Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/buffer_head.h>
14#include <linux/mpage.h>
15#include <linux/writeback.h>
16#include <linux/backing-dev.h>
17#include <linux/pagevec.h>
18#include <linux/blkdev.h>
19#include <linux/bio.h>
20#include <linux/prefetch.h>
21#include <linux/uio.h>
22#include <linux/mm.h>
23#include <linux/memcontrol.h>
24#include <linux/cleancache.h>
25#include <linux/sched/signal.h>
26
27#include "f2fs.h"
28#include "node.h"
29#include "segment.h"
30#include "trace.h"
31#include <trace/events/f2fs.h>
32
33static bool __is_cp_guaranteed(struct page *page)
34{
35 struct address_space *mapping = page->mapping;
36 struct inode *inode;
37 struct f2fs_sb_info *sbi;
38
39 if (!mapping)
40 return false;
41
42 inode = mapping->host;
43 sbi = F2FS_I_SB(inode);
44
45 if (inode->i_ino == F2FS_META_INO(sbi) ||
46 inode->i_ino == F2FS_NODE_INO(sbi) ||
47 S_ISDIR(inode->i_mode) ||
48 is_cold_data(page))
49 return true;
50 return false;
51}
52
53static void f2fs_read_end_io(struct bio *bio)
54{
55 struct bio_vec *bvec;
56 int i;
57
58#ifdef CONFIG_F2FS_FAULT_INJECTION
59 if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) {
60 f2fs_show_injection_info(FAULT_IO);
61 bio->bi_status = BLK_STS_IOERR;
62 }
63#endif
64
65 if (f2fs_bio_encrypted(bio)) {
66 if (bio->bi_status) {
67 fscrypt_release_ctx(bio->bi_private);
68 } else {
69 fscrypt_decrypt_bio_pages(bio->bi_private, bio);
70 return;
71 }
72 }
73
74 bio_for_each_segment_all(bvec, bio, i) {
75 struct page *page = bvec->bv_page;
76
77 if (!bio->bi_status) {
78 if (!PageUptodate(page))
79 SetPageUptodate(page);
80 } else {
81 ClearPageUptodate(page);
82 SetPageError(page);
83 }
84 unlock_page(page);
85 }
86 bio_put(bio);
87}
88
89static void f2fs_write_end_io(struct bio *bio)
90{
91 struct f2fs_sb_info *sbi = bio->bi_private;
92 struct bio_vec *bvec;
93 int i;
94
95 bio_for_each_segment_all(bvec, bio, i) {
96 struct page *page = bvec->bv_page;
97 enum count_type type = WB_DATA_TYPE(page);
98
99 if (IS_DUMMY_WRITTEN_PAGE(page)) {
100 set_page_private(page, (unsigned long)NULL);
101 ClearPagePrivate(page);
102 unlock_page(page);
103 mempool_free(page, sbi->write_io_dummy);
104
105 if (unlikely(bio->bi_status))
106 f2fs_stop_checkpoint(sbi, true);
107 continue;
108 }
109
110 fscrypt_pullback_bio_page(&page, true);
111
112 if (unlikely(bio->bi_status)) {
113 mapping_set_error(page->mapping, -EIO);
114 f2fs_stop_checkpoint(sbi, true);
115 }
116 dec_page_count(sbi, type);
117 clear_cold_data(page);
118 end_page_writeback(page);
119 }
120 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
121 wq_has_sleeper(&sbi->cp_wait))
122 wake_up(&sbi->cp_wait);
123
124 bio_put(bio);
125}
126
127/*
128 * Return true, if pre_bio's bdev is same as its target device.
129 */
130struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
131 block_t blk_addr, struct bio *bio)
132{
133 struct block_device *bdev = sbi->sb->s_bdev;
134 int i;
135
136 for (i = 0; i < sbi->s_ndevs; i++) {
137 if (FDEV(i).start_blk <= blk_addr &&
138 FDEV(i).end_blk >= blk_addr) {
139 blk_addr -= FDEV(i).start_blk;
140 bdev = FDEV(i).bdev;
141 break;
142 }
143 }
144 if (bio) {
145 bio_set_dev(bio, bdev);
146 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
147 }
148 return bdev;
149}
150
151int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
152{
153 int i;
154
155 for (i = 0; i < sbi->s_ndevs; i++)
156 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
157 return i;
158 return 0;
159}
160
161static bool __same_bdev(struct f2fs_sb_info *sbi,
162 block_t blk_addr, struct bio *bio)
163{
164 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
165 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
166}
167
168/*
169 * Low-level block read/write IO operations.
170 */
171static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
172 int npages, bool is_read)
173{
174 struct bio *bio;
175
176 bio = f2fs_bio_alloc(sbi, npages, true);
177
178 f2fs_target_device(sbi, blk_addr, bio);
179 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
180 bio->bi_private = is_read ? NULL : sbi;
181
182 return bio;
183}
184
185static inline void __submit_bio(struct f2fs_sb_info *sbi,
186 struct bio *bio, enum page_type type)
187{
188 if (!is_read_io(bio_op(bio))) {
189 unsigned int start;
190
191 if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
192 current->plug && (type == DATA || type == NODE))
193 blk_finish_plug(current->plug);
194
195 if (type != DATA && type != NODE)
196 goto submit_io;
197
198 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
199 start %= F2FS_IO_SIZE(sbi);
200
201 if (start == 0)
202 goto submit_io;
203
204 /* fill dummy pages */
205 for (; start < F2FS_IO_SIZE(sbi); start++) {
206 struct page *page =
207 mempool_alloc(sbi->write_io_dummy,
208 GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
209 f2fs_bug_on(sbi, !page);
210
211 SetPagePrivate(page);
212 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
213 lock_page(page);
214 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
215 f2fs_bug_on(sbi, 1);
216 }
217 /*
218 * In the NODE case, we lose next block address chain. So, we
219 * need to do checkpoint in f2fs_sync_file.
220 */
221 if (type == NODE)
222 set_sbi_flag(sbi, SBI_NEED_CP);
223 }
224submit_io:
225 if (is_read_io(bio_op(bio)))
226 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
227 else
228 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
229 submit_bio(bio);
230}
231
232static void __submit_merged_bio(struct f2fs_bio_info *io)
233{
234 struct f2fs_io_info *fio = &io->fio;
235
236 if (!io->bio)
237 return;
238
239 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
240
241 if (is_read_io(fio->op))
242 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
243 else
244 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
245
246 __submit_bio(io->sbi, io->bio, fio->type);
247 io->bio = NULL;
248}
249
250static bool __has_merged_page(struct f2fs_bio_info *io,
251 struct inode *inode, nid_t ino, pgoff_t idx)
252{
253 struct bio_vec *bvec;
254 struct page *target;
255 int i;
256
257 if (!io->bio)
258 return false;
259
260 if (!inode && !ino)
261 return true;
262
263 bio_for_each_segment_all(bvec, io->bio, i) {
264
265 if (bvec->bv_page->mapping)
266 target = bvec->bv_page;
267 else
268 target = fscrypt_control_page(bvec->bv_page);
269
270 if (idx != target->index)
271 continue;
272
273 if (inode && inode == target->mapping->host)
274 return true;
275 if (ino && ino == ino_of_node(target))
276 return true;
277 }
278
279 return false;
280}
281
282static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
283 nid_t ino, pgoff_t idx, enum page_type type)
284{
285 enum page_type btype = PAGE_TYPE_OF_BIO(type);
286 enum temp_type temp;
287 struct f2fs_bio_info *io;
288 bool ret = false;
289
290 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
291 io = sbi->write_io[btype] + temp;
292
293 down_read(&io->io_rwsem);
294 ret = __has_merged_page(io, inode, ino, idx);
295 up_read(&io->io_rwsem);
296
297 /* TODO: use HOT temp only for meta pages now. */
298 if (ret || btype == META)
299 break;
300 }
301 return ret;
302}
303
304static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
305 enum page_type type, enum temp_type temp)
306{
307 enum page_type btype = PAGE_TYPE_OF_BIO(type);
308 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
309
310 down_write(&io->io_rwsem);
311
312 /* change META to META_FLUSH in the checkpoint procedure */
313 if (type >= META_FLUSH) {
314 io->fio.type = META_FLUSH;
315 io->fio.op = REQ_OP_WRITE;
316 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
317 if (!test_opt(sbi, NOBARRIER))
318 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
319 }
320 __submit_merged_bio(io);
321 up_write(&io->io_rwsem);
322}
323
324static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
325 struct inode *inode, nid_t ino, pgoff_t idx,
326 enum page_type type, bool force)
327{
328 enum temp_type temp;
329
330 if (!force && !has_merged_page(sbi, inode, ino, idx, type))
331 return;
332
333 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
334
335 __f2fs_submit_merged_write(sbi, type, temp);
336
337 /* TODO: use HOT temp only for meta pages now. */
338 if (type >= META)
339 break;
340 }
341}
342
343void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
344{
345 __submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
346}
347
348void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
349 struct inode *inode, nid_t ino, pgoff_t idx,
350 enum page_type type)
351{
352 __submit_merged_write_cond(sbi, inode, ino, idx, type, false);
353}
354
355void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
356{
357 f2fs_submit_merged_write(sbi, DATA);
358 f2fs_submit_merged_write(sbi, NODE);
359 f2fs_submit_merged_write(sbi, META);
360}
361
362/*
363 * Fill the locked page with data located in the block address.
364 * A caller needs to unlock the page on failure.
365 */
366int f2fs_submit_page_bio(struct f2fs_io_info *fio)
367{
368 struct bio *bio;
369 struct page *page = fio->encrypted_page ?
370 fio->encrypted_page : fio->page;
371
372 trace_f2fs_submit_page_bio(page, fio);
373 f2fs_trace_ios(fio, 0);
374
375 /* Allocate a new bio */
376 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
377
378 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
379 bio_put(bio);
380 return -EFAULT;
381 }
382 bio_set_op_attrs(bio, fio->op, fio->op_flags);
383
384 __submit_bio(fio->sbi, bio, fio->type);
385
386 if (!is_read_io(fio->op))
387 inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page));
388 return 0;
389}
390
391int f2fs_submit_page_write(struct f2fs_io_info *fio)
392{
393 struct f2fs_sb_info *sbi = fio->sbi;
394 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
395 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
396 struct page *bio_page;
397 int err = 0;
398
399 f2fs_bug_on(sbi, is_read_io(fio->op));
400
401 down_write(&io->io_rwsem);
402next:
403 if (fio->in_list) {
404 spin_lock(&io->io_lock);
405 if (list_empty(&io->io_list)) {
406 spin_unlock(&io->io_lock);
407 goto out_fail;
408 }
409 fio = list_first_entry(&io->io_list,
410 struct f2fs_io_info, list);
411 list_del(&fio->list);
412 spin_unlock(&io->io_lock);
413 }
414
415 if (fio->old_blkaddr != NEW_ADDR)
416 verify_block_addr(sbi, fio->old_blkaddr);
417 verify_block_addr(sbi, fio->new_blkaddr);
418
419 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
420
421 /* set submitted = true as a return value */
422 fio->submitted = true;
423
424 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
425
426 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
427 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
428 !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
429 __submit_merged_bio(io);
430alloc_new:
431 if (io->bio == NULL) {
432 if ((fio->type == DATA || fio->type == NODE) &&
433 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
434 err = -EAGAIN;
435 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
436 goto out_fail;
437 }
438 io->bio = __bio_alloc(sbi, fio->new_blkaddr,
439 BIO_MAX_PAGES, false);
440 io->fio = *fio;
441 }
442
443 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
444 __submit_merged_bio(io);
445 goto alloc_new;
446 }
447
448 io->last_block_in_bio = fio->new_blkaddr;
449 f2fs_trace_ios(fio, 0);
450
451 trace_f2fs_submit_page_write(fio->page, fio);
452
453 if (fio->in_list)
454 goto next;
455out_fail:
456 up_write(&io->io_rwsem);
457 return err;
458}
459
460static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
461 unsigned nr_pages)
462{
463 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
464 struct fscrypt_ctx *ctx = NULL;
465 struct bio *bio;
466
467 if (f2fs_encrypted_file(inode)) {
468 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
469 if (IS_ERR(ctx))
470 return ERR_CAST(ctx);
471
472 /* wait the page to be moved by cleaning */
473 f2fs_wait_on_block_writeback(sbi, blkaddr);
474 }
475
476 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
477 if (!bio) {
478 if (ctx)
479 fscrypt_release_ctx(ctx);
480 return ERR_PTR(-ENOMEM);
481 }
482 f2fs_target_device(sbi, blkaddr, bio);
483 bio->bi_end_io = f2fs_read_end_io;
484 bio->bi_private = ctx;
485 bio_set_op_attrs(bio, REQ_OP_READ, 0);
486
487 return bio;
488}
489
490/* This can handle encryption stuffs */
491static int f2fs_submit_page_read(struct inode *inode, struct page *page,
492 block_t blkaddr)
493{
494 struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1);
495
496 if (IS_ERR(bio))
497 return PTR_ERR(bio);
498
499 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
500 bio_put(bio);
501 return -EFAULT;
502 }
503 __submit_bio(F2FS_I_SB(inode), bio, DATA);
504 return 0;
505}
506
507static void __set_data_blkaddr(struct dnode_of_data *dn)
508{
509 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
510 __le32 *addr_array;
511 int base = 0;
512
513 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
514 base = get_extra_isize(dn->inode);
515
516 /* Get physical address of data block */
517 addr_array = blkaddr_in_node(rn);
518 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
519}
520
521/*
522 * Lock ordering for the change of data block address:
523 * ->data_page
524 * ->node_page
525 * update block addresses in the node page
526 */
527void set_data_blkaddr(struct dnode_of_data *dn)
528{
529 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
530 __set_data_blkaddr(dn);
531 if (set_page_dirty(dn->node_page))
532 dn->node_changed = true;
533}
534
535void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
536{
537 dn->data_blkaddr = blkaddr;
538 set_data_blkaddr(dn);
539 f2fs_update_extent_cache(dn);
540}
541
542/* dn->ofs_in_node will be returned with up-to-date last block pointer */
543int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
544{
545 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
546 int err;
547
548 if (!count)
549 return 0;
550
551 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
552 return -EPERM;
553 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
554 return err;
555
556 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
557 dn->ofs_in_node, count);
558
559 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
560
561 for (; count > 0; dn->ofs_in_node++) {
562 block_t blkaddr = datablock_addr(dn->inode,
563 dn->node_page, dn->ofs_in_node);
564 if (blkaddr == NULL_ADDR) {
565 dn->data_blkaddr = NEW_ADDR;
566 __set_data_blkaddr(dn);
567 count--;
568 }
569 }
570
571 if (set_page_dirty(dn->node_page))
572 dn->node_changed = true;
573 return 0;
574}
575
576/* Should keep dn->ofs_in_node unchanged */
577int reserve_new_block(struct dnode_of_data *dn)
578{
579 unsigned int ofs_in_node = dn->ofs_in_node;
580 int ret;
581
582 ret = reserve_new_blocks(dn, 1);
583 dn->ofs_in_node = ofs_in_node;
584 return ret;
585}
586
587int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
588{
589 bool need_put = dn->inode_page ? false : true;
590 int err;
591
592 err = get_dnode_of_data(dn, index, ALLOC_NODE);
593 if (err)
594 return err;
595
596 if (dn->data_blkaddr == NULL_ADDR)
597 err = reserve_new_block(dn);
598 if (err || need_put)
599 f2fs_put_dnode(dn);
600 return err;
601}
602
603int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
604{
605 struct extent_info ei = {0,0,0};
606 struct inode *inode = dn->inode;
607
608 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
609 dn->data_blkaddr = ei.blk + index - ei.fofs;
610 return 0;
611 }
612
613 return f2fs_reserve_block(dn, index);
614}
615
616struct page *get_read_data_page(struct inode *inode, pgoff_t index,
617 int op_flags, bool for_write)
618{
619 struct address_space *mapping = inode->i_mapping;
620 struct dnode_of_data dn;
621 struct page *page;
622 struct extent_info ei = {0,0,0};
623 int err;
624
625 page = f2fs_grab_cache_page(mapping, index, for_write);
626 if (!page)
627 return ERR_PTR(-ENOMEM);
628
629 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
630 dn.data_blkaddr = ei.blk + index - ei.fofs;
631 goto got_it;
632 }
633
634 set_new_dnode(&dn, inode, NULL, NULL, 0);
635 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
636 if (err)
637 goto put_err;
638 f2fs_put_dnode(&dn);
639
640 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
641 err = -ENOENT;
642 goto put_err;
643 }
644got_it:
645 if (PageUptodate(page)) {
646 unlock_page(page);
647 return page;
648 }
649
650 /*
651 * A new dentry page is allocated but not able to be written, since its
652 * new inode page couldn't be allocated due to -ENOSPC.
653 * In such the case, its blkaddr can be remained as NEW_ADDR.
654 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
655 */
656 if (dn.data_blkaddr == NEW_ADDR) {
657 zero_user_segment(page, 0, PAGE_SIZE);
658 if (!PageUptodate(page))
659 SetPageUptodate(page);
660 unlock_page(page);
661 return page;
662 }
663
664 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
665 if (err)
666 goto put_err;
667 return page;
668
669put_err:
670 f2fs_put_page(page, 1);
671 return ERR_PTR(err);
672}
673
674struct page *find_data_page(struct inode *inode, pgoff_t index)
675{
676 struct address_space *mapping = inode->i_mapping;
677 struct page *page;
678
679 page = find_get_page(mapping, index);
680 if (page && PageUptodate(page))
681 return page;
682 f2fs_put_page(page, 0);
683
684 page = get_read_data_page(inode, index, 0, false);
685 if (IS_ERR(page))
686 return page;
687
688 if (PageUptodate(page))
689 return page;
690
691 wait_on_page_locked(page);
692 if (unlikely(!PageUptodate(page))) {
693 f2fs_put_page(page, 0);
694 return ERR_PTR(-EIO);
695 }
696 return page;
697}
698
699/*
700 * If it tries to access a hole, return an error.
701 * Because, the callers, functions in dir.c and GC, should be able to know
702 * whether this page exists or not.
703 */
704struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
705 bool for_write)
706{
707 struct address_space *mapping = inode->i_mapping;
708 struct page *page;
709repeat:
710 page = get_read_data_page(inode, index, 0, for_write);
711 if (IS_ERR(page))
712 return page;
713
714 /* wait for read completion */
715 lock_page(page);
716 if (unlikely(page->mapping != mapping)) {
717 f2fs_put_page(page, 1);
718 goto repeat;
719 }
720 if (unlikely(!PageUptodate(page))) {
721 f2fs_put_page(page, 1);
722 return ERR_PTR(-EIO);
723 }
724 return page;
725}
726
727/*
728 * Caller ensures that this data page is never allocated.
729 * A new zero-filled data page is allocated in the page cache.
730 *
731 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
732 * f2fs_unlock_op().
733 * Note that, ipage is set only by make_empty_dir, and if any error occur,
734 * ipage should be released by this function.
735 */
736struct page *get_new_data_page(struct inode *inode,
737 struct page *ipage, pgoff_t index, bool new_i_size)
738{
739 struct address_space *mapping = inode->i_mapping;
740 struct page *page;
741 struct dnode_of_data dn;
742 int err;
743
744 page = f2fs_grab_cache_page(mapping, index, true);
745 if (!page) {
746 /*
747 * before exiting, we should make sure ipage will be released
748 * if any error occur.
749 */
750 f2fs_put_page(ipage, 1);
751 return ERR_PTR(-ENOMEM);
752 }
753
754 set_new_dnode(&dn, inode, ipage, NULL, 0);
755 err = f2fs_reserve_block(&dn, index);
756 if (err) {
757 f2fs_put_page(page, 1);
758 return ERR_PTR(err);
759 }
760 if (!ipage)
761 f2fs_put_dnode(&dn);
762
763 if (PageUptodate(page))
764 goto got_it;
765
766 if (dn.data_blkaddr == NEW_ADDR) {
767 zero_user_segment(page, 0, PAGE_SIZE);
768 if (!PageUptodate(page))
769 SetPageUptodate(page);
770 } else {
771 f2fs_put_page(page, 1);
772
773 /* if ipage exists, blkaddr should be NEW_ADDR */
774 f2fs_bug_on(F2FS_I_SB(inode), ipage);
775 page = get_lock_data_page(inode, index, true);
776 if (IS_ERR(page))
777 return page;
778 }
779got_it:
780 if (new_i_size && i_size_read(inode) <
781 ((loff_t)(index + 1) << PAGE_SHIFT))
782 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
783 return page;
784}
785
786static int __allocate_data_block(struct dnode_of_data *dn)
787{
788 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
789 struct f2fs_summary sum;
790 struct node_info ni;
791 pgoff_t fofs;
792 blkcnt_t count = 1;
793 int err;
794
795 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
796 return -EPERM;
797
798 dn->data_blkaddr = datablock_addr(dn->inode,
799 dn->node_page, dn->ofs_in_node);
800 if (dn->data_blkaddr == NEW_ADDR)
801 goto alloc;
802
803 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
804 return err;
805
806alloc:
807 get_node_info(sbi, dn->nid, &ni);
808 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
809
810 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
811 &sum, CURSEG_WARM_DATA, NULL, false);
812 set_data_blkaddr(dn);
813
814 /* update i_size */
815 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
816 dn->ofs_in_node;
817 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
818 f2fs_i_size_write(dn->inode,
819 ((loff_t)(fofs + 1) << PAGE_SHIFT));
820 return 0;
821}
822
823static inline bool __force_buffered_io(struct inode *inode, int rw)
824{
825 return (f2fs_encrypted_file(inode) ||
826 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
827 F2FS_I_SB(inode)->s_ndevs);
828}
829
830int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
831{
832 struct inode *inode = file_inode(iocb->ki_filp);
833 struct f2fs_map_blocks map;
834 int err = 0;
835
836 /* convert inline data for Direct I/O*/
837 if (iocb->ki_flags & IOCB_DIRECT) {
838 err = f2fs_convert_inline_inode(inode);
839 if (err)
840 return err;
841 }
842
843 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
844 return 0;
845
846 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
847 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
848 if (map.m_len > map.m_lblk)
849 map.m_len -= map.m_lblk;
850 else
851 map.m_len = 0;
852
853 map.m_next_pgofs = NULL;
854
855 if (iocb->ki_flags & IOCB_DIRECT)
856 return f2fs_map_blocks(inode, &map, 1,
857 __force_buffered_io(inode, WRITE) ?
858 F2FS_GET_BLOCK_PRE_AIO :
859 F2FS_GET_BLOCK_PRE_DIO);
860 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
861 err = f2fs_convert_inline_inode(inode);
862 if (err)
863 return err;
864 }
865 if (!f2fs_has_inline_data(inode))
866 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
867 return err;
868}
869
870static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
871{
872 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
873 if (lock)
874 down_read(&sbi->node_change);
875 else
876 up_read(&sbi->node_change);
877 } else {
878 if (lock)
879 f2fs_lock_op(sbi);
880 else
881 f2fs_unlock_op(sbi);
882 }
883}
884
885/*
886 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
887 * f2fs_map_blocks structure.
888 * If original data blocks are allocated, then give them to blockdev.
889 * Otherwise,
890 * a. preallocate requested block addresses
891 * b. do not use extent cache for better performance
892 * c. give the block addresses to blockdev
893 */
894int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
895 int create, int flag)
896{
897 unsigned int maxblocks = map->m_len;
898 struct dnode_of_data dn;
899 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
900 int mode = create ? ALLOC_NODE : LOOKUP_NODE;
901 pgoff_t pgofs, end_offset, end;
902 int err = 0, ofs = 1;
903 unsigned int ofs_in_node, last_ofs_in_node;
904 blkcnt_t prealloc;
905 struct extent_info ei = {0,0,0};
906 block_t blkaddr;
907
908 if (!maxblocks)
909 return 0;
910
911 map->m_len = 0;
912 map->m_flags = 0;
913
914 /* it only supports block size == page size */
915 pgofs = (pgoff_t)map->m_lblk;
916 end = pgofs + maxblocks;
917
918 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
919 map->m_pblk = ei.blk + pgofs - ei.fofs;
920 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
921 map->m_flags = F2FS_MAP_MAPPED;
922 goto out;
923 }
924
925next_dnode:
926 if (create)
927 __do_map_lock(sbi, flag, true);
928
929 /* When reading holes, we need its node page */
930 set_new_dnode(&dn, inode, NULL, NULL, 0);
931 err = get_dnode_of_data(&dn, pgofs, mode);
932 if (err) {
933 if (flag == F2FS_GET_BLOCK_BMAP)
934 map->m_pblk = 0;
935 if (err == -ENOENT) {
936 err = 0;
937 if (map->m_next_pgofs)
938 *map->m_next_pgofs =
939 get_next_page_offset(&dn, pgofs);
940 }
941 goto unlock_out;
942 }
943
944 prealloc = 0;
945 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
946 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
947
948next_block:
949 blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
950
951 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
952 if (create) {
953 if (unlikely(f2fs_cp_error(sbi))) {
954 err = -EIO;
955 goto sync_out;
956 }
957 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
958 if (blkaddr == NULL_ADDR) {
959 prealloc++;
960 last_ofs_in_node = dn.ofs_in_node;
961 }
962 } else {
963 err = __allocate_data_block(&dn);
964 if (!err)
965 set_inode_flag(inode, FI_APPEND_WRITE);
966 }
967 if (err)
968 goto sync_out;
969 map->m_flags |= F2FS_MAP_NEW;
970 blkaddr = dn.data_blkaddr;
971 } else {
972 if (flag == F2FS_GET_BLOCK_BMAP) {
973 map->m_pblk = 0;
974 goto sync_out;
975 }
976 if (flag == F2FS_GET_BLOCK_FIEMAP &&
977 blkaddr == NULL_ADDR) {
978 if (map->m_next_pgofs)
979 *map->m_next_pgofs = pgofs + 1;
980 }
981 if (flag != F2FS_GET_BLOCK_FIEMAP ||
982 blkaddr != NEW_ADDR)
983 goto sync_out;
984 }
985 }
986
987 if (flag == F2FS_GET_BLOCK_PRE_AIO)
988 goto skip;
989
990 if (map->m_len == 0) {
991 /* preallocated unwritten block should be mapped for fiemap. */
992 if (blkaddr == NEW_ADDR)
993 map->m_flags |= F2FS_MAP_UNWRITTEN;
994 map->m_flags |= F2FS_MAP_MAPPED;
995
996 map->m_pblk = blkaddr;
997 map->m_len = 1;
998 } else if ((map->m_pblk != NEW_ADDR &&
999 blkaddr == (map->m_pblk + ofs)) ||
1000 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1001 flag == F2FS_GET_BLOCK_PRE_DIO) {
1002 ofs++;
1003 map->m_len++;
1004 } else {
1005 goto sync_out;
1006 }
1007
1008skip:
1009 dn.ofs_in_node++;
1010 pgofs++;
1011
1012 /* preallocate blocks in batch for one dnode page */
1013 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1014 (pgofs == end || dn.ofs_in_node == end_offset)) {
1015
1016 dn.ofs_in_node = ofs_in_node;
1017 err = reserve_new_blocks(&dn, prealloc);
1018 if (err)
1019 goto sync_out;
1020
1021 map->m_len += dn.ofs_in_node - ofs_in_node;
1022 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1023 err = -ENOSPC;
1024 goto sync_out;
1025 }
1026 dn.ofs_in_node = end_offset;
1027 }
1028
1029 if (pgofs >= end)
1030 goto sync_out;
1031 else if (dn.ofs_in_node < end_offset)
1032 goto next_block;
1033
1034 f2fs_put_dnode(&dn);
1035
1036 if (create) {
1037 __do_map_lock(sbi, flag, false);
1038 f2fs_balance_fs(sbi, dn.node_changed);
1039 }
1040 goto next_dnode;
1041
1042sync_out:
1043 f2fs_put_dnode(&dn);
1044unlock_out:
1045 if (create) {
1046 __do_map_lock(sbi, flag, false);
1047 f2fs_balance_fs(sbi, dn.node_changed);
1048 }
1049out:
1050 trace_f2fs_map_blocks(inode, map, err);
1051 return err;
1052}
1053
1054static int __get_data_block(struct inode *inode, sector_t iblock,
1055 struct buffer_head *bh, int create, int flag,
1056 pgoff_t *next_pgofs)
1057{
1058 struct f2fs_map_blocks map;
1059 int err;
1060
1061 map.m_lblk = iblock;
1062 map.m_len = bh->b_size >> inode->i_blkbits;
1063 map.m_next_pgofs = next_pgofs;
1064
1065 err = f2fs_map_blocks(inode, &map, create, flag);
1066 if (!err) {
1067 map_bh(bh, inode->i_sb, map.m_pblk);
1068 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1069 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1070 }
1071 return err;
1072}
1073
1074static int get_data_block(struct inode *inode, sector_t iblock,
1075 struct buffer_head *bh_result, int create, int flag,
1076 pgoff_t *next_pgofs)
1077{
1078 return __get_data_block(inode, iblock, bh_result, create,
1079 flag, next_pgofs);
1080}
1081
1082static int get_data_block_dio(struct inode *inode, sector_t iblock,
1083 struct buffer_head *bh_result, int create)
1084{
1085 return __get_data_block(inode, iblock, bh_result, create,
1086 F2FS_GET_BLOCK_DEFAULT, NULL);
1087}
1088
1089static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1090 struct buffer_head *bh_result, int create)
1091{
1092 /* Block number less than F2FS MAX BLOCKS */
1093 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1094 return -EFBIG;
1095
1096 return __get_data_block(inode, iblock, bh_result, create,
1097 F2FS_GET_BLOCK_BMAP, NULL);
1098}
1099
1100static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1101{
1102 return (offset >> inode->i_blkbits);
1103}
1104
1105static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1106{
1107 return (blk << inode->i_blkbits);
1108}
1109
1110int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1111 u64 start, u64 len)
1112{
1113 struct buffer_head map_bh;
1114 sector_t start_blk, last_blk;
1115 pgoff_t next_pgofs;
1116 u64 logical = 0, phys = 0, size = 0;
1117 u32 flags = 0;
1118 int ret = 0;
1119
1120 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
1121 if (ret)
1122 return ret;
1123
1124 if (f2fs_has_inline_data(inode)) {
1125 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1126 if (ret != -EAGAIN)
1127 return ret;
1128 }
1129
1130 inode_lock(inode);
1131
1132 if (logical_to_blk(inode, len) == 0)
1133 len = blk_to_logical(inode, 1);
1134
1135 start_blk = logical_to_blk(inode, start);
1136 last_blk = logical_to_blk(inode, start + len - 1);
1137
1138next:
1139 memset(&map_bh, 0, sizeof(struct buffer_head));
1140 map_bh.b_size = len;
1141
1142 ret = get_data_block(inode, start_blk, &map_bh, 0,
1143 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1144 if (ret)
1145 goto out;
1146
1147 /* HOLE */
1148 if (!buffer_mapped(&map_bh)) {
1149 start_blk = next_pgofs;
1150
1151 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1152 F2FS_I_SB(inode)->max_file_blocks))
1153 goto prep_next;
1154
1155 flags |= FIEMAP_EXTENT_LAST;
1156 }
1157
1158 if (size) {
1159 if (f2fs_encrypted_inode(inode))
1160 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1161
1162 ret = fiemap_fill_next_extent(fieinfo, logical,
1163 phys, size, flags);
1164 }
1165
1166 if (start_blk > last_blk || ret)
1167 goto out;
1168
1169 logical = blk_to_logical(inode, start_blk);
1170 phys = blk_to_logical(inode, map_bh.b_blocknr);
1171 size = map_bh.b_size;
1172 flags = 0;
1173 if (buffer_unwritten(&map_bh))
1174 flags = FIEMAP_EXTENT_UNWRITTEN;
1175
1176 start_blk += logical_to_blk(inode, size);
1177
1178prep_next:
1179 cond_resched();
1180 if (fatal_signal_pending(current))
1181 ret = -EINTR;
1182 else
1183 goto next;
1184out:
1185 if (ret == 1)
1186 ret = 0;
1187
1188 inode_unlock(inode);
1189 return ret;
1190}
1191
1192/*
1193 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1194 * Major change was from block_size == page_size in f2fs by default.
1195 */
1196static int f2fs_mpage_readpages(struct address_space *mapping,
1197 struct list_head *pages, struct page *page,
1198 unsigned nr_pages)
1199{
1200 struct bio *bio = NULL;
1201 unsigned page_idx;
1202 sector_t last_block_in_bio = 0;
1203 struct inode *inode = mapping->host;
1204 const unsigned blkbits = inode->i_blkbits;
1205 const unsigned blocksize = 1 << blkbits;
1206 sector_t block_in_file;
1207 sector_t last_block;
1208 sector_t last_block_in_file;
1209 sector_t block_nr;
1210 struct f2fs_map_blocks map;
1211
1212 map.m_pblk = 0;
1213 map.m_lblk = 0;
1214 map.m_len = 0;
1215 map.m_flags = 0;
1216 map.m_next_pgofs = NULL;
1217
1218 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1219
1220 if (pages) {
1221 page = list_last_entry(pages, struct page, lru);
1222
1223 prefetchw(&page->flags);
1224 list_del(&page->lru);
1225 if (add_to_page_cache_lru(page, mapping,
1226 page->index,
1227 readahead_gfp_mask(mapping)))
1228 goto next_page;
1229 }
1230
1231 block_in_file = (sector_t)page->index;
1232 last_block = block_in_file + nr_pages;
1233 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1234 blkbits;
1235 if (last_block > last_block_in_file)
1236 last_block = last_block_in_file;
1237
1238 /*
1239 * Map blocks using the previous result first.
1240 */
1241 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1242 block_in_file > map.m_lblk &&
1243 block_in_file < (map.m_lblk + map.m_len))
1244 goto got_it;
1245
1246 /*
1247 * Then do more f2fs_map_blocks() calls until we are
1248 * done with this page.
1249 */
1250 map.m_flags = 0;
1251
1252 if (block_in_file < last_block) {
1253 map.m_lblk = block_in_file;
1254 map.m_len = last_block - block_in_file;
1255
1256 if (f2fs_map_blocks(inode, &map, 0,
1257 F2FS_GET_BLOCK_DEFAULT))
1258 goto set_error_page;
1259 }
1260got_it:
1261 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1262 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1263 SetPageMappedToDisk(page);
1264
1265 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1266 SetPageUptodate(page);
1267 goto confused;
1268 }
1269 } else {
1270 zero_user_segment(page, 0, PAGE_SIZE);
1271 if (!PageUptodate(page))
1272 SetPageUptodate(page);
1273 unlock_page(page);
1274 goto next_page;
1275 }
1276
1277 /*
1278 * This page will go to BIO. Do we need to send this
1279 * BIO off first?
1280 */
1281 if (bio && (last_block_in_bio != block_nr - 1 ||
1282 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1283submit_and_realloc:
1284 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1285 bio = NULL;
1286 }
1287 if (bio == NULL) {
1288 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages);
1289 if (IS_ERR(bio)) {
1290 bio = NULL;
1291 goto set_error_page;
1292 }
1293 }
1294
1295 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1296 goto submit_and_realloc;
1297
1298 last_block_in_bio = block_nr;
1299 goto next_page;
1300set_error_page:
1301 SetPageError(page);
1302 zero_user_segment(page, 0, PAGE_SIZE);
1303 unlock_page(page);
1304 goto next_page;
1305confused:
1306 if (bio) {
1307 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1308 bio = NULL;
1309 }
1310 unlock_page(page);
1311next_page:
1312 if (pages)
1313 put_page(page);
1314 }
1315 BUG_ON(pages && !list_empty(pages));
1316 if (bio)
1317 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1318 return 0;
1319}
1320
1321static int f2fs_read_data_page(struct file *file, struct page *page)
1322{
1323 struct inode *inode = page->mapping->host;
1324 int ret = -EAGAIN;
1325
1326 trace_f2fs_readpage(page, DATA);
1327
1328 /* If the file has inline data, try to read it directly */
1329 if (f2fs_has_inline_data(inode))
1330 ret = f2fs_read_inline_data(inode, page);
1331 if (ret == -EAGAIN)
1332 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1333 return ret;
1334}
1335
1336static int f2fs_read_data_pages(struct file *file,
1337 struct address_space *mapping,
1338 struct list_head *pages, unsigned nr_pages)
1339{
1340 struct inode *inode = mapping->host;
1341 struct page *page = list_last_entry(pages, struct page, lru);
1342
1343 trace_f2fs_readpages(inode, page, nr_pages);
1344
1345 /* If the file has inline data, skip readpages */
1346 if (f2fs_has_inline_data(inode))
1347 return 0;
1348
1349 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1350}
1351
1352static int encrypt_one_page(struct f2fs_io_info *fio)
1353{
1354 struct inode *inode = fio->page->mapping->host;
1355 gfp_t gfp_flags = GFP_NOFS;
1356
1357 if (!f2fs_encrypted_file(inode))
1358 return 0;
1359
1360 /* wait for GCed encrypted page writeback */
1361 f2fs_wait_on_block_writeback(fio->sbi, fio->old_blkaddr);
1362
1363retry_encrypt:
1364 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1365 PAGE_SIZE, 0, fio->page->index, gfp_flags);
1366 if (!IS_ERR(fio->encrypted_page))
1367 return 0;
1368
1369 /* flush pending IOs and wait for a while in the ENOMEM case */
1370 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1371 f2fs_flush_merged_writes(fio->sbi);
1372 congestion_wait(BLK_RW_ASYNC, HZ/50);
1373 gfp_flags |= __GFP_NOFAIL;
1374 goto retry_encrypt;
1375 }
1376 return PTR_ERR(fio->encrypted_page);
1377}
1378
1379static inline bool need_inplace_update(struct f2fs_io_info *fio)
1380{
1381 struct inode *inode = fio->page->mapping->host;
1382
1383 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
1384 return false;
1385 if (is_cold_data(fio->page))
1386 return false;
1387 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1388 return false;
1389
1390 return need_inplace_update_policy(inode, fio);
1391}
1392
1393static inline bool valid_ipu_blkaddr(struct f2fs_io_info *fio)
1394{
1395 if (fio->old_blkaddr == NEW_ADDR)
1396 return false;
1397 if (fio->old_blkaddr == NULL_ADDR)
1398 return false;
1399 return true;
1400}
1401
1402int do_write_data_page(struct f2fs_io_info *fio)
1403{
1404 struct page *page = fio->page;
1405 struct inode *inode = page->mapping->host;
1406 struct dnode_of_data dn;
1407 struct extent_info ei = {0,0,0};
1408 bool ipu_force = false;
1409 int err = 0;
1410
1411 set_new_dnode(&dn, inode, NULL, NULL, 0);
1412 if (need_inplace_update(fio) &&
1413 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1414 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1415
1416 if (valid_ipu_blkaddr(fio)) {
1417 ipu_force = true;
1418 fio->need_lock = LOCK_DONE;
1419 goto got_it;
1420 }
1421 }
1422
1423 /* Deadlock due to between page->lock and f2fs_lock_op */
1424 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1425 return -EAGAIN;
1426
1427 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1428 if (err)
1429 goto out;
1430
1431 fio->old_blkaddr = dn.data_blkaddr;
1432
1433 /* This page is already truncated */
1434 if (fio->old_blkaddr == NULL_ADDR) {
1435 ClearPageUptodate(page);
1436 goto out_writepage;
1437 }
1438got_it:
1439 /*
1440 * If current allocation needs SSR,
1441 * it had better in-place writes for updated data.
1442 */
1443 if (ipu_force || (valid_ipu_blkaddr(fio) && need_inplace_update(fio))) {
1444 err = encrypt_one_page(fio);
1445 if (err)
1446 goto out_writepage;
1447
1448 set_page_writeback(page);
1449 f2fs_put_dnode(&dn);
1450 if (fio->need_lock == LOCK_REQ)
1451 f2fs_unlock_op(fio->sbi);
1452 err = rewrite_data_page(fio);
1453 trace_f2fs_do_write_data_page(fio->page, IPU);
1454 set_inode_flag(inode, FI_UPDATE_WRITE);
1455 return err;
1456 }
1457
1458 if (fio->need_lock == LOCK_RETRY) {
1459 if (!f2fs_trylock_op(fio->sbi)) {
1460 err = -EAGAIN;
1461 goto out_writepage;
1462 }
1463 fio->need_lock = LOCK_REQ;
1464 }
1465
1466 err = encrypt_one_page(fio);
1467 if (err)
1468 goto out_writepage;
1469
1470 set_page_writeback(page);
1471
1472 /* LFS mode write path */
1473 write_data_page(&dn, fio);
1474 trace_f2fs_do_write_data_page(page, OPU);
1475 set_inode_flag(inode, FI_APPEND_WRITE);
1476 if (page->index == 0)
1477 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1478out_writepage:
1479 f2fs_put_dnode(&dn);
1480out:
1481 if (fio->need_lock == LOCK_REQ)
1482 f2fs_unlock_op(fio->sbi);
1483 return err;
1484}
1485
1486static int __write_data_page(struct page *page, bool *submitted,
1487 struct writeback_control *wbc,
1488 enum iostat_type io_type)
1489{
1490 struct inode *inode = page->mapping->host;
1491 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1492 loff_t i_size = i_size_read(inode);
1493 const pgoff_t end_index = ((unsigned long long) i_size)
1494 >> PAGE_SHIFT;
1495 loff_t psize = (page->index + 1) << PAGE_SHIFT;
1496 unsigned offset = 0;
1497 bool need_balance_fs = false;
1498 int err = 0;
1499 struct f2fs_io_info fio = {
1500 .sbi = sbi,
1501 .ino = inode->i_ino,
1502 .type = DATA,
1503 .op = REQ_OP_WRITE,
1504 .op_flags = wbc_to_write_flags(wbc),
1505 .old_blkaddr = NULL_ADDR,
1506 .page = page,
1507 .encrypted_page = NULL,
1508 .submitted = false,
1509 .need_lock = LOCK_RETRY,
1510 .io_type = io_type,
1511 };
1512
1513 trace_f2fs_writepage(page, DATA);
1514
1515 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1516 goto redirty_out;
1517
1518 if (page->index < end_index)
1519 goto write;
1520
1521 /*
1522 * If the offset is out-of-range of file size,
1523 * this page does not have to be written to disk.
1524 */
1525 offset = i_size & (PAGE_SIZE - 1);
1526 if ((page->index >= end_index + 1) || !offset)
1527 goto out;
1528
1529 zero_user_segment(page, offset, PAGE_SIZE);
1530write:
1531 if (f2fs_is_drop_cache(inode))
1532 goto out;
1533 /* we should not write 0'th page having journal header */
1534 if (f2fs_is_volatile_file(inode) && (!page->index ||
1535 (!wbc->for_reclaim &&
1536 available_free_memory(sbi, BASE_CHECK))))
1537 goto redirty_out;
1538
1539 /* we should bypass data pages to proceed the kworkder jobs */
1540 if (unlikely(f2fs_cp_error(sbi))) {
1541 mapping_set_error(page->mapping, -EIO);
1542 goto out;
1543 }
1544
1545 /* Dentry blocks are controlled by checkpoint */
1546 if (S_ISDIR(inode->i_mode)) {
1547 fio.need_lock = LOCK_DONE;
1548 err = do_write_data_page(&fio);
1549 goto done;
1550 }
1551
1552 if (!wbc->for_reclaim)
1553 need_balance_fs = true;
1554 else if (has_not_enough_free_secs(sbi, 0, 0))
1555 goto redirty_out;
1556 else
1557 set_inode_flag(inode, FI_HOT_DATA);
1558
1559 err = -EAGAIN;
1560 if (f2fs_has_inline_data(inode)) {
1561 err = f2fs_write_inline_data(inode, page);
1562 if (!err)
1563 goto out;
1564 }
1565
1566 if (err == -EAGAIN) {
1567 err = do_write_data_page(&fio);
1568 if (err == -EAGAIN) {
1569 fio.need_lock = LOCK_REQ;
1570 err = do_write_data_page(&fio);
1571 }
1572 }
1573
1574 down_write(&F2FS_I(inode)->i_sem);
1575 if (F2FS_I(inode)->last_disk_size < psize)
1576 F2FS_I(inode)->last_disk_size = psize;
1577 up_write(&F2FS_I(inode)->i_sem);
1578
1579done:
1580 if (err && err != -ENOENT)
1581 goto redirty_out;
1582
1583out:
1584 inode_dec_dirty_pages(inode);
1585 if (err)
1586 ClearPageUptodate(page);
1587
1588 if (wbc->for_reclaim) {
1589 f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA);
1590 clear_inode_flag(inode, FI_HOT_DATA);
1591 remove_dirty_inode(inode);
1592 submitted = NULL;
1593 }
1594
1595 unlock_page(page);
1596 if (!S_ISDIR(inode->i_mode))
1597 f2fs_balance_fs(sbi, need_balance_fs);
1598
1599 if (unlikely(f2fs_cp_error(sbi))) {
1600 f2fs_submit_merged_write(sbi, DATA);
1601 submitted = NULL;
1602 }
1603
1604 if (submitted)
1605 *submitted = fio.submitted;
1606
1607 return 0;
1608
1609redirty_out:
1610 redirty_page_for_writepage(wbc, page);
1611 if (!err)
1612 return AOP_WRITEPAGE_ACTIVATE;
1613 unlock_page(page);
1614 return err;
1615}
1616
1617static int f2fs_write_data_page(struct page *page,
1618 struct writeback_control *wbc)
1619{
1620 return __write_data_page(page, NULL, wbc, FS_DATA_IO);
1621}
1622
1623/*
1624 * This function was copied from write_cche_pages from mm/page-writeback.c.
1625 * The major change is making write step of cold data page separately from
1626 * warm/hot data page.
1627 */
1628static int f2fs_write_cache_pages(struct address_space *mapping,
1629 struct writeback_control *wbc,
1630 enum iostat_type io_type)
1631{
1632 int ret = 0;
1633 int done = 0;
1634 struct pagevec pvec;
1635 int nr_pages;
1636 pgoff_t uninitialized_var(writeback_index);
1637 pgoff_t index;
1638 pgoff_t end; /* Inclusive */
1639 pgoff_t done_index;
1640 pgoff_t last_idx = ULONG_MAX;
1641 int cycled;
1642 int range_whole = 0;
1643 int tag;
1644
1645 pagevec_init(&pvec);
1646
1647 if (get_dirty_pages(mapping->host) <=
1648 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
1649 set_inode_flag(mapping->host, FI_HOT_DATA);
1650 else
1651 clear_inode_flag(mapping->host, FI_HOT_DATA);
1652
1653 if (wbc->range_cyclic) {
1654 writeback_index = mapping->writeback_index; /* prev offset */
1655 index = writeback_index;
1656 if (index == 0)
1657 cycled = 1;
1658 else
1659 cycled = 0;
1660 end = -1;
1661 } else {
1662 index = wbc->range_start >> PAGE_SHIFT;
1663 end = wbc->range_end >> PAGE_SHIFT;
1664 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1665 range_whole = 1;
1666 cycled = 1; /* ignore range_cyclic tests */
1667 }
1668 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1669 tag = PAGECACHE_TAG_TOWRITE;
1670 else
1671 tag = PAGECACHE_TAG_DIRTY;
1672retry:
1673 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1674 tag_pages_for_writeback(mapping, index, end);
1675 done_index = index;
1676 while (!done && (index <= end)) {
1677 int i;
1678
1679 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
1680 tag);
1681 if (nr_pages == 0)
1682 break;
1683
1684 for (i = 0; i < nr_pages; i++) {
1685 struct page *page = pvec.pages[i];
1686 bool submitted = false;
1687
1688 done_index = page->index;
1689retry_write:
1690 lock_page(page);
1691
1692 if (unlikely(page->mapping != mapping)) {
1693continue_unlock:
1694 unlock_page(page);
1695 continue;
1696 }
1697
1698 if (!PageDirty(page)) {
1699 /* someone wrote it for us */
1700 goto continue_unlock;
1701 }
1702
1703 if (PageWriteback(page)) {
1704 if (wbc->sync_mode != WB_SYNC_NONE)
1705 f2fs_wait_on_page_writeback(page,
1706 DATA, true);
1707 else
1708 goto continue_unlock;
1709 }
1710
1711 BUG_ON(PageWriteback(page));
1712 if (!clear_page_dirty_for_io(page))
1713 goto continue_unlock;
1714
1715 ret = __write_data_page(page, &submitted, wbc, io_type);
1716 if (unlikely(ret)) {
1717 /*
1718 * keep nr_to_write, since vfs uses this to
1719 * get # of written pages.
1720 */
1721 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1722 unlock_page(page);
1723 ret = 0;
1724 continue;
1725 } else if (ret == -EAGAIN) {
1726 ret = 0;
1727 if (wbc->sync_mode == WB_SYNC_ALL) {
1728 cond_resched();
1729 congestion_wait(BLK_RW_ASYNC,
1730 HZ/50);
1731 goto retry_write;
1732 }
1733 continue;
1734 }
1735 done_index = page->index + 1;
1736 done = 1;
1737 break;
1738 } else if (submitted) {
1739 last_idx = page->index;
1740 }
1741
1742 /* give a priority to WB_SYNC threads */
1743 if ((atomic_read(&F2FS_M_SB(mapping)->wb_sync_req) ||
1744 --wbc->nr_to_write <= 0) &&
1745 wbc->sync_mode == WB_SYNC_NONE) {
1746 done = 1;
1747 break;
1748 }
1749 }
1750 pagevec_release(&pvec);
1751 cond_resched();
1752 }
1753
1754 if (!cycled && !done) {
1755 cycled = 1;
1756 index = 0;
1757 end = writeback_index - 1;
1758 goto retry;
1759 }
1760 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1761 mapping->writeback_index = done_index;
1762
1763 if (last_idx != ULONG_MAX)
1764 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
1765 0, last_idx, DATA);
1766
1767 return ret;
1768}
1769
1770int __f2fs_write_data_pages(struct address_space *mapping,
1771 struct writeback_control *wbc,
1772 enum iostat_type io_type)
1773{
1774 struct inode *inode = mapping->host;
1775 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1776 struct blk_plug plug;
1777 int ret;
1778
1779 /* deal with chardevs and other special file */
1780 if (!mapping->a_ops->writepage)
1781 return 0;
1782
1783 /* skip writing if there is no dirty page in this inode */
1784 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1785 return 0;
1786
1787 /* during POR, we don't need to trigger writepage at all. */
1788 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1789 goto skip_write;
1790
1791 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1792 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1793 available_free_memory(sbi, DIRTY_DENTS))
1794 goto skip_write;
1795
1796 /* skip writing during file defragment */
1797 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1798 goto skip_write;
1799
1800 trace_f2fs_writepages(mapping->host, wbc, DATA);
1801
1802 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
1803 if (wbc->sync_mode == WB_SYNC_ALL)
1804 atomic_inc(&sbi->wb_sync_req);
1805 else if (atomic_read(&sbi->wb_sync_req))
1806 goto skip_write;
1807
1808 blk_start_plug(&plug);
1809 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
1810 blk_finish_plug(&plug);
1811
1812 if (wbc->sync_mode == WB_SYNC_ALL)
1813 atomic_dec(&sbi->wb_sync_req);
1814 /*
1815 * if some pages were truncated, we cannot guarantee its mapping->host
1816 * to detect pending bios.
1817 */
1818
1819 remove_dirty_inode(inode);
1820 return ret;
1821
1822skip_write:
1823 wbc->pages_skipped += get_dirty_pages(inode);
1824 trace_f2fs_writepages(mapping->host, wbc, DATA);
1825 return 0;
1826}
1827
1828static int f2fs_write_data_pages(struct address_space *mapping,
1829 struct writeback_control *wbc)
1830{
1831 struct inode *inode = mapping->host;
1832
1833 return __f2fs_write_data_pages(mapping, wbc,
1834 F2FS_I(inode)->cp_task == current ?
1835 FS_CP_DATA_IO : FS_DATA_IO);
1836}
1837
1838static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1839{
1840 struct inode *inode = mapping->host;
1841 loff_t i_size = i_size_read(inode);
1842
1843 if (to > i_size) {
1844 down_write(&F2FS_I(inode)->i_mmap_sem);
1845 truncate_pagecache(inode, i_size);
1846 truncate_blocks(inode, i_size, true);
1847 up_write(&F2FS_I(inode)->i_mmap_sem);
1848 }
1849}
1850
1851static int prepare_write_begin(struct f2fs_sb_info *sbi,
1852 struct page *page, loff_t pos, unsigned len,
1853 block_t *blk_addr, bool *node_changed)
1854{
1855 struct inode *inode = page->mapping->host;
1856 pgoff_t index = page->index;
1857 struct dnode_of_data dn;
1858 struct page *ipage;
1859 bool locked = false;
1860 struct extent_info ei = {0,0,0};
1861 int err = 0;
1862
1863 /*
1864 * we already allocated all the blocks, so we don't need to get
1865 * the block addresses when there is no need to fill the page.
1866 */
1867 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
1868 !is_inode_flag_set(inode, FI_NO_PREALLOC))
1869 return 0;
1870
1871 if (f2fs_has_inline_data(inode) ||
1872 (pos & PAGE_MASK) >= i_size_read(inode)) {
1873 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
1874 locked = true;
1875 }
1876restart:
1877 /* check inline_data */
1878 ipage = get_node_page(sbi, inode->i_ino);
1879 if (IS_ERR(ipage)) {
1880 err = PTR_ERR(ipage);
1881 goto unlock_out;
1882 }
1883
1884 set_new_dnode(&dn, inode, ipage, ipage, 0);
1885
1886 if (f2fs_has_inline_data(inode)) {
1887 if (pos + len <= MAX_INLINE_DATA(inode)) {
1888 read_inline_data(page, ipage);
1889 set_inode_flag(inode, FI_DATA_EXIST);
1890 if (inode->i_nlink)
1891 set_inline_node(ipage);
1892 } else {
1893 err = f2fs_convert_inline_page(&dn, page);
1894 if (err)
1895 goto out;
1896 if (dn.data_blkaddr == NULL_ADDR)
1897 err = f2fs_get_block(&dn, index);
1898 }
1899 } else if (locked) {
1900 err = f2fs_get_block(&dn, index);
1901 } else {
1902 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1903 dn.data_blkaddr = ei.blk + index - ei.fofs;
1904 } else {
1905 /* hole case */
1906 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1907 if (err || dn.data_blkaddr == NULL_ADDR) {
1908 f2fs_put_dnode(&dn);
1909 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
1910 true);
1911 locked = true;
1912 goto restart;
1913 }
1914 }
1915 }
1916
1917 /* convert_inline_page can make node_changed */
1918 *blk_addr = dn.data_blkaddr;
1919 *node_changed = dn.node_changed;
1920out:
1921 f2fs_put_dnode(&dn);
1922unlock_out:
1923 if (locked)
1924 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
1925 return err;
1926}
1927
1928static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1929 loff_t pos, unsigned len, unsigned flags,
1930 struct page **pagep, void **fsdata)
1931{
1932 struct inode *inode = mapping->host;
1933 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1934 struct page *page = NULL;
1935 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1936 bool need_balance = false;
1937 block_t blkaddr = NULL_ADDR;
1938 int err = 0;
1939
1940 trace_f2fs_write_begin(inode, pos, len, flags);
1941
1942 if (f2fs_is_atomic_file(inode) &&
1943 !available_free_memory(sbi, INMEM_PAGES)) {
1944 err = -ENOMEM;
1945 goto fail;
1946 }
1947
1948 /*
1949 * We should check this at this moment to avoid deadlock on inode page
1950 * and #0 page. The locking rule for inline_data conversion should be:
1951 * lock_page(page #0) -> lock_page(inode_page)
1952 */
1953 if (index != 0) {
1954 err = f2fs_convert_inline_inode(inode);
1955 if (err)
1956 goto fail;
1957 }
1958repeat:
1959 /*
1960 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
1961 * wait_for_stable_page. Will wait that below with our IO control.
1962 */
1963 page = f2fs_pagecache_get_page(mapping, index,
1964 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
1965 if (!page) {
1966 err = -ENOMEM;
1967 goto fail;
1968 }
1969
1970 *pagep = page;
1971
1972 err = prepare_write_begin(sbi, page, pos, len,
1973 &blkaddr, &need_balance);
1974 if (err)
1975 goto fail;
1976
1977 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
1978 unlock_page(page);
1979 f2fs_balance_fs(sbi, true);
1980 lock_page(page);
1981 if (page->mapping != mapping) {
1982 /* The page got truncated from under us */
1983 f2fs_put_page(page, 1);
1984 goto repeat;
1985 }
1986 }
1987
1988 f2fs_wait_on_page_writeback(page, DATA, false);
1989
1990 /* wait for GCed encrypted page writeback */
1991 if (f2fs_encrypted_file(inode))
1992 f2fs_wait_on_block_writeback(sbi, blkaddr);
1993
1994 if (len == PAGE_SIZE || PageUptodate(page))
1995 return 0;
1996
1997 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
1998 zero_user_segment(page, len, PAGE_SIZE);
1999 return 0;
2000 }
2001
2002 if (blkaddr == NEW_ADDR) {
2003 zero_user_segment(page, 0, PAGE_SIZE);
2004 SetPageUptodate(page);
2005 } else {
2006 err = f2fs_submit_page_read(inode, page, blkaddr);
2007 if (err)
2008 goto fail;
2009
2010 lock_page(page);
2011 if (unlikely(page->mapping != mapping)) {
2012 f2fs_put_page(page, 1);
2013 goto repeat;
2014 }
2015 if (unlikely(!PageUptodate(page))) {
2016 err = -EIO;
2017 goto fail;
2018 }
2019 }
2020 return 0;
2021
2022fail:
2023 f2fs_put_page(page, 1);
2024 f2fs_write_failed(mapping, pos + len);
2025 if (f2fs_is_atomic_file(inode))
2026 drop_inmem_pages_all(sbi);
2027 return err;
2028}
2029
2030static int f2fs_write_end(struct file *file,
2031 struct address_space *mapping,
2032 loff_t pos, unsigned len, unsigned copied,
2033 struct page *page, void *fsdata)
2034{
2035 struct inode *inode = page->mapping->host;
2036
2037 trace_f2fs_write_end(inode, pos, len, copied);
2038
2039 /*
2040 * This should be come from len == PAGE_SIZE, and we expect copied
2041 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2042 * let generic_perform_write() try to copy data again through copied=0.
2043 */
2044 if (!PageUptodate(page)) {
2045 if (unlikely(copied != len))
2046 copied = 0;
2047 else
2048 SetPageUptodate(page);
2049 }
2050 if (!copied)
2051 goto unlock_out;
2052
2053 set_page_dirty(page);
2054
2055 if (pos + copied > i_size_read(inode))
2056 f2fs_i_size_write(inode, pos + copied);
2057unlock_out:
2058 f2fs_put_page(page, 1);
2059 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2060 return copied;
2061}
2062
2063static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2064 loff_t offset)
2065{
2066 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
2067
2068 if (offset & blocksize_mask)
2069 return -EINVAL;
2070
2071 if (iov_iter_alignment(iter) & blocksize_mask)
2072 return -EINVAL;
2073
2074 return 0;
2075}
2076
2077static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2078{
2079 struct address_space *mapping = iocb->ki_filp->f_mapping;
2080 struct inode *inode = mapping->host;
2081 size_t count = iov_iter_count(iter);
2082 loff_t offset = iocb->ki_pos;
2083 int rw = iov_iter_rw(iter);
2084 int err;
2085
2086 err = check_direct_IO(inode, iter, offset);
2087 if (err)
2088 return err;
2089
2090 if (__force_buffered_io(inode, rw))
2091 return 0;
2092
2093 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2094
2095 down_read(&F2FS_I(inode)->dio_rwsem[rw]);
2096 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
2097 up_read(&F2FS_I(inode)->dio_rwsem[rw]);
2098
2099 if (rw == WRITE) {
2100 if (err > 0) {
2101 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2102 err);
2103 set_inode_flag(inode, FI_UPDATE_WRITE);
2104 } else if (err < 0) {
2105 f2fs_write_failed(mapping, offset + count);
2106 }
2107 }
2108
2109 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2110
2111 return err;
2112}
2113
2114void f2fs_invalidate_page(struct page *page, unsigned int offset,
2115 unsigned int length)
2116{
2117 struct inode *inode = page->mapping->host;
2118 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2119
2120 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2121 (offset % PAGE_SIZE || length != PAGE_SIZE))
2122 return;
2123
2124 if (PageDirty(page)) {
2125 if (inode->i_ino == F2FS_META_INO(sbi)) {
2126 dec_page_count(sbi, F2FS_DIRTY_META);
2127 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2128 dec_page_count(sbi, F2FS_DIRTY_NODES);
2129 } else {
2130 inode_dec_dirty_pages(inode);
2131 remove_dirty_inode(inode);
2132 }
2133 }
2134
2135 /* This is atomic written page, keep Private */
2136 if (IS_ATOMIC_WRITTEN_PAGE(page))
2137 return drop_inmem_page(inode, page);
2138
2139 set_page_private(page, 0);
2140 ClearPagePrivate(page);
2141}
2142
2143int f2fs_release_page(struct page *page, gfp_t wait)
2144{
2145 /* If this is dirty page, keep PagePrivate */
2146 if (PageDirty(page))
2147 return 0;
2148
2149 /* This is atomic written page, keep Private */
2150 if (IS_ATOMIC_WRITTEN_PAGE(page))
2151 return 0;
2152
2153 set_page_private(page, 0);
2154 ClearPagePrivate(page);
2155 return 1;
2156}
2157
2158/*
2159 * This was copied from __set_page_dirty_buffers which gives higher performance
2160 * in very high speed storages. (e.g., pmem)
2161 */
2162void f2fs_set_page_dirty_nobuffers(struct page *page)
2163{
2164 struct address_space *mapping = page->mapping;
2165 unsigned long flags;
2166
2167 if (unlikely(!mapping))
2168 return;
2169
2170 spin_lock(&mapping->private_lock);
2171 lock_page_memcg(page);
2172 SetPageDirty(page);
2173 spin_unlock(&mapping->private_lock);
2174
2175 spin_lock_irqsave(&mapping->tree_lock, flags);
2176 WARN_ON_ONCE(!PageUptodate(page));
2177 account_page_dirtied(page, mapping);
2178 radix_tree_tag_set(&mapping->page_tree,
2179 page_index(page), PAGECACHE_TAG_DIRTY);
2180 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2181 unlock_page_memcg(page);
2182
2183 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2184 return;
2185}
2186
2187static int f2fs_set_data_page_dirty(struct page *page)
2188{
2189 struct address_space *mapping = page->mapping;
2190 struct inode *inode = mapping->host;
2191
2192 trace_f2fs_set_page_dirty(page, DATA);
2193
2194 if (!PageUptodate(page))
2195 SetPageUptodate(page);
2196
2197 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2198 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2199 register_inmem_page(inode, page);
2200 return 1;
2201 }
2202 /*
2203 * Previously, this page has been registered, we just
2204 * return here.
2205 */
2206 return 0;
2207 }
2208
2209 if (!PageDirty(page)) {
2210 f2fs_set_page_dirty_nobuffers(page);
2211 update_dirty_page(inode, page);
2212 return 1;
2213 }
2214 return 0;
2215}
2216
2217static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2218{
2219 struct inode *inode = mapping->host;
2220
2221 if (f2fs_has_inline_data(inode))
2222 return 0;
2223
2224 /* make sure allocating whole blocks */
2225 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2226 filemap_write_and_wait(mapping);
2227
2228 return generic_block_bmap(mapping, block, get_data_block_bmap);
2229}
2230
2231#ifdef CONFIG_MIGRATION
2232#include <linux/migrate.h>
2233
2234int f2fs_migrate_page(struct address_space *mapping,
2235 struct page *newpage, struct page *page, enum migrate_mode mode)
2236{
2237 int rc, extra_count;
2238 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2239 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2240
2241 BUG_ON(PageWriteback(page));
2242
2243 /* migrating an atomic written page is safe with the inmem_lock hold */
2244 if (atomic_written) {
2245 if (mode != MIGRATE_SYNC)
2246 return -EBUSY;
2247 if (!mutex_trylock(&fi->inmem_lock))
2248 return -EAGAIN;
2249 }
2250
2251 /*
2252 * A reference is expected if PagePrivate set when move mapping,
2253 * however F2FS breaks this for maintaining dirty page counts when
2254 * truncating pages. So here adjusting the 'extra_count' make it work.
2255 */
2256 extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2257 rc = migrate_page_move_mapping(mapping, newpage,
2258 page, NULL, mode, extra_count);
2259 if (rc != MIGRATEPAGE_SUCCESS) {
2260 if (atomic_written)
2261 mutex_unlock(&fi->inmem_lock);
2262 return rc;
2263 }
2264
2265 if (atomic_written) {
2266 struct inmem_pages *cur;
2267 list_for_each_entry(cur, &fi->inmem_pages, list)
2268 if (cur->page == page) {
2269 cur->page = newpage;
2270 break;
2271 }
2272 mutex_unlock(&fi->inmem_lock);
2273 put_page(page);
2274 get_page(newpage);
2275 }
2276
2277 if (PagePrivate(page))
2278 SetPagePrivate(newpage);
2279 set_page_private(newpage, page_private(page));
2280
2281 if (mode != MIGRATE_SYNC_NO_COPY)
2282 migrate_page_copy(newpage, page);
2283 else
2284 migrate_page_states(newpage, page);
2285
2286 return MIGRATEPAGE_SUCCESS;
2287}
2288#endif
2289
2290const struct address_space_operations f2fs_dblock_aops = {
2291 .readpage = f2fs_read_data_page,
2292 .readpages = f2fs_read_data_pages,
2293 .writepage = f2fs_write_data_page,
2294 .writepages = f2fs_write_data_pages,
2295 .write_begin = f2fs_write_begin,
2296 .write_end = f2fs_write_end,
2297 .set_page_dirty = f2fs_set_data_page_dirty,
2298 .invalidatepage = f2fs_invalidate_page,
2299 .releasepage = f2fs_release_page,
2300 .direct_IO = f2fs_direct_IO,
2301 .bmap = f2fs_bmap,
2302#ifdef CONFIG_MIGRATION
2303 .migratepage = f2fs_migrate_page,
2304#endif
2305};