Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef __LINUX_CPUMASK_H
3#define __LINUX_CPUMASK_H
4
5/*
6 * Cpumasks provide a bitmap suitable for representing the
7 * set of CPU's in a system, one bit position per CPU number. In general,
8 * only nr_cpu_ids (<= NR_CPUS) bits are valid.
9 */
10#include <linux/kernel.h>
11#include <linux/threads.h>
12#include <linux/bitmap.h>
13#include <linux/bug.h>
14
15/* Don't assign or return these: may not be this big! */
16typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;
17
18/**
19 * cpumask_bits - get the bits in a cpumask
20 * @maskp: the struct cpumask *
21 *
22 * You should only assume nr_cpu_ids bits of this mask are valid. This is
23 * a macro so it's const-correct.
24 */
25#define cpumask_bits(maskp) ((maskp)->bits)
26
27/**
28 * cpumask_pr_args - printf args to output a cpumask
29 * @maskp: cpumask to be printed
30 *
31 * Can be used to provide arguments for '%*pb[l]' when printing a cpumask.
32 */
33#define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp)
34
35#if NR_CPUS == 1
36#define nr_cpu_ids 1U
37#else
38extern unsigned int nr_cpu_ids;
39#endif
40
41#ifdef CONFIG_CPUMASK_OFFSTACK
42/* Assuming NR_CPUS is huge, a runtime limit is more efficient. Also,
43 * not all bits may be allocated. */
44#define nr_cpumask_bits nr_cpu_ids
45#else
46#define nr_cpumask_bits ((unsigned int)NR_CPUS)
47#endif
48
49/*
50 * The following particular system cpumasks and operations manage
51 * possible, present, active and online cpus.
52 *
53 * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable
54 * cpu_present_mask - has bit 'cpu' set iff cpu is populated
55 * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler
56 * cpu_active_mask - has bit 'cpu' set iff cpu available to migration
57 *
58 * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online.
59 *
60 * The cpu_possible_mask is fixed at boot time, as the set of CPU id's
61 * that it is possible might ever be plugged in at anytime during the
62 * life of that system boot. The cpu_present_mask is dynamic(*),
63 * representing which CPUs are currently plugged in. And
64 * cpu_online_mask is the dynamic subset of cpu_present_mask,
65 * indicating those CPUs available for scheduling.
66 *
67 * If HOTPLUG is enabled, then cpu_possible_mask is forced to have
68 * all NR_CPUS bits set, otherwise it is just the set of CPUs that
69 * ACPI reports present at boot.
70 *
71 * If HOTPLUG is enabled, then cpu_present_mask varies dynamically,
72 * depending on what ACPI reports as currently plugged in, otherwise
73 * cpu_present_mask is just a copy of cpu_possible_mask.
74 *
75 * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not
76 * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot.
77 *
78 * Subtleties:
79 * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
80 * assumption that their single CPU is online. The UP
81 * cpu_{online,possible,present}_masks are placebos. Changing them
82 * will have no useful affect on the following num_*_cpus()
83 * and cpu_*() macros in the UP case. This ugliness is a UP
84 * optimization - don't waste any instructions or memory references
85 * asking if you're online or how many CPUs there are if there is
86 * only one CPU.
87 */
88
89extern struct cpumask __cpu_possible_mask;
90extern struct cpumask __cpu_online_mask;
91extern struct cpumask __cpu_present_mask;
92extern struct cpumask __cpu_active_mask;
93#define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask)
94#define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask)
95#define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask)
96#define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask)
97
98#if NR_CPUS > 1
99#define num_online_cpus() cpumask_weight(cpu_online_mask)
100#define num_possible_cpus() cpumask_weight(cpu_possible_mask)
101#define num_present_cpus() cpumask_weight(cpu_present_mask)
102#define num_active_cpus() cpumask_weight(cpu_active_mask)
103#define cpu_online(cpu) cpumask_test_cpu((cpu), cpu_online_mask)
104#define cpu_possible(cpu) cpumask_test_cpu((cpu), cpu_possible_mask)
105#define cpu_present(cpu) cpumask_test_cpu((cpu), cpu_present_mask)
106#define cpu_active(cpu) cpumask_test_cpu((cpu), cpu_active_mask)
107#else
108#define num_online_cpus() 1U
109#define num_possible_cpus() 1U
110#define num_present_cpus() 1U
111#define num_active_cpus() 1U
112#define cpu_online(cpu) ((cpu) == 0)
113#define cpu_possible(cpu) ((cpu) == 0)
114#define cpu_present(cpu) ((cpu) == 0)
115#define cpu_active(cpu) ((cpu) == 0)
116#endif
117
118/* verify cpu argument to cpumask_* operators */
119static inline unsigned int cpumask_check(unsigned int cpu)
120{
121#ifdef CONFIG_DEBUG_PER_CPU_MAPS
122 WARN_ON_ONCE(cpu >= nr_cpumask_bits);
123#endif /* CONFIG_DEBUG_PER_CPU_MAPS */
124 return cpu;
125}
126
127#if NR_CPUS == 1
128/* Uniprocessor. Assume all masks are "1". */
129static inline unsigned int cpumask_first(const struct cpumask *srcp)
130{
131 return 0;
132}
133
134static inline unsigned int cpumask_last(const struct cpumask *srcp)
135{
136 return 0;
137}
138
139/* Valid inputs for n are -1 and 0. */
140static inline unsigned int cpumask_next(int n, const struct cpumask *srcp)
141{
142 return n+1;
143}
144
145static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp)
146{
147 return n+1;
148}
149
150static inline unsigned int cpumask_next_and(int n,
151 const struct cpumask *srcp,
152 const struct cpumask *andp)
153{
154 return n+1;
155}
156
157/* cpu must be a valid cpu, ie 0, so there's no other choice. */
158static inline unsigned int cpumask_any_but(const struct cpumask *mask,
159 unsigned int cpu)
160{
161 return 1;
162}
163
164static inline unsigned int cpumask_local_spread(unsigned int i, int node)
165{
166 return 0;
167}
168
169#define for_each_cpu(cpu, mask) \
170 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask)
171#define for_each_cpu_not(cpu, mask) \
172 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask)
173#define for_each_cpu_and(cpu, mask, and) \
174 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask, (void)and)
175#else
176/**
177 * cpumask_first - get the first cpu in a cpumask
178 * @srcp: the cpumask pointer
179 *
180 * Returns >= nr_cpu_ids if no cpus set.
181 */
182static inline unsigned int cpumask_first(const struct cpumask *srcp)
183{
184 return find_first_bit(cpumask_bits(srcp), nr_cpumask_bits);
185}
186
187/**
188 * cpumask_last - get the last CPU in a cpumask
189 * @srcp: - the cpumask pointer
190 *
191 * Returns >= nr_cpumask_bits if no CPUs set.
192 */
193static inline unsigned int cpumask_last(const struct cpumask *srcp)
194{
195 return find_last_bit(cpumask_bits(srcp), nr_cpumask_bits);
196}
197
198unsigned int cpumask_next(int n, const struct cpumask *srcp);
199
200/**
201 * cpumask_next_zero - get the next unset cpu in a cpumask
202 * @n: the cpu prior to the place to search (ie. return will be > @n)
203 * @srcp: the cpumask pointer
204 *
205 * Returns >= nr_cpu_ids if no further cpus unset.
206 */
207static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp)
208{
209 /* -1 is a legal arg here. */
210 if (n != -1)
211 cpumask_check(n);
212 return find_next_zero_bit(cpumask_bits(srcp), nr_cpumask_bits, n+1);
213}
214
215int cpumask_next_and(int n, const struct cpumask *, const struct cpumask *);
216int cpumask_any_but(const struct cpumask *mask, unsigned int cpu);
217unsigned int cpumask_local_spread(unsigned int i, int node);
218
219/**
220 * for_each_cpu - iterate over every cpu in a mask
221 * @cpu: the (optionally unsigned) integer iterator
222 * @mask: the cpumask pointer
223 *
224 * After the loop, cpu is >= nr_cpu_ids.
225 */
226#define for_each_cpu(cpu, mask) \
227 for ((cpu) = -1; \
228 (cpu) = cpumask_next((cpu), (mask)), \
229 (cpu) < nr_cpu_ids;)
230
231/**
232 * for_each_cpu_not - iterate over every cpu in a complemented mask
233 * @cpu: the (optionally unsigned) integer iterator
234 * @mask: the cpumask pointer
235 *
236 * After the loop, cpu is >= nr_cpu_ids.
237 */
238#define for_each_cpu_not(cpu, mask) \
239 for ((cpu) = -1; \
240 (cpu) = cpumask_next_zero((cpu), (mask)), \
241 (cpu) < nr_cpu_ids;)
242
243extern int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap);
244
245/**
246 * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location
247 * @cpu: the (optionally unsigned) integer iterator
248 * @mask: the cpumask poiter
249 * @start: the start location
250 *
251 * The implementation does not assume any bit in @mask is set (including @start).
252 *
253 * After the loop, cpu is >= nr_cpu_ids.
254 */
255#define for_each_cpu_wrap(cpu, mask, start) \
256 for ((cpu) = cpumask_next_wrap((start)-1, (mask), (start), false); \
257 (cpu) < nr_cpumask_bits; \
258 (cpu) = cpumask_next_wrap((cpu), (mask), (start), true))
259
260/**
261 * for_each_cpu_and - iterate over every cpu in both masks
262 * @cpu: the (optionally unsigned) integer iterator
263 * @mask: the first cpumask pointer
264 * @and: the second cpumask pointer
265 *
266 * This saves a temporary CPU mask in many places. It is equivalent to:
267 * struct cpumask tmp;
268 * cpumask_and(&tmp, &mask, &and);
269 * for_each_cpu(cpu, &tmp)
270 * ...
271 *
272 * After the loop, cpu is >= nr_cpu_ids.
273 */
274#define for_each_cpu_and(cpu, mask, and) \
275 for ((cpu) = -1; \
276 (cpu) = cpumask_next_and((cpu), (mask), (and)), \
277 (cpu) < nr_cpu_ids;)
278#endif /* SMP */
279
280#define CPU_BITS_NONE \
281{ \
282 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
283}
284
285#define CPU_BITS_CPU0 \
286{ \
287 [0] = 1UL \
288}
289
290/**
291 * cpumask_set_cpu - set a cpu in a cpumask
292 * @cpu: cpu number (< nr_cpu_ids)
293 * @dstp: the cpumask pointer
294 */
295static inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
296{
297 set_bit(cpumask_check(cpu), cpumask_bits(dstp));
298}
299
300static inline void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
301{
302 __set_bit(cpumask_check(cpu), cpumask_bits(dstp));
303}
304
305
306/**
307 * cpumask_clear_cpu - clear a cpu in a cpumask
308 * @cpu: cpu number (< nr_cpu_ids)
309 * @dstp: the cpumask pointer
310 */
311static inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp)
312{
313 clear_bit(cpumask_check(cpu), cpumask_bits(dstp));
314}
315
316static inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp)
317{
318 __clear_bit(cpumask_check(cpu), cpumask_bits(dstp));
319}
320
321/**
322 * cpumask_test_cpu - test for a cpu in a cpumask
323 * @cpu: cpu number (< nr_cpu_ids)
324 * @cpumask: the cpumask pointer
325 *
326 * Returns 1 if @cpu is set in @cpumask, else returns 0
327 */
328static inline int cpumask_test_cpu(int cpu, const struct cpumask *cpumask)
329{
330 return test_bit(cpumask_check(cpu), cpumask_bits((cpumask)));
331}
332
333/**
334 * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask
335 * @cpu: cpu number (< nr_cpu_ids)
336 * @cpumask: the cpumask pointer
337 *
338 * Returns 1 if @cpu is set in old bitmap of @cpumask, else returns 0
339 *
340 * test_and_set_bit wrapper for cpumasks.
341 */
342static inline int cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask)
343{
344 return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask));
345}
346
347/**
348 * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask
349 * @cpu: cpu number (< nr_cpu_ids)
350 * @cpumask: the cpumask pointer
351 *
352 * Returns 1 if @cpu is set in old bitmap of @cpumask, else returns 0
353 *
354 * test_and_clear_bit wrapper for cpumasks.
355 */
356static inline int cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask)
357{
358 return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask));
359}
360
361/**
362 * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask
363 * @dstp: the cpumask pointer
364 */
365static inline void cpumask_setall(struct cpumask *dstp)
366{
367 bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits);
368}
369
370/**
371 * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask
372 * @dstp: the cpumask pointer
373 */
374static inline void cpumask_clear(struct cpumask *dstp)
375{
376 bitmap_zero(cpumask_bits(dstp), nr_cpumask_bits);
377}
378
379/**
380 * cpumask_and - *dstp = *src1p & *src2p
381 * @dstp: the cpumask result
382 * @src1p: the first input
383 * @src2p: the second input
384 *
385 * If *@dstp is empty, returns 0, else returns 1
386 */
387static inline int cpumask_and(struct cpumask *dstp,
388 const struct cpumask *src1p,
389 const struct cpumask *src2p)
390{
391 return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p),
392 cpumask_bits(src2p), nr_cpumask_bits);
393}
394
395/**
396 * cpumask_or - *dstp = *src1p | *src2p
397 * @dstp: the cpumask result
398 * @src1p: the first input
399 * @src2p: the second input
400 */
401static inline void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p,
402 const struct cpumask *src2p)
403{
404 bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p),
405 cpumask_bits(src2p), nr_cpumask_bits);
406}
407
408/**
409 * cpumask_xor - *dstp = *src1p ^ *src2p
410 * @dstp: the cpumask result
411 * @src1p: the first input
412 * @src2p: the second input
413 */
414static inline void cpumask_xor(struct cpumask *dstp,
415 const struct cpumask *src1p,
416 const struct cpumask *src2p)
417{
418 bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p),
419 cpumask_bits(src2p), nr_cpumask_bits);
420}
421
422/**
423 * cpumask_andnot - *dstp = *src1p & ~*src2p
424 * @dstp: the cpumask result
425 * @src1p: the first input
426 * @src2p: the second input
427 *
428 * If *@dstp is empty, returns 0, else returns 1
429 */
430static inline int cpumask_andnot(struct cpumask *dstp,
431 const struct cpumask *src1p,
432 const struct cpumask *src2p)
433{
434 return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p),
435 cpumask_bits(src2p), nr_cpumask_bits);
436}
437
438/**
439 * cpumask_complement - *dstp = ~*srcp
440 * @dstp: the cpumask result
441 * @srcp: the input to invert
442 */
443static inline void cpumask_complement(struct cpumask *dstp,
444 const struct cpumask *srcp)
445{
446 bitmap_complement(cpumask_bits(dstp), cpumask_bits(srcp),
447 nr_cpumask_bits);
448}
449
450/**
451 * cpumask_equal - *src1p == *src2p
452 * @src1p: the first input
453 * @src2p: the second input
454 */
455static inline bool cpumask_equal(const struct cpumask *src1p,
456 const struct cpumask *src2p)
457{
458 return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p),
459 nr_cpumask_bits);
460}
461
462/**
463 * cpumask_intersects - (*src1p & *src2p) != 0
464 * @src1p: the first input
465 * @src2p: the second input
466 */
467static inline bool cpumask_intersects(const struct cpumask *src1p,
468 const struct cpumask *src2p)
469{
470 return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p),
471 nr_cpumask_bits);
472}
473
474/**
475 * cpumask_subset - (*src1p & ~*src2p) == 0
476 * @src1p: the first input
477 * @src2p: the second input
478 *
479 * Returns 1 if *@src1p is a subset of *@src2p, else returns 0
480 */
481static inline int cpumask_subset(const struct cpumask *src1p,
482 const struct cpumask *src2p)
483{
484 return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p),
485 nr_cpumask_bits);
486}
487
488/**
489 * cpumask_empty - *srcp == 0
490 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear.
491 */
492static inline bool cpumask_empty(const struct cpumask *srcp)
493{
494 return bitmap_empty(cpumask_bits(srcp), nr_cpumask_bits);
495}
496
497/**
498 * cpumask_full - *srcp == 0xFFFFFFFF...
499 * @srcp: the cpumask to that all cpus < nr_cpu_ids are set.
500 */
501static inline bool cpumask_full(const struct cpumask *srcp)
502{
503 return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits);
504}
505
506/**
507 * cpumask_weight - Count of bits in *srcp
508 * @srcp: the cpumask to count bits (< nr_cpu_ids) in.
509 */
510static inline unsigned int cpumask_weight(const struct cpumask *srcp)
511{
512 return bitmap_weight(cpumask_bits(srcp), nr_cpumask_bits);
513}
514
515/**
516 * cpumask_shift_right - *dstp = *srcp >> n
517 * @dstp: the cpumask result
518 * @srcp: the input to shift
519 * @n: the number of bits to shift by
520 */
521static inline void cpumask_shift_right(struct cpumask *dstp,
522 const struct cpumask *srcp, int n)
523{
524 bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n,
525 nr_cpumask_bits);
526}
527
528/**
529 * cpumask_shift_left - *dstp = *srcp << n
530 * @dstp: the cpumask result
531 * @srcp: the input to shift
532 * @n: the number of bits to shift by
533 */
534static inline void cpumask_shift_left(struct cpumask *dstp,
535 const struct cpumask *srcp, int n)
536{
537 bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n,
538 nr_cpumask_bits);
539}
540
541/**
542 * cpumask_copy - *dstp = *srcp
543 * @dstp: the result
544 * @srcp: the input cpumask
545 */
546static inline void cpumask_copy(struct cpumask *dstp,
547 const struct cpumask *srcp)
548{
549 bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), nr_cpumask_bits);
550}
551
552/**
553 * cpumask_any - pick a "random" cpu from *srcp
554 * @srcp: the input cpumask
555 *
556 * Returns >= nr_cpu_ids if no cpus set.
557 */
558#define cpumask_any(srcp) cpumask_first(srcp)
559
560/**
561 * cpumask_first_and - return the first cpu from *srcp1 & *srcp2
562 * @src1p: the first input
563 * @src2p: the second input
564 *
565 * Returns >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and().
566 */
567#define cpumask_first_and(src1p, src2p) cpumask_next_and(-1, (src1p), (src2p))
568
569/**
570 * cpumask_any_and - pick a "random" cpu from *mask1 & *mask2
571 * @mask1: the first input cpumask
572 * @mask2: the second input cpumask
573 *
574 * Returns >= nr_cpu_ids if no cpus set.
575 */
576#define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2))
577
578/**
579 * cpumask_of - the cpumask containing just a given cpu
580 * @cpu: the cpu (<= nr_cpu_ids)
581 */
582#define cpumask_of(cpu) (get_cpu_mask(cpu))
583
584/**
585 * cpumask_parse_user - extract a cpumask from a user string
586 * @buf: the buffer to extract from
587 * @len: the length of the buffer
588 * @dstp: the cpumask to set.
589 *
590 * Returns -errno, or 0 for success.
591 */
592static inline int cpumask_parse_user(const char __user *buf, int len,
593 struct cpumask *dstp)
594{
595 return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits);
596}
597
598/**
599 * cpumask_parselist_user - extract a cpumask from a user string
600 * @buf: the buffer to extract from
601 * @len: the length of the buffer
602 * @dstp: the cpumask to set.
603 *
604 * Returns -errno, or 0 for success.
605 */
606static inline int cpumask_parselist_user(const char __user *buf, int len,
607 struct cpumask *dstp)
608{
609 return bitmap_parselist_user(buf, len, cpumask_bits(dstp),
610 nr_cpumask_bits);
611}
612
613/**
614 * cpumask_parse - extract a cpumask from a string
615 * @buf: the buffer to extract from
616 * @dstp: the cpumask to set.
617 *
618 * Returns -errno, or 0 for success.
619 */
620static inline int cpumask_parse(const char *buf, struct cpumask *dstp)
621{
622 char *nl = strchr(buf, '\n');
623 unsigned int len = nl ? (unsigned int)(nl - buf) : strlen(buf);
624
625 return bitmap_parse(buf, len, cpumask_bits(dstp), nr_cpumask_bits);
626}
627
628/**
629 * cpulist_parse - extract a cpumask from a user string of ranges
630 * @buf: the buffer to extract from
631 * @dstp: the cpumask to set.
632 *
633 * Returns -errno, or 0 for success.
634 */
635static inline int cpulist_parse(const char *buf, struct cpumask *dstp)
636{
637 return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits);
638}
639
640/**
641 * cpumask_size - size to allocate for a 'struct cpumask' in bytes
642 */
643static inline size_t cpumask_size(void)
644{
645 return BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long);
646}
647
648/*
649 * cpumask_var_t: struct cpumask for stack usage.
650 *
651 * Oh, the wicked games we play! In order to make kernel coding a
652 * little more difficult, we typedef cpumask_var_t to an array or a
653 * pointer: doing &mask on an array is a noop, so it still works.
654 *
655 * ie.
656 * cpumask_var_t tmpmask;
657 * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
658 * return -ENOMEM;
659 *
660 * ... use 'tmpmask' like a normal struct cpumask * ...
661 *
662 * free_cpumask_var(tmpmask);
663 *
664 *
665 * However, one notable exception is there. alloc_cpumask_var() allocates
666 * only nr_cpumask_bits bits (in the other hand, real cpumask_t always has
667 * NR_CPUS bits). Therefore you don't have to dereference cpumask_var_t.
668 *
669 * cpumask_var_t tmpmask;
670 * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
671 * return -ENOMEM;
672 *
673 * var = *tmpmask;
674 *
675 * This code makes NR_CPUS length memcopy and brings to a memory corruption.
676 * cpumask_copy() provide safe copy functionality.
677 *
678 * Note that there is another evil here: If you define a cpumask_var_t
679 * as a percpu variable then the way to obtain the address of the cpumask
680 * structure differently influences what this_cpu_* operation needs to be
681 * used. Please use this_cpu_cpumask_var_t in those cases. The direct use
682 * of this_cpu_ptr() or this_cpu_read() will lead to failures when the
683 * other type of cpumask_var_t implementation is configured.
684 *
685 * Please also note that __cpumask_var_read_mostly can be used to declare
686 * a cpumask_var_t variable itself (not its content) as read mostly.
687 */
688#ifdef CONFIG_CPUMASK_OFFSTACK
689typedef struct cpumask *cpumask_var_t;
690
691#define this_cpu_cpumask_var_ptr(x) this_cpu_read(x)
692#define __cpumask_var_read_mostly __read_mostly
693
694bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node);
695bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags);
696bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node);
697bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags);
698void alloc_bootmem_cpumask_var(cpumask_var_t *mask);
699void free_cpumask_var(cpumask_var_t mask);
700void free_bootmem_cpumask_var(cpumask_var_t mask);
701
702static inline bool cpumask_available(cpumask_var_t mask)
703{
704 return mask != NULL;
705}
706
707#else
708typedef struct cpumask cpumask_var_t[1];
709
710#define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x)
711#define __cpumask_var_read_mostly
712
713static inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
714{
715 return true;
716}
717
718static inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
719 int node)
720{
721 return true;
722}
723
724static inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
725{
726 cpumask_clear(*mask);
727 return true;
728}
729
730static inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
731 int node)
732{
733 cpumask_clear(*mask);
734 return true;
735}
736
737static inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask)
738{
739}
740
741static inline void free_cpumask_var(cpumask_var_t mask)
742{
743}
744
745static inline void free_bootmem_cpumask_var(cpumask_var_t mask)
746{
747}
748
749static inline bool cpumask_available(cpumask_var_t mask)
750{
751 return true;
752}
753#endif /* CONFIG_CPUMASK_OFFSTACK */
754
755/* It's common to want to use cpu_all_mask in struct member initializers,
756 * so it has to refer to an address rather than a pointer. */
757extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS);
758#define cpu_all_mask to_cpumask(cpu_all_bits)
759
760/* First bits of cpu_bit_bitmap are in fact unset. */
761#define cpu_none_mask to_cpumask(cpu_bit_bitmap[0])
762
763#define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask)
764#define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask)
765#define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask)
766
767/* Wrappers for arch boot code to manipulate normally-constant masks */
768void init_cpu_present(const struct cpumask *src);
769void init_cpu_possible(const struct cpumask *src);
770void init_cpu_online(const struct cpumask *src);
771
772static inline void reset_cpu_possible_mask(void)
773{
774 bitmap_zero(cpumask_bits(&__cpu_possible_mask), NR_CPUS);
775}
776
777static inline void
778set_cpu_possible(unsigned int cpu, bool possible)
779{
780 if (possible)
781 cpumask_set_cpu(cpu, &__cpu_possible_mask);
782 else
783 cpumask_clear_cpu(cpu, &__cpu_possible_mask);
784}
785
786static inline void
787set_cpu_present(unsigned int cpu, bool present)
788{
789 if (present)
790 cpumask_set_cpu(cpu, &__cpu_present_mask);
791 else
792 cpumask_clear_cpu(cpu, &__cpu_present_mask);
793}
794
795static inline void
796set_cpu_online(unsigned int cpu, bool online)
797{
798 if (online)
799 cpumask_set_cpu(cpu, &__cpu_online_mask);
800 else
801 cpumask_clear_cpu(cpu, &__cpu_online_mask);
802}
803
804static inline void
805set_cpu_active(unsigned int cpu, bool active)
806{
807 if (active)
808 cpumask_set_cpu(cpu, &__cpu_active_mask);
809 else
810 cpumask_clear_cpu(cpu, &__cpu_active_mask);
811}
812
813
814/**
815 * to_cpumask - convert an NR_CPUS bitmap to a struct cpumask *
816 * @bitmap: the bitmap
817 *
818 * There are a few places where cpumask_var_t isn't appropriate and
819 * static cpumasks must be used (eg. very early boot), yet we don't
820 * expose the definition of 'struct cpumask'.
821 *
822 * This does the conversion, and can be used as a constant initializer.
823 */
824#define to_cpumask(bitmap) \
825 ((struct cpumask *)(1 ? (bitmap) \
826 : (void *)sizeof(__check_is_bitmap(bitmap))))
827
828static inline int __check_is_bitmap(const unsigned long *bitmap)
829{
830 return 1;
831}
832
833/*
834 * Special-case data structure for "single bit set only" constant CPU masks.
835 *
836 * We pre-generate all the 64 (or 32) possible bit positions, with enough
837 * padding to the left and the right, and return the constant pointer
838 * appropriately offset.
839 */
840extern const unsigned long
841 cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)];
842
843static inline const struct cpumask *get_cpu_mask(unsigned int cpu)
844{
845 const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG];
846 p -= cpu / BITS_PER_LONG;
847 return to_cpumask(p);
848}
849
850#define cpu_is_offline(cpu) unlikely(!cpu_online(cpu))
851
852#if NR_CPUS <= BITS_PER_LONG
853#define CPU_BITS_ALL \
854{ \
855 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
856}
857
858#else /* NR_CPUS > BITS_PER_LONG */
859
860#define CPU_BITS_ALL \
861{ \
862 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
863 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
864}
865#endif /* NR_CPUS > BITS_PER_LONG */
866
867/**
868 * cpumap_print_to_pagebuf - copies the cpumask into the buffer either
869 * as comma-separated list of cpus or hex values of cpumask
870 * @list: indicates whether the cpumap must be list
871 * @mask: the cpumask to copy
872 * @buf: the buffer to copy into
873 *
874 * Returns the length of the (null-terminated) @buf string, zero if
875 * nothing is copied.
876 */
877static inline ssize_t
878cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask)
879{
880 return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask),
881 nr_cpu_ids);
882}
883
884#if NR_CPUS <= BITS_PER_LONG
885#define CPU_MASK_ALL \
886(cpumask_t) { { \
887 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
888} }
889#else
890#define CPU_MASK_ALL \
891(cpumask_t) { { \
892 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
893 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
894} }
895#endif /* NR_CPUS > BITS_PER_LONG */
896
897#define CPU_MASK_NONE \
898(cpumask_t) { { \
899 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
900} }
901
902#define CPU_MASK_CPU0 \
903(cpumask_t) { { \
904 [0] = 1UL \
905} }
906
907#endif /* __LINUX_CPUMASK_H */