at v4.15 29 kB view raw
1/* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20#ifndef _LINUX_MEMCONTROL_H 21#define _LINUX_MEMCONTROL_H 22#include <linux/cgroup.h> 23#include <linux/vm_event_item.h> 24#include <linux/hardirq.h> 25#include <linux/jump_label.h> 26#include <linux/page_counter.h> 27#include <linux/vmpressure.h> 28#include <linux/eventfd.h> 29#include <linux/mm.h> 30#include <linux/vmstat.h> 31#include <linux/writeback.h> 32#include <linux/page-flags.h> 33 34struct mem_cgroup; 35struct page; 36struct mm_struct; 37struct kmem_cache; 38 39/* Cgroup-specific page state, on top of universal node page state */ 40enum memcg_stat_item { 41 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS, 42 MEMCG_RSS, 43 MEMCG_RSS_HUGE, 44 MEMCG_SWAP, 45 MEMCG_SOCK, 46 /* XXX: why are these zone and not node counters? */ 47 MEMCG_KERNEL_STACK_KB, 48 MEMCG_NR_STAT, 49}; 50 51/* Cgroup-specific events, on top of universal VM events */ 52enum memcg_event_item { 53 MEMCG_LOW = NR_VM_EVENT_ITEMS, 54 MEMCG_HIGH, 55 MEMCG_MAX, 56 MEMCG_OOM, 57 MEMCG_NR_EVENTS, 58}; 59 60struct mem_cgroup_reclaim_cookie { 61 pg_data_t *pgdat; 62 int priority; 63 unsigned int generation; 64}; 65 66#ifdef CONFIG_MEMCG 67 68#define MEM_CGROUP_ID_SHIFT 16 69#define MEM_CGROUP_ID_MAX USHRT_MAX 70 71struct mem_cgroup_id { 72 int id; 73 atomic_t ref; 74}; 75 76/* 77 * Per memcg event counter is incremented at every pagein/pageout. With THP, 78 * it will be incremated by the number of pages. This counter is used for 79 * for trigger some periodic events. This is straightforward and better 80 * than using jiffies etc. to handle periodic memcg event. 81 */ 82enum mem_cgroup_events_target { 83 MEM_CGROUP_TARGET_THRESH, 84 MEM_CGROUP_TARGET_SOFTLIMIT, 85 MEM_CGROUP_TARGET_NUMAINFO, 86 MEM_CGROUP_NTARGETS, 87}; 88 89struct mem_cgroup_stat_cpu { 90 long count[MEMCG_NR_STAT]; 91 unsigned long events[MEMCG_NR_EVENTS]; 92 unsigned long nr_page_events; 93 unsigned long targets[MEM_CGROUP_NTARGETS]; 94}; 95 96struct mem_cgroup_reclaim_iter { 97 struct mem_cgroup *position; 98 /* scan generation, increased every round-trip */ 99 unsigned int generation; 100}; 101 102struct lruvec_stat { 103 long count[NR_VM_NODE_STAT_ITEMS]; 104}; 105 106/* 107 * per-zone information in memory controller. 108 */ 109struct mem_cgroup_per_node { 110 struct lruvec lruvec; 111 struct lruvec_stat __percpu *lruvec_stat; 112 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 113 114 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1]; 115 116 struct rb_node tree_node; /* RB tree node */ 117 unsigned long usage_in_excess;/* Set to the value by which */ 118 /* the soft limit is exceeded*/ 119 bool on_tree; 120 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 121 /* use container_of */ 122}; 123 124struct mem_cgroup_threshold { 125 struct eventfd_ctx *eventfd; 126 unsigned long threshold; 127}; 128 129/* For threshold */ 130struct mem_cgroup_threshold_ary { 131 /* An array index points to threshold just below or equal to usage. */ 132 int current_threshold; 133 /* Size of entries[] */ 134 unsigned int size; 135 /* Array of thresholds */ 136 struct mem_cgroup_threshold entries[0]; 137}; 138 139struct mem_cgroup_thresholds { 140 /* Primary thresholds array */ 141 struct mem_cgroup_threshold_ary *primary; 142 /* 143 * Spare threshold array. 144 * This is needed to make mem_cgroup_unregister_event() "never fail". 145 * It must be able to store at least primary->size - 1 entries. 146 */ 147 struct mem_cgroup_threshold_ary *spare; 148}; 149 150enum memcg_kmem_state { 151 KMEM_NONE, 152 KMEM_ALLOCATED, 153 KMEM_ONLINE, 154}; 155 156/* 157 * The memory controller data structure. The memory controller controls both 158 * page cache and RSS per cgroup. We would eventually like to provide 159 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 160 * to help the administrator determine what knobs to tune. 161 */ 162struct mem_cgroup { 163 struct cgroup_subsys_state css; 164 165 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 166 struct mem_cgroup_id id; 167 168 /* Accounted resources */ 169 struct page_counter memory; 170 struct page_counter swap; 171 172 /* Legacy consumer-oriented counters */ 173 struct page_counter memsw; 174 struct page_counter kmem; 175 struct page_counter tcpmem; 176 177 /* Normal memory consumption range */ 178 unsigned long low; 179 unsigned long high; 180 181 /* Range enforcement for interrupt charges */ 182 struct work_struct high_work; 183 184 unsigned long soft_limit; 185 186 /* vmpressure notifications */ 187 struct vmpressure vmpressure; 188 189 /* 190 * Should the accounting and control be hierarchical, per subtree? 191 */ 192 bool use_hierarchy; 193 194 /* protected by memcg_oom_lock */ 195 bool oom_lock; 196 int under_oom; 197 198 int swappiness; 199 /* OOM-Killer disable */ 200 int oom_kill_disable; 201 202 /* handle for "memory.events" */ 203 struct cgroup_file events_file; 204 205 /* protect arrays of thresholds */ 206 struct mutex thresholds_lock; 207 208 /* thresholds for memory usage. RCU-protected */ 209 struct mem_cgroup_thresholds thresholds; 210 211 /* thresholds for mem+swap usage. RCU-protected */ 212 struct mem_cgroup_thresholds memsw_thresholds; 213 214 /* For oom notifier event fd */ 215 struct list_head oom_notify; 216 217 /* 218 * Should we move charges of a task when a task is moved into this 219 * mem_cgroup ? And what type of charges should we move ? 220 */ 221 unsigned long move_charge_at_immigrate; 222 /* 223 * set > 0 if pages under this cgroup are moving to other cgroup. 224 */ 225 atomic_t moving_account; 226 /* taken only while moving_account > 0 */ 227 spinlock_t move_lock; 228 struct task_struct *move_lock_task; 229 unsigned long move_lock_flags; 230 /* 231 * percpu counter. 232 */ 233 struct mem_cgroup_stat_cpu __percpu *stat; 234 235 unsigned long socket_pressure; 236 237 /* Legacy tcp memory accounting */ 238 bool tcpmem_active; 239 int tcpmem_pressure; 240 241#ifndef CONFIG_SLOB 242 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 243 int kmemcg_id; 244 enum memcg_kmem_state kmem_state; 245 struct list_head kmem_caches; 246#endif 247 248 int last_scanned_node; 249#if MAX_NUMNODES > 1 250 nodemask_t scan_nodes; 251 atomic_t numainfo_events; 252 atomic_t numainfo_updating; 253#endif 254 255#ifdef CONFIG_CGROUP_WRITEBACK 256 struct list_head cgwb_list; 257 struct wb_domain cgwb_domain; 258#endif 259 260 /* List of events which userspace want to receive */ 261 struct list_head event_list; 262 spinlock_t event_list_lock; 263 264 struct mem_cgroup_per_node *nodeinfo[0]; 265 /* WARNING: nodeinfo must be the last member here */ 266}; 267 268extern struct mem_cgroup *root_mem_cgroup; 269 270static inline bool mem_cgroup_disabled(void) 271{ 272 return !cgroup_subsys_enabled(memory_cgrp_subsys); 273} 274 275static inline void mem_cgroup_event(struct mem_cgroup *memcg, 276 enum memcg_event_item event) 277{ 278 this_cpu_inc(memcg->stat->events[event]); 279 cgroup_file_notify(&memcg->events_file); 280} 281 282bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg); 283 284int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 285 gfp_t gfp_mask, struct mem_cgroup **memcgp, 286 bool compound); 287void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 288 bool lrucare, bool compound); 289void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 290 bool compound); 291void mem_cgroup_uncharge(struct page *page); 292void mem_cgroup_uncharge_list(struct list_head *page_list); 293 294void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 295 296static struct mem_cgroup_per_node * 297mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 298{ 299 return memcg->nodeinfo[nid]; 300} 301 302/** 303 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone 304 * @node: node of the wanted lruvec 305 * @memcg: memcg of the wanted lruvec 306 * 307 * Returns the lru list vector holding pages for a given @node or a given 308 * @memcg and @zone. This can be the node lruvec, if the memory controller 309 * is disabled. 310 */ 311static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 312 struct mem_cgroup *memcg) 313{ 314 struct mem_cgroup_per_node *mz; 315 struct lruvec *lruvec; 316 317 if (mem_cgroup_disabled()) { 318 lruvec = node_lruvec(pgdat); 319 goto out; 320 } 321 322 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 323 lruvec = &mz->lruvec; 324out: 325 /* 326 * Since a node can be onlined after the mem_cgroup was created, 327 * we have to be prepared to initialize lruvec->pgdat here; 328 * and if offlined then reonlined, we need to reinitialize it. 329 */ 330 if (unlikely(lruvec->pgdat != pgdat)) 331 lruvec->pgdat = pgdat; 332 return lruvec; 333} 334 335struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); 336 337bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg); 338struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 339 340static inline 341struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 342 return css ? container_of(css, struct mem_cgroup, css) : NULL; 343} 344 345#define mem_cgroup_from_counter(counter, member) \ 346 container_of(counter, struct mem_cgroup, member) 347 348struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 349 struct mem_cgroup *, 350 struct mem_cgroup_reclaim_cookie *); 351void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 352int mem_cgroup_scan_tasks(struct mem_cgroup *, 353 int (*)(struct task_struct *, void *), void *); 354 355static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 356{ 357 if (mem_cgroup_disabled()) 358 return 0; 359 360 return memcg->id.id; 361} 362struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 363 364static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 365{ 366 struct mem_cgroup_per_node *mz; 367 368 if (mem_cgroup_disabled()) 369 return NULL; 370 371 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 372 return mz->memcg; 373} 374 375/** 376 * parent_mem_cgroup - find the accounting parent of a memcg 377 * @memcg: memcg whose parent to find 378 * 379 * Returns the parent memcg, or NULL if this is the root or the memory 380 * controller is in legacy no-hierarchy mode. 381 */ 382static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 383{ 384 if (!memcg->memory.parent) 385 return NULL; 386 return mem_cgroup_from_counter(memcg->memory.parent, memory); 387} 388 389static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 390 struct mem_cgroup *root) 391{ 392 if (root == memcg) 393 return true; 394 if (!root->use_hierarchy) 395 return false; 396 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 397} 398 399static inline bool mm_match_cgroup(struct mm_struct *mm, 400 struct mem_cgroup *memcg) 401{ 402 struct mem_cgroup *task_memcg; 403 bool match = false; 404 405 rcu_read_lock(); 406 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 407 if (task_memcg) 408 match = mem_cgroup_is_descendant(task_memcg, memcg); 409 rcu_read_unlock(); 410 return match; 411} 412 413struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 414ino_t page_cgroup_ino(struct page *page); 415 416static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 417{ 418 if (mem_cgroup_disabled()) 419 return true; 420 return !!(memcg->css.flags & CSS_ONLINE); 421} 422 423/* 424 * For memory reclaim. 425 */ 426int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 427 428void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 429 int zid, int nr_pages); 430 431unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 432 int nid, unsigned int lru_mask); 433 434static inline 435unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 436{ 437 struct mem_cgroup_per_node *mz; 438 unsigned long nr_pages = 0; 439 int zid; 440 441 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 442 for (zid = 0; zid < MAX_NR_ZONES; zid++) 443 nr_pages += mz->lru_zone_size[zid][lru]; 444 return nr_pages; 445} 446 447static inline 448unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 449 enum lru_list lru, int zone_idx) 450{ 451 struct mem_cgroup_per_node *mz; 452 453 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 454 return mz->lru_zone_size[zone_idx][lru]; 455} 456 457void mem_cgroup_handle_over_high(void); 458 459unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg); 460 461void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, 462 struct task_struct *p); 463 464static inline void mem_cgroup_oom_enable(void) 465{ 466 WARN_ON(current->memcg_may_oom); 467 current->memcg_may_oom = 1; 468} 469 470static inline void mem_cgroup_oom_disable(void) 471{ 472 WARN_ON(!current->memcg_may_oom); 473 current->memcg_may_oom = 0; 474} 475 476static inline bool task_in_memcg_oom(struct task_struct *p) 477{ 478 return p->memcg_in_oom; 479} 480 481bool mem_cgroup_oom_synchronize(bool wait); 482 483#ifdef CONFIG_MEMCG_SWAP 484extern int do_swap_account; 485#endif 486 487struct mem_cgroup *lock_page_memcg(struct page *page); 488void __unlock_page_memcg(struct mem_cgroup *memcg); 489void unlock_page_memcg(struct page *page); 490 491/* idx can be of type enum memcg_stat_item or node_stat_item */ 492static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, 493 int idx) 494{ 495 long val = 0; 496 int cpu; 497 498 for_each_possible_cpu(cpu) 499 val += per_cpu(memcg->stat->count[idx], cpu); 500 501 if (val < 0) 502 val = 0; 503 504 return val; 505} 506 507/* idx can be of type enum memcg_stat_item or node_stat_item */ 508static inline void __mod_memcg_state(struct mem_cgroup *memcg, 509 int idx, int val) 510{ 511 if (!mem_cgroup_disabled()) 512 __this_cpu_add(memcg->stat->count[idx], val); 513} 514 515/* idx can be of type enum memcg_stat_item or node_stat_item */ 516static inline void mod_memcg_state(struct mem_cgroup *memcg, 517 int idx, int val) 518{ 519 if (!mem_cgroup_disabled()) 520 this_cpu_add(memcg->stat->count[idx], val); 521} 522 523/** 524 * mod_memcg_page_state - update page state statistics 525 * @page: the page 526 * @idx: page state item to account 527 * @val: number of pages (positive or negative) 528 * 529 * The @page must be locked or the caller must use lock_page_memcg() 530 * to prevent double accounting when the page is concurrently being 531 * moved to another memcg: 532 * 533 * lock_page(page) or lock_page_memcg(page) 534 * if (TestClearPageState(page)) 535 * mod_memcg_page_state(page, state, -1); 536 * unlock_page(page) or unlock_page_memcg(page) 537 * 538 * Kernel pages are an exception to this, since they'll never move. 539 */ 540static inline void __mod_memcg_page_state(struct page *page, 541 int idx, int val) 542{ 543 if (page->mem_cgroup) 544 __mod_memcg_state(page->mem_cgroup, idx, val); 545} 546 547static inline void mod_memcg_page_state(struct page *page, 548 int idx, int val) 549{ 550 if (page->mem_cgroup) 551 mod_memcg_state(page->mem_cgroup, idx, val); 552} 553 554static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 555 enum node_stat_item idx) 556{ 557 struct mem_cgroup_per_node *pn; 558 long val = 0; 559 int cpu; 560 561 if (mem_cgroup_disabled()) 562 return node_page_state(lruvec_pgdat(lruvec), idx); 563 564 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 565 for_each_possible_cpu(cpu) 566 val += per_cpu(pn->lruvec_stat->count[idx], cpu); 567 568 if (val < 0) 569 val = 0; 570 571 return val; 572} 573 574static inline void __mod_lruvec_state(struct lruvec *lruvec, 575 enum node_stat_item idx, int val) 576{ 577 struct mem_cgroup_per_node *pn; 578 579 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 580 if (mem_cgroup_disabled()) 581 return; 582 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 583 __mod_memcg_state(pn->memcg, idx, val); 584 __this_cpu_add(pn->lruvec_stat->count[idx], val); 585} 586 587static inline void mod_lruvec_state(struct lruvec *lruvec, 588 enum node_stat_item idx, int val) 589{ 590 struct mem_cgroup_per_node *pn; 591 592 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 593 if (mem_cgroup_disabled()) 594 return; 595 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 596 mod_memcg_state(pn->memcg, idx, val); 597 this_cpu_add(pn->lruvec_stat->count[idx], val); 598} 599 600static inline void __mod_lruvec_page_state(struct page *page, 601 enum node_stat_item idx, int val) 602{ 603 struct mem_cgroup_per_node *pn; 604 605 __mod_node_page_state(page_pgdat(page), idx, val); 606 if (mem_cgroup_disabled() || !page->mem_cgroup) 607 return; 608 __mod_memcg_state(page->mem_cgroup, idx, val); 609 pn = page->mem_cgroup->nodeinfo[page_to_nid(page)]; 610 __this_cpu_add(pn->lruvec_stat->count[idx], val); 611} 612 613static inline void mod_lruvec_page_state(struct page *page, 614 enum node_stat_item idx, int val) 615{ 616 struct mem_cgroup_per_node *pn; 617 618 mod_node_page_state(page_pgdat(page), idx, val); 619 if (mem_cgroup_disabled() || !page->mem_cgroup) 620 return; 621 mod_memcg_state(page->mem_cgroup, idx, val); 622 pn = page->mem_cgroup->nodeinfo[page_to_nid(page)]; 623 this_cpu_add(pn->lruvec_stat->count[idx], val); 624} 625 626unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 627 gfp_t gfp_mask, 628 unsigned long *total_scanned); 629 630static inline void count_memcg_events(struct mem_cgroup *memcg, 631 enum vm_event_item idx, 632 unsigned long count) 633{ 634 if (!mem_cgroup_disabled()) 635 this_cpu_add(memcg->stat->events[idx], count); 636} 637 638/* idx can be of type enum memcg_stat_item or node_stat_item */ 639static inline void count_memcg_page_event(struct page *page, 640 int idx) 641{ 642 if (page->mem_cgroup) 643 count_memcg_events(page->mem_cgroup, idx, 1); 644} 645 646static inline void count_memcg_event_mm(struct mm_struct *mm, 647 enum vm_event_item idx) 648{ 649 struct mem_cgroup *memcg; 650 651 if (mem_cgroup_disabled()) 652 return; 653 654 rcu_read_lock(); 655 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 656 if (likely(memcg)) { 657 this_cpu_inc(memcg->stat->events[idx]); 658 if (idx == OOM_KILL) 659 cgroup_file_notify(&memcg->events_file); 660 } 661 rcu_read_unlock(); 662} 663#ifdef CONFIG_TRANSPARENT_HUGEPAGE 664void mem_cgroup_split_huge_fixup(struct page *head); 665#endif 666 667#else /* CONFIG_MEMCG */ 668 669#define MEM_CGROUP_ID_SHIFT 0 670#define MEM_CGROUP_ID_MAX 0 671 672struct mem_cgroup; 673 674static inline bool mem_cgroup_disabled(void) 675{ 676 return true; 677} 678 679static inline void mem_cgroup_event(struct mem_cgroup *memcg, 680 enum memcg_event_item event) 681{ 682} 683 684static inline bool mem_cgroup_low(struct mem_cgroup *root, 685 struct mem_cgroup *memcg) 686{ 687 return false; 688} 689 690static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 691 gfp_t gfp_mask, 692 struct mem_cgroup **memcgp, 693 bool compound) 694{ 695 *memcgp = NULL; 696 return 0; 697} 698 699static inline void mem_cgroup_commit_charge(struct page *page, 700 struct mem_cgroup *memcg, 701 bool lrucare, bool compound) 702{ 703} 704 705static inline void mem_cgroup_cancel_charge(struct page *page, 706 struct mem_cgroup *memcg, 707 bool compound) 708{ 709} 710 711static inline void mem_cgroup_uncharge(struct page *page) 712{ 713} 714 715static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 716{ 717} 718 719static inline void mem_cgroup_migrate(struct page *old, struct page *new) 720{ 721} 722 723static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 724 struct mem_cgroup *memcg) 725{ 726 return node_lruvec(pgdat); 727} 728 729static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 730 struct pglist_data *pgdat) 731{ 732 return &pgdat->lruvec; 733} 734 735static inline bool mm_match_cgroup(struct mm_struct *mm, 736 struct mem_cgroup *memcg) 737{ 738 return true; 739} 740 741static inline bool task_in_mem_cgroup(struct task_struct *task, 742 const struct mem_cgroup *memcg) 743{ 744 return true; 745} 746 747static inline struct mem_cgroup * 748mem_cgroup_iter(struct mem_cgroup *root, 749 struct mem_cgroup *prev, 750 struct mem_cgroup_reclaim_cookie *reclaim) 751{ 752 return NULL; 753} 754 755static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 756 struct mem_cgroup *prev) 757{ 758} 759 760static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 761 int (*fn)(struct task_struct *, void *), void *arg) 762{ 763 return 0; 764} 765 766static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 767{ 768 return 0; 769} 770 771static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 772{ 773 WARN_ON_ONCE(id); 774 /* XXX: This should always return root_mem_cgroup */ 775 return NULL; 776} 777 778static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 779{ 780 return NULL; 781} 782 783static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 784{ 785 return true; 786} 787 788static inline unsigned long 789mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 790{ 791 return 0; 792} 793static inline 794unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 795 enum lru_list lru, int zone_idx) 796{ 797 return 0; 798} 799 800static inline unsigned long 801mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 802 int nid, unsigned int lru_mask) 803{ 804 return 0; 805} 806 807static inline unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) 808{ 809 return 0; 810} 811 812static inline void 813mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 814{ 815} 816 817static inline struct mem_cgroup *lock_page_memcg(struct page *page) 818{ 819 return NULL; 820} 821 822static inline void __unlock_page_memcg(struct mem_cgroup *memcg) 823{ 824} 825 826static inline void unlock_page_memcg(struct page *page) 827{ 828} 829 830static inline void mem_cgroup_handle_over_high(void) 831{ 832} 833 834static inline void mem_cgroup_oom_enable(void) 835{ 836} 837 838static inline void mem_cgroup_oom_disable(void) 839{ 840} 841 842static inline bool task_in_memcg_oom(struct task_struct *p) 843{ 844 return false; 845} 846 847static inline bool mem_cgroup_oom_synchronize(bool wait) 848{ 849 return false; 850} 851 852static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, 853 int idx) 854{ 855 return 0; 856} 857 858static inline void __mod_memcg_state(struct mem_cgroup *memcg, 859 int idx, 860 int nr) 861{ 862} 863 864static inline void mod_memcg_state(struct mem_cgroup *memcg, 865 int idx, 866 int nr) 867{ 868} 869 870static inline void __mod_memcg_page_state(struct page *page, 871 int idx, 872 int nr) 873{ 874} 875 876static inline void mod_memcg_page_state(struct page *page, 877 int idx, 878 int nr) 879{ 880} 881 882static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 883 enum node_stat_item idx) 884{ 885 return node_page_state(lruvec_pgdat(lruvec), idx); 886} 887 888static inline void __mod_lruvec_state(struct lruvec *lruvec, 889 enum node_stat_item idx, int val) 890{ 891 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 892} 893 894static inline void mod_lruvec_state(struct lruvec *lruvec, 895 enum node_stat_item idx, int val) 896{ 897 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 898} 899 900static inline void __mod_lruvec_page_state(struct page *page, 901 enum node_stat_item idx, int val) 902{ 903 __mod_node_page_state(page_pgdat(page), idx, val); 904} 905 906static inline void mod_lruvec_page_state(struct page *page, 907 enum node_stat_item idx, int val) 908{ 909 mod_node_page_state(page_pgdat(page), idx, val); 910} 911 912static inline 913unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 914 gfp_t gfp_mask, 915 unsigned long *total_scanned) 916{ 917 return 0; 918} 919 920static inline void mem_cgroup_split_huge_fixup(struct page *head) 921{ 922} 923 924static inline void count_memcg_events(struct mem_cgroup *memcg, 925 enum vm_event_item idx, 926 unsigned long count) 927{ 928} 929 930static inline void count_memcg_page_event(struct page *page, 931 int idx) 932{ 933} 934 935static inline 936void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 937{ 938} 939#endif /* CONFIG_MEMCG */ 940 941/* idx can be of type enum memcg_stat_item or node_stat_item */ 942static inline void __inc_memcg_state(struct mem_cgroup *memcg, 943 int idx) 944{ 945 __mod_memcg_state(memcg, idx, 1); 946} 947 948/* idx can be of type enum memcg_stat_item or node_stat_item */ 949static inline void __dec_memcg_state(struct mem_cgroup *memcg, 950 int idx) 951{ 952 __mod_memcg_state(memcg, idx, -1); 953} 954 955/* idx can be of type enum memcg_stat_item or node_stat_item */ 956static inline void __inc_memcg_page_state(struct page *page, 957 int idx) 958{ 959 __mod_memcg_page_state(page, idx, 1); 960} 961 962/* idx can be of type enum memcg_stat_item or node_stat_item */ 963static inline void __dec_memcg_page_state(struct page *page, 964 int idx) 965{ 966 __mod_memcg_page_state(page, idx, -1); 967} 968 969static inline void __inc_lruvec_state(struct lruvec *lruvec, 970 enum node_stat_item idx) 971{ 972 __mod_lruvec_state(lruvec, idx, 1); 973} 974 975static inline void __dec_lruvec_state(struct lruvec *lruvec, 976 enum node_stat_item idx) 977{ 978 __mod_lruvec_state(lruvec, idx, -1); 979} 980 981static inline void __inc_lruvec_page_state(struct page *page, 982 enum node_stat_item idx) 983{ 984 __mod_lruvec_page_state(page, idx, 1); 985} 986 987static inline void __dec_lruvec_page_state(struct page *page, 988 enum node_stat_item idx) 989{ 990 __mod_lruvec_page_state(page, idx, -1); 991} 992 993/* idx can be of type enum memcg_stat_item or node_stat_item */ 994static inline void inc_memcg_state(struct mem_cgroup *memcg, 995 int idx) 996{ 997 mod_memcg_state(memcg, idx, 1); 998} 999 1000/* idx can be of type enum memcg_stat_item or node_stat_item */ 1001static inline void dec_memcg_state(struct mem_cgroup *memcg, 1002 int idx) 1003{ 1004 mod_memcg_state(memcg, idx, -1); 1005} 1006 1007/* idx can be of type enum memcg_stat_item or node_stat_item */ 1008static inline void inc_memcg_page_state(struct page *page, 1009 int idx) 1010{ 1011 mod_memcg_page_state(page, idx, 1); 1012} 1013 1014/* idx can be of type enum memcg_stat_item or node_stat_item */ 1015static inline void dec_memcg_page_state(struct page *page, 1016 int idx) 1017{ 1018 mod_memcg_page_state(page, idx, -1); 1019} 1020 1021static inline void inc_lruvec_state(struct lruvec *lruvec, 1022 enum node_stat_item idx) 1023{ 1024 mod_lruvec_state(lruvec, idx, 1); 1025} 1026 1027static inline void dec_lruvec_state(struct lruvec *lruvec, 1028 enum node_stat_item idx) 1029{ 1030 mod_lruvec_state(lruvec, idx, -1); 1031} 1032 1033static inline void inc_lruvec_page_state(struct page *page, 1034 enum node_stat_item idx) 1035{ 1036 mod_lruvec_page_state(page, idx, 1); 1037} 1038 1039static inline void dec_lruvec_page_state(struct page *page, 1040 enum node_stat_item idx) 1041{ 1042 mod_lruvec_page_state(page, idx, -1); 1043} 1044 1045#ifdef CONFIG_CGROUP_WRITEBACK 1046 1047struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg); 1048struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1049void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1050 unsigned long *pheadroom, unsigned long *pdirty, 1051 unsigned long *pwriteback); 1052 1053#else /* CONFIG_CGROUP_WRITEBACK */ 1054 1055static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1056{ 1057 return NULL; 1058} 1059 1060static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1061 unsigned long *pfilepages, 1062 unsigned long *pheadroom, 1063 unsigned long *pdirty, 1064 unsigned long *pwriteback) 1065{ 1066} 1067 1068#endif /* CONFIG_CGROUP_WRITEBACK */ 1069 1070struct sock; 1071bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1072void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1073#ifdef CONFIG_MEMCG 1074extern struct static_key_false memcg_sockets_enabled_key; 1075#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1076void mem_cgroup_sk_alloc(struct sock *sk); 1077void mem_cgroup_sk_free(struct sock *sk); 1078static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1079{ 1080 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1081 return true; 1082 do { 1083 if (time_before(jiffies, memcg->socket_pressure)) 1084 return true; 1085 } while ((memcg = parent_mem_cgroup(memcg))); 1086 return false; 1087} 1088#else 1089#define mem_cgroup_sockets_enabled 0 1090static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1091static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1092static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1093{ 1094 return false; 1095} 1096#endif 1097 1098struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep); 1099void memcg_kmem_put_cache(struct kmem_cache *cachep); 1100int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 1101 struct mem_cgroup *memcg); 1102int memcg_kmem_charge(struct page *page, gfp_t gfp, int order); 1103void memcg_kmem_uncharge(struct page *page, int order); 1104 1105#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) 1106extern struct static_key_false memcg_kmem_enabled_key; 1107extern struct workqueue_struct *memcg_kmem_cache_wq; 1108 1109extern int memcg_nr_cache_ids; 1110void memcg_get_cache_ids(void); 1111void memcg_put_cache_ids(void); 1112 1113/* 1114 * Helper macro to loop through all memcg-specific caches. Callers must still 1115 * check if the cache is valid (it is either valid or NULL). 1116 * the slab_mutex must be held when looping through those caches 1117 */ 1118#define for_each_memcg_cache_index(_idx) \ 1119 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1120 1121static inline bool memcg_kmem_enabled(void) 1122{ 1123 return static_branch_unlikely(&memcg_kmem_enabled_key); 1124} 1125 1126/* 1127 * helper for accessing a memcg's index. It will be used as an index in the 1128 * child cache array in kmem_cache, and also to derive its name. This function 1129 * will return -1 when this is not a kmem-limited memcg. 1130 */ 1131static inline int memcg_cache_id(struct mem_cgroup *memcg) 1132{ 1133 return memcg ? memcg->kmemcg_id : -1; 1134} 1135 1136#else 1137#define for_each_memcg_cache_index(_idx) \ 1138 for (; NULL; ) 1139 1140static inline bool memcg_kmem_enabled(void) 1141{ 1142 return false; 1143} 1144 1145static inline int memcg_cache_id(struct mem_cgroup *memcg) 1146{ 1147 return -1; 1148} 1149 1150static inline void memcg_get_cache_ids(void) 1151{ 1152} 1153 1154static inline void memcg_put_cache_ids(void) 1155{ 1156} 1157 1158#endif /* CONFIG_MEMCG && !CONFIG_SLOB */ 1159 1160#endif /* _LINUX_MEMCONTROL_H */