at v4.15 85 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6 7#ifdef __KERNEL__ 8 9#include <linux/mmdebug.h> 10#include <linux/gfp.h> 11#include <linux/bug.h> 12#include <linux/list.h> 13#include <linux/mmzone.h> 14#include <linux/rbtree.h> 15#include <linux/atomic.h> 16#include <linux/debug_locks.h> 17#include <linux/mm_types.h> 18#include <linux/range.h> 19#include <linux/pfn.h> 20#include <linux/percpu-refcount.h> 21#include <linux/bit_spinlock.h> 22#include <linux/shrinker.h> 23#include <linux/resource.h> 24#include <linux/page_ext.h> 25#include <linux/err.h> 26#include <linux/page_ref.h> 27#include <linux/memremap.h> 28 29struct mempolicy; 30struct anon_vma; 31struct anon_vma_chain; 32struct file_ra_state; 33struct user_struct; 34struct writeback_control; 35struct bdi_writeback; 36 37void init_mm_internals(void); 38 39#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 40extern unsigned long max_mapnr; 41 42static inline void set_max_mapnr(unsigned long limit) 43{ 44 max_mapnr = limit; 45} 46#else 47static inline void set_max_mapnr(unsigned long limit) { } 48#endif 49 50extern unsigned long totalram_pages; 51extern void * high_memory; 52extern int page_cluster; 53 54#ifdef CONFIG_SYSCTL 55extern int sysctl_legacy_va_layout; 56#else 57#define sysctl_legacy_va_layout 0 58#endif 59 60#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 61extern const int mmap_rnd_bits_min; 62extern const int mmap_rnd_bits_max; 63extern int mmap_rnd_bits __read_mostly; 64#endif 65#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 66extern const int mmap_rnd_compat_bits_min; 67extern const int mmap_rnd_compat_bits_max; 68extern int mmap_rnd_compat_bits __read_mostly; 69#endif 70 71#include <asm/page.h> 72#include <asm/pgtable.h> 73#include <asm/processor.h> 74 75#ifndef __pa_symbol 76#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 77#endif 78 79#ifndef page_to_virt 80#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 81#endif 82 83#ifndef lm_alias 84#define lm_alias(x) __va(__pa_symbol(x)) 85#endif 86 87/* 88 * To prevent common memory management code establishing 89 * a zero page mapping on a read fault. 90 * This macro should be defined within <asm/pgtable.h>. 91 * s390 does this to prevent multiplexing of hardware bits 92 * related to the physical page in case of virtualization. 93 */ 94#ifndef mm_forbids_zeropage 95#define mm_forbids_zeropage(X) (0) 96#endif 97 98/* 99 * On some architectures it is expensive to call memset() for small sizes. 100 * Those architectures should provide their own implementation of "struct page" 101 * zeroing by defining this macro in <asm/pgtable.h>. 102 */ 103#ifndef mm_zero_struct_page 104#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 105#endif 106 107/* 108 * Default maximum number of active map areas, this limits the number of vmas 109 * per mm struct. Users can overwrite this number by sysctl but there is a 110 * problem. 111 * 112 * When a program's coredump is generated as ELF format, a section is created 113 * per a vma. In ELF, the number of sections is represented in unsigned short. 114 * This means the number of sections should be smaller than 65535 at coredump. 115 * Because the kernel adds some informative sections to a image of program at 116 * generating coredump, we need some margin. The number of extra sections is 117 * 1-3 now and depends on arch. We use "5" as safe margin, here. 118 * 119 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 120 * not a hard limit any more. Although some userspace tools can be surprised by 121 * that. 122 */ 123#define MAPCOUNT_ELF_CORE_MARGIN (5) 124#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 125 126extern int sysctl_max_map_count; 127 128extern unsigned long sysctl_user_reserve_kbytes; 129extern unsigned long sysctl_admin_reserve_kbytes; 130 131extern int sysctl_overcommit_memory; 132extern int sysctl_overcommit_ratio; 133extern unsigned long sysctl_overcommit_kbytes; 134 135extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 136 size_t *, loff_t *); 137extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 138 size_t *, loff_t *); 139 140#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 141 142/* to align the pointer to the (next) page boundary */ 143#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 144 145/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 146#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 147 148/* 149 * Linux kernel virtual memory manager primitives. 150 * The idea being to have a "virtual" mm in the same way 151 * we have a virtual fs - giving a cleaner interface to the 152 * mm details, and allowing different kinds of memory mappings 153 * (from shared memory to executable loading to arbitrary 154 * mmap() functions). 155 */ 156 157extern struct kmem_cache *vm_area_cachep; 158 159#ifndef CONFIG_MMU 160extern struct rb_root nommu_region_tree; 161extern struct rw_semaphore nommu_region_sem; 162 163extern unsigned int kobjsize(const void *objp); 164#endif 165 166/* 167 * vm_flags in vm_area_struct, see mm_types.h. 168 * When changing, update also include/trace/events/mmflags.h 169 */ 170#define VM_NONE 0x00000000 171 172#define VM_READ 0x00000001 /* currently active flags */ 173#define VM_WRITE 0x00000002 174#define VM_EXEC 0x00000004 175#define VM_SHARED 0x00000008 176 177/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 178#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 179#define VM_MAYWRITE 0x00000020 180#define VM_MAYEXEC 0x00000040 181#define VM_MAYSHARE 0x00000080 182 183#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 184#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 185#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 186#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 187#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 188 189#define VM_LOCKED 0x00002000 190#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 191 192 /* Used by sys_madvise() */ 193#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 194#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 195 196#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 197#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 198#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 199#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 200#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 201#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 202#define VM_SYNC 0x00800000 /* Synchronous page faults */ 203#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 204#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 205#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 206 207#ifdef CONFIG_MEM_SOFT_DIRTY 208# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 209#else 210# define VM_SOFTDIRTY 0 211#endif 212 213#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 214#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 215#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 216#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 217 218#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 219#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 220#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 221#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 222#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 223#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 224#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 225#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 226#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 227#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 228#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 229#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 230 231#if defined(CONFIG_X86) 232# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 233#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) 234# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 235# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 236# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 237# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 238# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 239#endif 240#elif defined(CONFIG_PPC) 241# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 242#elif defined(CONFIG_PARISC) 243# define VM_GROWSUP VM_ARCH_1 244#elif defined(CONFIG_METAG) 245# define VM_GROWSUP VM_ARCH_1 246#elif defined(CONFIG_IA64) 247# define VM_GROWSUP VM_ARCH_1 248#elif !defined(CONFIG_MMU) 249# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 250#endif 251 252#if defined(CONFIG_X86_INTEL_MPX) 253/* MPX specific bounds table or bounds directory */ 254# define VM_MPX VM_HIGH_ARCH_4 255#else 256# define VM_MPX VM_NONE 257#endif 258 259#ifndef VM_GROWSUP 260# define VM_GROWSUP VM_NONE 261#endif 262 263/* Bits set in the VMA until the stack is in its final location */ 264#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 265 266#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 267#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 268#endif 269 270#ifdef CONFIG_STACK_GROWSUP 271#define VM_STACK VM_GROWSUP 272#else 273#define VM_STACK VM_GROWSDOWN 274#endif 275 276#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 277 278/* 279 * Special vmas that are non-mergable, non-mlock()able. 280 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 281 */ 282#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 283 284/* This mask defines which mm->def_flags a process can inherit its parent */ 285#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 286 287/* This mask is used to clear all the VMA flags used by mlock */ 288#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 289 290/* 291 * mapping from the currently active vm_flags protection bits (the 292 * low four bits) to a page protection mask.. 293 */ 294extern pgprot_t protection_map[16]; 295 296#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 297#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 298#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 299#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 300#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 301#define FAULT_FLAG_TRIED 0x20 /* Second try */ 302#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 303#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 304#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 305 306#define FAULT_FLAG_TRACE \ 307 { FAULT_FLAG_WRITE, "WRITE" }, \ 308 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 309 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 310 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 311 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 312 { FAULT_FLAG_TRIED, "TRIED" }, \ 313 { FAULT_FLAG_USER, "USER" }, \ 314 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 315 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 316 317/* 318 * vm_fault is filled by the the pagefault handler and passed to the vma's 319 * ->fault function. The vma's ->fault is responsible for returning a bitmask 320 * of VM_FAULT_xxx flags that give details about how the fault was handled. 321 * 322 * MM layer fills up gfp_mask for page allocations but fault handler might 323 * alter it if its implementation requires a different allocation context. 324 * 325 * pgoff should be used in favour of virtual_address, if possible. 326 */ 327struct vm_fault { 328 struct vm_area_struct *vma; /* Target VMA */ 329 unsigned int flags; /* FAULT_FLAG_xxx flags */ 330 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 331 pgoff_t pgoff; /* Logical page offset based on vma */ 332 unsigned long address; /* Faulting virtual address */ 333 pmd_t *pmd; /* Pointer to pmd entry matching 334 * the 'address' */ 335 pud_t *pud; /* Pointer to pud entry matching 336 * the 'address' 337 */ 338 pte_t orig_pte; /* Value of PTE at the time of fault */ 339 340 struct page *cow_page; /* Page handler may use for COW fault */ 341 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 342 struct page *page; /* ->fault handlers should return a 343 * page here, unless VM_FAULT_NOPAGE 344 * is set (which is also implied by 345 * VM_FAULT_ERROR). 346 */ 347 /* These three entries are valid only while holding ptl lock */ 348 pte_t *pte; /* Pointer to pte entry matching 349 * the 'address'. NULL if the page 350 * table hasn't been allocated. 351 */ 352 spinlock_t *ptl; /* Page table lock. 353 * Protects pte page table if 'pte' 354 * is not NULL, otherwise pmd. 355 */ 356 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 357 * vm_ops->map_pages() calls 358 * alloc_set_pte() from atomic context. 359 * do_fault_around() pre-allocates 360 * page table to avoid allocation from 361 * atomic context. 362 */ 363}; 364 365/* page entry size for vm->huge_fault() */ 366enum page_entry_size { 367 PE_SIZE_PTE = 0, 368 PE_SIZE_PMD, 369 PE_SIZE_PUD, 370}; 371 372/* 373 * These are the virtual MM functions - opening of an area, closing and 374 * unmapping it (needed to keep files on disk up-to-date etc), pointer 375 * to the functions called when a no-page or a wp-page exception occurs. 376 */ 377struct vm_operations_struct { 378 void (*open)(struct vm_area_struct * area); 379 void (*close)(struct vm_area_struct * area); 380 int (*split)(struct vm_area_struct * area, unsigned long addr); 381 int (*mremap)(struct vm_area_struct * area); 382 int (*fault)(struct vm_fault *vmf); 383 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size); 384 void (*map_pages)(struct vm_fault *vmf, 385 pgoff_t start_pgoff, pgoff_t end_pgoff); 386 387 /* notification that a previously read-only page is about to become 388 * writable, if an error is returned it will cause a SIGBUS */ 389 int (*page_mkwrite)(struct vm_fault *vmf); 390 391 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 392 int (*pfn_mkwrite)(struct vm_fault *vmf); 393 394 /* called by access_process_vm when get_user_pages() fails, typically 395 * for use by special VMAs that can switch between memory and hardware 396 */ 397 int (*access)(struct vm_area_struct *vma, unsigned long addr, 398 void *buf, int len, int write); 399 400 /* Called by the /proc/PID/maps code to ask the vma whether it 401 * has a special name. Returning non-NULL will also cause this 402 * vma to be dumped unconditionally. */ 403 const char *(*name)(struct vm_area_struct *vma); 404 405#ifdef CONFIG_NUMA 406 /* 407 * set_policy() op must add a reference to any non-NULL @new mempolicy 408 * to hold the policy upon return. Caller should pass NULL @new to 409 * remove a policy and fall back to surrounding context--i.e. do not 410 * install a MPOL_DEFAULT policy, nor the task or system default 411 * mempolicy. 412 */ 413 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 414 415 /* 416 * get_policy() op must add reference [mpol_get()] to any policy at 417 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 418 * in mm/mempolicy.c will do this automatically. 419 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 420 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 421 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 422 * must return NULL--i.e., do not "fallback" to task or system default 423 * policy. 424 */ 425 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 426 unsigned long addr); 427#endif 428 /* 429 * Called by vm_normal_page() for special PTEs to find the 430 * page for @addr. This is useful if the default behavior 431 * (using pte_page()) would not find the correct page. 432 */ 433 struct page *(*find_special_page)(struct vm_area_struct *vma, 434 unsigned long addr); 435}; 436 437struct mmu_gather; 438struct inode; 439 440#define page_private(page) ((page)->private) 441#define set_page_private(page, v) ((page)->private = (v)) 442 443#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 444static inline int pmd_devmap(pmd_t pmd) 445{ 446 return 0; 447} 448static inline int pud_devmap(pud_t pud) 449{ 450 return 0; 451} 452static inline int pgd_devmap(pgd_t pgd) 453{ 454 return 0; 455} 456#endif 457 458/* 459 * FIXME: take this include out, include page-flags.h in 460 * files which need it (119 of them) 461 */ 462#include <linux/page-flags.h> 463#include <linux/huge_mm.h> 464 465/* 466 * Methods to modify the page usage count. 467 * 468 * What counts for a page usage: 469 * - cache mapping (page->mapping) 470 * - private data (page->private) 471 * - page mapped in a task's page tables, each mapping 472 * is counted separately 473 * 474 * Also, many kernel routines increase the page count before a critical 475 * routine so they can be sure the page doesn't go away from under them. 476 */ 477 478/* 479 * Drop a ref, return true if the refcount fell to zero (the page has no users) 480 */ 481static inline int put_page_testzero(struct page *page) 482{ 483 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 484 return page_ref_dec_and_test(page); 485} 486 487/* 488 * Try to grab a ref unless the page has a refcount of zero, return false if 489 * that is the case. 490 * This can be called when MMU is off so it must not access 491 * any of the virtual mappings. 492 */ 493static inline int get_page_unless_zero(struct page *page) 494{ 495 return page_ref_add_unless(page, 1, 0); 496} 497 498extern int page_is_ram(unsigned long pfn); 499 500enum { 501 REGION_INTERSECTS, 502 REGION_DISJOINT, 503 REGION_MIXED, 504}; 505 506int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 507 unsigned long desc); 508 509/* Support for virtually mapped pages */ 510struct page *vmalloc_to_page(const void *addr); 511unsigned long vmalloc_to_pfn(const void *addr); 512 513/* 514 * Determine if an address is within the vmalloc range 515 * 516 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 517 * is no special casing required. 518 */ 519static inline bool is_vmalloc_addr(const void *x) 520{ 521#ifdef CONFIG_MMU 522 unsigned long addr = (unsigned long)x; 523 524 return addr >= VMALLOC_START && addr < VMALLOC_END; 525#else 526 return false; 527#endif 528} 529#ifdef CONFIG_MMU 530extern int is_vmalloc_or_module_addr(const void *x); 531#else 532static inline int is_vmalloc_or_module_addr(const void *x) 533{ 534 return 0; 535} 536#endif 537 538extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 539static inline void *kvmalloc(size_t size, gfp_t flags) 540{ 541 return kvmalloc_node(size, flags, NUMA_NO_NODE); 542} 543static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 544{ 545 return kvmalloc_node(size, flags | __GFP_ZERO, node); 546} 547static inline void *kvzalloc(size_t size, gfp_t flags) 548{ 549 return kvmalloc(size, flags | __GFP_ZERO); 550} 551 552static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 553{ 554 if (size != 0 && n > SIZE_MAX / size) 555 return NULL; 556 557 return kvmalloc(n * size, flags); 558} 559 560extern void kvfree(const void *addr); 561 562static inline atomic_t *compound_mapcount_ptr(struct page *page) 563{ 564 return &page[1].compound_mapcount; 565} 566 567static inline int compound_mapcount(struct page *page) 568{ 569 VM_BUG_ON_PAGE(!PageCompound(page), page); 570 page = compound_head(page); 571 return atomic_read(compound_mapcount_ptr(page)) + 1; 572} 573 574/* 575 * The atomic page->_mapcount, starts from -1: so that transitions 576 * both from it and to it can be tracked, using atomic_inc_and_test 577 * and atomic_add_negative(-1). 578 */ 579static inline void page_mapcount_reset(struct page *page) 580{ 581 atomic_set(&(page)->_mapcount, -1); 582} 583 584int __page_mapcount(struct page *page); 585 586static inline int page_mapcount(struct page *page) 587{ 588 VM_BUG_ON_PAGE(PageSlab(page), page); 589 590 if (unlikely(PageCompound(page))) 591 return __page_mapcount(page); 592 return atomic_read(&page->_mapcount) + 1; 593} 594 595#ifdef CONFIG_TRANSPARENT_HUGEPAGE 596int total_mapcount(struct page *page); 597int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 598#else 599static inline int total_mapcount(struct page *page) 600{ 601 return page_mapcount(page); 602} 603static inline int page_trans_huge_mapcount(struct page *page, 604 int *total_mapcount) 605{ 606 int mapcount = page_mapcount(page); 607 if (total_mapcount) 608 *total_mapcount = mapcount; 609 return mapcount; 610} 611#endif 612 613static inline struct page *virt_to_head_page(const void *x) 614{ 615 struct page *page = virt_to_page(x); 616 617 return compound_head(page); 618} 619 620void __put_page(struct page *page); 621 622void put_pages_list(struct list_head *pages); 623 624void split_page(struct page *page, unsigned int order); 625 626/* 627 * Compound pages have a destructor function. Provide a 628 * prototype for that function and accessor functions. 629 * These are _only_ valid on the head of a compound page. 630 */ 631typedef void compound_page_dtor(struct page *); 632 633/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 634enum compound_dtor_id { 635 NULL_COMPOUND_DTOR, 636 COMPOUND_PAGE_DTOR, 637#ifdef CONFIG_HUGETLB_PAGE 638 HUGETLB_PAGE_DTOR, 639#endif 640#ifdef CONFIG_TRANSPARENT_HUGEPAGE 641 TRANSHUGE_PAGE_DTOR, 642#endif 643 NR_COMPOUND_DTORS, 644}; 645extern compound_page_dtor * const compound_page_dtors[]; 646 647static inline void set_compound_page_dtor(struct page *page, 648 enum compound_dtor_id compound_dtor) 649{ 650 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 651 page[1].compound_dtor = compound_dtor; 652} 653 654static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 655{ 656 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 657 return compound_page_dtors[page[1].compound_dtor]; 658} 659 660static inline unsigned int compound_order(struct page *page) 661{ 662 if (!PageHead(page)) 663 return 0; 664 return page[1].compound_order; 665} 666 667static inline void set_compound_order(struct page *page, unsigned int order) 668{ 669 page[1].compound_order = order; 670} 671 672void free_compound_page(struct page *page); 673 674#ifdef CONFIG_MMU 675/* 676 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 677 * servicing faults for write access. In the normal case, do always want 678 * pte_mkwrite. But get_user_pages can cause write faults for mappings 679 * that do not have writing enabled, when used by access_process_vm. 680 */ 681static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 682{ 683 if (likely(vma->vm_flags & VM_WRITE)) 684 pte = pte_mkwrite(pte); 685 return pte; 686} 687 688int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 689 struct page *page); 690int finish_fault(struct vm_fault *vmf); 691int finish_mkwrite_fault(struct vm_fault *vmf); 692#endif 693 694/* 695 * Multiple processes may "see" the same page. E.g. for untouched 696 * mappings of /dev/null, all processes see the same page full of 697 * zeroes, and text pages of executables and shared libraries have 698 * only one copy in memory, at most, normally. 699 * 700 * For the non-reserved pages, page_count(page) denotes a reference count. 701 * page_count() == 0 means the page is free. page->lru is then used for 702 * freelist management in the buddy allocator. 703 * page_count() > 0 means the page has been allocated. 704 * 705 * Pages are allocated by the slab allocator in order to provide memory 706 * to kmalloc and kmem_cache_alloc. In this case, the management of the 707 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 708 * unless a particular usage is carefully commented. (the responsibility of 709 * freeing the kmalloc memory is the caller's, of course). 710 * 711 * A page may be used by anyone else who does a __get_free_page(). 712 * In this case, page_count still tracks the references, and should only 713 * be used through the normal accessor functions. The top bits of page->flags 714 * and page->virtual store page management information, but all other fields 715 * are unused and could be used privately, carefully. The management of this 716 * page is the responsibility of the one who allocated it, and those who have 717 * subsequently been given references to it. 718 * 719 * The other pages (we may call them "pagecache pages") are completely 720 * managed by the Linux memory manager: I/O, buffers, swapping etc. 721 * The following discussion applies only to them. 722 * 723 * A pagecache page contains an opaque `private' member, which belongs to the 724 * page's address_space. Usually, this is the address of a circular list of 725 * the page's disk buffers. PG_private must be set to tell the VM to call 726 * into the filesystem to release these pages. 727 * 728 * A page may belong to an inode's memory mapping. In this case, page->mapping 729 * is the pointer to the inode, and page->index is the file offset of the page, 730 * in units of PAGE_SIZE. 731 * 732 * If pagecache pages are not associated with an inode, they are said to be 733 * anonymous pages. These may become associated with the swapcache, and in that 734 * case PG_swapcache is set, and page->private is an offset into the swapcache. 735 * 736 * In either case (swapcache or inode backed), the pagecache itself holds one 737 * reference to the page. Setting PG_private should also increment the 738 * refcount. The each user mapping also has a reference to the page. 739 * 740 * The pagecache pages are stored in a per-mapping radix tree, which is 741 * rooted at mapping->page_tree, and indexed by offset. 742 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 743 * lists, we instead now tag pages as dirty/writeback in the radix tree. 744 * 745 * All pagecache pages may be subject to I/O: 746 * - inode pages may need to be read from disk, 747 * - inode pages which have been modified and are MAP_SHARED may need 748 * to be written back to the inode on disk, 749 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 750 * modified may need to be swapped out to swap space and (later) to be read 751 * back into memory. 752 */ 753 754/* 755 * The zone field is never updated after free_area_init_core() 756 * sets it, so none of the operations on it need to be atomic. 757 */ 758 759/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 760#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 761#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 762#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 763#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 764 765/* 766 * Define the bit shifts to access each section. For non-existent 767 * sections we define the shift as 0; that plus a 0 mask ensures 768 * the compiler will optimise away reference to them. 769 */ 770#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 771#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 772#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 773#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 774 775/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 776#ifdef NODE_NOT_IN_PAGE_FLAGS 777#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 778#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 779 SECTIONS_PGOFF : ZONES_PGOFF) 780#else 781#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 782#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 783 NODES_PGOFF : ZONES_PGOFF) 784#endif 785 786#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 787 788#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 789#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 790#endif 791 792#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 793#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 794#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 795#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 796#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 797 798static inline enum zone_type page_zonenum(const struct page *page) 799{ 800 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 801} 802 803#ifdef CONFIG_ZONE_DEVICE 804static inline bool is_zone_device_page(const struct page *page) 805{ 806 return page_zonenum(page) == ZONE_DEVICE; 807} 808#else 809static inline bool is_zone_device_page(const struct page *page) 810{ 811 return false; 812} 813#endif 814 815#if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC) 816void put_zone_device_private_or_public_page(struct page *page); 817DECLARE_STATIC_KEY_FALSE(device_private_key); 818#define IS_HMM_ENABLED static_branch_unlikely(&device_private_key) 819static inline bool is_device_private_page(const struct page *page); 820static inline bool is_device_public_page(const struct page *page); 821#else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */ 822static inline void put_zone_device_private_or_public_page(struct page *page) 823{ 824} 825#define IS_HMM_ENABLED 0 826static inline bool is_device_private_page(const struct page *page) 827{ 828 return false; 829} 830static inline bool is_device_public_page(const struct page *page) 831{ 832 return false; 833} 834#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */ 835 836 837static inline void get_page(struct page *page) 838{ 839 page = compound_head(page); 840 /* 841 * Getting a normal page or the head of a compound page 842 * requires to already have an elevated page->_refcount. 843 */ 844 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 845 page_ref_inc(page); 846} 847 848static inline void put_page(struct page *page) 849{ 850 page = compound_head(page); 851 852 /* 853 * For private device pages we need to catch refcount transition from 854 * 2 to 1, when refcount reach one it means the private device page is 855 * free and we need to inform the device driver through callback. See 856 * include/linux/memremap.h and HMM for details. 857 */ 858 if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) || 859 unlikely(is_device_public_page(page)))) { 860 put_zone_device_private_or_public_page(page); 861 return; 862 } 863 864 if (put_page_testzero(page)) 865 __put_page(page); 866} 867 868#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 869#define SECTION_IN_PAGE_FLAGS 870#endif 871 872/* 873 * The identification function is mainly used by the buddy allocator for 874 * determining if two pages could be buddies. We are not really identifying 875 * the zone since we could be using the section number id if we do not have 876 * node id available in page flags. 877 * We only guarantee that it will return the same value for two combinable 878 * pages in a zone. 879 */ 880static inline int page_zone_id(struct page *page) 881{ 882 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 883} 884 885static inline int zone_to_nid(struct zone *zone) 886{ 887#ifdef CONFIG_NUMA 888 return zone->node; 889#else 890 return 0; 891#endif 892} 893 894#ifdef NODE_NOT_IN_PAGE_FLAGS 895extern int page_to_nid(const struct page *page); 896#else 897static inline int page_to_nid(const struct page *page) 898{ 899 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 900} 901#endif 902 903#ifdef CONFIG_NUMA_BALANCING 904static inline int cpu_pid_to_cpupid(int cpu, int pid) 905{ 906 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 907} 908 909static inline int cpupid_to_pid(int cpupid) 910{ 911 return cpupid & LAST__PID_MASK; 912} 913 914static inline int cpupid_to_cpu(int cpupid) 915{ 916 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 917} 918 919static inline int cpupid_to_nid(int cpupid) 920{ 921 return cpu_to_node(cpupid_to_cpu(cpupid)); 922} 923 924static inline bool cpupid_pid_unset(int cpupid) 925{ 926 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 927} 928 929static inline bool cpupid_cpu_unset(int cpupid) 930{ 931 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 932} 933 934static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 935{ 936 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 937} 938 939#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 940#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 941static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 942{ 943 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 944} 945 946static inline int page_cpupid_last(struct page *page) 947{ 948 return page->_last_cpupid; 949} 950static inline void page_cpupid_reset_last(struct page *page) 951{ 952 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 953} 954#else 955static inline int page_cpupid_last(struct page *page) 956{ 957 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 958} 959 960extern int page_cpupid_xchg_last(struct page *page, int cpupid); 961 962static inline void page_cpupid_reset_last(struct page *page) 963{ 964 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 965} 966#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 967#else /* !CONFIG_NUMA_BALANCING */ 968static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 969{ 970 return page_to_nid(page); /* XXX */ 971} 972 973static inline int page_cpupid_last(struct page *page) 974{ 975 return page_to_nid(page); /* XXX */ 976} 977 978static inline int cpupid_to_nid(int cpupid) 979{ 980 return -1; 981} 982 983static inline int cpupid_to_pid(int cpupid) 984{ 985 return -1; 986} 987 988static inline int cpupid_to_cpu(int cpupid) 989{ 990 return -1; 991} 992 993static inline int cpu_pid_to_cpupid(int nid, int pid) 994{ 995 return -1; 996} 997 998static inline bool cpupid_pid_unset(int cpupid) 999{ 1000 return 1; 1001} 1002 1003static inline void page_cpupid_reset_last(struct page *page) 1004{ 1005} 1006 1007static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1008{ 1009 return false; 1010} 1011#endif /* CONFIG_NUMA_BALANCING */ 1012 1013static inline struct zone *page_zone(const struct page *page) 1014{ 1015 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1016} 1017 1018static inline pg_data_t *page_pgdat(const struct page *page) 1019{ 1020 return NODE_DATA(page_to_nid(page)); 1021} 1022 1023#ifdef SECTION_IN_PAGE_FLAGS 1024static inline void set_page_section(struct page *page, unsigned long section) 1025{ 1026 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1027 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1028} 1029 1030static inline unsigned long page_to_section(const struct page *page) 1031{ 1032 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1033} 1034#endif 1035 1036static inline void set_page_zone(struct page *page, enum zone_type zone) 1037{ 1038 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1039 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1040} 1041 1042static inline void set_page_node(struct page *page, unsigned long node) 1043{ 1044 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1045 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1046} 1047 1048static inline void set_page_links(struct page *page, enum zone_type zone, 1049 unsigned long node, unsigned long pfn) 1050{ 1051 set_page_zone(page, zone); 1052 set_page_node(page, node); 1053#ifdef SECTION_IN_PAGE_FLAGS 1054 set_page_section(page, pfn_to_section_nr(pfn)); 1055#endif 1056} 1057 1058#ifdef CONFIG_MEMCG 1059static inline struct mem_cgroup *page_memcg(struct page *page) 1060{ 1061 return page->mem_cgroup; 1062} 1063static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1064{ 1065 WARN_ON_ONCE(!rcu_read_lock_held()); 1066 return READ_ONCE(page->mem_cgroup); 1067} 1068#else 1069static inline struct mem_cgroup *page_memcg(struct page *page) 1070{ 1071 return NULL; 1072} 1073static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1074{ 1075 WARN_ON_ONCE(!rcu_read_lock_held()); 1076 return NULL; 1077} 1078#endif 1079 1080/* 1081 * Some inline functions in vmstat.h depend on page_zone() 1082 */ 1083#include <linux/vmstat.h> 1084 1085static __always_inline void *lowmem_page_address(const struct page *page) 1086{ 1087 return page_to_virt(page); 1088} 1089 1090#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1091#define HASHED_PAGE_VIRTUAL 1092#endif 1093 1094#if defined(WANT_PAGE_VIRTUAL) 1095static inline void *page_address(const struct page *page) 1096{ 1097 return page->virtual; 1098} 1099static inline void set_page_address(struct page *page, void *address) 1100{ 1101 page->virtual = address; 1102} 1103#define page_address_init() do { } while(0) 1104#endif 1105 1106#if defined(HASHED_PAGE_VIRTUAL) 1107void *page_address(const struct page *page); 1108void set_page_address(struct page *page, void *virtual); 1109void page_address_init(void); 1110#endif 1111 1112#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1113#define page_address(page) lowmem_page_address(page) 1114#define set_page_address(page, address) do { } while(0) 1115#define page_address_init() do { } while(0) 1116#endif 1117 1118extern void *page_rmapping(struct page *page); 1119extern struct anon_vma *page_anon_vma(struct page *page); 1120extern struct address_space *page_mapping(struct page *page); 1121 1122extern struct address_space *__page_file_mapping(struct page *); 1123 1124static inline 1125struct address_space *page_file_mapping(struct page *page) 1126{ 1127 if (unlikely(PageSwapCache(page))) 1128 return __page_file_mapping(page); 1129 1130 return page->mapping; 1131} 1132 1133extern pgoff_t __page_file_index(struct page *page); 1134 1135/* 1136 * Return the pagecache index of the passed page. Regular pagecache pages 1137 * use ->index whereas swapcache pages use swp_offset(->private) 1138 */ 1139static inline pgoff_t page_index(struct page *page) 1140{ 1141 if (unlikely(PageSwapCache(page))) 1142 return __page_file_index(page); 1143 return page->index; 1144} 1145 1146bool page_mapped(struct page *page); 1147struct address_space *page_mapping(struct page *page); 1148 1149/* 1150 * Return true only if the page has been allocated with 1151 * ALLOC_NO_WATERMARKS and the low watermark was not 1152 * met implying that the system is under some pressure. 1153 */ 1154static inline bool page_is_pfmemalloc(struct page *page) 1155{ 1156 /* 1157 * Page index cannot be this large so this must be 1158 * a pfmemalloc page. 1159 */ 1160 return page->index == -1UL; 1161} 1162 1163/* 1164 * Only to be called by the page allocator on a freshly allocated 1165 * page. 1166 */ 1167static inline void set_page_pfmemalloc(struct page *page) 1168{ 1169 page->index = -1UL; 1170} 1171 1172static inline void clear_page_pfmemalloc(struct page *page) 1173{ 1174 page->index = 0; 1175} 1176 1177/* 1178 * Different kinds of faults, as returned by handle_mm_fault(). 1179 * Used to decide whether a process gets delivered SIGBUS or 1180 * just gets major/minor fault counters bumped up. 1181 */ 1182 1183#define VM_FAULT_OOM 0x0001 1184#define VM_FAULT_SIGBUS 0x0002 1185#define VM_FAULT_MAJOR 0x0004 1186#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1187#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1188#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1189#define VM_FAULT_SIGSEGV 0x0040 1190 1191#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1192#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1193#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1194#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1195#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */ 1196#define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables 1197 * and needs fsync() to complete (for 1198 * synchronous page faults in DAX) */ 1199 1200#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1201 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1202 VM_FAULT_FALLBACK) 1203 1204#define VM_FAULT_RESULT_TRACE \ 1205 { VM_FAULT_OOM, "OOM" }, \ 1206 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1207 { VM_FAULT_MAJOR, "MAJOR" }, \ 1208 { VM_FAULT_WRITE, "WRITE" }, \ 1209 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1210 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1211 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1212 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1213 { VM_FAULT_LOCKED, "LOCKED" }, \ 1214 { VM_FAULT_RETRY, "RETRY" }, \ 1215 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1216 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 1217 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 1218 1219/* Encode hstate index for a hwpoisoned large page */ 1220#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1221#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1222 1223/* 1224 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1225 */ 1226extern void pagefault_out_of_memory(void); 1227 1228#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1229 1230/* 1231 * Flags passed to show_mem() and show_free_areas() to suppress output in 1232 * various contexts. 1233 */ 1234#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1235 1236extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1237 1238extern bool can_do_mlock(void); 1239extern int user_shm_lock(size_t, struct user_struct *); 1240extern void user_shm_unlock(size_t, struct user_struct *); 1241 1242/* 1243 * Parameter block passed down to zap_pte_range in exceptional cases. 1244 */ 1245struct zap_details { 1246 struct address_space *check_mapping; /* Check page->mapping if set */ 1247 pgoff_t first_index; /* Lowest page->index to unmap */ 1248 pgoff_t last_index; /* Highest page->index to unmap */ 1249}; 1250 1251struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1252 pte_t pte, bool with_public_device); 1253#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false) 1254 1255struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1256 pmd_t pmd); 1257 1258int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1259 unsigned long size); 1260void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1261 unsigned long size); 1262void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1263 unsigned long start, unsigned long end); 1264 1265/** 1266 * mm_walk - callbacks for walk_page_range 1267 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1268 * this handler should only handle pud_trans_huge() puds. 1269 * the pmd_entry or pte_entry callbacks will be used for 1270 * regular PUDs. 1271 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1272 * this handler is required to be able to handle 1273 * pmd_trans_huge() pmds. They may simply choose to 1274 * split_huge_page() instead of handling it explicitly. 1275 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1276 * @pte_hole: if set, called for each hole at all levels 1277 * @hugetlb_entry: if set, called for each hugetlb entry 1278 * @test_walk: caller specific callback function to determine whether 1279 * we walk over the current vma or not. Returning 0 1280 * value means "do page table walk over the current vma," 1281 * and a negative one means "abort current page table walk 1282 * right now." 1 means "skip the current vma." 1283 * @mm: mm_struct representing the target process of page table walk 1284 * @vma: vma currently walked (NULL if walking outside vmas) 1285 * @private: private data for callbacks' usage 1286 * 1287 * (see the comment on walk_page_range() for more details) 1288 */ 1289struct mm_walk { 1290 int (*pud_entry)(pud_t *pud, unsigned long addr, 1291 unsigned long next, struct mm_walk *walk); 1292 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1293 unsigned long next, struct mm_walk *walk); 1294 int (*pte_entry)(pte_t *pte, unsigned long addr, 1295 unsigned long next, struct mm_walk *walk); 1296 int (*pte_hole)(unsigned long addr, unsigned long next, 1297 struct mm_walk *walk); 1298 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1299 unsigned long addr, unsigned long next, 1300 struct mm_walk *walk); 1301 int (*test_walk)(unsigned long addr, unsigned long next, 1302 struct mm_walk *walk); 1303 struct mm_struct *mm; 1304 struct vm_area_struct *vma; 1305 void *private; 1306}; 1307 1308int walk_page_range(unsigned long addr, unsigned long end, 1309 struct mm_walk *walk); 1310int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1311void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1312 unsigned long end, unsigned long floor, unsigned long ceiling); 1313int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1314 struct vm_area_struct *vma); 1315void unmap_mapping_range(struct address_space *mapping, 1316 loff_t const holebegin, loff_t const holelen, int even_cows); 1317int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1318 unsigned long *start, unsigned long *end, 1319 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1320int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1321 unsigned long *pfn); 1322int follow_phys(struct vm_area_struct *vma, unsigned long address, 1323 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1324int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1325 void *buf, int len, int write); 1326 1327static inline void unmap_shared_mapping_range(struct address_space *mapping, 1328 loff_t const holebegin, loff_t const holelen) 1329{ 1330 unmap_mapping_range(mapping, holebegin, holelen, 0); 1331} 1332 1333extern void truncate_pagecache(struct inode *inode, loff_t new); 1334extern void truncate_setsize(struct inode *inode, loff_t newsize); 1335void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1336void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1337int truncate_inode_page(struct address_space *mapping, struct page *page); 1338int generic_error_remove_page(struct address_space *mapping, struct page *page); 1339int invalidate_inode_page(struct page *page); 1340 1341#ifdef CONFIG_MMU 1342extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 1343 unsigned int flags); 1344extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1345 unsigned long address, unsigned int fault_flags, 1346 bool *unlocked); 1347#else 1348static inline int handle_mm_fault(struct vm_area_struct *vma, 1349 unsigned long address, unsigned int flags) 1350{ 1351 /* should never happen if there's no MMU */ 1352 BUG(); 1353 return VM_FAULT_SIGBUS; 1354} 1355static inline int fixup_user_fault(struct task_struct *tsk, 1356 struct mm_struct *mm, unsigned long address, 1357 unsigned int fault_flags, bool *unlocked) 1358{ 1359 /* should never happen if there's no MMU */ 1360 BUG(); 1361 return -EFAULT; 1362} 1363#endif 1364 1365extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1366 unsigned int gup_flags); 1367extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1368 void *buf, int len, unsigned int gup_flags); 1369extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1370 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1371 1372long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1373 unsigned long start, unsigned long nr_pages, 1374 unsigned int gup_flags, struct page **pages, 1375 struct vm_area_struct **vmas, int *locked); 1376long get_user_pages(unsigned long start, unsigned long nr_pages, 1377 unsigned int gup_flags, struct page **pages, 1378 struct vm_area_struct **vmas); 1379long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1380 unsigned int gup_flags, struct page **pages, int *locked); 1381long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1382 struct page **pages, unsigned int gup_flags); 1383#ifdef CONFIG_FS_DAX 1384long get_user_pages_longterm(unsigned long start, unsigned long nr_pages, 1385 unsigned int gup_flags, struct page **pages, 1386 struct vm_area_struct **vmas); 1387#else 1388static inline long get_user_pages_longterm(unsigned long start, 1389 unsigned long nr_pages, unsigned int gup_flags, 1390 struct page **pages, struct vm_area_struct **vmas) 1391{ 1392 return get_user_pages(start, nr_pages, gup_flags, pages, vmas); 1393} 1394#endif /* CONFIG_FS_DAX */ 1395 1396int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1397 struct page **pages); 1398 1399/* Container for pinned pfns / pages */ 1400struct frame_vector { 1401 unsigned int nr_allocated; /* Number of frames we have space for */ 1402 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1403 bool got_ref; /* Did we pin pages by getting page ref? */ 1404 bool is_pfns; /* Does array contain pages or pfns? */ 1405 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1406 * pfns_vector_pages() or pfns_vector_pfns() 1407 * for access */ 1408}; 1409 1410struct frame_vector *frame_vector_create(unsigned int nr_frames); 1411void frame_vector_destroy(struct frame_vector *vec); 1412int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1413 unsigned int gup_flags, struct frame_vector *vec); 1414void put_vaddr_frames(struct frame_vector *vec); 1415int frame_vector_to_pages(struct frame_vector *vec); 1416void frame_vector_to_pfns(struct frame_vector *vec); 1417 1418static inline unsigned int frame_vector_count(struct frame_vector *vec) 1419{ 1420 return vec->nr_frames; 1421} 1422 1423static inline struct page **frame_vector_pages(struct frame_vector *vec) 1424{ 1425 if (vec->is_pfns) { 1426 int err = frame_vector_to_pages(vec); 1427 1428 if (err) 1429 return ERR_PTR(err); 1430 } 1431 return (struct page **)(vec->ptrs); 1432} 1433 1434static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1435{ 1436 if (!vec->is_pfns) 1437 frame_vector_to_pfns(vec); 1438 return (unsigned long *)(vec->ptrs); 1439} 1440 1441struct kvec; 1442int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1443 struct page **pages); 1444int get_kernel_page(unsigned long start, int write, struct page **pages); 1445struct page *get_dump_page(unsigned long addr); 1446 1447extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1448extern void do_invalidatepage(struct page *page, unsigned int offset, 1449 unsigned int length); 1450 1451int __set_page_dirty_nobuffers(struct page *page); 1452int __set_page_dirty_no_writeback(struct page *page); 1453int redirty_page_for_writepage(struct writeback_control *wbc, 1454 struct page *page); 1455void account_page_dirtied(struct page *page, struct address_space *mapping); 1456void account_page_cleaned(struct page *page, struct address_space *mapping, 1457 struct bdi_writeback *wb); 1458int set_page_dirty(struct page *page); 1459int set_page_dirty_lock(struct page *page); 1460void __cancel_dirty_page(struct page *page); 1461static inline void cancel_dirty_page(struct page *page) 1462{ 1463 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1464 if (PageDirty(page)) 1465 __cancel_dirty_page(page); 1466} 1467int clear_page_dirty_for_io(struct page *page); 1468 1469int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1470 1471static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1472{ 1473 return !vma->vm_ops; 1474} 1475 1476#ifdef CONFIG_SHMEM 1477/* 1478 * The vma_is_shmem is not inline because it is used only by slow 1479 * paths in userfault. 1480 */ 1481bool vma_is_shmem(struct vm_area_struct *vma); 1482#else 1483static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1484#endif 1485 1486int vma_is_stack_for_current(struct vm_area_struct *vma); 1487 1488extern unsigned long move_page_tables(struct vm_area_struct *vma, 1489 unsigned long old_addr, struct vm_area_struct *new_vma, 1490 unsigned long new_addr, unsigned long len, 1491 bool need_rmap_locks); 1492extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1493 unsigned long end, pgprot_t newprot, 1494 int dirty_accountable, int prot_numa); 1495extern int mprotect_fixup(struct vm_area_struct *vma, 1496 struct vm_area_struct **pprev, unsigned long start, 1497 unsigned long end, unsigned long newflags); 1498 1499/* 1500 * doesn't attempt to fault and will return short. 1501 */ 1502int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1503 struct page **pages); 1504/* 1505 * per-process(per-mm_struct) statistics. 1506 */ 1507static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1508{ 1509 long val = atomic_long_read(&mm->rss_stat.count[member]); 1510 1511#ifdef SPLIT_RSS_COUNTING 1512 /* 1513 * counter is updated in asynchronous manner and may go to minus. 1514 * But it's never be expected number for users. 1515 */ 1516 if (val < 0) 1517 val = 0; 1518#endif 1519 return (unsigned long)val; 1520} 1521 1522static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1523{ 1524 atomic_long_add(value, &mm->rss_stat.count[member]); 1525} 1526 1527static inline void inc_mm_counter(struct mm_struct *mm, int member) 1528{ 1529 atomic_long_inc(&mm->rss_stat.count[member]); 1530} 1531 1532static inline void dec_mm_counter(struct mm_struct *mm, int member) 1533{ 1534 atomic_long_dec(&mm->rss_stat.count[member]); 1535} 1536 1537/* Optimized variant when page is already known not to be PageAnon */ 1538static inline int mm_counter_file(struct page *page) 1539{ 1540 if (PageSwapBacked(page)) 1541 return MM_SHMEMPAGES; 1542 return MM_FILEPAGES; 1543} 1544 1545static inline int mm_counter(struct page *page) 1546{ 1547 if (PageAnon(page)) 1548 return MM_ANONPAGES; 1549 return mm_counter_file(page); 1550} 1551 1552static inline unsigned long get_mm_rss(struct mm_struct *mm) 1553{ 1554 return get_mm_counter(mm, MM_FILEPAGES) + 1555 get_mm_counter(mm, MM_ANONPAGES) + 1556 get_mm_counter(mm, MM_SHMEMPAGES); 1557} 1558 1559static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1560{ 1561 return max(mm->hiwater_rss, get_mm_rss(mm)); 1562} 1563 1564static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1565{ 1566 return max(mm->hiwater_vm, mm->total_vm); 1567} 1568 1569static inline void update_hiwater_rss(struct mm_struct *mm) 1570{ 1571 unsigned long _rss = get_mm_rss(mm); 1572 1573 if ((mm)->hiwater_rss < _rss) 1574 (mm)->hiwater_rss = _rss; 1575} 1576 1577static inline void update_hiwater_vm(struct mm_struct *mm) 1578{ 1579 if (mm->hiwater_vm < mm->total_vm) 1580 mm->hiwater_vm = mm->total_vm; 1581} 1582 1583static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1584{ 1585 mm->hiwater_rss = get_mm_rss(mm); 1586} 1587 1588static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1589 struct mm_struct *mm) 1590{ 1591 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1592 1593 if (*maxrss < hiwater_rss) 1594 *maxrss = hiwater_rss; 1595} 1596 1597#if defined(SPLIT_RSS_COUNTING) 1598void sync_mm_rss(struct mm_struct *mm); 1599#else 1600static inline void sync_mm_rss(struct mm_struct *mm) 1601{ 1602} 1603#endif 1604 1605#ifndef __HAVE_ARCH_PTE_DEVMAP 1606static inline int pte_devmap(pte_t pte) 1607{ 1608 return 0; 1609} 1610#endif 1611 1612int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1613 1614extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1615 spinlock_t **ptl); 1616static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1617 spinlock_t **ptl) 1618{ 1619 pte_t *ptep; 1620 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1621 return ptep; 1622} 1623 1624#ifdef __PAGETABLE_P4D_FOLDED 1625static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1626 unsigned long address) 1627{ 1628 return 0; 1629} 1630#else 1631int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1632#endif 1633 1634#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1635static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1636 unsigned long address) 1637{ 1638 return 0; 1639} 1640static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1641static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1642 1643#else 1644int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1645 1646static inline void mm_inc_nr_puds(struct mm_struct *mm) 1647{ 1648 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1649} 1650 1651static inline void mm_dec_nr_puds(struct mm_struct *mm) 1652{ 1653 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1654} 1655#endif 1656 1657#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1658static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1659 unsigned long address) 1660{ 1661 return 0; 1662} 1663 1664static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1665static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1666 1667#else 1668int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1669 1670static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1671{ 1672 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1673} 1674 1675static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1676{ 1677 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1678} 1679#endif 1680 1681#ifdef CONFIG_MMU 1682static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 1683{ 1684 atomic_long_set(&mm->pgtables_bytes, 0); 1685} 1686 1687static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1688{ 1689 return atomic_long_read(&mm->pgtables_bytes); 1690} 1691 1692static inline void mm_inc_nr_ptes(struct mm_struct *mm) 1693{ 1694 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1695} 1696 1697static inline void mm_dec_nr_ptes(struct mm_struct *mm) 1698{ 1699 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1700} 1701#else 1702 1703static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 1704static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1705{ 1706 return 0; 1707} 1708 1709static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 1710static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 1711#endif 1712 1713int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1714int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1715 1716/* 1717 * The following ifdef needed to get the 4level-fixup.h header to work. 1718 * Remove it when 4level-fixup.h has been removed. 1719 */ 1720#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1721 1722#ifndef __ARCH_HAS_5LEVEL_HACK 1723static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1724 unsigned long address) 1725{ 1726 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1727 NULL : p4d_offset(pgd, address); 1728} 1729 1730static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1731 unsigned long address) 1732{ 1733 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1734 NULL : pud_offset(p4d, address); 1735} 1736#endif /* !__ARCH_HAS_5LEVEL_HACK */ 1737 1738static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1739{ 1740 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1741 NULL: pmd_offset(pud, address); 1742} 1743#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1744 1745#if USE_SPLIT_PTE_PTLOCKS 1746#if ALLOC_SPLIT_PTLOCKS 1747void __init ptlock_cache_init(void); 1748extern bool ptlock_alloc(struct page *page); 1749extern void ptlock_free(struct page *page); 1750 1751static inline spinlock_t *ptlock_ptr(struct page *page) 1752{ 1753 return page->ptl; 1754} 1755#else /* ALLOC_SPLIT_PTLOCKS */ 1756static inline void ptlock_cache_init(void) 1757{ 1758} 1759 1760static inline bool ptlock_alloc(struct page *page) 1761{ 1762 return true; 1763} 1764 1765static inline void ptlock_free(struct page *page) 1766{ 1767} 1768 1769static inline spinlock_t *ptlock_ptr(struct page *page) 1770{ 1771 return &page->ptl; 1772} 1773#endif /* ALLOC_SPLIT_PTLOCKS */ 1774 1775static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1776{ 1777 return ptlock_ptr(pmd_page(*pmd)); 1778} 1779 1780static inline bool ptlock_init(struct page *page) 1781{ 1782 /* 1783 * prep_new_page() initialize page->private (and therefore page->ptl) 1784 * with 0. Make sure nobody took it in use in between. 1785 * 1786 * It can happen if arch try to use slab for page table allocation: 1787 * slab code uses page->slab_cache, which share storage with page->ptl. 1788 */ 1789 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1790 if (!ptlock_alloc(page)) 1791 return false; 1792 spin_lock_init(ptlock_ptr(page)); 1793 return true; 1794} 1795 1796/* Reset page->mapping so free_pages_check won't complain. */ 1797static inline void pte_lock_deinit(struct page *page) 1798{ 1799 page->mapping = NULL; 1800 ptlock_free(page); 1801} 1802 1803#else /* !USE_SPLIT_PTE_PTLOCKS */ 1804/* 1805 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1806 */ 1807static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1808{ 1809 return &mm->page_table_lock; 1810} 1811static inline void ptlock_cache_init(void) {} 1812static inline bool ptlock_init(struct page *page) { return true; } 1813static inline void pte_lock_deinit(struct page *page) {} 1814#endif /* USE_SPLIT_PTE_PTLOCKS */ 1815 1816static inline void pgtable_init(void) 1817{ 1818 ptlock_cache_init(); 1819 pgtable_cache_init(); 1820} 1821 1822static inline bool pgtable_page_ctor(struct page *page) 1823{ 1824 if (!ptlock_init(page)) 1825 return false; 1826 inc_zone_page_state(page, NR_PAGETABLE); 1827 return true; 1828} 1829 1830static inline void pgtable_page_dtor(struct page *page) 1831{ 1832 pte_lock_deinit(page); 1833 dec_zone_page_state(page, NR_PAGETABLE); 1834} 1835 1836#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1837({ \ 1838 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1839 pte_t *__pte = pte_offset_map(pmd, address); \ 1840 *(ptlp) = __ptl; \ 1841 spin_lock(__ptl); \ 1842 __pte; \ 1843}) 1844 1845#define pte_unmap_unlock(pte, ptl) do { \ 1846 spin_unlock(ptl); \ 1847 pte_unmap(pte); \ 1848} while (0) 1849 1850#define pte_alloc(mm, pmd, address) \ 1851 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1852 1853#define pte_alloc_map(mm, pmd, address) \ 1854 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1855 1856#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1857 (pte_alloc(mm, pmd, address) ? \ 1858 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1859 1860#define pte_alloc_kernel(pmd, address) \ 1861 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1862 NULL: pte_offset_kernel(pmd, address)) 1863 1864#if USE_SPLIT_PMD_PTLOCKS 1865 1866static struct page *pmd_to_page(pmd_t *pmd) 1867{ 1868 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1869 return virt_to_page((void *)((unsigned long) pmd & mask)); 1870} 1871 1872static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1873{ 1874 return ptlock_ptr(pmd_to_page(pmd)); 1875} 1876 1877static inline bool pgtable_pmd_page_ctor(struct page *page) 1878{ 1879#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1880 page->pmd_huge_pte = NULL; 1881#endif 1882 return ptlock_init(page); 1883} 1884 1885static inline void pgtable_pmd_page_dtor(struct page *page) 1886{ 1887#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1888 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1889#endif 1890 ptlock_free(page); 1891} 1892 1893#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1894 1895#else 1896 1897static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1898{ 1899 return &mm->page_table_lock; 1900} 1901 1902static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1903static inline void pgtable_pmd_page_dtor(struct page *page) {} 1904 1905#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1906 1907#endif 1908 1909static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1910{ 1911 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1912 spin_lock(ptl); 1913 return ptl; 1914} 1915 1916/* 1917 * No scalability reason to split PUD locks yet, but follow the same pattern 1918 * as the PMD locks to make it easier if we decide to. The VM should not be 1919 * considered ready to switch to split PUD locks yet; there may be places 1920 * which need to be converted from page_table_lock. 1921 */ 1922static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 1923{ 1924 return &mm->page_table_lock; 1925} 1926 1927static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 1928{ 1929 spinlock_t *ptl = pud_lockptr(mm, pud); 1930 1931 spin_lock(ptl); 1932 return ptl; 1933} 1934 1935extern void __init pagecache_init(void); 1936extern void free_area_init(unsigned long * zones_size); 1937extern void free_area_init_node(int nid, unsigned long * zones_size, 1938 unsigned long zone_start_pfn, unsigned long *zholes_size); 1939extern void free_initmem(void); 1940 1941/* 1942 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1943 * into the buddy system. The freed pages will be poisoned with pattern 1944 * "poison" if it's within range [0, UCHAR_MAX]. 1945 * Return pages freed into the buddy system. 1946 */ 1947extern unsigned long free_reserved_area(void *start, void *end, 1948 int poison, char *s); 1949 1950#ifdef CONFIG_HIGHMEM 1951/* 1952 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1953 * and totalram_pages. 1954 */ 1955extern void free_highmem_page(struct page *page); 1956#endif 1957 1958extern void adjust_managed_page_count(struct page *page, long count); 1959extern void mem_init_print_info(const char *str); 1960 1961extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 1962 1963/* Free the reserved page into the buddy system, so it gets managed. */ 1964static inline void __free_reserved_page(struct page *page) 1965{ 1966 ClearPageReserved(page); 1967 init_page_count(page); 1968 __free_page(page); 1969} 1970 1971static inline void free_reserved_page(struct page *page) 1972{ 1973 __free_reserved_page(page); 1974 adjust_managed_page_count(page, 1); 1975} 1976 1977static inline void mark_page_reserved(struct page *page) 1978{ 1979 SetPageReserved(page); 1980 adjust_managed_page_count(page, -1); 1981} 1982 1983/* 1984 * Default method to free all the __init memory into the buddy system. 1985 * The freed pages will be poisoned with pattern "poison" if it's within 1986 * range [0, UCHAR_MAX]. 1987 * Return pages freed into the buddy system. 1988 */ 1989static inline unsigned long free_initmem_default(int poison) 1990{ 1991 extern char __init_begin[], __init_end[]; 1992 1993 return free_reserved_area(&__init_begin, &__init_end, 1994 poison, "unused kernel"); 1995} 1996 1997static inline unsigned long get_num_physpages(void) 1998{ 1999 int nid; 2000 unsigned long phys_pages = 0; 2001 2002 for_each_online_node(nid) 2003 phys_pages += node_present_pages(nid); 2004 2005 return phys_pages; 2006} 2007 2008#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 2009/* 2010 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 2011 * zones, allocate the backing mem_map and account for memory holes in a more 2012 * architecture independent manner. This is a substitute for creating the 2013 * zone_sizes[] and zholes_size[] arrays and passing them to 2014 * free_area_init_node() 2015 * 2016 * An architecture is expected to register range of page frames backed by 2017 * physical memory with memblock_add[_node]() before calling 2018 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2019 * usage, an architecture is expected to do something like 2020 * 2021 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2022 * max_highmem_pfn}; 2023 * for_each_valid_physical_page_range() 2024 * memblock_add_node(base, size, nid) 2025 * free_area_init_nodes(max_zone_pfns); 2026 * 2027 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2028 * registered physical page range. Similarly 2029 * sparse_memory_present_with_active_regions() calls memory_present() for 2030 * each range when SPARSEMEM is enabled. 2031 * 2032 * See mm/page_alloc.c for more information on each function exposed by 2033 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2034 */ 2035extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2036unsigned long node_map_pfn_alignment(void); 2037unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2038 unsigned long end_pfn); 2039extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2040 unsigned long end_pfn); 2041extern void get_pfn_range_for_nid(unsigned int nid, 2042 unsigned long *start_pfn, unsigned long *end_pfn); 2043extern unsigned long find_min_pfn_with_active_regions(void); 2044extern void free_bootmem_with_active_regions(int nid, 2045 unsigned long max_low_pfn); 2046extern void sparse_memory_present_with_active_regions(int nid); 2047 2048#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2049 2050#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2051 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2052static inline int __early_pfn_to_nid(unsigned long pfn, 2053 struct mminit_pfnnid_cache *state) 2054{ 2055 return 0; 2056} 2057#else 2058/* please see mm/page_alloc.c */ 2059extern int __meminit early_pfn_to_nid(unsigned long pfn); 2060/* there is a per-arch backend function. */ 2061extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2062 struct mminit_pfnnid_cache *state); 2063#endif 2064 2065#ifdef CONFIG_HAVE_MEMBLOCK 2066void zero_resv_unavail(void); 2067#else 2068static inline void zero_resv_unavail(void) {} 2069#endif 2070 2071extern void set_dma_reserve(unsigned long new_dma_reserve); 2072extern void memmap_init_zone(unsigned long, int, unsigned long, 2073 unsigned long, enum memmap_context); 2074extern void setup_per_zone_wmarks(void); 2075extern int __meminit init_per_zone_wmark_min(void); 2076extern void mem_init(void); 2077extern void __init mmap_init(void); 2078extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2079extern long si_mem_available(void); 2080extern void si_meminfo(struct sysinfo * val); 2081extern void si_meminfo_node(struct sysinfo *val, int nid); 2082#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2083extern unsigned long arch_reserved_kernel_pages(void); 2084#endif 2085 2086extern __printf(3, 4) 2087void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2088 2089extern void setup_per_cpu_pageset(void); 2090 2091extern void zone_pcp_update(struct zone *zone); 2092extern void zone_pcp_reset(struct zone *zone); 2093 2094/* page_alloc.c */ 2095extern int min_free_kbytes; 2096extern int watermark_scale_factor; 2097 2098/* nommu.c */ 2099extern atomic_long_t mmap_pages_allocated; 2100extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2101 2102/* interval_tree.c */ 2103void vma_interval_tree_insert(struct vm_area_struct *node, 2104 struct rb_root_cached *root); 2105void vma_interval_tree_insert_after(struct vm_area_struct *node, 2106 struct vm_area_struct *prev, 2107 struct rb_root_cached *root); 2108void vma_interval_tree_remove(struct vm_area_struct *node, 2109 struct rb_root_cached *root); 2110struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2111 unsigned long start, unsigned long last); 2112struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2113 unsigned long start, unsigned long last); 2114 2115#define vma_interval_tree_foreach(vma, root, start, last) \ 2116 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2117 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2118 2119void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2120 struct rb_root_cached *root); 2121void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2122 struct rb_root_cached *root); 2123struct anon_vma_chain * 2124anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2125 unsigned long start, unsigned long last); 2126struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2127 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2128#ifdef CONFIG_DEBUG_VM_RB 2129void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2130#endif 2131 2132#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2133 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2134 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2135 2136/* mmap.c */ 2137extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2138extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2139 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2140 struct vm_area_struct *expand); 2141static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2142 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2143{ 2144 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2145} 2146extern struct vm_area_struct *vma_merge(struct mm_struct *, 2147 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2148 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2149 struct mempolicy *, struct vm_userfaultfd_ctx); 2150extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2151extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2152 unsigned long addr, int new_below); 2153extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2154 unsigned long addr, int new_below); 2155extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2156extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2157 struct rb_node **, struct rb_node *); 2158extern void unlink_file_vma(struct vm_area_struct *); 2159extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2160 unsigned long addr, unsigned long len, pgoff_t pgoff, 2161 bool *need_rmap_locks); 2162extern void exit_mmap(struct mm_struct *); 2163 2164static inline int check_data_rlimit(unsigned long rlim, 2165 unsigned long new, 2166 unsigned long start, 2167 unsigned long end_data, 2168 unsigned long start_data) 2169{ 2170 if (rlim < RLIM_INFINITY) { 2171 if (((new - start) + (end_data - start_data)) > rlim) 2172 return -ENOSPC; 2173 } 2174 2175 return 0; 2176} 2177 2178extern int mm_take_all_locks(struct mm_struct *mm); 2179extern void mm_drop_all_locks(struct mm_struct *mm); 2180 2181extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2182extern struct file *get_mm_exe_file(struct mm_struct *mm); 2183extern struct file *get_task_exe_file(struct task_struct *task); 2184 2185extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2186extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2187 2188extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2189 const struct vm_special_mapping *sm); 2190extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2191 unsigned long addr, unsigned long len, 2192 unsigned long flags, 2193 const struct vm_special_mapping *spec); 2194/* This is an obsolete alternative to _install_special_mapping. */ 2195extern int install_special_mapping(struct mm_struct *mm, 2196 unsigned long addr, unsigned long len, 2197 unsigned long flags, struct page **pages); 2198 2199extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2200 2201extern unsigned long mmap_region(struct file *file, unsigned long addr, 2202 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2203 struct list_head *uf); 2204extern unsigned long do_mmap(struct file *file, unsigned long addr, 2205 unsigned long len, unsigned long prot, unsigned long flags, 2206 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2207 struct list_head *uf); 2208extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2209 struct list_head *uf); 2210 2211static inline unsigned long 2212do_mmap_pgoff(struct file *file, unsigned long addr, 2213 unsigned long len, unsigned long prot, unsigned long flags, 2214 unsigned long pgoff, unsigned long *populate, 2215 struct list_head *uf) 2216{ 2217 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2218} 2219 2220#ifdef CONFIG_MMU 2221extern int __mm_populate(unsigned long addr, unsigned long len, 2222 int ignore_errors); 2223static inline void mm_populate(unsigned long addr, unsigned long len) 2224{ 2225 /* Ignore errors */ 2226 (void) __mm_populate(addr, len, 1); 2227} 2228#else 2229static inline void mm_populate(unsigned long addr, unsigned long len) {} 2230#endif 2231 2232/* These take the mm semaphore themselves */ 2233extern int __must_check vm_brk(unsigned long, unsigned long); 2234extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2235extern int vm_munmap(unsigned long, size_t); 2236extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2237 unsigned long, unsigned long, 2238 unsigned long, unsigned long); 2239 2240struct vm_unmapped_area_info { 2241#define VM_UNMAPPED_AREA_TOPDOWN 1 2242 unsigned long flags; 2243 unsigned long length; 2244 unsigned long low_limit; 2245 unsigned long high_limit; 2246 unsigned long align_mask; 2247 unsigned long align_offset; 2248}; 2249 2250extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2251extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2252 2253/* 2254 * Search for an unmapped address range. 2255 * 2256 * We are looking for a range that: 2257 * - does not intersect with any VMA; 2258 * - is contained within the [low_limit, high_limit) interval; 2259 * - is at least the desired size. 2260 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2261 */ 2262static inline unsigned long 2263vm_unmapped_area(struct vm_unmapped_area_info *info) 2264{ 2265 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2266 return unmapped_area_topdown(info); 2267 else 2268 return unmapped_area(info); 2269} 2270 2271/* truncate.c */ 2272extern void truncate_inode_pages(struct address_space *, loff_t); 2273extern void truncate_inode_pages_range(struct address_space *, 2274 loff_t lstart, loff_t lend); 2275extern void truncate_inode_pages_final(struct address_space *); 2276 2277/* generic vm_area_ops exported for stackable file systems */ 2278extern int filemap_fault(struct vm_fault *vmf); 2279extern void filemap_map_pages(struct vm_fault *vmf, 2280 pgoff_t start_pgoff, pgoff_t end_pgoff); 2281extern int filemap_page_mkwrite(struct vm_fault *vmf); 2282 2283/* mm/page-writeback.c */ 2284int __must_check write_one_page(struct page *page); 2285void task_dirty_inc(struct task_struct *tsk); 2286 2287/* readahead.c */ 2288#define VM_MAX_READAHEAD 128 /* kbytes */ 2289#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2290 2291int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2292 pgoff_t offset, unsigned long nr_to_read); 2293 2294void page_cache_sync_readahead(struct address_space *mapping, 2295 struct file_ra_state *ra, 2296 struct file *filp, 2297 pgoff_t offset, 2298 unsigned long size); 2299 2300void page_cache_async_readahead(struct address_space *mapping, 2301 struct file_ra_state *ra, 2302 struct file *filp, 2303 struct page *pg, 2304 pgoff_t offset, 2305 unsigned long size); 2306 2307extern unsigned long stack_guard_gap; 2308/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2309extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2310 2311/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2312extern int expand_downwards(struct vm_area_struct *vma, 2313 unsigned long address); 2314#if VM_GROWSUP 2315extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2316#else 2317 #define expand_upwards(vma, address) (0) 2318#endif 2319 2320/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2321extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2322extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2323 struct vm_area_struct **pprev); 2324 2325/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2326 NULL if none. Assume start_addr < end_addr. */ 2327static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2328{ 2329 struct vm_area_struct * vma = find_vma(mm,start_addr); 2330 2331 if (vma && end_addr <= vma->vm_start) 2332 vma = NULL; 2333 return vma; 2334} 2335 2336static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2337{ 2338 unsigned long vm_start = vma->vm_start; 2339 2340 if (vma->vm_flags & VM_GROWSDOWN) { 2341 vm_start -= stack_guard_gap; 2342 if (vm_start > vma->vm_start) 2343 vm_start = 0; 2344 } 2345 return vm_start; 2346} 2347 2348static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2349{ 2350 unsigned long vm_end = vma->vm_end; 2351 2352 if (vma->vm_flags & VM_GROWSUP) { 2353 vm_end += stack_guard_gap; 2354 if (vm_end < vma->vm_end) 2355 vm_end = -PAGE_SIZE; 2356 } 2357 return vm_end; 2358} 2359 2360static inline unsigned long vma_pages(struct vm_area_struct *vma) 2361{ 2362 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2363} 2364 2365/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2366static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2367 unsigned long vm_start, unsigned long vm_end) 2368{ 2369 struct vm_area_struct *vma = find_vma(mm, vm_start); 2370 2371 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2372 vma = NULL; 2373 2374 return vma; 2375} 2376 2377#ifdef CONFIG_MMU 2378pgprot_t vm_get_page_prot(unsigned long vm_flags); 2379void vma_set_page_prot(struct vm_area_struct *vma); 2380#else 2381static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2382{ 2383 return __pgprot(0); 2384} 2385static inline void vma_set_page_prot(struct vm_area_struct *vma) 2386{ 2387 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2388} 2389#endif 2390 2391#ifdef CONFIG_NUMA_BALANCING 2392unsigned long change_prot_numa(struct vm_area_struct *vma, 2393 unsigned long start, unsigned long end); 2394#endif 2395 2396struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2397int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2398 unsigned long pfn, unsigned long size, pgprot_t); 2399int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2400int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2401 unsigned long pfn); 2402int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2403 unsigned long pfn, pgprot_t pgprot); 2404int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2405 pfn_t pfn); 2406int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr, 2407 pfn_t pfn); 2408int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2409 2410 2411struct page *follow_page_mask(struct vm_area_struct *vma, 2412 unsigned long address, unsigned int foll_flags, 2413 unsigned int *page_mask); 2414 2415static inline struct page *follow_page(struct vm_area_struct *vma, 2416 unsigned long address, unsigned int foll_flags) 2417{ 2418 unsigned int unused_page_mask; 2419 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2420} 2421 2422#define FOLL_WRITE 0x01 /* check pte is writable */ 2423#define FOLL_TOUCH 0x02 /* mark page accessed */ 2424#define FOLL_GET 0x04 /* do get_page on page */ 2425#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2426#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2427#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2428 * and return without waiting upon it */ 2429#define FOLL_POPULATE 0x40 /* fault in page */ 2430#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2431#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2432#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2433#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2434#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2435#define FOLL_MLOCK 0x1000 /* lock present pages */ 2436#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2437#define FOLL_COW 0x4000 /* internal GUP flag */ 2438 2439static inline int vm_fault_to_errno(int vm_fault, int foll_flags) 2440{ 2441 if (vm_fault & VM_FAULT_OOM) 2442 return -ENOMEM; 2443 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2444 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2445 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2446 return -EFAULT; 2447 return 0; 2448} 2449 2450typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2451 void *data); 2452extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2453 unsigned long size, pte_fn_t fn, void *data); 2454 2455 2456#ifdef CONFIG_PAGE_POISONING 2457extern bool page_poisoning_enabled(void); 2458extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2459extern bool page_is_poisoned(struct page *page); 2460#else 2461static inline bool page_poisoning_enabled(void) { return false; } 2462static inline void kernel_poison_pages(struct page *page, int numpages, 2463 int enable) { } 2464static inline bool page_is_poisoned(struct page *page) { return false; } 2465#endif 2466 2467#ifdef CONFIG_DEBUG_PAGEALLOC 2468extern bool _debug_pagealloc_enabled; 2469extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2470 2471static inline bool debug_pagealloc_enabled(void) 2472{ 2473 return _debug_pagealloc_enabled; 2474} 2475 2476static inline void 2477kernel_map_pages(struct page *page, int numpages, int enable) 2478{ 2479 if (!debug_pagealloc_enabled()) 2480 return; 2481 2482 __kernel_map_pages(page, numpages, enable); 2483} 2484#ifdef CONFIG_HIBERNATION 2485extern bool kernel_page_present(struct page *page); 2486#endif /* CONFIG_HIBERNATION */ 2487#else /* CONFIG_DEBUG_PAGEALLOC */ 2488static inline void 2489kernel_map_pages(struct page *page, int numpages, int enable) {} 2490#ifdef CONFIG_HIBERNATION 2491static inline bool kernel_page_present(struct page *page) { return true; } 2492#endif /* CONFIG_HIBERNATION */ 2493static inline bool debug_pagealloc_enabled(void) 2494{ 2495 return false; 2496} 2497#endif /* CONFIG_DEBUG_PAGEALLOC */ 2498 2499#ifdef __HAVE_ARCH_GATE_AREA 2500extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2501extern int in_gate_area_no_mm(unsigned long addr); 2502extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2503#else 2504static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2505{ 2506 return NULL; 2507} 2508static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2509static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2510{ 2511 return 0; 2512} 2513#endif /* __HAVE_ARCH_GATE_AREA */ 2514 2515extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2516 2517#ifdef CONFIG_SYSCTL 2518extern int sysctl_drop_caches; 2519int drop_caches_sysctl_handler(struct ctl_table *, int, 2520 void __user *, size_t *, loff_t *); 2521#endif 2522 2523void drop_slab(void); 2524void drop_slab_node(int nid); 2525 2526#ifndef CONFIG_MMU 2527#define randomize_va_space 0 2528#else 2529extern int randomize_va_space; 2530#endif 2531 2532const char * arch_vma_name(struct vm_area_struct *vma); 2533void print_vma_addr(char *prefix, unsigned long rip); 2534 2535void sparse_mem_maps_populate_node(struct page **map_map, 2536 unsigned long pnum_begin, 2537 unsigned long pnum_end, 2538 unsigned long map_count, 2539 int nodeid); 2540 2541struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2542pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2543p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2544pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2545pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2546pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2547void *vmemmap_alloc_block(unsigned long size, int node); 2548struct vmem_altmap; 2549void *__vmemmap_alloc_block_buf(unsigned long size, int node, 2550 struct vmem_altmap *altmap); 2551static inline void *vmemmap_alloc_block_buf(unsigned long size, int node) 2552{ 2553 return __vmemmap_alloc_block_buf(size, node, NULL); 2554} 2555 2556void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2557int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2558 int node); 2559int vmemmap_populate(unsigned long start, unsigned long end, int node); 2560void vmemmap_populate_print_last(void); 2561#ifdef CONFIG_MEMORY_HOTPLUG 2562void vmemmap_free(unsigned long start, unsigned long end); 2563#endif 2564void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2565 unsigned long nr_pages); 2566 2567enum mf_flags { 2568 MF_COUNT_INCREASED = 1 << 0, 2569 MF_ACTION_REQUIRED = 1 << 1, 2570 MF_MUST_KILL = 1 << 2, 2571 MF_SOFT_OFFLINE = 1 << 3, 2572}; 2573extern int memory_failure(unsigned long pfn, int trapno, int flags); 2574extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2575extern int unpoison_memory(unsigned long pfn); 2576extern int get_hwpoison_page(struct page *page); 2577#define put_hwpoison_page(page) put_page(page) 2578extern int sysctl_memory_failure_early_kill; 2579extern int sysctl_memory_failure_recovery; 2580extern void shake_page(struct page *p, int access); 2581extern atomic_long_t num_poisoned_pages; 2582extern int soft_offline_page(struct page *page, int flags); 2583 2584 2585/* 2586 * Error handlers for various types of pages. 2587 */ 2588enum mf_result { 2589 MF_IGNORED, /* Error: cannot be handled */ 2590 MF_FAILED, /* Error: handling failed */ 2591 MF_DELAYED, /* Will be handled later */ 2592 MF_RECOVERED, /* Successfully recovered */ 2593}; 2594 2595enum mf_action_page_type { 2596 MF_MSG_KERNEL, 2597 MF_MSG_KERNEL_HIGH_ORDER, 2598 MF_MSG_SLAB, 2599 MF_MSG_DIFFERENT_COMPOUND, 2600 MF_MSG_POISONED_HUGE, 2601 MF_MSG_HUGE, 2602 MF_MSG_FREE_HUGE, 2603 MF_MSG_UNMAP_FAILED, 2604 MF_MSG_DIRTY_SWAPCACHE, 2605 MF_MSG_CLEAN_SWAPCACHE, 2606 MF_MSG_DIRTY_MLOCKED_LRU, 2607 MF_MSG_CLEAN_MLOCKED_LRU, 2608 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2609 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2610 MF_MSG_DIRTY_LRU, 2611 MF_MSG_CLEAN_LRU, 2612 MF_MSG_TRUNCATED_LRU, 2613 MF_MSG_BUDDY, 2614 MF_MSG_BUDDY_2ND, 2615 MF_MSG_UNKNOWN, 2616}; 2617 2618#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2619extern void clear_huge_page(struct page *page, 2620 unsigned long addr_hint, 2621 unsigned int pages_per_huge_page); 2622extern void copy_user_huge_page(struct page *dst, struct page *src, 2623 unsigned long addr, struct vm_area_struct *vma, 2624 unsigned int pages_per_huge_page); 2625extern long copy_huge_page_from_user(struct page *dst_page, 2626 const void __user *usr_src, 2627 unsigned int pages_per_huge_page, 2628 bool allow_pagefault); 2629#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2630 2631extern struct page_ext_operations debug_guardpage_ops; 2632 2633#ifdef CONFIG_DEBUG_PAGEALLOC 2634extern unsigned int _debug_guardpage_minorder; 2635extern bool _debug_guardpage_enabled; 2636 2637static inline unsigned int debug_guardpage_minorder(void) 2638{ 2639 return _debug_guardpage_minorder; 2640} 2641 2642static inline bool debug_guardpage_enabled(void) 2643{ 2644 return _debug_guardpage_enabled; 2645} 2646 2647static inline bool page_is_guard(struct page *page) 2648{ 2649 struct page_ext *page_ext; 2650 2651 if (!debug_guardpage_enabled()) 2652 return false; 2653 2654 page_ext = lookup_page_ext(page); 2655 if (unlikely(!page_ext)) 2656 return false; 2657 2658 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2659} 2660#else 2661static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2662static inline bool debug_guardpage_enabled(void) { return false; } 2663static inline bool page_is_guard(struct page *page) { return false; } 2664#endif /* CONFIG_DEBUG_PAGEALLOC */ 2665 2666#if MAX_NUMNODES > 1 2667void __init setup_nr_node_ids(void); 2668#else 2669static inline void setup_nr_node_ids(void) {} 2670#endif 2671 2672#endif /* __KERNEL__ */ 2673#endif /* _LINUX_MM_H */