev_lower_get_next - Get the next device from the lower neighbour
5981 * list
5982 * @dev: device
5983 * @iter: list_head ** of the current position
5984 *
5985 * Gets the next netdev_adjacent from the dev's lower neighbour
5986 * list, starting from iter position. The caller must hold RTNL lock or
5987 * its own locking that guarantees that the neighbour lower
5988 * list will remain unchanged.
5989 */
5990void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5991{
5992 struct netdev_adjacent *lower;
5993
5994 lower = list_entry(*iter, struct netdev_adjacent, list);
5995
5996 if (&lower->list == &dev->adj_list.lower)
5997 return NULL;
5998
5999 *iter = lower->list.next;
6000
6001 return lower->dev;
6002}
6003EXPORT_SYMBOL(netdev_lower_get_next);
6004
6005static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6006 struct list_head **iter)
6007{
6008 struct netdev_adjacent *lower;
6009
6010 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6011
6012 if (&lower->list == &dev->adj_list.lower)
6013 return NULL;
6014
6015 *iter = &lower->list;
6016
6017 return lower->dev;
6018}
6019
6020int netdev_walk_all_lower_dev(struct net_device *dev,
6021 int (*fn)(struct net_device *dev,
6022 void *data),
6023 void *data)
6024{
6025 struct net_device *ldev;
6026 struct list_head *iter;
6027 int ret;
6028
6029 for (iter = &dev->adj_list.lower,
6030 ldev = netdev_next_lower_dev(dev, &iter);
6031 ldev;
6032 ldev = netdev_next_lower_dev(dev, &iter)) {
6033 /* first is the lower device itself */
6034 ret = fn(ldev, data);
6035 if (ret)
6036 return ret;
6037
6038 /* then look at all of its lower devices */
6039 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6040 if (ret)
6041 return ret;
6042 }
6043
6044 return 0;
6045}
6046EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6047
6048static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6049 struct list_head **iter)
6050{
6051 struct netdev_adjacent *lower;
6052
6053 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6054 if (&lower->list == &dev->adj_list.lower)
6055 return NULL;
6056
6057 *iter = &lower->list;
6058
6059 return lower->dev;
6060}
6061
6062int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6063 int (*fn)(struct net_device *dev,
6064 void *data),
6065 void *data)
6066{
6067 struct net_device *ldev;
6068 struct list_head *iter;
6069 int ret;
6070
6071 for (iter = &dev->adj_list.lower,
6072 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6073 ldev;
6074 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6075 /* first is the lower device itself */
6076 ret = fn(ldev, data);
6077 if (ret)
6078 return ret;
6079
6080 /* then look at all of its lower devices */
6081 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6082 if (ret)
6083 return ret;
6084 }
6085
6086 return 0;
6087}
6088EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6089
6090/**
6091 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6092 * lower neighbour list, RCU
6093 * variant
6094 * @dev: device
6095 *
6096 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6097 * list. The caller must hold RCU read lock.
6098 */
6099void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6100{
6101 struct netdev_adjacent *lower;
6102
6103 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6104 struct netdev_adjacent, list);
6105 if (lower)
6106 return lower->private;
6107 return NULL;
6108}
6109EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6110
6111/**
6112 * netdev_master_upper_dev_get_rcu - Get master upper device
6113 * @dev: device
6114 *
6115 * Find a master upper device and return pointer to it or NULL in case
6116 * it's not there. The caller must hold the RCU read lock.
6117 */
6118struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6119{
6120 struct netdev_adjacent *upper;
6121
6122 upper = list_first_or_null_rcu(&dev->adj_list.upper,
6123 struct netdev_adjacent, list);
6124 if (upper && likely(upper->master))
6125 return upper->dev;
6126 return NULL;
6127}
6128EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6129
6130static int netdev_adjacent_sysfs_add(struct net_device *dev,
6131 struct net_device *adj_dev,
6132 struct list_head *dev_list)
6133{
6134 char linkname[IFNAMSIZ+7];
6135
6136 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6137 "upper_%s" : "lower_%s", adj_dev->name);
6138 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6139 linkname);
6140}
6141static void netdev_adjacent_sysfs_del(struct net_device *dev,
6142 char *name,
6143 struct list_head *dev_list)
6144{
6145 char linkname[IFNAMSIZ+7];
6146
6147 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6148 "upper_%s" : "lower_%s", name);
6149 sysfs_remove_link(&(dev->dev.kobj), linkname);
6150}
6151
6152static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6153 struct net_device *adj_dev,
6154 struct list_head *dev_list)
6155{
6156 return (dev_list == &dev->adj_list.upper ||
6157 dev_list == &dev->adj_list.lower) &&
6158 net_eq(dev_net(dev), dev_net(adj_dev));
6159}
6160
6161static int __netdev_adjacent_dev_insert(struct net_device *dev,
6162 struct net_device *adj_dev,
6163 struct list_head *dev_list,
6164 void *private, bool master)
6165{
6166 struct netdev_adjacent *adj;
6167 int ret;
6168
6169 adj = __netdev_find_adj(adj_dev, dev_list);
6170
6171 if (adj) {
6172 adj->ref_nr += 1;
6173 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6174 dev->name, adj_dev->name, adj->ref_nr);
6175
6176 return 0;
6177 }
6178
6179 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6180 if (!adj)
6181 return -ENOMEM;
6182
6183 adj->dev = adj_dev;
6184 adj->master = master;
6185 adj->ref_nr = 1;
6186 adj->private = private;
6187 dev_hold(adj_dev);
6188
6189 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6190 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6191
6192 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6193 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6194 if (ret)
6195 goto free_adj;
6196 }
6197
6198 /* Ensure that master link is always the first item in list. */
6199 if (master) {
6200 ret = sysfs_create_link(&(dev->dev.kobj),
6201 &(adj_dev->dev.kobj), "master");
6202 if (ret)
6203 goto remove_symlinks;
6204
6205 list_add_rcu(&adj->list, dev_list);
6206 } else {
6207 list_add_tail_rcu(&adj->list, dev_list);
6208 }
6209
6210 return 0;
6211
6212remove_symlinks:
6213 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6214 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6215free_adj:
6216 kfree(adj);
6217 dev_put(adj_dev);
6218
6219 return ret;
6220}
6221
6222static void __netdev_adjacent_dev_remove(struct net_device *dev,
6223 struct net_device *adj_dev,
6224 u16 ref_nr,
6225 struct list_head *dev_list)
6226{
6227 struct netdev_adjacent *adj;
6228
6229 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6230 dev->name, adj_dev->name, ref_nr);
6231
6232 adj = __netdev_find_adj(adj_dev, dev_list);
6233
6234 if (!adj) {
6235 pr_err("Adjacency does not exist for device %s from %s\n",
6236 dev->name, adj_dev->name);
6237 WARN_ON(1);
6238 return;
6239 }
6240
6241 if (adj->ref_nr > ref_nr) {
6242 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6243 dev->name, adj_dev->name, ref_nr,
6244 adj->ref_nr - ref_nr);
6245 adj->ref_nr -= ref_nr;
6246 return;
6247 }
6248
6249 if (adj->master)
6250 sysfs_remove_link(&(dev->dev.kobj), "master");
6251
6252 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6253 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6254
6255 list_del_rcu(&adj->list);
6256 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6257 adj_dev->name, dev->name, adj_dev->name);
6258 dev_put(adj_dev);
6259 kfree_rcu(adj, rcu);
6260}
6261
6262static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6263 struct net_device *upper_dev,
6264 struct list_head *up_list,
6265 struct list_head *down_list,
6266 void *private, bool master)
6267{
6268 int ret;
6269
6270 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6271 private, master);
6272 if (ret)
6273 return ret;
6274
6275 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6276 private, false);
6277 if (ret) {
6278 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6279 return ret;
6280 }
6281
6282 return 0;
6283}
6284
6285static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6286 struct net_device *upper_dev,
6287 u16 ref_nr,
6288 struct list_head *up_list,
6289 struct list_head *down_list)
6290{
6291 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6292 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6293}
6294
6295static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6296 struct net_device *upper_dev,
6297 void *private, bool master)
6298{
6299 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6300 &dev->adj_list.upper,
6301 &upper_dev->adj_list.lower,
6302 private, master);
6303}
6304
6305static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6306 struct net_device *upper_dev)
6307{
6308 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6309 &dev->adj_list.upper,
6310 &upper_dev->adj_list.lower);
6311}
6312
6313static int __netdev_upper_dev_link(struct net_device *dev,
6314 struct net_device *upper_dev, bool master,
6315 void *upper_priv, void *upper_info,
6316 struct netlink_ext_ack *extack)
6317{
6318 struct netdev_notifier_changeupper_info changeupper_info = {
6319 .info = {
6320 .dev = dev,
6321 .extack = extack,
6322 },
6323 .upper_dev = upper_dev,
6324 .master = master,
6325 .linking = true,
6326 .upper_info = upper_info,
6327 };
6328 int ret = 0;
6329
6330 ASSERT_RTNL();
6331
6332 if (dev == upper_dev)
6333 return -EBUSY;
6334
6335 /* To prevent loops, check if dev is not upper device to upper_dev. */
6336 if (netdev_has_upper_dev(upper_dev, dev))
6337 return -EBUSY;
6338
6339 if (netdev_has_upper_dev(dev, upper_dev))
6340 return -EEXIST;
6341
6342 if (master && netdev_master_upper_dev_get(dev))
6343 return -EBUSY;
6344
6345 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6346 &changeupper_info.info);
6347 ret = notifier_to_errno(ret);
6348 if (ret)
6349 return ret;
6350
6351 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6352 master);
6353 if (ret)
6354 return ret;
6355
6356 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6357 &changeupper_info.info);
6358 ret = notifier_to_errno(ret);
6359 if (ret)
6360 goto rollback;
6361
6362 return 0;
6363
6364rollback:
6365 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6366
6367 return ret;
6368}
6369
6370/**
6371 * netdev_upper_dev_link - Add a link to the upper device
6372 * @dev: device
6373 * @upper_dev: new upper device
6374 *
6375 * Adds a link to device which is upper to this one. The caller must hold
6376 * the RTNL lock. On a failure a negative errno code is returned.
6377 * On success the reference counts are adjusted and the function
6378 * returns zero.
6379 */
6380int netdev_upper_dev_link(struct net_device *dev,
6381 struct net_device *upper_dev,
6382 struct netlink_ext_ack *extack)
6383{
6384 return __netdev_upper_dev_link(dev, upper_dev, false,
6385 NULL, NULL, extack);
6386}
6387EXPORT_SYMBOL(netdev_upper_dev_link);
6388
6389/**
6390 * netdev_master_upper_dev_link - Add a master link to the upper device
6391 * @dev: device
6392 * @upper_dev: new upper device
6393 * @upper_priv: upper device private
6394 * @upper_info: upper info to be passed down via notifier
6395 *
6396 * Adds a link to device which is upper to this one. In this case, only
6397 * one master upper device can be linked, although other non-master devices
6398 * might be linked as well. The caller must hold the RTNL lock.
6399 * On a failure a negative errno code is returned. On success the reference
6400 * counts are adjusted and the function returns zero.
6401 */
6402int netdev_master_upper_dev_link(struct net_device *dev,
6403 struct net_device *upper_dev,
6404 void *upper_priv, void *upper_info,
6405 struct netlink_ext_ack *extack)
6406{
6407 return __netdev_upper_dev_link(dev, upper_dev, true,
6408 upper_priv, upper_info, extack);
6409}
6410EXPORT_SYMBOL(netdev_master_upper_dev_link);
6411
6412/**
6413 * netdev_upper_dev_unlink - Removes a link to upper device
6414 * @dev: device
6415 * @upper_dev: new upper device
6416 *
6417 * Removes a link to device which is upper to this one. The caller must hold
6418 * the RTNL lock.
6419 */
6420void netdev_upper_dev_unlink(struct net_device *dev,
6421 struct net_device *upper_dev)
6422{
6423 struct netdev_notifier_changeupper_info changeupper_info = {
6424 .info = {
6425 .dev = dev,
6426 },
6427 .upper_dev = upper_dev,
6428 .linking = false,
6429 };
6430
6431 ASSERT_RTNL();
6432
6433 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6434
6435 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6436 &changeupper_info.info);
6437
6438 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6439
6440 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6441 &changeupper_info.info);
6442}
6443EXPORT_SYMBOL(netdev_upper_dev_unlink);
6444
6445/**
6446 * netdev_bonding_info_change - Dispatch event about slave change
6447 * @dev: device
6448 * @bonding_info: info to dispatch
6449 *
6450 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6451 * The caller must hold the RTNL lock.
6452 */
6453void netdev_bonding_info_change(struct net_device *dev,
6454 struct netdev_bonding_info *bonding_info)
6455{
6456 struct netdev_notifier_bonding_info info = {
6457 .info.dev = dev,
6458 };
6459
6460 memcpy(&info.bonding_info, bonding_info,
6461 sizeof(struct netdev_bonding_info));
6462 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6463 &info.info);
6464}
6465EXPORT_SYMBOL(netdev_bonding_info_change);
6466
6467static void netdev_adjacent_add_links(struct net_device *dev)
6468{
6469 struct netdev_adjacent *iter;
6470
6471 struct net *net = dev_net(dev);
6472
6473 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6474 if (!net_eq(net, dev_net(iter->dev)))
6475 continue;
6476 netdev_adjacent_sysfs_add(iter->dev, dev,
6477 &iter->dev->adj_list.lower);
6478 netdev_adjacent_sysfs_add(dev, iter->dev,
6479 &dev->adj_list.upper);
6480 }
6481
6482 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6483 if (!net_eq(net, dev_net(iter->dev)))
6484 continue;
6485 netdev_adjacent_sysfs_add(iter->dev, dev,
6486 &iter->dev->adj_list.upper);
6487 netdev_adjacent_sysfs_add(dev, iter->dev,
6488 &dev->adj_list.lower);
6489 }
6490}
6491
6492static void netdev_adjacent_del_links(struct net_device *dev)
6493{
6494 struct netdev_adjacent *iter;
6495
6496 struct net *net = dev_net(dev);
6497
6498 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6499 if (!net_eq(net, dev_net(iter->dev)))
6500 continue;
6501 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6502 &iter->dev->adj_list.lower);
6503 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6504 &dev->adj_list.upper);
6505 }
6506
6507 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6508 if (!net_eq(net, dev_net(iter->dev)))
6509 continue;
6510 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6511 &iter->dev->adj_list.upper);
6512 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6513 &dev->adj_list.lower);
6514 }
6515}
6516
6517void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6518{
6519 struct netdev_adjacent *iter;
6520
6521 struct net *net = dev_net(dev);
6522
6523 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6524 if (!net_eq(net, dev_net(iter->dev)))
6525 continue;
6526 netdev_adjacent_sysfs_del(iter->dev, oldname,
6527 &iter->dev->adj_list.lower);
6528 netdev_adjacent_sysfs_add(iter->dev, dev,
6529 &iter->dev->adj_list.lower);
6530 }
6531
6532 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6533 if (!net_eq(net, dev_net(iter->dev)))
6534 continue;
6535 netdev_adjacent_sysfs_del(iter->dev, oldname,
6536 &iter->dev->adj_list.upper);
6537 netdev_adjacent_sysfs_add(iter->dev, dev,
6538 &iter->dev->adj_list.upper);
6539 }
6540}
6541
6542void *netdev_lower_dev_get_private(struct net_device *dev,
6543 struct net_device *lower_dev)
6544{
6545 struct netdev_adjacent *lower;
6546
6547 if (!lower_dev)
6548 return NULL;
6549 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6550 if (!lower)
6551 return NULL;
6552
6553 return lower->private;
6554}
6555EXPORT_SYMBOL(netdev_lower_dev_get_private);
6556
6557
6558int dev_get_nest_level(struct net_device *dev)
6559{
6560 struct net_device *lower = NULL;
6561 struct list_head *iter;
6562 int max_nest = -1;
6563 int nest;
6564
6565 ASSERT_RTNL();
6566
6567 netdev_for_each_lower_dev(dev, lower, iter) {
6568 nest = dev_get_nest_level(lower);
6569 if (max_nest < nest)
6570 max_nest = nest;
6571 }
6572
6573 return max_nest + 1;
6574}
6575EXPORT_SYMBOL(dev_get_nest_level);
6576
6577/**
6578 * netdev_lower_change - Dispatch event about lower device state change
6579 * @lower_dev: device
6580 * @lower_state_info: state to dispatch
6581 *
6582 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6583 * The caller must hold the RTNL lock.
6584 */
6585void netdev_lower_state_changed(struct net_device *lower_dev,
6586 void *lower_state_info)
6587{
6588 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6589 .info.dev = lower_dev,
6590 };
6591
6592 ASSERT_RTNL();
6593 changelowerstate_info.lower_state_info = lower_state_info;
6594 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6595 &changelowerstate_info.info);
6596}
6597EXPORT_SYMBOL(netdev_lower_state_changed);
6598
6599static void dev_change_rx_flags(struct net_device *dev, int flags)
6600{
6601 const struct net_device_ops *ops = dev->netdev_ops;
6602
6603 if (ops->ndo_change_rx_flags)
6604 ops->ndo_change_rx_flags(dev, flags);
6605}
6606
6607static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6608{
6609 unsigned int old_flags = dev->flags;
6610 kuid_t uid;
6611 kgid_t gid;
6612
6613 ASSERT_RTNL();
6614
6615 dev->flags |= IFF_PROMISC;
6616 dev->promiscuity += inc;
6617 if (dev->promiscuity == 0) {
6618 /*
6619 * Avoid overflow.
6620 * If inc causes overflow, untouch promisc and return error.
6621 */
6622 if (inc < 0)
6623 dev->flags &= ~IFF_PROMISC;
6624 else {
6625 dev->promiscuity -= inc;
6626 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6627 dev->name);
6628 return -EOVERFLOW;
6629 }
6630 }
6631 if (dev->flags != old_flags) {
6632 pr_info("device %s %s promiscuous mode\n",
6633 dev->name,
6634 dev->flags & IFF_PROMISC ? "entered" : "left");
6635 if (audit_enabled) {
6636 current_uid_gid(&uid, &gid);
6637 audit_log(current->audit_context, GFP_ATOMIC,
6638 AUDIT_ANOM_PROMISCUOUS,
6639 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6640 dev->name, (dev->flags & IFF_PROMISC),
6641 (old_flags & IFF_PROMISC),
6642 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6643 from_kuid(&init_user_ns, uid),
6644 from_kgid(&init_user_ns, gid),
6645 audit_get_sessionid(current));
6646 }
6647
6648 dev_change_rx_flags(dev, IFF_PROMISC);
6649 }
6650 if (notify)
6651 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6652 return 0;
6653}
6654
6655/**
6656 * dev_set_promiscuity - update promiscuity count on a device
6657 * @dev: device
6658 * @inc: modifier
6659 *
6660 * Add or remove promiscuity from a device. While the count in the device
6661 * remains above zero the interface remains promiscuous. Once it hits zero
6662 * the device reverts back to normal filtering operation. A negative inc
6663 * value is used to drop promiscuity on the device.
6664 * Return 0 if successful or a negative errno code on error.
6665 */
6666int dev_set_promiscuity(struct net_device *dev, int inc)
6667{
6668 unsigned int old_flags = dev->flags;
6669 int err;
6670
6671 err = __dev_set_promiscuity(dev, inc, true);
6672 if (err < 0)
6673 return err;
6674 if (dev->flags != old_flags)
6675 dev_set_rx_mode(dev);
6676 return err;
6677}
6678EXPORT_SYMBOL(dev_set_promiscuity);
6679
6680static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6681{
6682 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6683
6684 ASSERT_RTNL();
6685
6686 dev->flags |= IFF_ALLMULTI;
6687 dev->allmulti += inc;
6688 if (dev->allmulti == 0) {
6689 /*
6690 * Avoid overflow.
6691 * If inc causes overflow, untouch allmulti and return error.
6692 */
6693 if (inc < 0)
6694 dev->flags &= ~IFF_ALLMULTI;
6695 else {
6696 dev->allmulti -= inc;
6697 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6698 dev->name);
6699 return -EOVERFLOW;
6700 }
6701 }
6702 if (dev->flags ^ old_flags) {
6703 dev_change_rx_flags(dev, IFF_ALLMULTI);
6704 dev_set_rx_mode(dev);
6705 if (notify)
6706 __dev_notify_flags(dev, old_flags,
6707 dev->gflags ^ old_gflags);
6708 }
6709 return 0;
6710}
6711
6712/**
6713 * dev_set_allmulti - update allmulti count on a device
6714 * @dev: device
6715 * @inc: modifier
6716 *
6717 * Add or remove reception of all multicast frames to a device. While the
6718 * count in the device remains above zero the interface remains listening
6719 * to all interfaces. Once it hits zero the device reverts back to normal
6720 * filtering operation. A negative @inc value is used to drop the counter
6721 * when releasing a resource needing all multicasts.
6722 * Return 0 if successful or a negative errno code on error.
6723 */
6724
6725int dev_set_allmulti(struct net_device *dev, int inc)
6726{
6727 return __dev_set_allmulti(dev, inc, true);
6728}
6729EXPORT_SYMBOL(dev_set_allmulti);
6730
6731/*
6732 * Upload unicast and multicast address lists to device and
6733 * configure RX filtering. When the device doesn't support unicast
6734 * filtering it is put in promiscuous mode while unicast addresses
6735 * are present.
6736 */
6737void __dev_set_rx_mode(struct net_device *dev)
6738{
6739 const struct net_device_ops *ops = dev->netdev_ops;
6740
6741 /* dev_open will call this function so the list will stay sane. */
6742 if (!(dev->flags&IFF_UP))
6743 return;
6744
6745 if (!netif_device_present(dev))
6746 return;
6747
6748 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6749 /* Unicast addresses changes may only happen under the rtnl,
6750 * therefore calling __dev_set_promiscuity here is safe.
6751 */
6752 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6753 __dev_set_promiscuity(dev, 1, false);
6754 dev->uc_promisc = true;
6755 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6756 __dev_set_promiscuity(dev, -1, false);
6757 dev->uc_promisc = false;
6758 }
6759 }
6760
6761 if (ops->ndo_set_rx_mode)
6762 ops->ndo_set_rx_mode(dev);
6763}
6764
6765void dev_set_rx_mode(struct net_device *dev)
6766{
6767 netif_addr_lock_bh(dev);
6768 __dev_set_rx_mode(dev);
6769 netif_addr_unlock_bh(dev);
6770}
6771
6772/**
6773 * dev_get_flags - get flags reported to userspace
6774 * @dev: device
6775 *
6776 * Get the combination of flag bits exported through APIs to userspace.
6777 */
6778unsigned int dev_get_flags(const struct net_device *dev)
6779{
6780 unsigned int flags;
6781
6782 flags = (dev->flags & ~(IFF_PROMISC |
6783 IFF_ALLMULTI |
6784 IFF_RUNNING |
6785 IFF_LOWER_UP |
6786 IFF_DORMANT)) |
6787 (dev->gflags & (IFF_PROMISC |
6788 IFF_ALLMULTI));
6789
6790 if (netif_running(dev)) {
6791 if (netif_oper_up(dev))
6792 flags |= IFF_RUNNING;
6793 if (netif_carrier_ok(dev))
6794 flags |= IFF_LOWER_UP;
6795 if (netif_dormant(dev))
6796 flags |= IFF_DORMANT;
6797 }
6798
6799 return flags;
6800}
6801EXPORT_SYMBOL(dev_get_flags);
6802
6803int __dev_change_flags(struct net_device *dev, unsigned int flags)
6804{
6805 unsigned int old_flags = dev->flags;
6806 int ret;
6807
6808 ASSERT_RTNL();
6809
6810 /*
6811 * Set the flags on our device.
6812 */
6813
6814 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6815 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6816 IFF_AUTOMEDIA)) |
6817 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6818 IFF_ALLMULTI));
6819
6820 /*
6821 * Load in the correct multicast list now the flags have changed.
6822 */
6823
6824 if ((old_flags ^ flags) & IFF_MULTICAST)
6825 dev_change_rx_flags(dev, IFF_MULTICAST);
6826
6827 dev_set_rx_mode(dev);
6828
6829 /*
6830 * Have we downed the interface. We handle IFF_UP ourselves
6831 * according to user attempts to set it, rather than blindly
6832 * setting it.
6833 */
6834
6835 ret = 0;
6836 if ((old_flags ^ flags) & IFF_UP) {
6837 if (old_flags & IFF_UP)
6838 __dev_close(dev);
6839 else
6840 ret = __dev_open(dev);
6841 }
6842
6843 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6844 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6845 unsigned int old_flags = dev->flags;
6846
6847 dev->gflags ^= IFF_PROMISC;
6848
6849 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6850 if (dev->flags != old_flags)
6851 dev_set_rx_mode(dev);
6852 }
6853
6854 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6855 * is important. Some (broken) drivers set IFF_PROMISC, when
6856 * IFF_ALLMULTI is requested not asking us and not reporting.
6857 */
6858 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6859 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6860
6861 dev->gflags ^= IFF_ALLMULTI;
6862 __dev_set_allmulti(dev, inc, false);
6863 }
6864
6865 return ret;
6866}
6867
6868void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6869 unsigned int gchanges)
6870{
6871 unsigned int changes = dev->flags ^ old_flags;
6872
6873 if (gchanges)
6874 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6875
6876 if (changes & IFF_UP) {
6877 if (dev->flags & IFF_UP)
6878 call_netdevice_notifiers(NETDEV_UP, dev);
6879 else
6880 call_netdevice_notifiers(NETDEV_DOWN, dev);
6881 }
6882
6883 if (dev->flags & IFF_UP &&
6884 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6885 struct netdev_notifier_change_info change_info = {
6886 .info = {
6887 .dev = dev,
6888 },
6889 .flags_changed = changes,
6890 };
6891
6892 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
6893 }
6894}
6895
6896/**
6897 * dev_change_flags - change device settings
6898 * @dev: device
6899 * @flags: device state flags
6900 *
6901 * Change settings on device based state flags. The flags are
6902 * in the userspace exported format.
6903 */
6904int dev_change_flags(struct net_device *dev, unsigned int flags)
6905{
6906 int ret;
6907 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6908
6909 ret = __dev_change_flags(dev, flags);
6910 if (ret < 0)
6911 return ret;
6912
6913 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6914 __dev_notify_flags(dev, old_flags, changes);
6915 return ret;
6916}
6917EXPORT_SYMBOL(dev_change_flags);
6918
6919int __dev_set_mtu(struct net_device *dev, int new_mtu)
6920{
6921 const struct net_device_ops *ops = dev->netdev_ops;
6922
6923 if (ops->ndo_change_mtu)
6924 return ops->ndo_change_mtu(dev, new_mtu);
6925
6926 dev->mtu = new_mtu;
6927 return 0;
6928}
6929EXPORT_SYMBOL(__dev_set_mtu);
6930
6931/**
6932 * dev_set_mtu - Change maximum transfer unit
6933 * @dev: device
6934 * @new_mtu: new transfer unit
6935 *
6936 * Change the maximum transfer size of the network device.
6937 */
6938int dev_set_mtu(struct net_device *dev, int new_mtu)
6939{
6940 int err, orig_mtu;
6941
6942 if (new_mtu == dev->mtu)
6943 return 0;
6944
6945 /* MTU must be positive, and in range */
6946 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6947 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6948 dev->name, new_mtu, dev->min_mtu);
6949 return -EINVAL;
6950 }
6951
6952 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6953 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6954 dev->name, new_mtu, dev->max_mtu);
6955 return -EINVAL;
6956 }
6957
6958 if (!netif_device_present(dev))
6959 return -ENODEV;
6960
6961 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6962 err = notifier_to_errno(err);
6963 if (err)
6964 return err;
6965
6966 orig_mtu = dev->mtu;
6967 err = __dev_set_mtu(dev, new_mtu);
6968
6969 if (!err) {
6970 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6971 err = notifier_to_errno(err);
6972 if (err) {
6973 /* setting mtu back and notifying everyone again,
6974 * so that they have a chance to revert changes.
6975 */
6976 __dev_set_mtu(dev, orig_mtu);
6977 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6978 }
6979 }
6980 return err;
6981}
6982EXPORT_SYMBOL(dev_set_mtu);
6983
6984/**
6985 * dev_set_group - Change group this device belongs to
6986 * @dev: device
6987 * @new_group: group this device should belong to
6988 */
6989void dev_set_group(struct net_device *dev, int new_group)
6990{
6991 dev->group = new_group;
6992}
6993EXPORT_SYMBOL(dev_set_group);
6994
6995/**
6996 * dev_set_mac_address - Change Media Access Control Address
6997 * @dev: device
6998 * @sa: new address
6999 *
7000 * Change the hardware (MAC) address of the device
7001 */
7002int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7003{
7004 const struct net_device_ops *ops = dev->netdev_ops;
7005 int err;
7006
7007 if (!ops->ndo_set_mac_address)
7008 return -EOPNOTSUPP;
7009 if (sa->sa_family != dev->type)
7010 return -EINVAL;
7011 if (!netif_device_present(dev))
7012 return -ENODEV;
7013 err = ops->ndo_set_mac_address(dev, sa);
7014 if (err)
7015 return err;
7016 dev->addr_assign_type = NET_ADDR_SET;
7017 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7018 add_device_randomness(dev->dev_addr, dev->addr_len);
7019 return 0;
7020}
7021EXPORT_SYMBOL(dev_set_mac_address);
7022
7023/**
7024 * dev_change_carrier - Change device carrier
7025 * @dev: device
7026 * @new_carrier: new value
7027 *
7028 * Change device carrier
7029 */
7030int dev_change_carrier(struct net_device *dev, bool new_carrier)
7031{
7032 const struct net_device_ops *ops = dev->netdev_ops;
7033
7034 if (!ops->ndo_change_carrier)
7035 return -EOPNOTSUPP;
7036 if (!netif_device_present(dev))
7037 return -ENODEV;
7038 return ops->ndo_change_carrier(dev, new_carrier);
7039}
7040EXPORT_SYMBOL(dev_change_carrier);
7041
7042/**
7043 * dev_get_phys_port_id - Get device physical port ID
7044 * @dev: device
7045 * @ppid: port ID
7046 *
7047 * Get device physical port ID
7048 */
7049int dev_get_phys_port_id(struct net_device *dev,
7050 struct netdev_phys_item_id *ppid)
7051{
7052 const struct net_device_ops *ops = dev->netdev_ops;
7053
7054 if (!ops->ndo_get_phys_port_id)
7055 return -EOPNOTSUPP;
7056 return ops->ndo_get_phys_port_id(dev, ppid);
7057}
7058EXPORT_SYMBOL(dev_get_phys_port_id);
7059
7060/**
7061 * dev_get_phys_port_name - Get device physical port name
7062 * @dev: device
7063 * @name: port name
7064 * @len: limit of bytes to copy to name
7065 *
7066 * Get device physical port name
7067 */
7068int dev_get_phys_port_name(struct net_device *dev,
7069 char *name, size_t len)
7070{
7071 const struct net_device_ops *ops = dev->netdev_ops;
7072
7073 if (!ops->ndo_get_phys_port_name)
7074 return -EOPNOTSUPP;
7075 return ops->ndo_get_phys_port_name(dev, name, len);
7076}
7077EXPORT_SYMBOL(dev_get_phys_port_name);
7078
7079/**
7080 * dev_change_proto_down - update protocol port state information
7081 * @dev: device
7082 * @proto_down: new value
7083 *
7084 * This info can be used by switch drivers to set the phys state of the
7085 * port.
7086 */
7087int dev_change_proto_down(struct net_device *dev, bool proto_down)
7088{
7089 const struct net_device_ops *ops = dev->netdev_ops;
7090
7091 if (!ops->ndo_change_proto_down)
7092 return -EOPNOTSUPP;
7093 if (!netif_device_present(dev))
7094 return -ENODEV;
7095 return ops->ndo_change_proto_down(dev, proto_down);
7096}
7097EXPORT_SYMBOL(dev_change_proto_down);
7098
7099u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op, u32 *prog_id)
7100{
7101 struct netdev_bpf xdp;
7102
7103 memset(&xdp, 0, sizeof(xdp));
7104 xdp.command = XDP_QUERY_PROG;
7105
7106 /* Query must always succeed. */
7107 WARN_ON(bpf_op(dev, &xdp) < 0);
7108 if (prog_id)
7109 *prog_id = xdp.prog_id;
7110
7111 return xdp.prog_attached;
7112}
7113
7114static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7115 struct netlink_ext_ack *extack, u32 flags,
7116 struct bpf_prog *prog)
7117{
7118 struct netdev_bpf xdp;
7119
7120 memset(&xdp, 0, sizeof(xdp));
7121 if (flags & XDP_FLAGS_HW_MODE)
7122 xdp.command = XDP_SETUP_PROG_HW;
7123 else
7124 xdp.command = XDP_SETUP_PROG;
7125 xdp.extack = extack;
7126 xdp.flags = flags;
7127 xdp.prog = prog;
7128
7129 return bpf_op(dev, &xdp);
7130}
7131
7132/**
7133 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7134 * @dev: device
7135 * @extack: netlink extended ack
7136 * @fd: new program fd or negative value to clear
7137 * @flags: xdp-related flags
7138 *
7139 * Set or clear a bpf program for a device
7140 */
7141int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7142 int fd, u32 flags)
7143{
7144 const struct net_device_ops *ops = dev->netdev_ops;
7145 struct bpf_prog *prog = NULL;
7146 bpf_op_t bpf_op, bpf_chk;
7147 int err;
7148
7149 ASSERT_RTNL();
7150
7151 bpf_op = bpf_chk = ops->ndo_bpf;
7152 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7153 return -EOPNOTSUPP;
7154 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7155 bpf_op = generic_xdp_install;
7156 if (bpf_op == bpf_chk)
7157 bpf_chk = generic_xdp_install;
7158
7159 if (fd >= 0) {
7160 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk, NULL))
7161 return -EEXIST;
7162 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7163 __dev_xdp_attached(dev, bpf_op, NULL))
7164 return -EBUSY;
7165
7166 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7167 bpf_op == ops->ndo_bpf);
7168 if (IS_ERR(prog))
7169 return PTR_ERR(prog);
7170
7171 if (!(flags & XDP_FLAGS_HW_MODE) &&
7172 bpf_prog_is_dev_bound(prog->aux)) {
7173 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7174 bpf_prog_put(prog);
7175 return -EINVAL;
7176 }
7177 }
7178
7179 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7180 if (err < 0 && prog)
7181 bpf_prog_put(prog);
7182
7183 return err;
7184}
7185
7186/**
7187 * dev_new_index - allocate an ifindex
7188 * @net: the applicable net namespace
7189 *
7190 * Returns a suitable unique value for a new device interface
7191 * number. The caller must hold the rtnl semaphore or the
7192 * dev_base_lock to be sure it remains unique.
7193 */
7194static int dev_new_index(struct net *net)
7195{
7196 int ifindex = net->ifindex;
7197
7198 for (;;) {
7199 if (++ifindex <= 0)
7200 ifindex = 1;
7201 if (!__dev_get_by_index(net, ifindex))
7202 return net->ifindex = ifindex;
7203 }
7204}
7205
7206/* Delayed registration/unregisteration */
7207static LIST_HEAD(net_todo_list);
7208DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7209
7210static void net_set_todo(struct net_device *dev)
7211{
7212 list_add_tail(&dev->todo_list, &net_todo_list);
7213 dev_net(dev)->dev_unreg_count++;
7214}
7215
7216static void rollback_registered_many(struct list_head *head)
7217{
7218 struct net_device *dev, *tmp;
7219 LIST_HEAD(close_head);
7220
7221 BUG_ON(dev_boot_phase);
7222 ASSERT_RTNL();
7223
7224 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7225 /* Some devices call without registering
7226 * for initialization unwind. Remove those
7227 * devices and proceed with the remaining.
7228 */
7229 if (dev->reg_state == NETREG_UNINITIALIZED) {
7230 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7231 dev->name, dev);
7232
7233 WARN_ON(1);
7234 list_del(&dev->unreg_list);
7235 continue;
7236 }
7237 dev->dismantle = true;
7238 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7239 }
7240
7241 /* If device is running, close it first. */
7242 list_for_each_entry(dev, head, unreg_list)
7243 list_add_tail(&dev->close_list, &close_head);
7244 dev_close_many(&close_head, true);
7245
7246 list_for_each_entry(dev, head, unreg_list) {
7247 /* And unlink it from device chain. */
7248 unlist_netdevice(dev);
7249
7250 dev->reg_state = NETREG_UNREGISTERING;
7251 }
7252 flush_all_backlogs();
7253
7254 synchronize_net();
7255
7256 list_for_each_entry(dev, head, unreg_list) {
7257 struct sk_buff *skb = NULL;
7258
7259 /* Shutdown queueing discipline. */
7260 dev_shutdown(dev);
7261
7262
7263 /* Notify protocols, that we are about to destroy
7264 * this device. They should clean all the things.
7265 */
7266 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7267
7268 if (!dev->rtnl_link_ops ||
7269 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7270 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7271 GFP_KERNEL, NULL);
7272
7273 /*
7274 * Flush the unicast and multicast chains
7275 */
7276 dev_uc_flush(dev);
7277 dev_mc_flush(dev);
7278
7279 if (dev->netdev_ops->ndo_uninit)
7280 dev->netdev_ops->ndo_uninit(dev);
7281
7282 if (skb)
7283 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7284
7285 /* Notifier chain MUST detach us all upper devices. */
7286 WARN_ON(netdev_has_any_upper_dev(dev));
7287 WARN_ON(netdev_has_any_lower_dev(dev));
7288
7289 /* Remove entries from kobject tree */
7290 netdev_unregister_kobject(dev);
7291#ifdef CONFIG_XPS
7292 /* Remove XPS queueing entries */
7293 netif_reset_xps_queues_gt(dev, 0);
7294#endif
7295 }
7296
7297 synchronize_net();
7298
7299 list_for_each_entry(dev, head, unreg_list)
7300 dev_put(dev);
7301}
7302
7303static void rollback_registered(struct net_device *dev)
7304{
7305 LIST_HEAD(single);
7306
7307 list_add(&dev->unreg_list, &single);
7308 rollback_registered_many(&single);
7309 list_del(&single);
7310}
7311
7312static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7313 struct net_device *upper, netdev_features_t features)
7314{
7315 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7316 netdev_features_t feature;
7317 int feature_bit;
7318
7319 for_each_netdev_feature(&upper_disables, feature_bit) {
7320 feature = __NETIF_F_BIT(feature_bit);
7321 if (!(upper->wanted_features & feature)
7322 && (features & feature)) {
7323 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7324 &feature, upper->name);
7325 features &= ~feature;
7326 }
7327 }
7328
7329 return features;
7330}
7331
7332static void netdev_sync_lower_features(struct net_device *upper,
7333 struct net_device *lower, netdev_features_t features)
7334{
7335 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7336 netdev_features_t feature;
7337 int feature_bit;
7338
7339 for_each_netdev_feature(&upper_disables, feature_bit) {
7340 feature = __NETIF_F_BIT(feature_bit);
7341 if (!(features & feature) && (lower->features & feature)) {
7342 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7343 &feature, lower->name);
7344 lower->wanted_features &= ~feature;
7345 netdev_update_features(lower);
7346
7347 if (unlikely(lower->features & feature))
7348 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7349 &feature, lower->name);
7350 }
7351 }
7352}
7353
7354static netdev_features_t netdev_fix_features(struct net_device *dev,
7355 netdev_features_t features)
7356{
7357 /* Fix illegal checksum combinations */
7358 if ((features & NETIF_F_HW_CSUM) &&
7359 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7360 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7361 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7362 }
7363
7364 /* TSO requires that SG is present as well. */
7365 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7366 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7367 features &= ~NETIF_F_ALL_TSO;
7368 }
7369
7370 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7371 !(features & NETIF_F_IP_CSUM)) {
7372 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7373 features &= ~NETIF_F_TSO;
7374 features &= ~NETIF_F_TSO_ECN;
7375 }
7376
7377 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7378 !(features & NETIF_F_IPV6_CSUM)) {
7379 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7380 features &= ~NETIF_F_TSO6;
7381 }
7382
7383 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7384 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7385 features &= ~NETIF_F_TSO_MANGLEID;
7386
7387 /* TSO ECN requires that TSO is present as well. */
7388 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7389 features &= ~NETIF_F_TSO_ECN;
7390
7391 /* Software GSO depends on SG. */
7392 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7393 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7394 features &= ~NETIF_F_GSO;
7395 }
7396
7397 /* GSO partial features require GSO partial be set */
7398 if ((features & dev->gso_partial_features) &&
7399 !(features & NETIF_F_GSO_PARTIAL)) {
7400 netdev_dbg(dev,
7401 "Dropping partially supported GSO features since no GSO partial.\n");
7402 features &= ~dev->gso_partial_features;
7403 }
7404
7405 return features;
7406}
7407
7408int __netdev_update_features(struct net_device *dev)
7409{
7410 struct net_device *upper, *lower;
7411 netdev_features_t features;
7412 struct list_head *iter;
7413 int err = -1;
7414
7415 ASSERT_RTNL();
7416
7417 features = netdev_get_wanted_features(dev);
7418
7419 if (dev->netdev_ops->ndo_fix_features)
7420 features = dev->netdev_ops->ndo_fix_features(dev, features);
7421
7422 /* driver might be less strict about feature dependencies */
7423 features = netdev_fix_features(dev, features);
7424
7425 /* some features can't be enabled if they're off an an upper device */
7426 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7427 features = netdev_sync_upper_features(dev, upper, features);
7428
7429 if (dev->features == features)
7430 goto sync_lower;
7431
7432 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7433 &dev->features, &features);
7434
7435 if (dev->netdev_ops->ndo_set_features)
7436 err = dev->netdev_ops->ndo_set_features(dev, features);
7437 else
7438 err = 0;
7439
7440 if (unlikely(err < 0)) {
7441 netdev_err(dev,
7442 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7443 err, &features, &dev->features);
7444 /* return non-0 since some features might have changed and
7445 * it's better to fire a spurious notification than miss it
7446 */
7447 return -1;
7448 }
7449
7450sync_lower:
7451 /* some features must be disabled on lower devices when disabled
7452 * on an upper device (think: bonding master or bridge)
7453 */
7454 netdev_for_each_lower_dev(dev, lower, iter)
7455 netdev_sync_lower_features(dev, lower, features);
7456
7457 if (!err) {
7458 netdev_features_t diff = features ^ dev->features;
7459
7460 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7461 /* udp_tunnel_{get,drop}_rx_info both need
7462 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7463 * device, or they won't do anything.
7464 * Thus we need to update dev->features
7465 * *before* calling udp_tunnel_get_rx_info,
7466 * but *after* calling udp_tunnel_drop_rx_info.
7467 */
7468 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7469 dev->features = features;
7470 udp_tunnel_get_rx_info(dev);
7471 } else {
7472 udp_tunnel_drop_rx_info(dev);
7473 }
7474 }
7475
7476 dev->features = features;
7477 }
7478
7479 return err < 0 ? 0 : 1;
7480}
7481
7482/**
7483 * netdev_update_features - recalculate device features
7484 * @dev: the device to check
7485 *
7486 * Recalculate dev->features set and send notifications if it
7487 * has changed. Should be called after driver or hardware dependent
7488 * conditions might have changed that influence the features.
7489 */
7490void netdev_update_features(struct net_device *dev)
7491{
7492 if (__netdev_update_features(dev))
7493 netdev_features_change(dev);
7494}
7495EXPORT_SYMBOL(netdev_update_features);
7496
7497/**
7498 * netdev_change_features - recalculate device features
7499 * @dev: the device to check
7500 *
7501 * Recalculate dev->features set and send notifications even
7502 * if they have not changed. Should be called instead of
7503 * netdev_update_features() if also dev->vlan_features might
7504 * have changed to allow the changes to be propagated to stacked
7505 * VLAN devices.
7506 */
7507void netdev_change_features(struct net_device *dev)
7508{
7509 __netdev_update_features(dev);
7510 netdev_features_change(dev);
7511}
7512EXPORT_SYMBOL(netdev_change_features);
7513
7514/**
7515 * netif_stacked_transfer_operstate - transfer operstate
7516 * @rootdev: the root or lower level device to transfer state from
7517 * @dev: the device to transfer operstate to
7518 *
7519 * Transfer operational state from root to device. This is normally
7520 * called when a stacking relationship exists between the root
7521 * device and the device(a leaf device).
7522 */
7523void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7524 struct net_device *dev)
7525{
7526 if (rootdev->operstate == IF_OPER_DORMANT)
7527 netif_dormant_on(dev);
7528 else
7529 netif_dormant_off(dev);
7530
7531 if (netif_carrier_ok(rootdev))
7532 netif_carrier_on(dev);
7533 else
7534 netif_carrier_off(dev);
7535}
7536EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7537
7538#ifdef CONFIG_SYSFS
7539static int netif_alloc_rx_queues(struct net_device *dev)
7540{
7541 unsigned int i, count = dev->num_rx_queues;
7542 struct netdev_rx_queue *rx;
7543 size_t sz = count * sizeof(*rx);
7544
7545 BUG_ON(count < 1);
7546
7547 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7548 if (!rx)
7549 return -ENOMEM;
7550
7551 dev->_rx = rx;
7552
7553 for (i = 0; i < count; i++)
7554 rx[i].dev = dev;
7555 return 0;
7556}
7557#endif
7558
7559static void netdev_init_one_queue(struct net_device *dev,
7560 struct netdev_queue *queue, void *_unused)
7561{
7562 /* Initialize queue lock */
7563 spin_lock_init(&queue->_xmit_lock);
7564 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7565 queue->xmit_lock_owner = -1;
7566 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7567 queue->dev = dev;
7568#ifdef CONFIG_BQL
7569 dql_init(&queue->dql, HZ);
7570#endif
7571}
7572
7573static void netif_free_tx_queues(struct net_device *dev)
7574{
7575 kvfree(dev->_tx);
7576}
7577
7578static int netif_alloc_netdev_queues(struct net_device *dev)
7579{
7580 unsigned int count = dev->num_tx_queues;
7581 struct netdev_queue *tx;
7582 size_t sz = count * sizeof(*tx);
7583
7584 if (count < 1 || count > 0xffff)
7585 return -EINVAL;
7586
7587 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7588 if (!tx)
7589 return -ENOMEM;
7590
7591 dev->_tx = tx;
7592
7593 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7594 spin_lock_init(&dev->tx_global_lock);
7595
7596 return 0;
7597}
7598
7599void netif_tx_stop_all_queues(struct net_device *dev)
7600{
7601 unsigned int i;
7602
7603 for (i = 0; i < dev->num_tx_queues; i++) {
7604 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7605
7606 netif_tx_stop_queue(txq);
7607 }
7608}
7609EXPORT_SYMBOL(netif_tx_stop_all_queues);
7610
7611/**
7612 * register_netdevice - register a network device
7613 * @dev: device to register
7614 *
7615 * Take a completed network device structure and add it to the kernel
7616 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7617 * chain. 0 is returned on success. A negative errno code is returned
7618 * on a failure to set up the device, or if the name is a duplicate.
7619 *
7620 * Callers must hold the rtnl semaphore. You may want
7621 * register_netdev() instead of this.
7622 *
7623 * BUGS:
7624 * The locking appears insufficient to guarantee two parallel registers
7625 * will not get the same name.
7626 */
7627
7628int register_netdevice(struct net_device *dev)
7629{
7630 int ret;
7631 struct net *net = dev_net(dev);
7632
7633 BUG_ON(dev_boot_phase);
7634 ASSERT_RTNL();
7635
7636 might_sleep();
7637
7638 /* When net_device's are persistent, this will be fatal. */
7639 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7640 BUG_ON(!net);
7641
7642 spin_lock_init(&dev->addr_list_lock);
7643 netdev_set_addr_lockdep_class(dev);
7644
7645 ret = dev_get_valid_name(net, dev, dev->name);
7646 if (ret < 0)
7647 goto out;
7648
7649 /* Init, if this function is available */
7650 if (dev->netdev_ops->ndo_init) {
7651 ret = dev->netdev_ops->ndo_init(dev);
7652 if (ret) {
7653 if (ret > 0)
7654 ret = -EIO;
7655 goto out;
7656 }
7657 }
7658
7659 if (((dev->hw_features | dev->features) &
7660 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7661 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7662 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7663 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7664 ret = -EINVAL;
7665 goto err_uninit;
7666 }
7667
7668 ret = -EBUSY;
7669 if (!dev->ifindex)
7670 dev->ifindex = dev_new_index(net);
7671 else if (__dev_get_by_index(net, dev->ifindex))
7672 goto err_uninit;
7673
7674 /* Transfer changeable features to wanted_features and enable
7675 * software offloads (GSO and GRO).
7676 */
7677 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7678 dev->features |= NETIF_F_SOFT_FEATURES;
7679
7680 if (dev->netdev_ops->ndo_udp_tunnel_add) {
7681 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7682 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7683 }
7684
7685 dev->wanted_features = dev->features & dev->hw_features;
7686
7687 if (!(dev->flags & IFF_LOOPBACK))
7688 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7689
7690 /* If IPv4 TCP segmentation offload is supported we should also
7691 * allow the device to enable segmenting the frame with the option
7692 * of ignoring a static IP ID value. This doesn't enable the
7693 * feature itself but allows the user to enable it later.
7694 */
7695 if (dev->hw_features & NETIF_F_TSO)
7696 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7697 if (dev->vlan_features & NETIF_F_TSO)
7698 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7699 if (dev->mpls_features & NETIF_F_TSO)
7700 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7701 if (dev->hw_enc_features & NETIF_F_TSO)
7702 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7703
7704 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7705 */
7706 dev->vlan_features |= NETIF_F_HIGHDMA;
7707
7708 /* Make NETIF_F_SG inheritable to tunnel devices.
7709 */
7710 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7711
7712 /* Make NETIF_F_SG inheritable to MPLS.
7713 */
7714 dev->mpls_features |= NETIF_F_SG;
7715
7716 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7717 ret = notifier_to_errno(ret);
7718 if (ret)
7719 goto err_uninit;
7720
7721 ret = netdev_register_kobject(dev);
7722 if (ret)
7723 goto err_uninit;
7724 dev->reg_state = NETREG_REGISTERED;
7725
7726 __netdev_update_features(dev);
7727
7728 /*
7729 * Default initial state at registry is that the
7730 * device is present.
7731 */
7732
7733 set_bit(__LINK_STATE_PRESENT, &dev->state);
7734
7735 linkwatch_init_dev(dev);
7736
7737 dev_init_scheduler(dev);
7738 dev_hold(dev);
7739 list_netdevice(dev);
7740 add_device_randomness(dev->dev_addr, dev->addr_len);
7741
7742 /* If the device has permanent device address, driver should
7743 * set dev_addr and also addr_assign_type should be set to
7744 * NET_ADDR_PERM (default value).
7745 */
7746 if (dev->addr_assign_type == NET_ADDR_PERM)
7747 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7748
7749 /* Notify protocols, that a new device appeared. */
7750 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7751 ret = notifier_to_errno(ret);
7752 if (ret) {
7753 rollback_registered(dev);
7754 dev->reg_state = NETREG_UNREGISTERED;
7755 }
7756 /*
7757 * Prevent userspace races by waiting until the network
7758 * device is fully setup before sending notifications.
7759 */
7760 if (!dev->rtnl_link_ops ||
7761 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7762 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7763
7764out:
7765 return ret;
7766
7767err_uninit:
7768 if (dev->netdev_ops->ndo_uninit)
7769 dev->netdev_ops->ndo_uninit(dev);
7770 if (dev->priv_destructor)
7771 dev->priv_destructor(dev);
7772 goto out;
7773}
7774EXPORT_SYMBOL(register_netdevice);
7775
7776/**
7777 * init_dummy_netdev - init a dummy network device for NAPI
7778 * @dev: device to init
7779 *
7780 * This takes a network device structure and initialize the minimum
7781 * amount of fields so it can be used to schedule NAPI polls without
7782 * registering a full blown interface. This is to be used by drivers
7783 * that need to tie several hardware interfaces to a single NAPI
7784 * poll scheduler due to HW limitations.
7785 */
7786int init_dummy_netdev(struct net_device *dev)
7787{
7788 /* Clear everything. Note we don't initialize spinlocks
7789 * are they aren't supposed to be taken by any of the
7790 * NAPI code and this dummy netdev is supposed to be
7791 * only ever used for NAPI polls
7792 */
7793 memset(dev, 0, sizeof(struct net_device));
7794
7795 /* make sure we BUG if trying to hit standard
7796 * register/unregister code path
7797 */
7798 dev->reg_state = NETREG_DUMMY;
7799
7800 /* NAPI wants this */
7801 INIT_LIST_HEAD(&dev->napi_list);
7802
7803 /* a dummy interface is started by default */
7804 set_bit(__LINK_STATE_PRESENT, &dev->state);
7805 set_bit(__LINK_STATE_START, &dev->state);
7806
7807 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7808 * because users of this 'device' dont need to change
7809 * its refcount.
7810 */
7811
7812 return 0;
7813}
7814EXPORT_SYMBOL_GPL(init_dummy_netdev);
7815
7816
7817/**
7818 * register_netdev - register a network device
7819 * @dev: device to register
7820 *
7821 * Take a completed network device structure and add it to the kernel
7822 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7823 * chain. 0 is returned on success. A negative errno code is returned
7824 * on a failure to set up the device, or if the name is a duplicate.
7825 *
7826 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7827 * and expands the device name if you passed a format string to
7828 * alloc_netdev.
7829 */
7830int register_netdev(struct net_device *dev)
7831{
7832 int err;
7833
7834 rtnl_lock();
7835 err = register_netdevice(dev);
7836 rtnl_unlock();
7837 return err;
7838}
7839EXPORT_SYMBOL(register_netdev);
7840
7841int netdev_refcnt_read(const struct net_device *dev)
7842{
7843 int i, refcnt = 0;
7844
7845 for_each_possible_cpu(i)
7846 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7847 return refcnt;
7848}
7849EXPORT_SYMBOL(netdev_refcnt_read);
7850
7851/**
7852 * netdev_wait_allrefs - wait until all references are gone.
7853 * @dev: target net_device
7854 *
7855 * This is called when unregistering network devices.
7856 *
7857 * Any protocol or device that holds a reference should register
7858 * for netdevice notification, and cleanup and put back the
7859 * reference if they receive an UNREGISTER event.
7860 * We can get stuck here if buggy protocols don't correctly
7861 * call dev_put.
7862 */
7863static void netdev_wait_allrefs(struct net_device *dev)
7864{
7865 unsigned long rebroadcast_time, warning_time;
7866 int refcnt;
7867
7868 linkwatch_forget_dev(dev);
7869
7870 rebroadcast_time = warning_time = jiffies;
7871 refcnt = netdev_refcnt_read(dev);
7872
7873 while (refcnt != 0) {
7874 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7875 rtnl_lock();
7876
7877 /* Rebroadcast unregister notification */
7878 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7879
7880 __rtnl_unlock();
7881 rcu_barrier();
7882 rtnl_lock();
7883
7884 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7885 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7886 &dev->state)) {
7887 /* We must not have linkwatch events
7888 * pending on unregister. If this
7889 * happens, we simply run the queue
7890 * unscheduled, resulting in a noop
7891 * for this device.
7892 */
7893 linkwatch_run_queue();
7894 }
7895
7896 __rtnl_unlock();
7897
7898 rebroadcast_time = jiffies;
7899 }
7900
7901 msleep(250);
7902
7903 refcnt = netdev_refcnt_read(dev);
7904
7905 if (time_after(jiffies, warning_time + 10 * HZ)) {
7906 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7907 dev->name, refcnt);
7908 warning_time = jiffies;
7909 }
7910 }
7911}
7912
7913/* The sequence is:
7914 *
7915 * rtnl_lock();
7916 * ...
7917 * register_netdevice(x1);
7918 * register_netdevice(x2);
7919 * ...
7920 * unregister_netdevice(y1);
7921 * unregister_netdevice(y2);
7922 * ...
7923 * rtnl_unlock();
7924 * free_netdev(y1);
7925 * free_netdev(y2);
7926 *
7927 * We are invoked by rtnl_unlock().
7928 * This allows us to deal with problems:
7929 * 1) We can delete sysfs objects which invoke hotplug
7930 * without deadlocking with linkwatch via keventd.
7931 * 2) Since we run with the RTNL semaphore not held, we can sleep
7932 * safely in order to wait for the netdev refcnt to drop to zero.
7933 *
7934 * We must not return until all unregister events added during
7935 * the interval the lock was held have been completed.
7936 */
7937void netdev_run_todo(void)
7938{
7939 struct list_head list;
7940
7941 /* Snapshot list, allow later requests */
7942 list_replace_init(&net_todo_list, &list);
7943
7944 __rtnl_unlock();
7945
7946
7947 /* Wait for rcu callbacks to finish before next phase */
7948 if (!list_empty(&list))
7949 rcu_barrier();
7950
7951 while (!list_empty(&list)) {
7952 struct net_device *dev
7953 = list_first_entry(&list, struct net_device, todo_list);
7954 list_del(&dev->todo_list);
7955
7956 rtnl_lock();
7957 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7958 __rtnl_unlock();
7959
7960 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7961 pr_err("network todo '%s' but state %d\n",
7962 dev->name, dev->reg_state);
7963 dump_stack();
7964 continue;
7965 }
7966
7967 dev->reg_state = NETREG_UNREGISTERED;
7968
7969 netdev_wait_allrefs(dev);
7970
7971 /* paranoia */
7972 BUG_ON(netdev_refcnt_read(dev));
7973 BUG_ON(!list_empty(&dev->ptype_all));
7974 BUG_ON(!list_empty(&dev->ptype_specific));
7975 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7976 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7977 WARN_ON(dev->dn_ptr);
7978
7979 if (dev->priv_destructor)
7980 dev->priv_destructor(dev);
7981 if (dev->needs_free_netdev)
7982 free_netdev(dev);
7983
7984 /* Report a network device has been unregistered */
7985 rtnl_lock();
7986 dev_net(dev)->dev_unreg_count--;
7987 __rtnl_unlock();
7988 wake_up(&netdev_unregistering_wq);
7989
7990 /* Free network device */
7991 kobject_put(&dev->dev.kobj);
7992 }
7993}
7994
7995/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7996 * all the same fields in the same order as net_device_stats, with only
7997 * the type differing, but rtnl_link_stats64 may have additional fields
7998 * at the end for newer counters.
7999 */
8000void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8001 const struct net_device_stats *netdev_stats)
8002{
8003#if BITS_PER_LONG == 64
8004 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8005 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8006 /* zero out counters that only exist in rtnl_link_stats64 */
8007 memset((char *)stats64 + sizeof(*netdev_stats), 0,
8008 sizeof(*stats64) - sizeof(*netdev_stats));
8009#else
8010 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8011 const unsigned long *src = (const unsigned long *)netdev_stats;
8012 u64 *dst = (u64 *)stats64;
8013
8014 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8015 for (i = 0; i < n; i++)
8016 dst[i] = src[i];
8017 /* zero out counters that only exist in rtnl_link_stats64 */
8018 memset((char *)stats64 + n * sizeof(u64), 0,
8019 sizeof(*stats64) - n * sizeof(u64));
8020#endif
8021}
8022EXPORT_SYMBOL(netdev_stats_to_stats64);
8023
8024/**
8025 * dev_get_stats - get network device statistics
8026 * @dev: device to get statistics from
8027 * @storage: place to store stats
8028 *
8029 * Get network statistics from device. Return @storage.
8030 * The device driver may provide its own method by setting
8031 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8032 * otherwise the internal statistics structure is used.
8033 */
8034struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8035 struct rtnl_link_stats64 *storage)
8036{
8037 const struct net_device_ops *ops = dev->netdev_ops;
8038
8039 if (ops->ndo_get_stats64) {
8040 memset(storage, 0, sizeof(*storage));
8041 ops->ndo_get_stats64(dev, storage);
8042 } else if (ops->ndo_get_stats) {
8043 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8044 } else {
8045 netdev_stats_to_stats64(storage, &dev->stats);
8046 }
8047 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8048 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8049 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8050 return storage;
8051}
8052EXPORT_SYMBOL(dev_get_stats);
8053
8054struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8055{
8056 struct netdev_queue *queue = dev_ingress_queue(dev);
8057
8058#ifdef CONFIG_NET_CLS_ACT
8059 if (queue)
8060 return queue;
8061 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8062 if (!queue)
8063 return NULL;
8064 netdev_init_one_queue(dev, queue, NULL);
8065 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8066 queue->qdisc_sleeping = &noop_qdisc;
8067 rcu_assign_pointer(dev->ingress_queue, queue);
8068#endif
8069 return queue;
8070}
8071
8072static const struct ethtool_ops default_ethtool_ops;
8073
8074void netdev_set_default_ethtool_ops(struct net_device *dev,
8075 const struct ethtool_ops *ops)
8076{
8077 if (dev->ethtool_ops == &default_ethtool_ops)
8078 dev->ethtool_ops = ops;
8079}
8080EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8081
8082void netdev_freemem(struct net_device *dev)
8083{
8084 char *addr = (char *)dev - dev->padded;
8085
8086 kvfree(addr);
8087}
8088
8089/**
8090 * alloc_netdev_mqs - allocate network device
8091 * @sizeof_priv: size of private data to allocate space for
8092 * @name: device name format string
8093 * @name_assign_type: origin of device name
8094 * @setup: callback to initialize device
8095 * @txqs: the number of TX subqueues to allocate
8096 * @rxqs: the number of RX subqueues to allocate
8097 *
8098 * Allocates a struct net_device with private data area for driver use
8099 * and performs basic initialization. Also allocates subqueue structs
8100 * for each queue on the device.
8101 */
8102struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8103 unsigned char name_assign_type,
8104 void (*setup)(struct net_device *),
8105 unsigned int txqs, unsigned int rxqs)
8106{
8107 struct net_device *dev;
8108 unsigned int alloc_size;
8109 struct net_device *p;
8110
8111 BUG_ON(strlen(name) >= sizeof(dev->name));
8112
8113 if (txqs < 1) {
8114 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8115 return NULL;
8116 }
8117
8118#ifdef CONFIG_SYSFS
8119 if (rxqs < 1) {
8120 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8121 return NULL;
8122 }
8123#endif
8124
8125 alloc_size = sizeof(struct net_device);
8126 if (sizeof_priv) {
8127 /* ensure 32-byte alignment of private area */
8128 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8129 alloc_size += sizeof_priv;
8130 }
8131 /* ensure 32-byte alignment of whole construct */
8132 alloc_size += NETDEV_ALIGN - 1;
8133
8134 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8135 if (!p)
8136 return NULL;
8137
8138 dev = PTR_ALIGN(p, NETDEV_ALIGN);
8139 dev->padded = (char *)dev - (char *)p;
8140
8141 dev->pcpu_refcnt = alloc_percpu(int);
8142 if (!dev->pcpu_refcnt)
8143 goto free_dev;
8144
8145 if (dev_addr_init(dev))
8146 goto free_pcpu;
8147
8148 dev_mc_init(dev);
8149 dev_uc_init(dev);
8150
8151 dev_net_set(dev, &init_net);
8152
8153 dev->gso_max_size = GSO_MAX_SIZE;
8154 dev->gso_max_segs = GSO_MAX_SEGS;
8155
8156 INIT_LIST_HEAD(&dev->napi_list);
8157 INIT_LIST_HEAD(&dev->unreg_list);
8158 INIT_LIST_HEAD(&dev->close_list);
8159 INIT_LIST_HEAD(&dev->link_watch_list);
8160 INIT_LIST_HEAD(&dev->adj_list.upper);
8161 INIT_LIST_HEAD(&dev->adj_list.lower);
8162 INIT_LIST_HEAD(&dev->ptype_all);
8163 INIT_LIST_HEAD(&dev->ptype_specific);
8164#ifdef CONFIG_NET_SCHED
8165 hash_init(dev->qdisc_hash);
8166#endif
8167 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8168 setup(dev);
8169
8170 if (!dev->tx_queue_len) {
8171 dev->priv_flags |= IFF_NO_QUEUE;
8172 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8173 }
8174
8175 dev->num_tx_queues = txqs;
8176 dev->real_num_tx_queues = txqs;
8177 if (netif_alloc_netdev_queues(dev))
8178 goto free_all;
8179
8180#ifdef CONFIG_SYSFS
8181 dev->num_rx_queues = rxqs;
8182 dev->real_num_rx_queues = rxqs;
8183 if (netif_alloc_rx_queues(dev))
8184 goto free_all;
8185#endif
8186
8187 strcpy(dev->name, name);
8188 dev->name_assign_type = name_assign_type;
8189 dev->group = INIT_NETDEV_GROUP;
8190 if (!dev->ethtool_ops)
8191 dev->ethtool_ops = &default_ethtool_ops;
8192
8193 nf_hook_ingress_init(dev);
8194
8195 return dev;
8196
8197free_all:
8198 free_netdev(dev);
8199 return NULL;
8200
8201free_pcpu:
8202 free_percpu(dev->pcpu_refcnt);
8203free_dev:
8204 netdev_freemem(dev);
8205 return NULL;
8206}
8207EXPORT_SYMBOL(alloc_netdev_mqs);
8208
8209/**
8210 * free_netdev - free network device
8211 * @dev: device
8212 *
8213 * This function does the last stage of destroying an allocated device
8214 * interface. The reference to the device object is released. If this
8215 * is the last reference then it will be freed.Must be called in process
8216 * context.
8217 */
8218void free_netdev(struct net_device *dev)
8219{
8220 struct napi_struct *p, *n;
8221 struct bpf_prog *prog;
8222
8223 might_sleep();
8224 netif_free_tx_queues(dev);
8225#ifdef CONFIG_SYSFS
8226 kvfree(dev->_rx);
8227#endif
8228
8229 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8230
8231 /* Flush device addresses */
8232 dev_addr_flush(dev);
8233
8234 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8235 netif_napi_del(p);
8236
8237 free_percpu(dev->pcpu_refcnt);
8238 dev->pcpu_refcnt = NULL;
8239
8240 prog = rcu_dereference_protected(dev->xdp_prog, 1);
8241 if (prog) {
8242 bpf_prog_put(prog);
8243 static_key_slow_dec(&generic_xdp_needed);
8244 }
8245
8246 /* Compatibility with error handling in drivers */
8247 if (dev->reg_state == NETREG_UNINITIALIZED) {
8248 netdev_freemem(dev);
8249 return;
8250 }
8251
8252 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8253 dev->reg_state = NETREG_RELEASED;
8254
8255 /* will free via device release */
8256 put_device(&dev->dev);
8257}
8258EXPORT_SYMBOL(free_netdev);
8259
8260/**
8261 * synchronize_net - Synchronize with packet receive processing
8262 *
8263 * Wait for packets currently being received to be done.
8264 * Does not block later packets from starting.
8265 */
8266void synchronize_net(void)
8267{
8268 might_sleep();
8269 if (rtnl_is_locked())
8270 synchronize_rcu_expedited();
8271 else
8272 synchronize_rcu();
8273}
8274EXPORT_SYMBOL(synchronize_net);
8275
8276/**
8277 * unregister_netdevice_queue - remove device from the kernel
8278 * @dev: device
8279 * @head: list
8280 *
8281 * This function shuts down a device interface and removes it
8282 * from the kernel tables.
8283 * If head not NULL, device is queued to be unregistered later.
8284 *
8285 * Callers must hold the rtnl semaphore. You may want
8286 * unregister_netdev() instead of this.
8287 */
8288
8289void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8290{
8291 ASSERT_RTNL();
8292
8293 if (head) {
8294 list_move_tail(&dev->unreg_list, head);
8295 } else {
8296 rollback_registered(dev);
8297 /* Finish processing unregister after unlock */
8298 net_set_todo(dev);
8299 }
8300}
8301EXPORT_SYMBOL(unregister_netdevice_queue);
8302
8303/**
8304 * unregister_netdevice_many - unregister many devices
8305 * @head: list of devices
8306 *
8307 * Note: As most callers use a stack allocated list_head,
8308 * we force a list_del() to make sure stack wont be corrupted later.
8309 */
8310void unregister_netdevice_many(struct list_head *head)
8311{
8312 struct net_device *dev;
8313
8314 if (!list_empty(head)) {
8315 rollback_registered_many(head);
8316 list_for_each_entry(dev, head, unreg_list)
8317 net_set_todo(dev);
8318 list_del(head);
8319 }
8320}
8321EXPORT_SYMBOL(unregister_netdevice_many);
8322
8323/**
8324 * unregister_netdev - remove device from the kernel
8325 * @dev: device
8326 *
8327 * This function shuts down a device interface and removes it
8328 * from the kernel tables.
8329 *
8330 * This is just a wrapper for unregister_netdevice that takes
8331 * the rtnl semaphore. In general you want to use this and not
8332 * unregister_netdevice.
8333 */
8334void unregister_netdev(struct net_device *dev)
8335{
8336 rtnl_lock();
8337 unregister_netdevice(dev);
8338 rtnl_unlock();
8339}
8340EXPORT_SYMBOL(unregister_netdev);
8341
8342/**
8343 * dev_change_net_namespace - move device to different nethost namespace
8344 * @dev: device
8345 * @net: network namespace
8346 * @pat: If not NULL name pattern to try if the current device name
8347 * is already taken in the destination network namespace.
8348 *
8349 * This function shuts down a device interface and moves it
8350 * to a new network namespace. On success 0 is returned, on
8351 * a failure a netagive errno code is returned.
8352 *
8353 * Callers must hold the rtnl semaphore.
8354 */
8355
8356int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8357{
8358 int err, new_nsid;
8359
8360 ASSERT_RTNL();
8361
8362 /* Don't allow namespace local devices to be moved. */
8363 err = -EINVAL;
8364 if (dev->features & NETIF_F_NETNS_LOCAL)
8365 goto out;
8366
8367 /* Ensure the device has been registrered */
8368 if (dev->reg_state != NETREG_REGISTERED)
8369 goto out;
8370
8371 /* Get out if there is nothing todo */
8372 err = 0;
8373 if (net_eq(dev_net(dev), net))
8374 goto out;
8375
8376 /* Pick the destination device name, and ensure
8377 * we can use it in the destination network namespace.
8378 */
8379 err = -EEXIST;
8380 if (__dev_get_by_name(net, dev->name)) {
8381 /* We get here if we can't use the current device name */
8382 if (!pat)
8383 goto out;
8384 if (dev_get_valid_name(net, dev, pat) < 0)
8385 goto out;
8386 }
8387
8388 /*
8389 * And now a mini version of register_netdevice unregister_netdevice.
8390 */
8391
8392 /* If device is running close it first. */
8393 dev_close(dev);
8394
8395 /* And unlink it from device chain */
8396 err = -ENODEV;
8397 unlist_netdevice(dev);
8398
8399 synchronize_net();
8400
8401 /* Shutdown queueing discipline. */
8402 dev_shutdown(dev);
8403
8404 /* Notify protocols, that we are about to destroy
8405 * this device. They should clean all the things.
8406 *
8407 * Note that dev->reg_state stays at NETREG_REGISTERED.
8408 * This is wanted because this way 8021q and macvlan know
8409 * the device is just moving and can keep their slaves up.
8410 */
8411 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8412 rcu_barrier();
8413 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8414 if (dev->rtnl_link_ops && dev->rtnl_link_ops->get_link_net)
8415 new_nsid = peernet2id_alloc(dev_net(dev), net);
8416 else
8417 new_nsid = peernet2id(dev_net(dev), net);
8418 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid);
8419
8420 /*
8421 * Flush the unicast and multicast chains
8422 */
8423 dev_uc_flush(dev);
8424 dev_mc_flush(dev);
8425
8426 /* Send a netdev-removed uevent to the old namespace */
8427 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8428 netdev_adjacent_del_links(dev);
8429
8430 /* Actually switch the network namespace */
8431 dev_net_set(dev, net);
8432
8433 /* If there is an ifindex conflict assign a new one */
8434 if (__dev_get_by_index(net, dev->ifindex))
8435 dev->ifindex = dev_new_index(net);
8436
8437 /* Send a netdev-add uevent to the new namespace */
8438 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8439 netdev_adjacent_add_links(dev);
8440
8441 /* Fixup kobjects */
8442 err = device_rename(&dev->dev, dev->name);
8443 WARN_ON(err);
8444
8445 /* Add the device back in the hashes */
8446 list_netdevice(dev);
8447
8448 /* Notify protocols, that a new device appeared. */
8449 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8450
8451 /*
8452 * Prevent userspace races by waiting until the network
8453 * device is fully setup before sending notifications.
8454 */
8455 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8456
8457 synchronize_net();
8458 err = 0;
8459out:
8460 return err;
8461}
8462EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8463
8464static int dev_cpu_dead(unsigned int oldcpu)
8465{
8466 struct sk_buff **list_skb;
8467 struct sk_buff *skb;
8468 unsigned int cpu;
8469 struct softnet_data *sd, *oldsd, *remsd = NULL;
8470
8471 local_irq_disable();
8472 cpu = smp_processor_id();
8473 sd = &per_cpu(softnet_data, cpu);
8474 oldsd = &per_cpu(softnet_data, oldcpu);
8475
8476 /* Find end of our completion_queue. */
8477 list_skb = &sd->completion_queue;
8478 while (*list_skb)
8479 list_skb = &(*list_skb)->next;
8480 /* Append completion queue from offline CPU. */
8481 *list_skb = oldsd->completion_queue;
8482 oldsd->completion_queue = NULL;
8483
8484 /* Append output queue from offline CPU. */
8485 if (oldsd->output_queue) {
8486 *sd->output_queue_tailp = oldsd->output_queue;
8487 sd->output_queue_tailp = oldsd->output_queue_tailp;
8488 oldsd->output_queue = NULL;
8489 oldsd->output_queue_tailp = &oldsd->output_queue;
8490 }
8491 /* Append NAPI poll list from offline CPU, with one exception :
8492 * process_backlog() must be called by cpu owning percpu backlog.
8493 * We properly handle process_queue & input_pkt_queue later.
8494 */
8495 while (!list_empty(&oldsd->poll_list)) {
8496 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8497 struct napi_struct,
8498 poll_list);
8499
8500 list_del_init(&napi->poll_list);
8501 if (napi->poll == process_backlog)
8502 napi->state = 0;
8503 else
8504 ____napi_schedule(sd, napi);
8505 }
8506
8507 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8508 local_irq_enable();
8509
8510#ifdef CONFIG_RPS
8511 remsd = oldsd->rps_ipi_list;
8512 oldsd->rps_ipi_list = NULL;
8513#endif
8514 /* send out pending IPI's on offline CPU */
8515 net_rps_send_ipi(remsd);
8516
8517 /* Process offline CPU's input_pkt_queue */
8518 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8519 netif_rx_ni(skb);
8520 input_queue_head_incr(oldsd);
8521 }
8522 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8523 netif_rx_ni(skb);
8524 input_queue_head_incr(oldsd);
8525 }
8526
8527 return 0;
8528}
8529
8530/**
8531 * netdev_increment_features - increment feature set by one
8532 * @all: current feature set
8533 * @one: new feature set
8534 * @mask: mask feature set
8535 *
8536 * Computes a new feature set after adding a device with feature set
8537 * @one to the master device with current feature set @all. Will not
8538 * enable anything that is off in @mask. Returns the new feature set.
8539 */
8540netdev_features_t netdev_increment_features(netdev_features_t all,
8541 netdev_features_t one, netdev_features_t mask)
8542{
8543 if (mask & NETIF_F_HW_CSUM)
8544 mask |= NETIF_F_CSUM_MASK;
8545 mask |= NETIF_F_VLAN_CHALLENGED;
8546
8547 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8548 all &= one | ~NETIF_F_ALL_FOR_ALL;
8549
8550 /* If one device supports hw checksumming, set for all. */
8551 if (all & NETIF_F_HW_CSUM)
8552 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8553
8554 return all;
8555}
8556EXPORT_SYMBOL(netdev_increment_features);
8557
8558static struct hlist_head * __net_init netdev_create_hash(void)
8559{
8560 int i;
8561 struct hlist_head *hash;
8562
8563 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8564 if (hash != NULL)
8565 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8566 INIT_HLIST_HEAD(&hash[i]);
8567
8568 return hash;
8569}
8570
8571/* Initialize per network namespace state */
8572static int __net_init netdev_init(struct net *net)
8573{
8574 if (net != &init_net)
8575 INIT_LIST_HEAD(&net->dev_base_head);
8576
8577 net->dev_name_head = netdev_create_hash();
8578 if (net->dev_name_head == NULL)
8579 goto err_name;
8580
8581 net->dev_index_head = netdev_create_hash();
8582 if (net->dev_index_head == NULL)
8583 goto err_idx;
8584
8585 return 0;
8586
8587err_idx:
8588 kfree(net->dev_name_head);
8589err_name:
8590 return -ENOMEM;
8591}
8592
8593/**
8594 * netdev_drivername - network driver for the device
8595 * @dev: network device
8596 *
8597 * Determine network driver for device.
8598 */
8599const char *netdev_drivername(const struct net_device *dev)
8600{
8601 const struct device_driver *driver;
8602 const struct device *parent;
8603 const char *empty = "";
8604
8605 parent = dev->dev.parent;
8606 if (!parent)
8607 return empty;
8608
8609 driver = parent->driver;
8610 if (driver && driver->name)
8611 return driver->name;
8612 return empty;
8613}
8614
8615static void __netdev_printk(const char *level, const struct net_device *dev,
8616 struct va_format *vaf)
8617{
8618 if (dev && dev->dev.parent) {
8619 dev_printk_emit(level[1] - '0',
8620 dev->dev.parent,
8621 "%s %s %s%s: %pV",
8622 dev_driver_string(dev->dev.parent),
8623 dev_name(dev->dev.parent),
8624 netdev_name(dev), netdev_reg_state(dev),
8625 vaf);
8626 } else if (dev) {
8627 printk("%s%s%s: %pV",
8628 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8629 } else {
8630 printk("%s(NULL net_device): %pV", level, vaf);
8631 }
8632}
8633
8634void netdev_printk(const char *level, const struct net_device *dev,
8635 const char *format, ...)
8636{
8637 struct va_format vaf;
8638 va_list args;
8639
8640 va_start(args, format);
8641
8642 vaf.fmt = format;
8643 vaf.va = &args;
8644
8645 __netdev_printk(level, dev, &vaf);
8646
8647 va_end(args);
8648}
8649EXPORT_SYMBOL(netdev_printk);
8650
8651#define define_netdev_printk_level(func, level) \
8652void func(const struct net_device *dev, const char *fmt, ...) \
8653{ \
8654 struct va_format vaf; \
8655 va_list args; \
8656 \
8657 va_start(args, fmt); \
8658 \
8659 vaf.fmt = fmt; \
8660 vaf.va = &args; \
8661 \
8662 __netdev_printk(level, dev, &vaf); \
8663 \
8664 va_end(args); \
8665} \
8666EXPORT_SYMBOL(func);
8667
8668define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8669define_netdev_printk_level(netdev_alert, KERN_ALERT);
8670define_netdev_printk_level(netdev_crit, KERN_CRIT);
8671define_netdev_printk_level(netdev_err, KERN_ERR);
8672define_netdev_printk_level(netdev_warn, KERN_WARNING);
8673define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8674define_netdev_printk_level(netdev_info, KERN_INFO);
8675
8676static void __net_exit netdev_exit(struct net *net)
8677{
8678 kfree(net->dev_name_head);
8679 kfree(net->dev_index_head);
8680 if (net != &init_net)
8681 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8682}
8683
8684static struct pernet_operations __net_initdata netdev_net_ops = {
8685 .init = netdev_init,
8686 .exit = netdev_exit,
8687};
8688
8689static void __net_exit default_device_exit(struct net *net)
8690{
8691 struct net_device *dev, *aux;
8692 /*
8693 * Push all migratable network devices back to the
8694 * initial network namespace
8695 */
8696 rtnl_lock();
8697 for_each_netdev_safe(net, dev, aux) {
8698 int err;
8699 char fb_name[IFNAMSIZ];
8700
8701 /* Ignore unmoveable devices (i.e. loopback) */
8702 if (dev->features & NETIF_F_NETNS_LOCAL)
8703 continue;
8704
8705 /* Leave virtual devices for the generic cleanup */
8706 if (dev->rtnl_link_ops)
8707 continue;
8708
8709 /* Push remaining network devices to init_net */
8710 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8711 err = dev_change_net_namespace(dev, &init_net, fb_name);
8712 if (err) {
8713 pr_emerg("%s: failed to move %s to init_net: %d\n",
8714 __func__, dev->name, err);
8715 BUG();
8716 }
8717 }
8718 rtnl_unlock();
8719}
8720
8721static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8722{
8723 /* Return with the rtnl_lock held when there are no network
8724 * devices unregistering in any network namespace in net_list.
8725 */
8726 struct net *net;
8727 bool unregistering;
8728 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8729
8730 add_wait_queue(&netdev_unregistering_wq, &wait);
8731 for (;;) {
8732 unregistering = false;
8733 rtnl_lock();
8734 list_for_each_entry(net, net_list, exit_list) {
8735 if (net->dev_unreg_count > 0) {
8736 unregistering = true;
8737 break;
8738 }
8739 }
8740 if (!unregistering)
8741 break;
8742 __rtnl_unlock();
8743
8744 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8745 }
8746 remove_wait_queue(&netdev_unregistering_wq, &wait);
8747}
8748
8749static void __net_exit default_device_exit_batch(struct list_head *net_list)
8750{
8751 /* At exit all network devices most be removed from a network
8752 * namespace. Do this in the reverse order of registration.
8753 * Do this across as many network namespaces as possible to
8754 * improve batching efficiency.
8755 */
8756 struct net_device *dev;
8757 struct net *net;
8758 LIST_HEAD(dev_kill_list);
8759
8760 /* To prevent network device cleanup code from dereferencing
8761 * loopback devices or network devices that have been freed
8762 * wait here for all pending unregistrations to complete,
8763 * before unregistring the loopback device and allowing the
8764 * network namespace be freed.
8765 *
8766 * The netdev todo list containing all network devices
8767 * unregistrations that happen in default_device_exit_batch
8768 * will run in the rtnl_unlock() at the end of
8769 * default_device_exit_batch.
8770 */
8771 rtnl_lock_unregistering(net_list);
8772 list_for_each_entry(net, net_list, exit_list) {
8773 for_each_netdev_reverse(net, dev) {
8774 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8775 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8776 else
8777 unregister_netdevice_queue(dev, &dev_kill_list);
8778 }
8779 }
8780 unregister_netdevice_many(&dev_kill_list);
8781 rtnl_unlock();
8782}
8783
8784static struct pernet_operations __net_initdata default_device_ops = {
8785 .exit = default_device_exit,
8786 .exit_batch = default_device_exit_batch,
8787};
8788
8789/*
8790 * Initialize the DEV module. At boot time this walks the device list and
8791 * unhooks any devices that fail to initialise (normally hardware not
8792 * present) and leaves us with a valid list of present and active devices.
8793 *
8794 */
8795
8796/*
8797 * This is called single threaded during boot, so no need
8798 * to take the rtnl semaphore.
8799 */
8800static int __init net_dev_init(void)
8801{
8802 int i, rc = -ENOMEM;
8803
8804 BUG_ON(!dev_boot_phase);
8805
8806 if (dev_proc_init())
8807 goto out;
8808
8809 if (netdev_kobject_init())
8810 goto out;
8811
8812 INIT_LIST_HEAD(&ptype_all);
8813 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8814 INIT_LIST_HEAD(&ptype_base[i]);
8815
8816 INIT_LIST_HEAD(&offload_base);
8817
8818 if (register_pernet_subsys(&netdev_net_ops))
8819 goto out;
8820
8821 /*
8822 * Initialise the packet receive queues.
8823 */
8824
8825 for_each_possible_cpu(i) {
8826 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8827 struct softnet_data *sd = &per_cpu(softnet_data, i);
8828
8829 INIT_WORK(flush, flush_backlog);
8830
8831 skb_queue_head_init(&sd->input_pkt_queue);
8832 skb_queue_head_init(&sd->process_queue);
8833 INIT_LIST_HEAD(&sd->poll_list);
8834 sd->output_queue_tailp = &sd->output_queue;
8835#ifdef CONFIG_RPS
8836 sd->csd.func = rps_trigger_softirq;
8837 sd->csd.info = sd;
8838 sd->cpu = i;
8839#endif
8840
8841 sd->backlog.poll = process_backlog;
8842 sd->backlog.weight = weight_p;
8843 }
8844
8845 dev_boot_phase = 0;
8846
8847 /* The loopback device is special if any other network devices
8848 * is present in a network namespace the loopback device must
8849 * be present. Since we now dynamically allocate and free the
8850 * loopback device ensure this invariant is maintained by
8851 * keeping the loopback device as the first device on the
8852 * list of network devices. Ensuring the loopback devices
8853 * is the first device that appears and the last network device
8854 * that disappears.
8855 */
8856 if (register_pernet_device(&loopback_net_ops))
8857 goto out;
8858
8859 if (register_pernet_device(&default_device_ops))
8860 goto out;
8861
8862 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8863 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8864
8865 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8866 NULL, dev_cpu_dead);
8867 WARN_ON(rc < 0);
8868 rc = 0;
8869out:
8870 return rc;
8871}
8872
8873subsys_initcall(net_dev_init);