at v4.15 57 kB view raw
1/* 2 * Scatterlist Cryptographic API. 3 * 4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> 5 * Copyright (c) 2002 David S. Miller (davem@redhat.com) 6 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au> 7 * 8 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no> 9 * and Nettle, by Niels Möller. 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the Free 13 * Software Foundation; either version 2 of the License, or (at your option) 14 * any later version. 15 * 16 */ 17#ifndef _LINUX_CRYPTO_H 18#define _LINUX_CRYPTO_H 19 20#include <linux/atomic.h> 21#include <linux/kernel.h> 22#include <linux/list.h> 23#include <linux/bug.h> 24#include <linux/slab.h> 25#include <linux/string.h> 26#include <linux/uaccess.h> 27#include <linux/completion.h> 28 29/* 30 * Autoloaded crypto modules should only use a prefixed name to avoid allowing 31 * arbitrary modules to be loaded. Loading from userspace may still need the 32 * unprefixed names, so retains those aliases as well. 33 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 34 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro 35 * expands twice on the same line. Instead, use a separate base name for the 36 * alias. 37 */ 38#define MODULE_ALIAS_CRYPTO(name) \ 39 __MODULE_INFO(alias, alias_userspace, name); \ 40 __MODULE_INFO(alias, alias_crypto, "crypto-" name) 41 42/* 43 * Algorithm masks and types. 44 */ 45#define CRYPTO_ALG_TYPE_MASK 0x0000000f 46#define CRYPTO_ALG_TYPE_CIPHER 0x00000001 47#define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 48#define CRYPTO_ALG_TYPE_AEAD 0x00000003 49#define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004 50#define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005 51#define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005 52#define CRYPTO_ALG_TYPE_GIVCIPHER 0x00000006 53#define CRYPTO_ALG_TYPE_KPP 0x00000008 54#define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a 55#define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b 56#define CRYPTO_ALG_TYPE_RNG 0x0000000c 57#define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d 58#define CRYPTO_ALG_TYPE_DIGEST 0x0000000e 59#define CRYPTO_ALG_TYPE_HASH 0x0000000e 60#define CRYPTO_ALG_TYPE_SHASH 0x0000000e 61#define CRYPTO_ALG_TYPE_AHASH 0x0000000f 62 63#define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e 64#define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e 65#define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c 66#define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e 67 68#define CRYPTO_ALG_LARVAL 0x00000010 69#define CRYPTO_ALG_DEAD 0x00000020 70#define CRYPTO_ALG_DYING 0x00000040 71#define CRYPTO_ALG_ASYNC 0x00000080 72 73/* 74 * Set this bit if and only if the algorithm requires another algorithm of 75 * the same type to handle corner cases. 76 */ 77#define CRYPTO_ALG_NEED_FALLBACK 0x00000100 78 79/* 80 * This bit is set for symmetric key ciphers that have already been wrapped 81 * with a generic IV generator to prevent them from being wrapped again. 82 */ 83#define CRYPTO_ALG_GENIV 0x00000200 84 85/* 86 * Set if the algorithm has passed automated run-time testing. Note that 87 * if there is no run-time testing for a given algorithm it is considered 88 * to have passed. 89 */ 90 91#define CRYPTO_ALG_TESTED 0x00000400 92 93/* 94 * Set if the algorithm is an instance that is built from templates. 95 */ 96#define CRYPTO_ALG_INSTANCE 0x00000800 97 98/* Set this bit if the algorithm provided is hardware accelerated but 99 * not available to userspace via instruction set or so. 100 */ 101#define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000 102 103/* 104 * Mark a cipher as a service implementation only usable by another 105 * cipher and never by a normal user of the kernel crypto API 106 */ 107#define CRYPTO_ALG_INTERNAL 0x00002000 108 109/* 110 * Transform masks and values (for crt_flags). 111 */ 112#define CRYPTO_TFM_REQ_MASK 0x000fff00 113#define CRYPTO_TFM_RES_MASK 0xfff00000 114 115#define CRYPTO_TFM_REQ_WEAK_KEY 0x00000100 116#define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200 117#define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400 118#define CRYPTO_TFM_RES_WEAK_KEY 0x00100000 119#define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000 120#define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000 121#define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000 122#define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000 123 124/* 125 * Miscellaneous stuff. 126 */ 127#define CRYPTO_MAX_ALG_NAME 128 128 129/* 130 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual 131 * declaration) is used to ensure that the crypto_tfm context structure is 132 * aligned correctly for the given architecture so that there are no alignment 133 * faults for C data types. In particular, this is required on platforms such 134 * as arm where pointers are 32-bit aligned but there are data types such as 135 * u64 which require 64-bit alignment. 136 */ 137#define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN 138 139#define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) 140 141struct scatterlist; 142struct crypto_ablkcipher; 143struct crypto_async_request; 144struct crypto_blkcipher; 145struct crypto_tfm; 146struct crypto_type; 147struct skcipher_givcrypt_request; 148 149typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err); 150 151/** 152 * DOC: Block Cipher Context Data Structures 153 * 154 * These data structures define the operating context for each block cipher 155 * type. 156 */ 157 158struct crypto_async_request { 159 struct list_head list; 160 crypto_completion_t complete; 161 void *data; 162 struct crypto_tfm *tfm; 163 164 u32 flags; 165}; 166 167struct ablkcipher_request { 168 struct crypto_async_request base; 169 170 unsigned int nbytes; 171 172 void *info; 173 174 struct scatterlist *src; 175 struct scatterlist *dst; 176 177 void *__ctx[] CRYPTO_MINALIGN_ATTR; 178}; 179 180struct blkcipher_desc { 181 struct crypto_blkcipher *tfm; 182 void *info; 183 u32 flags; 184}; 185 186struct cipher_desc { 187 struct crypto_tfm *tfm; 188 void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 189 unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst, 190 const u8 *src, unsigned int nbytes); 191 void *info; 192}; 193 194/** 195 * DOC: Block Cipher Algorithm Definitions 196 * 197 * These data structures define modular crypto algorithm implementations, 198 * managed via crypto_register_alg() and crypto_unregister_alg(). 199 */ 200 201/** 202 * struct ablkcipher_alg - asynchronous block cipher definition 203 * @min_keysize: Minimum key size supported by the transformation. This is the 204 * smallest key length supported by this transformation algorithm. 205 * This must be set to one of the pre-defined values as this is 206 * not hardware specific. Possible values for this field can be 207 * found via git grep "_MIN_KEY_SIZE" include/crypto/ 208 * @max_keysize: Maximum key size supported by the transformation. This is the 209 * largest key length supported by this transformation algorithm. 210 * This must be set to one of the pre-defined values as this is 211 * not hardware specific. Possible values for this field can be 212 * found via git grep "_MAX_KEY_SIZE" include/crypto/ 213 * @setkey: Set key for the transformation. This function is used to either 214 * program a supplied key into the hardware or store the key in the 215 * transformation context for programming it later. Note that this 216 * function does modify the transformation context. This function can 217 * be called multiple times during the existence of the transformation 218 * object, so one must make sure the key is properly reprogrammed into 219 * the hardware. This function is also responsible for checking the key 220 * length for validity. In case a software fallback was put in place in 221 * the @cra_init call, this function might need to use the fallback if 222 * the algorithm doesn't support all of the key sizes. 223 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt 224 * the supplied scatterlist containing the blocks of data. The crypto 225 * API consumer is responsible for aligning the entries of the 226 * scatterlist properly and making sure the chunks are correctly 227 * sized. In case a software fallback was put in place in the 228 * @cra_init call, this function might need to use the fallback if 229 * the algorithm doesn't support all of the key sizes. In case the 230 * key was stored in transformation context, the key might need to be 231 * re-programmed into the hardware in this function. This function 232 * shall not modify the transformation context, as this function may 233 * be called in parallel with the same transformation object. 234 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt 235 * and the conditions are exactly the same. 236 * @givencrypt: Update the IV for encryption. With this function, a cipher 237 * implementation may provide the function on how to update the IV 238 * for encryption. 239 * @givdecrypt: Update the IV for decryption. This is the reverse of 240 * @givencrypt . 241 * @geniv: The transformation implementation may use an "IV generator" provided 242 * by the kernel crypto API. Several use cases have a predefined 243 * approach how IVs are to be updated. For such use cases, the kernel 244 * crypto API provides ready-to-use implementations that can be 245 * referenced with this variable. 246 * @ivsize: IV size applicable for transformation. The consumer must provide an 247 * IV of exactly that size to perform the encrypt or decrypt operation. 248 * 249 * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are 250 * mandatory and must be filled. 251 */ 252struct ablkcipher_alg { 253 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, 254 unsigned int keylen); 255 int (*encrypt)(struct ablkcipher_request *req); 256 int (*decrypt)(struct ablkcipher_request *req); 257 int (*givencrypt)(struct skcipher_givcrypt_request *req); 258 int (*givdecrypt)(struct skcipher_givcrypt_request *req); 259 260 const char *geniv; 261 262 unsigned int min_keysize; 263 unsigned int max_keysize; 264 unsigned int ivsize; 265}; 266 267/** 268 * struct blkcipher_alg - synchronous block cipher definition 269 * @min_keysize: see struct ablkcipher_alg 270 * @max_keysize: see struct ablkcipher_alg 271 * @setkey: see struct ablkcipher_alg 272 * @encrypt: see struct ablkcipher_alg 273 * @decrypt: see struct ablkcipher_alg 274 * @geniv: see struct ablkcipher_alg 275 * @ivsize: see struct ablkcipher_alg 276 * 277 * All fields except @geniv and @ivsize are mandatory and must be filled. 278 */ 279struct blkcipher_alg { 280 int (*setkey)(struct crypto_tfm *tfm, const u8 *key, 281 unsigned int keylen); 282 int (*encrypt)(struct blkcipher_desc *desc, 283 struct scatterlist *dst, struct scatterlist *src, 284 unsigned int nbytes); 285 int (*decrypt)(struct blkcipher_desc *desc, 286 struct scatterlist *dst, struct scatterlist *src, 287 unsigned int nbytes); 288 289 const char *geniv; 290 291 unsigned int min_keysize; 292 unsigned int max_keysize; 293 unsigned int ivsize; 294}; 295 296/** 297 * struct cipher_alg - single-block symmetric ciphers definition 298 * @cia_min_keysize: Minimum key size supported by the transformation. This is 299 * the smallest key length supported by this transformation 300 * algorithm. This must be set to one of the pre-defined 301 * values as this is not hardware specific. Possible values 302 * for this field can be found via git grep "_MIN_KEY_SIZE" 303 * include/crypto/ 304 * @cia_max_keysize: Maximum key size supported by the transformation. This is 305 * the largest key length supported by this transformation 306 * algorithm. This must be set to one of the pre-defined values 307 * as this is not hardware specific. Possible values for this 308 * field can be found via git grep "_MAX_KEY_SIZE" 309 * include/crypto/ 310 * @cia_setkey: Set key for the transformation. This function is used to either 311 * program a supplied key into the hardware or store the key in the 312 * transformation context for programming it later. Note that this 313 * function does modify the transformation context. This function 314 * can be called multiple times during the existence of the 315 * transformation object, so one must make sure the key is properly 316 * reprogrammed into the hardware. This function is also 317 * responsible for checking the key length for validity. 318 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a 319 * single block of data, which must be @cra_blocksize big. This 320 * always operates on a full @cra_blocksize and it is not possible 321 * to encrypt a block of smaller size. The supplied buffers must 322 * therefore also be at least of @cra_blocksize size. Both the 323 * input and output buffers are always aligned to @cra_alignmask. 324 * In case either of the input or output buffer supplied by user 325 * of the crypto API is not aligned to @cra_alignmask, the crypto 326 * API will re-align the buffers. The re-alignment means that a 327 * new buffer will be allocated, the data will be copied into the 328 * new buffer, then the processing will happen on the new buffer, 329 * then the data will be copied back into the original buffer and 330 * finally the new buffer will be freed. In case a software 331 * fallback was put in place in the @cra_init call, this function 332 * might need to use the fallback if the algorithm doesn't support 333 * all of the key sizes. In case the key was stored in 334 * transformation context, the key might need to be re-programmed 335 * into the hardware in this function. This function shall not 336 * modify the transformation context, as this function may be 337 * called in parallel with the same transformation object. 338 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to 339 * @cia_encrypt, and the conditions are exactly the same. 340 * 341 * All fields are mandatory and must be filled. 342 */ 343struct cipher_alg { 344 unsigned int cia_min_keysize; 345 unsigned int cia_max_keysize; 346 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, 347 unsigned int keylen); 348 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 349 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 350}; 351 352struct compress_alg { 353 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, 354 unsigned int slen, u8 *dst, unsigned int *dlen); 355 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, 356 unsigned int slen, u8 *dst, unsigned int *dlen); 357}; 358 359 360#define cra_ablkcipher cra_u.ablkcipher 361#define cra_blkcipher cra_u.blkcipher 362#define cra_cipher cra_u.cipher 363#define cra_compress cra_u.compress 364 365/** 366 * struct crypto_alg - definition of a cryptograpic cipher algorithm 367 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h 368 * CRYPTO_ALG_* flags for the flags which go in here. Those are 369 * used for fine-tuning the description of the transformation 370 * algorithm. 371 * @cra_blocksize: Minimum block size of this transformation. The size in bytes 372 * of the smallest possible unit which can be transformed with 373 * this algorithm. The users must respect this value. 374 * In case of HASH transformation, it is possible for a smaller 375 * block than @cra_blocksize to be passed to the crypto API for 376 * transformation, in case of any other transformation type, an 377 * error will be returned upon any attempt to transform smaller 378 * than @cra_blocksize chunks. 379 * @cra_ctxsize: Size of the operational context of the transformation. This 380 * value informs the kernel crypto API about the memory size 381 * needed to be allocated for the transformation context. 382 * @cra_alignmask: Alignment mask for the input and output data buffer. The data 383 * buffer containing the input data for the algorithm must be 384 * aligned to this alignment mask. The data buffer for the 385 * output data must be aligned to this alignment mask. Note that 386 * the Crypto API will do the re-alignment in software, but 387 * only under special conditions and there is a performance hit. 388 * The re-alignment happens at these occasions for different 389 * @cra_u types: cipher -- For both input data and output data 390 * buffer; ahash -- For output hash destination buf; shash -- 391 * For output hash destination buf. 392 * This is needed on hardware which is flawed by design and 393 * cannot pick data from arbitrary addresses. 394 * @cra_priority: Priority of this transformation implementation. In case 395 * multiple transformations with same @cra_name are available to 396 * the Crypto API, the kernel will use the one with highest 397 * @cra_priority. 398 * @cra_name: Generic name (usable by multiple implementations) of the 399 * transformation algorithm. This is the name of the transformation 400 * itself. This field is used by the kernel when looking up the 401 * providers of particular transformation. 402 * @cra_driver_name: Unique name of the transformation provider. This is the 403 * name of the provider of the transformation. This can be any 404 * arbitrary value, but in the usual case, this contains the 405 * name of the chip or provider and the name of the 406 * transformation algorithm. 407 * @cra_type: Type of the cryptographic transformation. This is a pointer to 408 * struct crypto_type, which implements callbacks common for all 409 * transformation types. There are multiple options: 410 * &crypto_blkcipher_type, &crypto_ablkcipher_type, 411 * &crypto_ahash_type, &crypto_rng_type. 412 * This field might be empty. In that case, there are no common 413 * callbacks. This is the case for: cipher, compress, shash. 414 * @cra_u: Callbacks implementing the transformation. This is a union of 415 * multiple structures. Depending on the type of transformation selected 416 * by @cra_type and @cra_flags above, the associated structure must be 417 * filled with callbacks. This field might be empty. This is the case 418 * for ahash, shash. 419 * @cra_init: Initialize the cryptographic transformation object. This function 420 * is used to initialize the cryptographic transformation object. 421 * This function is called only once at the instantiation time, right 422 * after the transformation context was allocated. In case the 423 * cryptographic hardware has some special requirements which need to 424 * be handled by software, this function shall check for the precise 425 * requirement of the transformation and put any software fallbacks 426 * in place. 427 * @cra_exit: Deinitialize the cryptographic transformation object. This is a 428 * counterpart to @cra_init, used to remove various changes set in 429 * @cra_init. 430 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE 431 * @cra_list: internally used 432 * @cra_users: internally used 433 * @cra_refcnt: internally used 434 * @cra_destroy: internally used 435 * 436 * The struct crypto_alg describes a generic Crypto API algorithm and is common 437 * for all of the transformations. Any variable not documented here shall not 438 * be used by a cipher implementation as it is internal to the Crypto API. 439 */ 440struct crypto_alg { 441 struct list_head cra_list; 442 struct list_head cra_users; 443 444 u32 cra_flags; 445 unsigned int cra_blocksize; 446 unsigned int cra_ctxsize; 447 unsigned int cra_alignmask; 448 449 int cra_priority; 450 atomic_t cra_refcnt; 451 452 char cra_name[CRYPTO_MAX_ALG_NAME]; 453 char cra_driver_name[CRYPTO_MAX_ALG_NAME]; 454 455 const struct crypto_type *cra_type; 456 457 union { 458 struct ablkcipher_alg ablkcipher; 459 struct blkcipher_alg blkcipher; 460 struct cipher_alg cipher; 461 struct compress_alg compress; 462 } cra_u; 463 464 int (*cra_init)(struct crypto_tfm *tfm); 465 void (*cra_exit)(struct crypto_tfm *tfm); 466 void (*cra_destroy)(struct crypto_alg *alg); 467 468 struct module *cra_module; 469} CRYPTO_MINALIGN_ATTR; 470 471/* 472 * A helper struct for waiting for completion of async crypto ops 473 */ 474struct crypto_wait { 475 struct completion completion; 476 int err; 477}; 478 479/* 480 * Macro for declaring a crypto op async wait object on stack 481 */ 482#define DECLARE_CRYPTO_WAIT(_wait) \ 483 struct crypto_wait _wait = { \ 484 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 } 485 486/* 487 * Async ops completion helper functioons 488 */ 489void crypto_req_done(struct crypto_async_request *req, int err); 490 491static inline int crypto_wait_req(int err, struct crypto_wait *wait) 492{ 493 switch (err) { 494 case -EINPROGRESS: 495 case -EBUSY: 496 wait_for_completion(&wait->completion); 497 reinit_completion(&wait->completion); 498 err = wait->err; 499 break; 500 }; 501 502 return err; 503} 504 505static inline void crypto_init_wait(struct crypto_wait *wait) 506{ 507 init_completion(&wait->completion); 508} 509 510/* 511 * Algorithm registration interface. 512 */ 513int crypto_register_alg(struct crypto_alg *alg); 514int crypto_unregister_alg(struct crypto_alg *alg); 515int crypto_register_algs(struct crypto_alg *algs, int count); 516int crypto_unregister_algs(struct crypto_alg *algs, int count); 517 518/* 519 * Algorithm query interface. 520 */ 521int crypto_has_alg(const char *name, u32 type, u32 mask); 522 523/* 524 * Transforms: user-instantiated objects which encapsulate algorithms 525 * and core processing logic. Managed via crypto_alloc_*() and 526 * crypto_free_*(), as well as the various helpers below. 527 */ 528 529struct ablkcipher_tfm { 530 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, 531 unsigned int keylen); 532 int (*encrypt)(struct ablkcipher_request *req); 533 int (*decrypt)(struct ablkcipher_request *req); 534 535 struct crypto_ablkcipher *base; 536 537 unsigned int ivsize; 538 unsigned int reqsize; 539}; 540 541struct blkcipher_tfm { 542 void *iv; 543 int (*setkey)(struct crypto_tfm *tfm, const u8 *key, 544 unsigned int keylen); 545 int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, 546 struct scatterlist *src, unsigned int nbytes); 547 int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, 548 struct scatterlist *src, unsigned int nbytes); 549}; 550 551struct cipher_tfm { 552 int (*cit_setkey)(struct crypto_tfm *tfm, 553 const u8 *key, unsigned int keylen); 554 void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 555 void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 556}; 557 558struct compress_tfm { 559 int (*cot_compress)(struct crypto_tfm *tfm, 560 const u8 *src, unsigned int slen, 561 u8 *dst, unsigned int *dlen); 562 int (*cot_decompress)(struct crypto_tfm *tfm, 563 const u8 *src, unsigned int slen, 564 u8 *dst, unsigned int *dlen); 565}; 566 567#define crt_ablkcipher crt_u.ablkcipher 568#define crt_blkcipher crt_u.blkcipher 569#define crt_cipher crt_u.cipher 570#define crt_compress crt_u.compress 571 572struct crypto_tfm { 573 574 u32 crt_flags; 575 576 union { 577 struct ablkcipher_tfm ablkcipher; 578 struct blkcipher_tfm blkcipher; 579 struct cipher_tfm cipher; 580 struct compress_tfm compress; 581 } crt_u; 582 583 void (*exit)(struct crypto_tfm *tfm); 584 585 struct crypto_alg *__crt_alg; 586 587 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; 588}; 589 590struct crypto_ablkcipher { 591 struct crypto_tfm base; 592}; 593 594struct crypto_blkcipher { 595 struct crypto_tfm base; 596}; 597 598struct crypto_cipher { 599 struct crypto_tfm base; 600}; 601 602struct crypto_comp { 603 struct crypto_tfm base; 604}; 605 606enum { 607 CRYPTOA_UNSPEC, 608 CRYPTOA_ALG, 609 CRYPTOA_TYPE, 610 CRYPTOA_U32, 611 __CRYPTOA_MAX, 612}; 613 614#define CRYPTOA_MAX (__CRYPTOA_MAX - 1) 615 616/* Maximum number of (rtattr) parameters for each template. */ 617#define CRYPTO_MAX_ATTRS 32 618 619struct crypto_attr_alg { 620 char name[CRYPTO_MAX_ALG_NAME]; 621}; 622 623struct crypto_attr_type { 624 u32 type; 625 u32 mask; 626}; 627 628struct crypto_attr_u32 { 629 u32 num; 630}; 631 632/* 633 * Transform user interface. 634 */ 635 636struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask); 637void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm); 638 639static inline void crypto_free_tfm(struct crypto_tfm *tfm) 640{ 641 return crypto_destroy_tfm(tfm, tfm); 642} 643 644int alg_test(const char *driver, const char *alg, u32 type, u32 mask); 645 646/* 647 * Transform helpers which query the underlying algorithm. 648 */ 649static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm) 650{ 651 return tfm->__crt_alg->cra_name; 652} 653 654static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) 655{ 656 return tfm->__crt_alg->cra_driver_name; 657} 658 659static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) 660{ 661 return tfm->__crt_alg->cra_priority; 662} 663 664static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) 665{ 666 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; 667} 668 669static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) 670{ 671 return tfm->__crt_alg->cra_blocksize; 672} 673 674static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) 675{ 676 return tfm->__crt_alg->cra_alignmask; 677} 678 679static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) 680{ 681 return tfm->crt_flags; 682} 683 684static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags) 685{ 686 tfm->crt_flags |= flags; 687} 688 689static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) 690{ 691 tfm->crt_flags &= ~flags; 692} 693 694static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm) 695{ 696 return tfm->__crt_ctx; 697} 698 699static inline unsigned int crypto_tfm_ctx_alignment(void) 700{ 701 struct crypto_tfm *tfm; 702 return __alignof__(tfm->__crt_ctx); 703} 704 705/* 706 * API wrappers. 707 */ 708static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast( 709 struct crypto_tfm *tfm) 710{ 711 return (struct crypto_ablkcipher *)tfm; 712} 713 714static inline u32 crypto_skcipher_type(u32 type) 715{ 716 type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV); 717 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 718 return type; 719} 720 721static inline u32 crypto_skcipher_mask(u32 mask) 722{ 723 mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV); 724 mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK; 725 return mask; 726} 727 728/** 729 * DOC: Asynchronous Block Cipher API 730 * 731 * Asynchronous block cipher API is used with the ciphers of type 732 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto). 733 * 734 * Asynchronous cipher operations imply that the function invocation for a 735 * cipher request returns immediately before the completion of the operation. 736 * The cipher request is scheduled as a separate kernel thread and therefore 737 * load-balanced on the different CPUs via the process scheduler. To allow 738 * the kernel crypto API to inform the caller about the completion of a cipher 739 * request, the caller must provide a callback function. That function is 740 * invoked with the cipher handle when the request completes. 741 * 742 * To support the asynchronous operation, additional information than just the 743 * cipher handle must be supplied to the kernel crypto API. That additional 744 * information is given by filling in the ablkcipher_request data structure. 745 * 746 * For the asynchronous block cipher API, the state is maintained with the tfm 747 * cipher handle. A single tfm can be used across multiple calls and in 748 * parallel. For asynchronous block cipher calls, context data supplied and 749 * only used by the caller can be referenced the request data structure in 750 * addition to the IV used for the cipher request. The maintenance of such 751 * state information would be important for a crypto driver implementer to 752 * have, because when calling the callback function upon completion of the 753 * cipher operation, that callback function may need some information about 754 * which operation just finished if it invoked multiple in parallel. This 755 * state information is unused by the kernel crypto API. 756 */ 757 758static inline struct crypto_tfm *crypto_ablkcipher_tfm( 759 struct crypto_ablkcipher *tfm) 760{ 761 return &tfm->base; 762} 763 764/** 765 * crypto_free_ablkcipher() - zeroize and free cipher handle 766 * @tfm: cipher handle to be freed 767 */ 768static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm) 769{ 770 crypto_free_tfm(crypto_ablkcipher_tfm(tfm)); 771} 772 773/** 774 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher. 775 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 776 * ablkcipher 777 * @type: specifies the type of the cipher 778 * @mask: specifies the mask for the cipher 779 * 780 * Return: true when the ablkcipher is known to the kernel crypto API; false 781 * otherwise 782 */ 783static inline int crypto_has_ablkcipher(const char *alg_name, u32 type, 784 u32 mask) 785{ 786 return crypto_has_alg(alg_name, crypto_skcipher_type(type), 787 crypto_skcipher_mask(mask)); 788} 789 790static inline struct ablkcipher_tfm *crypto_ablkcipher_crt( 791 struct crypto_ablkcipher *tfm) 792{ 793 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher; 794} 795 796/** 797 * crypto_ablkcipher_ivsize() - obtain IV size 798 * @tfm: cipher handle 799 * 800 * The size of the IV for the ablkcipher referenced by the cipher handle is 801 * returned. This IV size may be zero if the cipher does not need an IV. 802 * 803 * Return: IV size in bytes 804 */ 805static inline unsigned int crypto_ablkcipher_ivsize( 806 struct crypto_ablkcipher *tfm) 807{ 808 return crypto_ablkcipher_crt(tfm)->ivsize; 809} 810 811/** 812 * crypto_ablkcipher_blocksize() - obtain block size of cipher 813 * @tfm: cipher handle 814 * 815 * The block size for the ablkcipher referenced with the cipher handle is 816 * returned. The caller may use that information to allocate appropriate 817 * memory for the data returned by the encryption or decryption operation 818 * 819 * Return: block size of cipher 820 */ 821static inline unsigned int crypto_ablkcipher_blocksize( 822 struct crypto_ablkcipher *tfm) 823{ 824 return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm)); 825} 826 827static inline unsigned int crypto_ablkcipher_alignmask( 828 struct crypto_ablkcipher *tfm) 829{ 830 return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm)); 831} 832 833static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm) 834{ 835 return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm)); 836} 837 838static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm, 839 u32 flags) 840{ 841 crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags); 842} 843 844static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm, 845 u32 flags) 846{ 847 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags); 848} 849 850/** 851 * crypto_ablkcipher_setkey() - set key for cipher 852 * @tfm: cipher handle 853 * @key: buffer holding the key 854 * @keylen: length of the key in bytes 855 * 856 * The caller provided key is set for the ablkcipher referenced by the cipher 857 * handle. 858 * 859 * Note, the key length determines the cipher type. Many block ciphers implement 860 * different cipher modes depending on the key size, such as AES-128 vs AES-192 861 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 862 * is performed. 863 * 864 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 865 */ 866static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm, 867 const u8 *key, unsigned int keylen) 868{ 869 struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm); 870 871 return crt->setkey(crt->base, key, keylen); 872} 873 874/** 875 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request 876 * @req: ablkcipher_request out of which the cipher handle is to be obtained 877 * 878 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request 879 * data structure. 880 * 881 * Return: crypto_ablkcipher handle 882 */ 883static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm( 884 struct ablkcipher_request *req) 885{ 886 return __crypto_ablkcipher_cast(req->base.tfm); 887} 888 889/** 890 * crypto_ablkcipher_encrypt() - encrypt plaintext 891 * @req: reference to the ablkcipher_request handle that holds all information 892 * needed to perform the cipher operation 893 * 894 * Encrypt plaintext data using the ablkcipher_request handle. That data 895 * structure and how it is filled with data is discussed with the 896 * ablkcipher_request_* functions. 897 * 898 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 899 */ 900static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req) 901{ 902 struct ablkcipher_tfm *crt = 903 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); 904 return crt->encrypt(req); 905} 906 907/** 908 * crypto_ablkcipher_decrypt() - decrypt ciphertext 909 * @req: reference to the ablkcipher_request handle that holds all information 910 * needed to perform the cipher operation 911 * 912 * Decrypt ciphertext data using the ablkcipher_request handle. That data 913 * structure and how it is filled with data is discussed with the 914 * ablkcipher_request_* functions. 915 * 916 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 917 */ 918static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req) 919{ 920 struct ablkcipher_tfm *crt = 921 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); 922 return crt->decrypt(req); 923} 924 925/** 926 * DOC: Asynchronous Cipher Request Handle 927 * 928 * The ablkcipher_request data structure contains all pointers to data 929 * required for the asynchronous cipher operation. This includes the cipher 930 * handle (which can be used by multiple ablkcipher_request instances), pointer 931 * to plaintext and ciphertext, asynchronous callback function, etc. It acts 932 * as a handle to the ablkcipher_request_* API calls in a similar way as 933 * ablkcipher handle to the crypto_ablkcipher_* API calls. 934 */ 935 936/** 937 * crypto_ablkcipher_reqsize() - obtain size of the request data structure 938 * @tfm: cipher handle 939 * 940 * Return: number of bytes 941 */ 942static inline unsigned int crypto_ablkcipher_reqsize( 943 struct crypto_ablkcipher *tfm) 944{ 945 return crypto_ablkcipher_crt(tfm)->reqsize; 946} 947 948/** 949 * ablkcipher_request_set_tfm() - update cipher handle reference in request 950 * @req: request handle to be modified 951 * @tfm: cipher handle that shall be added to the request handle 952 * 953 * Allow the caller to replace the existing ablkcipher handle in the request 954 * data structure with a different one. 955 */ 956static inline void ablkcipher_request_set_tfm( 957 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm) 958{ 959 req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base); 960} 961 962static inline struct ablkcipher_request *ablkcipher_request_cast( 963 struct crypto_async_request *req) 964{ 965 return container_of(req, struct ablkcipher_request, base); 966} 967 968/** 969 * ablkcipher_request_alloc() - allocate request data structure 970 * @tfm: cipher handle to be registered with the request 971 * @gfp: memory allocation flag that is handed to kmalloc by the API call. 972 * 973 * Allocate the request data structure that must be used with the ablkcipher 974 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher 975 * handle is registered in the request data structure. 976 * 977 * Return: allocated request handle in case of success, or NULL if out of memory 978 */ 979static inline struct ablkcipher_request *ablkcipher_request_alloc( 980 struct crypto_ablkcipher *tfm, gfp_t gfp) 981{ 982 struct ablkcipher_request *req; 983 984 req = kmalloc(sizeof(struct ablkcipher_request) + 985 crypto_ablkcipher_reqsize(tfm), gfp); 986 987 if (likely(req)) 988 ablkcipher_request_set_tfm(req, tfm); 989 990 return req; 991} 992 993/** 994 * ablkcipher_request_free() - zeroize and free request data structure 995 * @req: request data structure cipher handle to be freed 996 */ 997static inline void ablkcipher_request_free(struct ablkcipher_request *req) 998{ 999 kzfree(req); 1000} 1001 1002/** 1003 * ablkcipher_request_set_callback() - set asynchronous callback function 1004 * @req: request handle 1005 * @flags: specify zero or an ORing of the flags 1006 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and 1007 * increase the wait queue beyond the initial maximum size; 1008 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep 1009 * @compl: callback function pointer to be registered with the request handle 1010 * @data: The data pointer refers to memory that is not used by the kernel 1011 * crypto API, but provided to the callback function for it to use. Here, 1012 * the caller can provide a reference to memory the callback function can 1013 * operate on. As the callback function is invoked asynchronously to the 1014 * related functionality, it may need to access data structures of the 1015 * related functionality which can be referenced using this pointer. The 1016 * callback function can access the memory via the "data" field in the 1017 * crypto_async_request data structure provided to the callback function. 1018 * 1019 * This function allows setting the callback function that is triggered once the 1020 * cipher operation completes. 1021 * 1022 * The callback function is registered with the ablkcipher_request handle and 1023 * must comply with the following template:: 1024 * 1025 * void callback_function(struct crypto_async_request *req, int error) 1026 */ 1027static inline void ablkcipher_request_set_callback( 1028 struct ablkcipher_request *req, 1029 u32 flags, crypto_completion_t compl, void *data) 1030{ 1031 req->base.complete = compl; 1032 req->base.data = data; 1033 req->base.flags = flags; 1034} 1035 1036/** 1037 * ablkcipher_request_set_crypt() - set data buffers 1038 * @req: request handle 1039 * @src: source scatter / gather list 1040 * @dst: destination scatter / gather list 1041 * @nbytes: number of bytes to process from @src 1042 * @iv: IV for the cipher operation which must comply with the IV size defined 1043 * by crypto_ablkcipher_ivsize 1044 * 1045 * This function allows setting of the source data and destination data 1046 * scatter / gather lists. 1047 * 1048 * For encryption, the source is treated as the plaintext and the 1049 * destination is the ciphertext. For a decryption operation, the use is 1050 * reversed - the source is the ciphertext and the destination is the plaintext. 1051 */ 1052static inline void ablkcipher_request_set_crypt( 1053 struct ablkcipher_request *req, 1054 struct scatterlist *src, struct scatterlist *dst, 1055 unsigned int nbytes, void *iv) 1056{ 1057 req->src = src; 1058 req->dst = dst; 1059 req->nbytes = nbytes; 1060 req->info = iv; 1061} 1062 1063/** 1064 * DOC: Synchronous Block Cipher API 1065 * 1066 * The synchronous block cipher API is used with the ciphers of type 1067 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto) 1068 * 1069 * Synchronous calls, have a context in the tfm. But since a single tfm can be 1070 * used in multiple calls and in parallel, this info should not be changeable 1071 * (unless a lock is used). This applies, for example, to the symmetric key. 1072 * However, the IV is changeable, so there is an iv field in blkcipher_tfm 1073 * structure for synchronous blkcipher api. So, its the only state info that can 1074 * be kept for synchronous calls without using a big lock across a tfm. 1075 * 1076 * The block cipher API allows the use of a complete cipher, i.e. a cipher 1077 * consisting of a template (a block chaining mode) and a single block cipher 1078 * primitive (e.g. AES). 1079 * 1080 * The plaintext data buffer and the ciphertext data buffer are pointed to 1081 * by using scatter/gather lists. The cipher operation is performed 1082 * on all segments of the provided scatter/gather lists. 1083 * 1084 * The kernel crypto API supports a cipher operation "in-place" which means that 1085 * the caller may provide the same scatter/gather list for the plaintext and 1086 * cipher text. After the completion of the cipher operation, the plaintext 1087 * data is replaced with the ciphertext data in case of an encryption and vice 1088 * versa for a decryption. The caller must ensure that the scatter/gather lists 1089 * for the output data point to sufficiently large buffers, i.e. multiples of 1090 * the block size of the cipher. 1091 */ 1092 1093static inline struct crypto_blkcipher *__crypto_blkcipher_cast( 1094 struct crypto_tfm *tfm) 1095{ 1096 return (struct crypto_blkcipher *)tfm; 1097} 1098 1099static inline struct crypto_blkcipher *crypto_blkcipher_cast( 1100 struct crypto_tfm *tfm) 1101{ 1102 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER); 1103 return __crypto_blkcipher_cast(tfm); 1104} 1105 1106/** 1107 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle 1108 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1109 * blkcipher cipher 1110 * @type: specifies the type of the cipher 1111 * @mask: specifies the mask for the cipher 1112 * 1113 * Allocate a cipher handle for a block cipher. The returned struct 1114 * crypto_blkcipher is the cipher handle that is required for any subsequent 1115 * API invocation for that block cipher. 1116 * 1117 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 1118 * of an error, PTR_ERR() returns the error code. 1119 */ 1120static inline struct crypto_blkcipher *crypto_alloc_blkcipher( 1121 const char *alg_name, u32 type, u32 mask) 1122{ 1123 type &= ~CRYPTO_ALG_TYPE_MASK; 1124 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 1125 mask |= CRYPTO_ALG_TYPE_MASK; 1126 1127 return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask)); 1128} 1129 1130static inline struct crypto_tfm *crypto_blkcipher_tfm( 1131 struct crypto_blkcipher *tfm) 1132{ 1133 return &tfm->base; 1134} 1135 1136/** 1137 * crypto_free_blkcipher() - zeroize and free the block cipher handle 1138 * @tfm: cipher handle to be freed 1139 */ 1140static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm) 1141{ 1142 crypto_free_tfm(crypto_blkcipher_tfm(tfm)); 1143} 1144 1145/** 1146 * crypto_has_blkcipher() - Search for the availability of a block cipher 1147 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1148 * block cipher 1149 * @type: specifies the type of the cipher 1150 * @mask: specifies the mask for the cipher 1151 * 1152 * Return: true when the block cipher is known to the kernel crypto API; false 1153 * otherwise 1154 */ 1155static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask) 1156{ 1157 type &= ~CRYPTO_ALG_TYPE_MASK; 1158 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 1159 mask |= CRYPTO_ALG_TYPE_MASK; 1160 1161 return crypto_has_alg(alg_name, type, mask); 1162} 1163 1164/** 1165 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle 1166 * @tfm: cipher handle 1167 * 1168 * Return: The character string holding the name of the cipher 1169 */ 1170static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm) 1171{ 1172 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm)); 1173} 1174 1175static inline struct blkcipher_tfm *crypto_blkcipher_crt( 1176 struct crypto_blkcipher *tfm) 1177{ 1178 return &crypto_blkcipher_tfm(tfm)->crt_blkcipher; 1179} 1180 1181static inline struct blkcipher_alg *crypto_blkcipher_alg( 1182 struct crypto_blkcipher *tfm) 1183{ 1184 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher; 1185} 1186 1187/** 1188 * crypto_blkcipher_ivsize() - obtain IV size 1189 * @tfm: cipher handle 1190 * 1191 * The size of the IV for the block cipher referenced by the cipher handle is 1192 * returned. This IV size may be zero if the cipher does not need an IV. 1193 * 1194 * Return: IV size in bytes 1195 */ 1196static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm) 1197{ 1198 return crypto_blkcipher_alg(tfm)->ivsize; 1199} 1200 1201/** 1202 * crypto_blkcipher_blocksize() - obtain block size of cipher 1203 * @tfm: cipher handle 1204 * 1205 * The block size for the block cipher referenced with the cipher handle is 1206 * returned. The caller may use that information to allocate appropriate 1207 * memory for the data returned by the encryption or decryption operation. 1208 * 1209 * Return: block size of cipher 1210 */ 1211static inline unsigned int crypto_blkcipher_blocksize( 1212 struct crypto_blkcipher *tfm) 1213{ 1214 return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm)); 1215} 1216 1217static inline unsigned int crypto_blkcipher_alignmask( 1218 struct crypto_blkcipher *tfm) 1219{ 1220 return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm)); 1221} 1222 1223static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm) 1224{ 1225 return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm)); 1226} 1227 1228static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm, 1229 u32 flags) 1230{ 1231 crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags); 1232} 1233 1234static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm, 1235 u32 flags) 1236{ 1237 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags); 1238} 1239 1240/** 1241 * crypto_blkcipher_setkey() - set key for cipher 1242 * @tfm: cipher handle 1243 * @key: buffer holding the key 1244 * @keylen: length of the key in bytes 1245 * 1246 * The caller provided key is set for the block cipher referenced by the cipher 1247 * handle. 1248 * 1249 * Note, the key length determines the cipher type. Many block ciphers implement 1250 * different cipher modes depending on the key size, such as AES-128 vs AES-192 1251 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 1252 * is performed. 1253 * 1254 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 1255 */ 1256static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm, 1257 const u8 *key, unsigned int keylen) 1258{ 1259 return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm), 1260 key, keylen); 1261} 1262 1263/** 1264 * crypto_blkcipher_encrypt() - encrypt plaintext 1265 * @desc: reference to the block cipher handle with meta data 1266 * @dst: scatter/gather list that is filled by the cipher operation with the 1267 * ciphertext 1268 * @src: scatter/gather list that holds the plaintext 1269 * @nbytes: number of bytes of the plaintext to encrypt. 1270 * 1271 * Encrypt plaintext data using the IV set by the caller with a preceding 1272 * call of crypto_blkcipher_set_iv. 1273 * 1274 * The blkcipher_desc data structure must be filled by the caller and can 1275 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled 1276 * with the block cipher handle; desc.flags is filled with either 1277 * CRYPTO_TFM_REQ_MAY_SLEEP or 0. 1278 * 1279 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1280 */ 1281static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc, 1282 struct scatterlist *dst, 1283 struct scatterlist *src, 1284 unsigned int nbytes) 1285{ 1286 desc->info = crypto_blkcipher_crt(desc->tfm)->iv; 1287 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); 1288} 1289 1290/** 1291 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV 1292 * @desc: reference to the block cipher handle with meta data 1293 * @dst: scatter/gather list that is filled by the cipher operation with the 1294 * ciphertext 1295 * @src: scatter/gather list that holds the plaintext 1296 * @nbytes: number of bytes of the plaintext to encrypt. 1297 * 1298 * Encrypt plaintext data with the use of an IV that is solely used for this 1299 * cipher operation. Any previously set IV is not used. 1300 * 1301 * The blkcipher_desc data structure must be filled by the caller and can 1302 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled 1303 * with the block cipher handle; desc.info is filled with the IV to be used for 1304 * the current operation; desc.flags is filled with either 1305 * CRYPTO_TFM_REQ_MAY_SLEEP or 0. 1306 * 1307 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1308 */ 1309static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc, 1310 struct scatterlist *dst, 1311 struct scatterlist *src, 1312 unsigned int nbytes) 1313{ 1314 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); 1315} 1316 1317/** 1318 * crypto_blkcipher_decrypt() - decrypt ciphertext 1319 * @desc: reference to the block cipher handle with meta data 1320 * @dst: scatter/gather list that is filled by the cipher operation with the 1321 * plaintext 1322 * @src: scatter/gather list that holds the ciphertext 1323 * @nbytes: number of bytes of the ciphertext to decrypt. 1324 * 1325 * Decrypt ciphertext data using the IV set by the caller with a preceding 1326 * call of crypto_blkcipher_set_iv. 1327 * 1328 * The blkcipher_desc data structure must be filled by the caller as documented 1329 * for the crypto_blkcipher_encrypt call above. 1330 * 1331 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1332 * 1333 */ 1334static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc, 1335 struct scatterlist *dst, 1336 struct scatterlist *src, 1337 unsigned int nbytes) 1338{ 1339 desc->info = crypto_blkcipher_crt(desc->tfm)->iv; 1340 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); 1341} 1342 1343/** 1344 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV 1345 * @desc: reference to the block cipher handle with meta data 1346 * @dst: scatter/gather list that is filled by the cipher operation with the 1347 * plaintext 1348 * @src: scatter/gather list that holds the ciphertext 1349 * @nbytes: number of bytes of the ciphertext to decrypt. 1350 * 1351 * Decrypt ciphertext data with the use of an IV that is solely used for this 1352 * cipher operation. Any previously set IV is not used. 1353 * 1354 * The blkcipher_desc data structure must be filled by the caller as documented 1355 * for the crypto_blkcipher_encrypt_iv call above. 1356 * 1357 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1358 */ 1359static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc, 1360 struct scatterlist *dst, 1361 struct scatterlist *src, 1362 unsigned int nbytes) 1363{ 1364 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); 1365} 1366 1367/** 1368 * crypto_blkcipher_set_iv() - set IV for cipher 1369 * @tfm: cipher handle 1370 * @src: buffer holding the IV 1371 * @len: length of the IV in bytes 1372 * 1373 * The caller provided IV is set for the block cipher referenced by the cipher 1374 * handle. 1375 */ 1376static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm, 1377 const u8 *src, unsigned int len) 1378{ 1379 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len); 1380} 1381 1382/** 1383 * crypto_blkcipher_get_iv() - obtain IV from cipher 1384 * @tfm: cipher handle 1385 * @dst: buffer filled with the IV 1386 * @len: length of the buffer dst 1387 * 1388 * The caller can obtain the IV set for the block cipher referenced by the 1389 * cipher handle and store it into the user-provided buffer. If the buffer 1390 * has an insufficient space, the IV is truncated to fit the buffer. 1391 */ 1392static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm, 1393 u8 *dst, unsigned int len) 1394{ 1395 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len); 1396} 1397 1398/** 1399 * DOC: Single Block Cipher API 1400 * 1401 * The single block cipher API is used with the ciphers of type 1402 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto). 1403 * 1404 * Using the single block cipher API calls, operations with the basic cipher 1405 * primitive can be implemented. These cipher primitives exclude any block 1406 * chaining operations including IV handling. 1407 * 1408 * The purpose of this single block cipher API is to support the implementation 1409 * of templates or other concepts that only need to perform the cipher operation 1410 * on one block at a time. Templates invoke the underlying cipher primitive 1411 * block-wise and process either the input or the output data of these cipher 1412 * operations. 1413 */ 1414 1415static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm) 1416{ 1417 return (struct crypto_cipher *)tfm; 1418} 1419 1420static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm) 1421{ 1422 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER); 1423 return __crypto_cipher_cast(tfm); 1424} 1425 1426/** 1427 * crypto_alloc_cipher() - allocate single block cipher handle 1428 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1429 * single block cipher 1430 * @type: specifies the type of the cipher 1431 * @mask: specifies the mask for the cipher 1432 * 1433 * Allocate a cipher handle for a single block cipher. The returned struct 1434 * crypto_cipher is the cipher handle that is required for any subsequent API 1435 * invocation for that single block cipher. 1436 * 1437 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 1438 * of an error, PTR_ERR() returns the error code. 1439 */ 1440static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name, 1441 u32 type, u32 mask) 1442{ 1443 type &= ~CRYPTO_ALG_TYPE_MASK; 1444 type |= CRYPTO_ALG_TYPE_CIPHER; 1445 mask |= CRYPTO_ALG_TYPE_MASK; 1446 1447 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask)); 1448} 1449 1450static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm) 1451{ 1452 return &tfm->base; 1453} 1454 1455/** 1456 * crypto_free_cipher() - zeroize and free the single block cipher handle 1457 * @tfm: cipher handle to be freed 1458 */ 1459static inline void crypto_free_cipher(struct crypto_cipher *tfm) 1460{ 1461 crypto_free_tfm(crypto_cipher_tfm(tfm)); 1462} 1463 1464/** 1465 * crypto_has_cipher() - Search for the availability of a single block cipher 1466 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1467 * single block cipher 1468 * @type: specifies the type of the cipher 1469 * @mask: specifies the mask for the cipher 1470 * 1471 * Return: true when the single block cipher is known to the kernel crypto API; 1472 * false otherwise 1473 */ 1474static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask) 1475{ 1476 type &= ~CRYPTO_ALG_TYPE_MASK; 1477 type |= CRYPTO_ALG_TYPE_CIPHER; 1478 mask |= CRYPTO_ALG_TYPE_MASK; 1479 1480 return crypto_has_alg(alg_name, type, mask); 1481} 1482 1483static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm) 1484{ 1485 return &crypto_cipher_tfm(tfm)->crt_cipher; 1486} 1487 1488/** 1489 * crypto_cipher_blocksize() - obtain block size for cipher 1490 * @tfm: cipher handle 1491 * 1492 * The block size for the single block cipher referenced with the cipher handle 1493 * tfm is returned. The caller may use that information to allocate appropriate 1494 * memory for the data returned by the encryption or decryption operation 1495 * 1496 * Return: block size of cipher 1497 */ 1498static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm) 1499{ 1500 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm)); 1501} 1502 1503static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm) 1504{ 1505 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm)); 1506} 1507 1508static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm) 1509{ 1510 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm)); 1511} 1512 1513static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm, 1514 u32 flags) 1515{ 1516 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags); 1517} 1518 1519static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm, 1520 u32 flags) 1521{ 1522 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags); 1523} 1524 1525/** 1526 * crypto_cipher_setkey() - set key for cipher 1527 * @tfm: cipher handle 1528 * @key: buffer holding the key 1529 * @keylen: length of the key in bytes 1530 * 1531 * The caller provided key is set for the single block cipher referenced by the 1532 * cipher handle. 1533 * 1534 * Note, the key length determines the cipher type. Many block ciphers implement 1535 * different cipher modes depending on the key size, such as AES-128 vs AES-192 1536 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 1537 * is performed. 1538 * 1539 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 1540 */ 1541static inline int crypto_cipher_setkey(struct crypto_cipher *tfm, 1542 const u8 *key, unsigned int keylen) 1543{ 1544 return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm), 1545 key, keylen); 1546} 1547 1548/** 1549 * crypto_cipher_encrypt_one() - encrypt one block of plaintext 1550 * @tfm: cipher handle 1551 * @dst: points to the buffer that will be filled with the ciphertext 1552 * @src: buffer holding the plaintext to be encrypted 1553 * 1554 * Invoke the encryption operation of one block. The caller must ensure that 1555 * the plaintext and ciphertext buffers are at least one block in size. 1556 */ 1557static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm, 1558 u8 *dst, const u8 *src) 1559{ 1560 crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm), 1561 dst, src); 1562} 1563 1564/** 1565 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext 1566 * @tfm: cipher handle 1567 * @dst: points to the buffer that will be filled with the plaintext 1568 * @src: buffer holding the ciphertext to be decrypted 1569 * 1570 * Invoke the decryption operation of one block. The caller must ensure that 1571 * the plaintext and ciphertext buffers are at least one block in size. 1572 */ 1573static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm, 1574 u8 *dst, const u8 *src) 1575{ 1576 crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm), 1577 dst, src); 1578} 1579 1580static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) 1581{ 1582 return (struct crypto_comp *)tfm; 1583} 1584 1585static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm) 1586{ 1587 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) & 1588 CRYPTO_ALG_TYPE_MASK); 1589 return __crypto_comp_cast(tfm); 1590} 1591 1592static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, 1593 u32 type, u32 mask) 1594{ 1595 type &= ~CRYPTO_ALG_TYPE_MASK; 1596 type |= CRYPTO_ALG_TYPE_COMPRESS; 1597 mask |= CRYPTO_ALG_TYPE_MASK; 1598 1599 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); 1600} 1601 1602static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) 1603{ 1604 return &tfm->base; 1605} 1606 1607static inline void crypto_free_comp(struct crypto_comp *tfm) 1608{ 1609 crypto_free_tfm(crypto_comp_tfm(tfm)); 1610} 1611 1612static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) 1613{ 1614 type &= ~CRYPTO_ALG_TYPE_MASK; 1615 type |= CRYPTO_ALG_TYPE_COMPRESS; 1616 mask |= CRYPTO_ALG_TYPE_MASK; 1617 1618 return crypto_has_alg(alg_name, type, mask); 1619} 1620 1621static inline const char *crypto_comp_name(struct crypto_comp *tfm) 1622{ 1623 return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); 1624} 1625 1626static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm) 1627{ 1628 return &crypto_comp_tfm(tfm)->crt_compress; 1629} 1630 1631static inline int crypto_comp_compress(struct crypto_comp *tfm, 1632 const u8 *src, unsigned int slen, 1633 u8 *dst, unsigned int *dlen) 1634{ 1635 return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm), 1636 src, slen, dst, dlen); 1637} 1638 1639static inline int crypto_comp_decompress(struct crypto_comp *tfm, 1640 const u8 *src, unsigned int slen, 1641 u8 *dst, unsigned int *dlen) 1642{ 1643 return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm), 1644 src, slen, dst, dlen); 1645} 1646 1647#endif /* _LINUX_CRYPTO_H */ 1648