at v4.15 22 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 4 * 5 * (C) SGI 2006, Christoph Lameter 6 * Cleaned up and restructured to ease the addition of alternative 7 * implementations of SLAB allocators. 8 * (C) Linux Foundation 2008-2013 9 * Unified interface for all slab allocators 10 */ 11 12#ifndef _LINUX_SLAB_H 13#define _LINUX_SLAB_H 14 15#include <linux/gfp.h> 16#include <linux/types.h> 17#include <linux/workqueue.h> 18 19 20/* 21 * Flags to pass to kmem_cache_create(). 22 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set. 23 */ 24/* DEBUG: Perform (expensive) checks on alloc/free */ 25#define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U) 26/* DEBUG: Red zone objs in a cache */ 27#define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U) 28/* DEBUG: Poison objects */ 29#define SLAB_POISON ((slab_flags_t __force)0x00000800U) 30/* Align objs on cache lines */ 31#define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U) 32/* Use GFP_DMA memory */ 33#define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U) 34/* DEBUG: Store the last owner for bug hunting */ 35#define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U) 36/* Panic if kmem_cache_create() fails */ 37#define SLAB_PANIC ((slab_flags_t __force)0x00040000U) 38/* 39 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS! 40 * 41 * This delays freeing the SLAB page by a grace period, it does _NOT_ 42 * delay object freeing. This means that if you do kmem_cache_free() 43 * that memory location is free to be reused at any time. Thus it may 44 * be possible to see another object there in the same RCU grace period. 45 * 46 * This feature only ensures the memory location backing the object 47 * stays valid, the trick to using this is relying on an independent 48 * object validation pass. Something like: 49 * 50 * rcu_read_lock() 51 * again: 52 * obj = lockless_lookup(key); 53 * if (obj) { 54 * if (!try_get_ref(obj)) // might fail for free objects 55 * goto again; 56 * 57 * if (obj->key != key) { // not the object we expected 58 * put_ref(obj); 59 * goto again; 60 * } 61 * } 62 * rcu_read_unlock(); 63 * 64 * This is useful if we need to approach a kernel structure obliquely, 65 * from its address obtained without the usual locking. We can lock 66 * the structure to stabilize it and check it's still at the given address, 67 * only if we can be sure that the memory has not been meanwhile reused 68 * for some other kind of object (which our subsystem's lock might corrupt). 69 * 70 * rcu_read_lock before reading the address, then rcu_read_unlock after 71 * taking the spinlock within the structure expected at that address. 72 * 73 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU. 74 */ 75/* Defer freeing slabs to RCU */ 76#define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U) 77/* Spread some memory over cpuset */ 78#define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U) 79/* Trace allocations and frees */ 80#define SLAB_TRACE ((slab_flags_t __force)0x00200000U) 81 82/* Flag to prevent checks on free */ 83#ifdef CONFIG_DEBUG_OBJECTS 84# define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U) 85#else 86# define SLAB_DEBUG_OBJECTS 0 87#endif 88 89/* Avoid kmemleak tracing */ 90#define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U) 91 92/* Fault injection mark */ 93#ifdef CONFIG_FAILSLAB 94# define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U) 95#else 96# define SLAB_FAILSLAB 0 97#endif 98/* Account to memcg */ 99#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) 100# define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U) 101#else 102# define SLAB_ACCOUNT 0 103#endif 104 105#ifdef CONFIG_KASAN 106#define SLAB_KASAN ((slab_flags_t __force)0x08000000U) 107#else 108#define SLAB_KASAN 0 109#endif 110 111/* The following flags affect the page allocator grouping pages by mobility */ 112/* Objects are reclaimable */ 113#define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U) 114#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 115/* 116 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 117 * 118 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 119 * 120 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 121 * Both make kfree a no-op. 122 */ 123#define ZERO_SIZE_PTR ((void *)16) 124 125#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 126 (unsigned long)ZERO_SIZE_PTR) 127 128#include <linux/kmemleak.h> 129#include <linux/kasan.h> 130 131struct mem_cgroup; 132/* 133 * struct kmem_cache related prototypes 134 */ 135void __init kmem_cache_init(void); 136bool slab_is_available(void); 137 138struct kmem_cache *kmem_cache_create(const char *, size_t, size_t, 139 slab_flags_t, 140 void (*)(void *)); 141void kmem_cache_destroy(struct kmem_cache *); 142int kmem_cache_shrink(struct kmem_cache *); 143 144void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *); 145void memcg_deactivate_kmem_caches(struct mem_cgroup *); 146void memcg_destroy_kmem_caches(struct mem_cgroup *); 147 148/* 149 * Please use this macro to create slab caches. Simply specify the 150 * name of the structure and maybe some flags that are listed above. 151 * 152 * The alignment of the struct determines object alignment. If you 153 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 154 * then the objects will be properly aligned in SMP configurations. 155 */ 156#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 157 sizeof(struct __struct), __alignof__(struct __struct),\ 158 (__flags), NULL) 159 160/* 161 * Common kmalloc functions provided by all allocators 162 */ 163void * __must_check __krealloc(const void *, size_t, gfp_t); 164void * __must_check krealloc(const void *, size_t, gfp_t); 165void kfree(const void *); 166void kzfree(const void *); 167size_t ksize(const void *); 168 169#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR 170const char *__check_heap_object(const void *ptr, unsigned long n, 171 struct page *page); 172#else 173static inline const char *__check_heap_object(const void *ptr, 174 unsigned long n, 175 struct page *page) 176{ 177 return NULL; 178} 179#endif 180 181/* 182 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 183 * alignment larger than the alignment of a 64-bit integer. 184 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. 185 */ 186#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 187#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 188#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 189#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) 190#else 191#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 192#endif 193 194/* 195 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 196 * Intended for arches that get misalignment faults even for 64 bit integer 197 * aligned buffers. 198 */ 199#ifndef ARCH_SLAB_MINALIGN 200#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 201#endif 202 203/* 204 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned 205 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN 206 * aligned pointers. 207 */ 208#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) 209#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) 210#define __assume_page_alignment __assume_aligned(PAGE_SIZE) 211 212/* 213 * Kmalloc array related definitions 214 */ 215 216#ifdef CONFIG_SLAB 217/* 218 * The largest kmalloc size supported by the SLAB allocators is 219 * 32 megabyte (2^25) or the maximum allocatable page order if that is 220 * less than 32 MB. 221 * 222 * WARNING: Its not easy to increase this value since the allocators have 223 * to do various tricks to work around compiler limitations in order to 224 * ensure proper constant folding. 225 */ 226#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ 227 (MAX_ORDER + PAGE_SHIFT - 1) : 25) 228#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH 229#ifndef KMALLOC_SHIFT_LOW 230#define KMALLOC_SHIFT_LOW 5 231#endif 232#endif 233 234#ifdef CONFIG_SLUB 235/* 236 * SLUB directly allocates requests fitting in to an order-1 page 237 * (PAGE_SIZE*2). Larger requests are passed to the page allocator. 238 */ 239#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 240#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) 241#ifndef KMALLOC_SHIFT_LOW 242#define KMALLOC_SHIFT_LOW 3 243#endif 244#endif 245 246#ifdef CONFIG_SLOB 247/* 248 * SLOB passes all requests larger than one page to the page allocator. 249 * No kmalloc array is necessary since objects of different sizes can 250 * be allocated from the same page. 251 */ 252#define KMALLOC_SHIFT_HIGH PAGE_SHIFT 253#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) 254#ifndef KMALLOC_SHIFT_LOW 255#define KMALLOC_SHIFT_LOW 3 256#endif 257#endif 258 259/* Maximum allocatable size */ 260#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 261/* Maximum size for which we actually use a slab cache */ 262#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 263/* Maximum order allocatable via the slab allocagtor */ 264#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 265 266/* 267 * Kmalloc subsystem. 268 */ 269#ifndef KMALLOC_MIN_SIZE 270#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 271#endif 272 273/* 274 * This restriction comes from byte sized index implementation. 275 * Page size is normally 2^12 bytes and, in this case, if we want to use 276 * byte sized index which can represent 2^8 entries, the size of the object 277 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. 278 * If minimum size of kmalloc is less than 16, we use it as minimum object 279 * size and give up to use byte sized index. 280 */ 281#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ 282 (KMALLOC_MIN_SIZE) : 16) 283 284#ifndef CONFIG_SLOB 285extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; 286#ifdef CONFIG_ZONE_DMA 287extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; 288#endif 289 290/* 291 * Figure out which kmalloc slab an allocation of a certain size 292 * belongs to. 293 * 0 = zero alloc 294 * 1 = 65 .. 96 bytes 295 * 2 = 129 .. 192 bytes 296 * n = 2^(n-1)+1 .. 2^n 297 */ 298static __always_inline int kmalloc_index(size_t size) 299{ 300 if (!size) 301 return 0; 302 303 if (size <= KMALLOC_MIN_SIZE) 304 return KMALLOC_SHIFT_LOW; 305 306 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 307 return 1; 308 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 309 return 2; 310 if (size <= 8) return 3; 311 if (size <= 16) return 4; 312 if (size <= 32) return 5; 313 if (size <= 64) return 6; 314 if (size <= 128) return 7; 315 if (size <= 256) return 8; 316 if (size <= 512) return 9; 317 if (size <= 1024) return 10; 318 if (size <= 2 * 1024) return 11; 319 if (size <= 4 * 1024) return 12; 320 if (size <= 8 * 1024) return 13; 321 if (size <= 16 * 1024) return 14; 322 if (size <= 32 * 1024) return 15; 323 if (size <= 64 * 1024) return 16; 324 if (size <= 128 * 1024) return 17; 325 if (size <= 256 * 1024) return 18; 326 if (size <= 512 * 1024) return 19; 327 if (size <= 1024 * 1024) return 20; 328 if (size <= 2 * 1024 * 1024) return 21; 329 if (size <= 4 * 1024 * 1024) return 22; 330 if (size <= 8 * 1024 * 1024) return 23; 331 if (size <= 16 * 1024 * 1024) return 24; 332 if (size <= 32 * 1024 * 1024) return 25; 333 if (size <= 64 * 1024 * 1024) return 26; 334 BUG(); 335 336 /* Will never be reached. Needed because the compiler may complain */ 337 return -1; 338} 339#endif /* !CONFIG_SLOB */ 340 341void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc; 342void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc; 343void kmem_cache_free(struct kmem_cache *, void *); 344 345/* 346 * Bulk allocation and freeing operations. These are accelerated in an 347 * allocator specific way to avoid taking locks repeatedly or building 348 * metadata structures unnecessarily. 349 * 350 * Note that interrupts must be enabled when calling these functions. 351 */ 352void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); 353int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); 354 355/* 356 * Caller must not use kfree_bulk() on memory not originally allocated 357 * by kmalloc(), because the SLOB allocator cannot handle this. 358 */ 359static __always_inline void kfree_bulk(size_t size, void **p) 360{ 361 kmem_cache_free_bulk(NULL, size, p); 362} 363 364#ifdef CONFIG_NUMA 365void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc; 366void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc; 367#else 368static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node) 369{ 370 return __kmalloc(size, flags); 371} 372 373static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) 374{ 375 return kmem_cache_alloc(s, flags); 376} 377#endif 378 379#ifdef CONFIG_TRACING 380extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc; 381 382#ifdef CONFIG_NUMA 383extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 384 gfp_t gfpflags, 385 int node, size_t size) __assume_slab_alignment __malloc; 386#else 387static __always_inline void * 388kmem_cache_alloc_node_trace(struct kmem_cache *s, 389 gfp_t gfpflags, 390 int node, size_t size) 391{ 392 return kmem_cache_alloc_trace(s, gfpflags, size); 393} 394#endif /* CONFIG_NUMA */ 395 396#else /* CONFIG_TRACING */ 397static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s, 398 gfp_t flags, size_t size) 399{ 400 void *ret = kmem_cache_alloc(s, flags); 401 402 kasan_kmalloc(s, ret, size, flags); 403 return ret; 404} 405 406static __always_inline void * 407kmem_cache_alloc_node_trace(struct kmem_cache *s, 408 gfp_t gfpflags, 409 int node, size_t size) 410{ 411 void *ret = kmem_cache_alloc_node(s, gfpflags, node); 412 413 kasan_kmalloc(s, ret, size, gfpflags); 414 return ret; 415} 416#endif /* CONFIG_TRACING */ 417 418extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; 419 420#ifdef CONFIG_TRACING 421extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; 422#else 423static __always_inline void * 424kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 425{ 426 return kmalloc_order(size, flags, order); 427} 428#endif 429 430static __always_inline void *kmalloc_large(size_t size, gfp_t flags) 431{ 432 unsigned int order = get_order(size); 433 return kmalloc_order_trace(size, flags, order); 434} 435 436/** 437 * kmalloc - allocate memory 438 * @size: how many bytes of memory are required. 439 * @flags: the type of memory to allocate. 440 * 441 * kmalloc is the normal method of allocating memory 442 * for objects smaller than page size in the kernel. 443 * 444 * The @flags argument may be one of: 445 * 446 * %GFP_USER - Allocate memory on behalf of user. May sleep. 447 * 448 * %GFP_KERNEL - Allocate normal kernel ram. May sleep. 449 * 450 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools. 451 * For example, use this inside interrupt handlers. 452 * 453 * %GFP_HIGHUSER - Allocate pages from high memory. 454 * 455 * %GFP_NOIO - Do not do any I/O at all while trying to get memory. 456 * 457 * %GFP_NOFS - Do not make any fs calls while trying to get memory. 458 * 459 * %GFP_NOWAIT - Allocation will not sleep. 460 * 461 * %__GFP_THISNODE - Allocate node-local memory only. 462 * 463 * %GFP_DMA - Allocation suitable for DMA. 464 * Should only be used for kmalloc() caches. Otherwise, use a 465 * slab created with SLAB_DMA. 466 * 467 * Also it is possible to set different flags by OR'ing 468 * in one or more of the following additional @flags: 469 * 470 * %__GFP_HIGH - This allocation has high priority and may use emergency pools. 471 * 472 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail 473 * (think twice before using). 474 * 475 * %__GFP_NORETRY - If memory is not immediately available, 476 * then give up at once. 477 * 478 * %__GFP_NOWARN - If allocation fails, don't issue any warnings. 479 * 480 * %__GFP_RETRY_MAYFAIL - Try really hard to succeed the allocation but fail 481 * eventually. 482 * 483 * There are other flags available as well, but these are not intended 484 * for general use, and so are not documented here. For a full list of 485 * potential flags, always refer to linux/gfp.h. 486 */ 487static __always_inline void *kmalloc(size_t size, gfp_t flags) 488{ 489 if (__builtin_constant_p(size)) { 490 if (size > KMALLOC_MAX_CACHE_SIZE) 491 return kmalloc_large(size, flags); 492#ifndef CONFIG_SLOB 493 if (!(flags & GFP_DMA)) { 494 int index = kmalloc_index(size); 495 496 if (!index) 497 return ZERO_SIZE_PTR; 498 499 return kmem_cache_alloc_trace(kmalloc_caches[index], 500 flags, size); 501 } 502#endif 503 } 504 return __kmalloc(size, flags); 505} 506 507/* 508 * Determine size used for the nth kmalloc cache. 509 * return size or 0 if a kmalloc cache for that 510 * size does not exist 511 */ 512static __always_inline int kmalloc_size(int n) 513{ 514#ifndef CONFIG_SLOB 515 if (n > 2) 516 return 1 << n; 517 518 if (n == 1 && KMALLOC_MIN_SIZE <= 32) 519 return 96; 520 521 if (n == 2 && KMALLOC_MIN_SIZE <= 64) 522 return 192; 523#endif 524 return 0; 525} 526 527static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) 528{ 529#ifndef CONFIG_SLOB 530 if (__builtin_constant_p(size) && 531 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) { 532 int i = kmalloc_index(size); 533 534 if (!i) 535 return ZERO_SIZE_PTR; 536 537 return kmem_cache_alloc_node_trace(kmalloc_caches[i], 538 flags, node, size); 539 } 540#endif 541 return __kmalloc_node(size, flags, node); 542} 543 544struct memcg_cache_array { 545 struct rcu_head rcu; 546 struct kmem_cache *entries[0]; 547}; 548 549/* 550 * This is the main placeholder for memcg-related information in kmem caches. 551 * Both the root cache and the child caches will have it. For the root cache, 552 * this will hold a dynamically allocated array large enough to hold 553 * information about the currently limited memcgs in the system. To allow the 554 * array to be accessed without taking any locks, on relocation we free the old 555 * version only after a grace period. 556 * 557 * Root and child caches hold different metadata. 558 * 559 * @root_cache: Common to root and child caches. NULL for root, pointer to 560 * the root cache for children. 561 * 562 * The following fields are specific to root caches. 563 * 564 * @memcg_caches: kmemcg ID indexed table of child caches. This table is 565 * used to index child cachces during allocation and cleared 566 * early during shutdown. 567 * 568 * @root_caches_node: List node for slab_root_caches list. 569 * 570 * @children: List of all child caches. While the child caches are also 571 * reachable through @memcg_caches, a child cache remains on 572 * this list until it is actually destroyed. 573 * 574 * The following fields are specific to child caches. 575 * 576 * @memcg: Pointer to the memcg this cache belongs to. 577 * 578 * @children_node: List node for @root_cache->children list. 579 * 580 * @kmem_caches_node: List node for @memcg->kmem_caches list. 581 */ 582struct memcg_cache_params { 583 struct kmem_cache *root_cache; 584 union { 585 struct { 586 struct memcg_cache_array __rcu *memcg_caches; 587 struct list_head __root_caches_node; 588 struct list_head children; 589 }; 590 struct { 591 struct mem_cgroup *memcg; 592 struct list_head children_node; 593 struct list_head kmem_caches_node; 594 595 void (*deact_fn)(struct kmem_cache *); 596 union { 597 struct rcu_head deact_rcu_head; 598 struct work_struct deact_work; 599 }; 600 }; 601 }; 602}; 603 604int memcg_update_all_caches(int num_memcgs); 605 606/** 607 * kmalloc_array - allocate memory for an array. 608 * @n: number of elements. 609 * @size: element size. 610 * @flags: the type of memory to allocate (see kmalloc). 611 */ 612static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags) 613{ 614 if (size != 0 && n > SIZE_MAX / size) 615 return NULL; 616 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 617 return kmalloc(n * size, flags); 618 return __kmalloc(n * size, flags); 619} 620 621/** 622 * kcalloc - allocate memory for an array. The memory is set to zero. 623 * @n: number of elements. 624 * @size: element size. 625 * @flags: the type of memory to allocate (see kmalloc). 626 */ 627static inline void *kcalloc(size_t n, size_t size, gfp_t flags) 628{ 629 return kmalloc_array(n, size, flags | __GFP_ZERO); 630} 631 632/* 633 * kmalloc_track_caller is a special version of kmalloc that records the 634 * calling function of the routine calling it for slab leak tracking instead 635 * of just the calling function (confusing, eh?). 636 * It's useful when the call to kmalloc comes from a widely-used standard 637 * allocator where we care about the real place the memory allocation 638 * request comes from. 639 */ 640extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); 641#define kmalloc_track_caller(size, flags) \ 642 __kmalloc_track_caller(size, flags, _RET_IP_) 643 644static inline void *kmalloc_array_node(size_t n, size_t size, gfp_t flags, 645 int node) 646{ 647 if (size != 0 && n > SIZE_MAX / size) 648 return NULL; 649 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 650 return kmalloc_node(n * size, flags, node); 651 return __kmalloc_node(n * size, flags, node); 652} 653 654static inline void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node) 655{ 656 return kmalloc_array_node(n, size, flags | __GFP_ZERO, node); 657} 658 659 660#ifdef CONFIG_NUMA 661extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); 662#define kmalloc_node_track_caller(size, flags, node) \ 663 __kmalloc_node_track_caller(size, flags, node, \ 664 _RET_IP_) 665 666#else /* CONFIG_NUMA */ 667 668#define kmalloc_node_track_caller(size, flags, node) \ 669 kmalloc_track_caller(size, flags) 670 671#endif /* CONFIG_NUMA */ 672 673/* 674 * Shortcuts 675 */ 676static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 677{ 678 return kmem_cache_alloc(k, flags | __GFP_ZERO); 679} 680 681/** 682 * kzalloc - allocate memory. The memory is set to zero. 683 * @size: how many bytes of memory are required. 684 * @flags: the type of memory to allocate (see kmalloc). 685 */ 686static inline void *kzalloc(size_t size, gfp_t flags) 687{ 688 return kmalloc(size, flags | __GFP_ZERO); 689} 690 691/** 692 * kzalloc_node - allocate zeroed memory from a particular memory node. 693 * @size: how many bytes of memory are required. 694 * @flags: the type of memory to allocate (see kmalloc). 695 * @node: memory node from which to allocate 696 */ 697static inline void *kzalloc_node(size_t size, gfp_t flags, int node) 698{ 699 return kmalloc_node(size, flags | __GFP_ZERO, node); 700} 701 702unsigned int kmem_cache_size(struct kmem_cache *s); 703void __init kmem_cache_init_late(void); 704 705#if defined(CONFIG_SMP) && defined(CONFIG_SLAB) 706int slab_prepare_cpu(unsigned int cpu); 707int slab_dead_cpu(unsigned int cpu); 708#else 709#define slab_prepare_cpu NULL 710#define slab_dead_cpu NULL 711#endif 712 713#endif /* _LINUX_SLAB_H */