at v4.15 41 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MMZONE_H 3#define _LINUX_MMZONE_H 4 5#ifndef __ASSEMBLY__ 6#ifndef __GENERATING_BOUNDS_H 7 8#include <linux/spinlock.h> 9#include <linux/list.h> 10#include <linux/wait.h> 11#include <linux/bitops.h> 12#include <linux/cache.h> 13#include <linux/threads.h> 14#include <linux/numa.h> 15#include <linux/init.h> 16#include <linux/seqlock.h> 17#include <linux/nodemask.h> 18#include <linux/pageblock-flags.h> 19#include <linux/page-flags-layout.h> 20#include <linux/atomic.h> 21#include <asm/page.h> 22 23/* Free memory management - zoned buddy allocator. */ 24#ifndef CONFIG_FORCE_MAX_ZONEORDER 25#define MAX_ORDER 11 26#else 27#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 28#endif 29#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 30 31/* 32 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 33 * costly to service. That is between allocation orders which should 34 * coalesce naturally under reasonable reclaim pressure and those which 35 * will not. 36 */ 37#define PAGE_ALLOC_COSTLY_ORDER 3 38 39enum migratetype { 40 MIGRATE_UNMOVABLE, 41 MIGRATE_MOVABLE, 42 MIGRATE_RECLAIMABLE, 43 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 44 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 45#ifdef CONFIG_CMA 46 /* 47 * MIGRATE_CMA migration type is designed to mimic the way 48 * ZONE_MOVABLE works. Only movable pages can be allocated 49 * from MIGRATE_CMA pageblocks and page allocator never 50 * implicitly change migration type of MIGRATE_CMA pageblock. 51 * 52 * The way to use it is to change migratetype of a range of 53 * pageblocks to MIGRATE_CMA which can be done by 54 * __free_pageblock_cma() function. What is important though 55 * is that a range of pageblocks must be aligned to 56 * MAX_ORDER_NR_PAGES should biggest page be bigger then 57 * a single pageblock. 58 */ 59 MIGRATE_CMA, 60#endif 61#ifdef CONFIG_MEMORY_ISOLATION 62 MIGRATE_ISOLATE, /* can't allocate from here */ 63#endif 64 MIGRATE_TYPES 65}; 66 67/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 68extern char * const migratetype_names[MIGRATE_TYPES]; 69 70#ifdef CONFIG_CMA 71# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 72# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 73#else 74# define is_migrate_cma(migratetype) false 75# define is_migrate_cma_page(_page) false 76#endif 77 78static inline bool is_migrate_movable(int mt) 79{ 80 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 81} 82 83#define for_each_migratetype_order(order, type) \ 84 for (order = 0; order < MAX_ORDER; order++) \ 85 for (type = 0; type < MIGRATE_TYPES; type++) 86 87extern int page_group_by_mobility_disabled; 88 89#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1) 90#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1) 91 92#define get_pageblock_migratetype(page) \ 93 get_pfnblock_flags_mask(page, page_to_pfn(page), \ 94 PB_migrate_end, MIGRATETYPE_MASK) 95 96struct free_area { 97 struct list_head free_list[MIGRATE_TYPES]; 98 unsigned long nr_free; 99}; 100 101struct pglist_data; 102 103/* 104 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel. 105 * So add a wild amount of padding here to ensure that they fall into separate 106 * cachelines. There are very few zone structures in the machine, so space 107 * consumption is not a concern here. 108 */ 109#if defined(CONFIG_SMP) 110struct zone_padding { 111 char x[0]; 112} ____cacheline_internodealigned_in_smp; 113#define ZONE_PADDING(name) struct zone_padding name; 114#else 115#define ZONE_PADDING(name) 116#endif 117 118#ifdef CONFIG_NUMA 119enum numa_stat_item { 120 NUMA_HIT, /* allocated in intended node */ 121 NUMA_MISS, /* allocated in non intended node */ 122 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 123 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 124 NUMA_LOCAL, /* allocation from local node */ 125 NUMA_OTHER, /* allocation from other node */ 126 NR_VM_NUMA_STAT_ITEMS 127}; 128#else 129#define NR_VM_NUMA_STAT_ITEMS 0 130#endif 131 132enum zone_stat_item { 133 /* First 128 byte cacheline (assuming 64 bit words) */ 134 NR_FREE_PAGES, 135 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 136 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 137 NR_ZONE_ACTIVE_ANON, 138 NR_ZONE_INACTIVE_FILE, 139 NR_ZONE_ACTIVE_FILE, 140 NR_ZONE_UNEVICTABLE, 141 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 142 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 143 NR_PAGETABLE, /* used for pagetables */ 144 NR_KERNEL_STACK_KB, /* measured in KiB */ 145 /* Second 128 byte cacheline */ 146 NR_BOUNCE, 147#if IS_ENABLED(CONFIG_ZSMALLOC) 148 NR_ZSPAGES, /* allocated in zsmalloc */ 149#endif 150 NR_FREE_CMA_PAGES, 151 NR_VM_ZONE_STAT_ITEMS }; 152 153enum node_stat_item { 154 NR_LRU_BASE, 155 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 156 NR_ACTIVE_ANON, /* " " " " " */ 157 NR_INACTIVE_FILE, /* " " " " " */ 158 NR_ACTIVE_FILE, /* " " " " " */ 159 NR_UNEVICTABLE, /* " " " " " */ 160 NR_SLAB_RECLAIMABLE, 161 NR_SLAB_UNRECLAIMABLE, 162 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 163 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 164 WORKINGSET_REFAULT, 165 WORKINGSET_ACTIVATE, 166 WORKINGSET_NODERECLAIM, 167 NR_ANON_MAPPED, /* Mapped anonymous pages */ 168 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 169 only modified from process context */ 170 NR_FILE_PAGES, 171 NR_FILE_DIRTY, 172 NR_WRITEBACK, 173 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 174 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 175 NR_SHMEM_THPS, 176 NR_SHMEM_PMDMAPPED, 177 NR_ANON_THPS, 178 NR_UNSTABLE_NFS, /* NFS unstable pages */ 179 NR_VMSCAN_WRITE, 180 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 181 NR_DIRTIED, /* page dirtyings since bootup */ 182 NR_WRITTEN, /* page writings since bootup */ 183 NR_VM_NODE_STAT_ITEMS 184}; 185 186/* 187 * We do arithmetic on the LRU lists in various places in the code, 188 * so it is important to keep the active lists LRU_ACTIVE higher in 189 * the array than the corresponding inactive lists, and to keep 190 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 191 * 192 * This has to be kept in sync with the statistics in zone_stat_item 193 * above and the descriptions in vmstat_text in mm/vmstat.c 194 */ 195#define LRU_BASE 0 196#define LRU_ACTIVE 1 197#define LRU_FILE 2 198 199enum lru_list { 200 LRU_INACTIVE_ANON = LRU_BASE, 201 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 202 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 203 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 204 LRU_UNEVICTABLE, 205 NR_LRU_LISTS 206}; 207 208#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 209 210#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 211 212static inline int is_file_lru(enum lru_list lru) 213{ 214 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 215} 216 217static inline int is_active_lru(enum lru_list lru) 218{ 219 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 220} 221 222struct zone_reclaim_stat { 223 /* 224 * The pageout code in vmscan.c keeps track of how many of the 225 * mem/swap backed and file backed pages are referenced. 226 * The higher the rotated/scanned ratio, the more valuable 227 * that cache is. 228 * 229 * The anon LRU stats live in [0], file LRU stats in [1] 230 */ 231 unsigned long recent_rotated[2]; 232 unsigned long recent_scanned[2]; 233}; 234 235struct lruvec { 236 struct list_head lists[NR_LRU_LISTS]; 237 struct zone_reclaim_stat reclaim_stat; 238 /* Evictions & activations on the inactive file list */ 239 atomic_long_t inactive_age; 240 /* Refaults at the time of last reclaim cycle */ 241 unsigned long refaults; 242#ifdef CONFIG_MEMCG 243 struct pglist_data *pgdat; 244#endif 245}; 246 247/* Mask used at gathering information at once (see memcontrol.c) */ 248#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 249#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 250#define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 251 252/* Isolate unmapped file */ 253#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 254/* Isolate for asynchronous migration */ 255#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 256/* Isolate unevictable pages */ 257#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 258 259/* LRU Isolation modes. */ 260typedef unsigned __bitwise isolate_mode_t; 261 262enum zone_watermarks { 263 WMARK_MIN, 264 WMARK_LOW, 265 WMARK_HIGH, 266 NR_WMARK 267}; 268 269#define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 270#define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 271#define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 272 273struct per_cpu_pages { 274 int count; /* number of pages in the list */ 275 int high; /* high watermark, emptying needed */ 276 int batch; /* chunk size for buddy add/remove */ 277 278 /* Lists of pages, one per migrate type stored on the pcp-lists */ 279 struct list_head lists[MIGRATE_PCPTYPES]; 280}; 281 282struct per_cpu_pageset { 283 struct per_cpu_pages pcp; 284#ifdef CONFIG_NUMA 285 s8 expire; 286 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS]; 287#endif 288#ifdef CONFIG_SMP 289 s8 stat_threshold; 290 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 291#endif 292}; 293 294struct per_cpu_nodestat { 295 s8 stat_threshold; 296 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 297}; 298 299#endif /* !__GENERATING_BOUNDS.H */ 300 301enum zone_type { 302#ifdef CONFIG_ZONE_DMA 303 /* 304 * ZONE_DMA is used when there are devices that are not able 305 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 306 * carve out the portion of memory that is needed for these devices. 307 * The range is arch specific. 308 * 309 * Some examples 310 * 311 * Architecture Limit 312 * --------------------------- 313 * parisc, ia64, sparc <4G 314 * s390 <2G 315 * arm Various 316 * alpha Unlimited or 0-16MB. 317 * 318 * i386, x86_64 and multiple other arches 319 * <16M. 320 */ 321 ZONE_DMA, 322#endif 323#ifdef CONFIG_ZONE_DMA32 324 /* 325 * x86_64 needs two ZONE_DMAs because it supports devices that are 326 * only able to do DMA to the lower 16M but also 32 bit devices that 327 * can only do DMA areas below 4G. 328 */ 329 ZONE_DMA32, 330#endif 331 /* 332 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 333 * performed on pages in ZONE_NORMAL if the DMA devices support 334 * transfers to all addressable memory. 335 */ 336 ZONE_NORMAL, 337#ifdef CONFIG_HIGHMEM 338 /* 339 * A memory area that is only addressable by the kernel through 340 * mapping portions into its own address space. This is for example 341 * used by i386 to allow the kernel to address the memory beyond 342 * 900MB. The kernel will set up special mappings (page 343 * table entries on i386) for each page that the kernel needs to 344 * access. 345 */ 346 ZONE_HIGHMEM, 347#endif 348 ZONE_MOVABLE, 349#ifdef CONFIG_ZONE_DEVICE 350 ZONE_DEVICE, 351#endif 352 __MAX_NR_ZONES 353 354}; 355 356#ifndef __GENERATING_BOUNDS_H 357 358struct zone { 359 /* Read-mostly fields */ 360 361 /* zone watermarks, access with *_wmark_pages(zone) macros */ 362 unsigned long watermark[NR_WMARK]; 363 364 unsigned long nr_reserved_highatomic; 365 366 /* 367 * We don't know if the memory that we're going to allocate will be 368 * freeable or/and it will be released eventually, so to avoid totally 369 * wasting several GB of ram we must reserve some of the lower zone 370 * memory (otherwise we risk to run OOM on the lower zones despite 371 * there being tons of freeable ram on the higher zones). This array is 372 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 373 * changes. 374 */ 375 long lowmem_reserve[MAX_NR_ZONES]; 376 377#ifdef CONFIG_NUMA 378 int node; 379#endif 380 struct pglist_data *zone_pgdat; 381 struct per_cpu_pageset __percpu *pageset; 382 383#ifndef CONFIG_SPARSEMEM 384 /* 385 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 386 * In SPARSEMEM, this map is stored in struct mem_section 387 */ 388 unsigned long *pageblock_flags; 389#endif /* CONFIG_SPARSEMEM */ 390 391 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 392 unsigned long zone_start_pfn; 393 394 /* 395 * spanned_pages is the total pages spanned by the zone, including 396 * holes, which is calculated as: 397 * spanned_pages = zone_end_pfn - zone_start_pfn; 398 * 399 * present_pages is physical pages existing within the zone, which 400 * is calculated as: 401 * present_pages = spanned_pages - absent_pages(pages in holes); 402 * 403 * managed_pages is present pages managed by the buddy system, which 404 * is calculated as (reserved_pages includes pages allocated by the 405 * bootmem allocator): 406 * managed_pages = present_pages - reserved_pages; 407 * 408 * So present_pages may be used by memory hotplug or memory power 409 * management logic to figure out unmanaged pages by checking 410 * (present_pages - managed_pages). And managed_pages should be used 411 * by page allocator and vm scanner to calculate all kinds of watermarks 412 * and thresholds. 413 * 414 * Locking rules: 415 * 416 * zone_start_pfn and spanned_pages are protected by span_seqlock. 417 * It is a seqlock because it has to be read outside of zone->lock, 418 * and it is done in the main allocator path. But, it is written 419 * quite infrequently. 420 * 421 * The span_seq lock is declared along with zone->lock because it is 422 * frequently read in proximity to zone->lock. It's good to 423 * give them a chance of being in the same cacheline. 424 * 425 * Write access to present_pages at runtime should be protected by 426 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 427 * present_pages should get_online_mems() to get a stable value. 428 * 429 * Read access to managed_pages should be safe because it's unsigned 430 * long. Write access to zone->managed_pages and totalram_pages are 431 * protected by managed_page_count_lock at runtime. Idealy only 432 * adjust_managed_page_count() should be used instead of directly 433 * touching zone->managed_pages and totalram_pages. 434 */ 435 unsigned long managed_pages; 436 unsigned long spanned_pages; 437 unsigned long present_pages; 438 439 const char *name; 440 441#ifdef CONFIG_MEMORY_ISOLATION 442 /* 443 * Number of isolated pageblock. It is used to solve incorrect 444 * freepage counting problem due to racy retrieving migratetype 445 * of pageblock. Protected by zone->lock. 446 */ 447 unsigned long nr_isolate_pageblock; 448#endif 449 450#ifdef CONFIG_MEMORY_HOTPLUG 451 /* see spanned/present_pages for more description */ 452 seqlock_t span_seqlock; 453#endif 454 455 int initialized; 456 457 /* Write-intensive fields used from the page allocator */ 458 ZONE_PADDING(_pad1_) 459 460 /* free areas of different sizes */ 461 struct free_area free_area[MAX_ORDER]; 462 463 /* zone flags, see below */ 464 unsigned long flags; 465 466 /* Primarily protects free_area */ 467 spinlock_t lock; 468 469 /* Write-intensive fields used by compaction and vmstats. */ 470 ZONE_PADDING(_pad2_) 471 472 /* 473 * When free pages are below this point, additional steps are taken 474 * when reading the number of free pages to avoid per-cpu counter 475 * drift allowing watermarks to be breached 476 */ 477 unsigned long percpu_drift_mark; 478 479#if defined CONFIG_COMPACTION || defined CONFIG_CMA 480 /* pfn where compaction free scanner should start */ 481 unsigned long compact_cached_free_pfn; 482 /* pfn where async and sync compaction migration scanner should start */ 483 unsigned long compact_cached_migrate_pfn[2]; 484#endif 485 486#ifdef CONFIG_COMPACTION 487 /* 488 * On compaction failure, 1<<compact_defer_shift compactions 489 * are skipped before trying again. The number attempted since 490 * last failure is tracked with compact_considered. 491 */ 492 unsigned int compact_considered; 493 unsigned int compact_defer_shift; 494 int compact_order_failed; 495#endif 496 497#if defined CONFIG_COMPACTION || defined CONFIG_CMA 498 /* Set to true when the PG_migrate_skip bits should be cleared */ 499 bool compact_blockskip_flush; 500#endif 501 502 bool contiguous; 503 504 ZONE_PADDING(_pad3_) 505 /* Zone statistics */ 506 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 507 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS]; 508} ____cacheline_internodealigned_in_smp; 509 510enum pgdat_flags { 511 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by 512 * a congested BDI 513 */ 514 PGDAT_DIRTY, /* reclaim scanning has recently found 515 * many dirty file pages at the tail 516 * of the LRU. 517 */ 518 PGDAT_WRITEBACK, /* reclaim scanning has recently found 519 * many pages under writeback 520 */ 521 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 522}; 523 524static inline unsigned long zone_end_pfn(const struct zone *zone) 525{ 526 return zone->zone_start_pfn + zone->spanned_pages; 527} 528 529static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 530{ 531 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 532} 533 534static inline bool zone_is_initialized(struct zone *zone) 535{ 536 return zone->initialized; 537} 538 539static inline bool zone_is_empty(struct zone *zone) 540{ 541 return zone->spanned_pages == 0; 542} 543 544/* 545 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 546 * intersection with the given zone 547 */ 548static inline bool zone_intersects(struct zone *zone, 549 unsigned long start_pfn, unsigned long nr_pages) 550{ 551 if (zone_is_empty(zone)) 552 return false; 553 if (start_pfn >= zone_end_pfn(zone) || 554 start_pfn + nr_pages <= zone->zone_start_pfn) 555 return false; 556 557 return true; 558} 559 560/* 561 * The "priority" of VM scanning is how much of the queues we will scan in one 562 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 563 * queues ("queue_length >> 12") during an aging round. 564 */ 565#define DEF_PRIORITY 12 566 567/* Maximum number of zones on a zonelist */ 568#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 569 570enum { 571 ZONELIST_FALLBACK, /* zonelist with fallback */ 572#ifdef CONFIG_NUMA 573 /* 574 * The NUMA zonelists are doubled because we need zonelists that 575 * restrict the allocations to a single node for __GFP_THISNODE. 576 */ 577 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 578#endif 579 MAX_ZONELISTS 580}; 581 582/* 583 * This struct contains information about a zone in a zonelist. It is stored 584 * here to avoid dereferences into large structures and lookups of tables 585 */ 586struct zoneref { 587 struct zone *zone; /* Pointer to actual zone */ 588 int zone_idx; /* zone_idx(zoneref->zone) */ 589}; 590 591/* 592 * One allocation request operates on a zonelist. A zonelist 593 * is a list of zones, the first one is the 'goal' of the 594 * allocation, the other zones are fallback zones, in decreasing 595 * priority. 596 * 597 * To speed the reading of the zonelist, the zonerefs contain the zone index 598 * of the entry being read. Helper functions to access information given 599 * a struct zoneref are 600 * 601 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 602 * zonelist_zone_idx() - Return the index of the zone for an entry 603 * zonelist_node_idx() - Return the index of the node for an entry 604 */ 605struct zonelist { 606 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 607}; 608 609#ifndef CONFIG_DISCONTIGMEM 610/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 611extern struct page *mem_map; 612#endif 613 614/* 615 * On NUMA machines, each NUMA node would have a pg_data_t to describe 616 * it's memory layout. On UMA machines there is a single pglist_data which 617 * describes the whole memory. 618 * 619 * Memory statistics and page replacement data structures are maintained on a 620 * per-zone basis. 621 */ 622struct bootmem_data; 623typedef struct pglist_data { 624 struct zone node_zones[MAX_NR_ZONES]; 625 struct zonelist node_zonelists[MAX_ZONELISTS]; 626 int nr_zones; 627#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 628 struct page *node_mem_map; 629#ifdef CONFIG_PAGE_EXTENSION 630 struct page_ext *node_page_ext; 631#endif 632#endif 633#ifndef CONFIG_NO_BOOTMEM 634 struct bootmem_data *bdata; 635#endif 636#ifdef CONFIG_MEMORY_HOTPLUG 637 /* 638 * Must be held any time you expect node_start_pfn, node_present_pages 639 * or node_spanned_pages stay constant. Holding this will also 640 * guarantee that any pfn_valid() stays that way. 641 * 642 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 643 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG. 644 * 645 * Nests above zone->lock and zone->span_seqlock 646 */ 647 spinlock_t node_size_lock; 648#endif 649 unsigned long node_start_pfn; 650 unsigned long node_present_pages; /* total number of physical pages */ 651 unsigned long node_spanned_pages; /* total size of physical page 652 range, including holes */ 653 int node_id; 654 wait_queue_head_t kswapd_wait; 655 wait_queue_head_t pfmemalloc_wait; 656 struct task_struct *kswapd; /* Protected by 657 mem_hotplug_begin/end() */ 658 int kswapd_order; 659 enum zone_type kswapd_classzone_idx; 660 661 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 662 663#ifdef CONFIG_COMPACTION 664 int kcompactd_max_order; 665 enum zone_type kcompactd_classzone_idx; 666 wait_queue_head_t kcompactd_wait; 667 struct task_struct *kcompactd; 668#endif 669#ifdef CONFIG_NUMA_BALANCING 670 /* Lock serializing the migrate rate limiting window */ 671 spinlock_t numabalancing_migrate_lock; 672 673 /* Rate limiting time interval */ 674 unsigned long numabalancing_migrate_next_window; 675 676 /* Number of pages migrated during the rate limiting time interval */ 677 unsigned long numabalancing_migrate_nr_pages; 678#endif 679 /* 680 * This is a per-node reserve of pages that are not available 681 * to userspace allocations. 682 */ 683 unsigned long totalreserve_pages; 684 685#ifdef CONFIG_NUMA 686 /* 687 * zone reclaim becomes active if more unmapped pages exist. 688 */ 689 unsigned long min_unmapped_pages; 690 unsigned long min_slab_pages; 691#endif /* CONFIG_NUMA */ 692 693 /* Write-intensive fields used by page reclaim */ 694 ZONE_PADDING(_pad1_) 695 spinlock_t lru_lock; 696 697#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 698 /* 699 * If memory initialisation on large machines is deferred then this 700 * is the first PFN that needs to be initialised. 701 */ 702 unsigned long first_deferred_pfn; 703 /* Number of non-deferred pages */ 704 unsigned long static_init_pgcnt; 705#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 706 707#ifdef CONFIG_TRANSPARENT_HUGEPAGE 708 spinlock_t split_queue_lock; 709 struct list_head split_queue; 710 unsigned long split_queue_len; 711#endif 712 713 /* Fields commonly accessed by the page reclaim scanner */ 714 struct lruvec lruvec; 715 716 unsigned long flags; 717 718 ZONE_PADDING(_pad2_) 719 720 /* Per-node vmstats */ 721 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 722 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 723} pg_data_t; 724 725#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 726#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 727#ifdef CONFIG_FLAT_NODE_MEM_MAP 728#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 729#else 730#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 731#endif 732#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 733 734#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 735#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 736static inline spinlock_t *zone_lru_lock(struct zone *zone) 737{ 738 return &zone->zone_pgdat->lru_lock; 739} 740 741static inline struct lruvec *node_lruvec(struct pglist_data *pgdat) 742{ 743 return &pgdat->lruvec; 744} 745 746static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 747{ 748 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 749} 750 751static inline bool pgdat_is_empty(pg_data_t *pgdat) 752{ 753 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 754} 755 756static inline int zone_id(const struct zone *zone) 757{ 758 struct pglist_data *pgdat = zone->zone_pgdat; 759 760 return zone - pgdat->node_zones; 761} 762 763#ifdef CONFIG_ZONE_DEVICE 764static inline bool is_dev_zone(const struct zone *zone) 765{ 766 return zone_id(zone) == ZONE_DEVICE; 767} 768#else 769static inline bool is_dev_zone(const struct zone *zone) 770{ 771 return false; 772} 773#endif 774 775#include <linux/memory_hotplug.h> 776 777void build_all_zonelists(pg_data_t *pgdat); 778void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 779bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 780 int classzone_idx, unsigned int alloc_flags, 781 long free_pages); 782bool zone_watermark_ok(struct zone *z, unsigned int order, 783 unsigned long mark, int classzone_idx, 784 unsigned int alloc_flags); 785bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 786 unsigned long mark, int classzone_idx); 787enum memmap_context { 788 MEMMAP_EARLY, 789 MEMMAP_HOTPLUG, 790}; 791extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 792 unsigned long size); 793 794extern void lruvec_init(struct lruvec *lruvec); 795 796static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 797{ 798#ifdef CONFIG_MEMCG 799 return lruvec->pgdat; 800#else 801 return container_of(lruvec, struct pglist_data, lruvec); 802#endif 803} 804 805extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx); 806 807#ifdef CONFIG_HAVE_MEMORY_PRESENT 808void memory_present(int nid, unsigned long start, unsigned long end); 809#else 810static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 811#endif 812 813#ifdef CONFIG_HAVE_MEMORYLESS_NODES 814int local_memory_node(int node_id); 815#else 816static inline int local_memory_node(int node_id) { return node_id; }; 817#endif 818 819#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 820unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 821#endif 822 823/* 824 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 825 */ 826#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 827 828/* 829 * Returns true if a zone has pages managed by the buddy allocator. 830 * All the reclaim decisions have to use this function rather than 831 * populated_zone(). If the whole zone is reserved then we can easily 832 * end up with populated_zone() && !managed_zone(). 833 */ 834static inline bool managed_zone(struct zone *zone) 835{ 836 return zone->managed_pages; 837} 838 839/* Returns true if a zone has memory */ 840static inline bool populated_zone(struct zone *zone) 841{ 842 return zone->present_pages; 843} 844 845extern int movable_zone; 846 847#ifdef CONFIG_HIGHMEM 848static inline int zone_movable_is_highmem(void) 849{ 850#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 851 return movable_zone == ZONE_HIGHMEM; 852#else 853 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; 854#endif 855} 856#endif 857 858static inline int is_highmem_idx(enum zone_type idx) 859{ 860#ifdef CONFIG_HIGHMEM 861 return (idx == ZONE_HIGHMEM || 862 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 863#else 864 return 0; 865#endif 866} 867 868/** 869 * is_highmem - helper function to quickly check if a struct zone is a 870 * highmem zone or not. This is an attempt to keep references 871 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 872 * @zone - pointer to struct zone variable 873 */ 874static inline int is_highmem(struct zone *zone) 875{ 876#ifdef CONFIG_HIGHMEM 877 return is_highmem_idx(zone_idx(zone)); 878#else 879 return 0; 880#endif 881} 882 883/* These two functions are used to setup the per zone pages min values */ 884struct ctl_table; 885int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 886 void __user *, size_t *, loff_t *); 887int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, 888 void __user *, size_t *, loff_t *); 889extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 890int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 891 void __user *, size_t *, loff_t *); 892int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 893 void __user *, size_t *, loff_t *); 894int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 895 void __user *, size_t *, loff_t *); 896int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 897 void __user *, size_t *, loff_t *); 898 899extern int numa_zonelist_order_handler(struct ctl_table *, int, 900 void __user *, size_t *, loff_t *); 901extern char numa_zonelist_order[]; 902#define NUMA_ZONELIST_ORDER_LEN 16 903 904#ifndef CONFIG_NEED_MULTIPLE_NODES 905 906extern struct pglist_data contig_page_data; 907#define NODE_DATA(nid) (&contig_page_data) 908#define NODE_MEM_MAP(nid) mem_map 909 910#else /* CONFIG_NEED_MULTIPLE_NODES */ 911 912#include <asm/mmzone.h> 913 914#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 915 916extern struct pglist_data *first_online_pgdat(void); 917extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 918extern struct zone *next_zone(struct zone *zone); 919 920/** 921 * for_each_online_pgdat - helper macro to iterate over all online nodes 922 * @pgdat - pointer to a pg_data_t variable 923 */ 924#define for_each_online_pgdat(pgdat) \ 925 for (pgdat = first_online_pgdat(); \ 926 pgdat; \ 927 pgdat = next_online_pgdat(pgdat)) 928/** 929 * for_each_zone - helper macro to iterate over all memory zones 930 * @zone - pointer to struct zone variable 931 * 932 * The user only needs to declare the zone variable, for_each_zone 933 * fills it in. 934 */ 935#define for_each_zone(zone) \ 936 for (zone = (first_online_pgdat())->node_zones; \ 937 zone; \ 938 zone = next_zone(zone)) 939 940#define for_each_populated_zone(zone) \ 941 for (zone = (first_online_pgdat())->node_zones; \ 942 zone; \ 943 zone = next_zone(zone)) \ 944 if (!populated_zone(zone)) \ 945 ; /* do nothing */ \ 946 else 947 948static inline struct zone *zonelist_zone(struct zoneref *zoneref) 949{ 950 return zoneref->zone; 951} 952 953static inline int zonelist_zone_idx(struct zoneref *zoneref) 954{ 955 return zoneref->zone_idx; 956} 957 958static inline int zonelist_node_idx(struct zoneref *zoneref) 959{ 960#ifdef CONFIG_NUMA 961 /* zone_to_nid not available in this context */ 962 return zoneref->zone->node; 963#else 964 return 0; 965#endif /* CONFIG_NUMA */ 966} 967 968struct zoneref *__next_zones_zonelist(struct zoneref *z, 969 enum zone_type highest_zoneidx, 970 nodemask_t *nodes); 971 972/** 973 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 974 * @z - The cursor used as a starting point for the search 975 * @highest_zoneidx - The zone index of the highest zone to return 976 * @nodes - An optional nodemask to filter the zonelist with 977 * 978 * This function returns the next zone at or below a given zone index that is 979 * within the allowed nodemask using a cursor as the starting point for the 980 * search. The zoneref returned is a cursor that represents the current zone 981 * being examined. It should be advanced by one before calling 982 * next_zones_zonelist again. 983 */ 984static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 985 enum zone_type highest_zoneidx, 986 nodemask_t *nodes) 987{ 988 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 989 return z; 990 return __next_zones_zonelist(z, highest_zoneidx, nodes); 991} 992 993/** 994 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 995 * @zonelist - The zonelist to search for a suitable zone 996 * @highest_zoneidx - The zone index of the highest zone to return 997 * @nodes - An optional nodemask to filter the zonelist with 998 * @return - Zoneref pointer for the first suitable zone found (see below) 999 * 1000 * This function returns the first zone at or below a given zone index that is 1001 * within the allowed nodemask. The zoneref returned is a cursor that can be 1002 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1003 * one before calling. 1004 * 1005 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1006 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1007 * update due to cpuset modification. 1008 */ 1009static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1010 enum zone_type highest_zoneidx, 1011 nodemask_t *nodes) 1012{ 1013 return next_zones_zonelist(zonelist->_zonerefs, 1014 highest_zoneidx, nodes); 1015} 1016 1017/** 1018 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1019 * @zone - The current zone in the iterator 1020 * @z - The current pointer within zonelist->zones being iterated 1021 * @zlist - The zonelist being iterated 1022 * @highidx - The zone index of the highest zone to return 1023 * @nodemask - Nodemask allowed by the allocator 1024 * 1025 * This iterator iterates though all zones at or below a given zone index and 1026 * within a given nodemask 1027 */ 1028#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1029 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1030 zone; \ 1031 z = next_zones_zonelist(++z, highidx, nodemask), \ 1032 zone = zonelist_zone(z)) 1033 1034#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1035 for (zone = z->zone; \ 1036 zone; \ 1037 z = next_zones_zonelist(++z, highidx, nodemask), \ 1038 zone = zonelist_zone(z)) 1039 1040 1041/** 1042 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1043 * @zone - The current zone in the iterator 1044 * @z - The current pointer within zonelist->zones being iterated 1045 * @zlist - The zonelist being iterated 1046 * @highidx - The zone index of the highest zone to return 1047 * 1048 * This iterator iterates though all zones at or below a given zone index. 1049 */ 1050#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1051 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1052 1053#ifdef CONFIG_SPARSEMEM 1054#include <asm/sparsemem.h> 1055#endif 1056 1057#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 1058 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1059static inline unsigned long early_pfn_to_nid(unsigned long pfn) 1060{ 1061 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA)); 1062 return 0; 1063} 1064#endif 1065 1066#ifdef CONFIG_FLATMEM 1067#define pfn_to_nid(pfn) (0) 1068#endif 1069 1070#ifdef CONFIG_SPARSEMEM 1071 1072/* 1073 * SECTION_SHIFT #bits space required to store a section # 1074 * 1075 * PA_SECTION_SHIFT physical address to/from section number 1076 * PFN_SECTION_SHIFT pfn to/from section number 1077 */ 1078#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1079#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1080 1081#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1082 1083#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1084#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1085 1086#define SECTION_BLOCKFLAGS_BITS \ 1087 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1088 1089#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1090#error Allocator MAX_ORDER exceeds SECTION_SIZE 1091#endif 1092 1093static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1094{ 1095 return pfn >> PFN_SECTION_SHIFT; 1096} 1097static inline unsigned long section_nr_to_pfn(unsigned long sec) 1098{ 1099 return sec << PFN_SECTION_SHIFT; 1100} 1101 1102#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1103#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1104 1105struct page; 1106struct page_ext; 1107struct mem_section { 1108 /* 1109 * This is, logically, a pointer to an array of struct 1110 * pages. However, it is stored with some other magic. 1111 * (see sparse.c::sparse_init_one_section()) 1112 * 1113 * Additionally during early boot we encode node id of 1114 * the location of the section here to guide allocation. 1115 * (see sparse.c::memory_present()) 1116 * 1117 * Making it a UL at least makes someone do a cast 1118 * before using it wrong. 1119 */ 1120 unsigned long section_mem_map; 1121 1122 /* See declaration of similar field in struct zone */ 1123 unsigned long *pageblock_flags; 1124#ifdef CONFIG_PAGE_EXTENSION 1125 /* 1126 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1127 * section. (see page_ext.h about this.) 1128 */ 1129 struct page_ext *page_ext; 1130 unsigned long pad; 1131#endif 1132 /* 1133 * WARNING: mem_section must be a power-of-2 in size for the 1134 * calculation and use of SECTION_ROOT_MASK to make sense. 1135 */ 1136}; 1137 1138#ifdef CONFIG_SPARSEMEM_EXTREME 1139#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1140#else 1141#define SECTIONS_PER_ROOT 1 1142#endif 1143 1144#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1145#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1146#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1147 1148#ifdef CONFIG_SPARSEMEM_EXTREME 1149extern struct mem_section **mem_section; 1150#else 1151extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1152#endif 1153 1154static inline struct mem_section *__nr_to_section(unsigned long nr) 1155{ 1156#ifdef CONFIG_SPARSEMEM_EXTREME 1157 if (!mem_section) 1158 return NULL; 1159#endif 1160 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1161 return NULL; 1162 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1163} 1164extern int __section_nr(struct mem_section* ms); 1165extern unsigned long usemap_size(void); 1166 1167/* 1168 * We use the lower bits of the mem_map pointer to store 1169 * a little bit of information. There should be at least 1170 * 3 bits here due to 32-bit alignment. 1171 */ 1172#define SECTION_MARKED_PRESENT (1UL<<0) 1173#define SECTION_HAS_MEM_MAP (1UL<<1) 1174#define SECTION_IS_ONLINE (1UL<<2) 1175#define SECTION_MAP_LAST_BIT (1UL<<3) 1176#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1177#define SECTION_NID_SHIFT 3 1178 1179static inline struct page *__section_mem_map_addr(struct mem_section *section) 1180{ 1181 unsigned long map = section->section_mem_map; 1182 map &= SECTION_MAP_MASK; 1183 return (struct page *)map; 1184} 1185 1186static inline int present_section(struct mem_section *section) 1187{ 1188 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1189} 1190 1191static inline int present_section_nr(unsigned long nr) 1192{ 1193 return present_section(__nr_to_section(nr)); 1194} 1195 1196static inline int valid_section(struct mem_section *section) 1197{ 1198 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1199} 1200 1201static inline int valid_section_nr(unsigned long nr) 1202{ 1203 return valid_section(__nr_to_section(nr)); 1204} 1205 1206static inline int online_section(struct mem_section *section) 1207{ 1208 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1209} 1210 1211static inline int online_section_nr(unsigned long nr) 1212{ 1213 return online_section(__nr_to_section(nr)); 1214} 1215 1216#ifdef CONFIG_MEMORY_HOTPLUG 1217void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1218#ifdef CONFIG_MEMORY_HOTREMOVE 1219void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1220#endif 1221#endif 1222 1223static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1224{ 1225 return __nr_to_section(pfn_to_section_nr(pfn)); 1226} 1227 1228extern int __highest_present_section_nr; 1229 1230#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1231static inline int pfn_valid(unsigned long pfn) 1232{ 1233 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1234 return 0; 1235 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1236} 1237#endif 1238 1239static inline int pfn_present(unsigned long pfn) 1240{ 1241 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1242 return 0; 1243 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1244} 1245 1246/* 1247 * These are _only_ used during initialisation, therefore they 1248 * can use __initdata ... They could have names to indicate 1249 * this restriction. 1250 */ 1251#ifdef CONFIG_NUMA 1252#define pfn_to_nid(pfn) \ 1253({ \ 1254 unsigned long __pfn_to_nid_pfn = (pfn); \ 1255 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1256}) 1257#else 1258#define pfn_to_nid(pfn) (0) 1259#endif 1260 1261#define early_pfn_valid(pfn) pfn_valid(pfn) 1262void sparse_init(void); 1263#else 1264#define sparse_init() do {} while (0) 1265#define sparse_index_init(_sec, _nid) do {} while (0) 1266#endif /* CONFIG_SPARSEMEM */ 1267 1268/* 1269 * During memory init memblocks map pfns to nids. The search is expensive and 1270 * this caches recent lookups. The implementation of __early_pfn_to_nid 1271 * may treat start/end as pfns or sections. 1272 */ 1273struct mminit_pfnnid_cache { 1274 unsigned long last_start; 1275 unsigned long last_end; 1276 int last_nid; 1277}; 1278 1279#ifndef early_pfn_valid 1280#define early_pfn_valid(pfn) (1) 1281#endif 1282 1283void memory_present(int nid, unsigned long start, unsigned long end); 1284unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1285 1286/* 1287 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1288 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1289 * pfn_valid_within() should be used in this case; we optimise this away 1290 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1291 */ 1292#ifdef CONFIG_HOLES_IN_ZONE 1293#define pfn_valid_within(pfn) pfn_valid(pfn) 1294#else 1295#define pfn_valid_within(pfn) (1) 1296#endif 1297 1298#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1299/* 1300 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1301 * associated with it or not. This means that a struct page exists for this 1302 * pfn. The caller cannot assume the page is fully initialized in general. 1303 * Hotplugable pages might not have been onlined yet. pfn_to_online_page() 1304 * will ensure the struct page is fully online and initialized. Special pages 1305 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly. 1306 * 1307 * In FLATMEM, it is expected that holes always have valid memmap as long as 1308 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed 1309 * that a valid section has a memmap for the entire section. 1310 * 1311 * However, an ARM, and maybe other embedded architectures in the future 1312 * free memmap backing holes to save memory on the assumption the memmap is 1313 * never used. The page_zone linkages are then broken even though pfn_valid() 1314 * returns true. A walker of the full memmap must then do this additional 1315 * check to ensure the memmap they are looking at is sane by making sure 1316 * the zone and PFN linkages are still valid. This is expensive, but walkers 1317 * of the full memmap are extremely rare. 1318 */ 1319bool memmap_valid_within(unsigned long pfn, 1320 struct page *page, struct zone *zone); 1321#else 1322static inline bool memmap_valid_within(unsigned long pfn, 1323 struct page *page, struct zone *zone) 1324{ 1325 return true; 1326} 1327#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1328 1329#endif /* !__GENERATING_BOUNDS.H */ 1330#endif /* !__ASSEMBLY__ */ 1331#endif /* _LINUX_MMZONE_H */