at v4.15 54 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/backing-dev.h> 18#include <linux/module.h> 19#include <linux/blkpg.h> 20#include <linux/magic.h> 21#include <linux/dax.h> 22#include <linux/buffer_head.h> 23#include <linux/swap.h> 24#include <linux/pagevec.h> 25#include <linux/writeback.h> 26#include <linux/mpage.h> 27#include <linux/mount.h> 28#include <linux/uio.h> 29#include <linux/namei.h> 30#include <linux/log2.h> 31#include <linux/cleancache.h> 32#include <linux/dax.h> 33#include <linux/badblocks.h> 34#include <linux/task_io_accounting_ops.h> 35#include <linux/falloc.h> 36#include <linux/uaccess.h> 37#include "internal.h" 38 39struct bdev_inode { 40 struct block_device bdev; 41 struct inode vfs_inode; 42}; 43 44static const struct address_space_operations def_blk_aops; 45 46static inline struct bdev_inode *BDEV_I(struct inode *inode) 47{ 48 return container_of(inode, struct bdev_inode, vfs_inode); 49} 50 51struct block_device *I_BDEV(struct inode *inode) 52{ 53 return &BDEV_I(inode)->bdev; 54} 55EXPORT_SYMBOL(I_BDEV); 56 57static void bdev_write_inode(struct block_device *bdev) 58{ 59 struct inode *inode = bdev->bd_inode; 60 int ret; 61 62 spin_lock(&inode->i_lock); 63 while (inode->i_state & I_DIRTY) { 64 spin_unlock(&inode->i_lock); 65 ret = write_inode_now(inode, true); 66 if (ret) { 67 char name[BDEVNAME_SIZE]; 68 pr_warn_ratelimited("VFS: Dirty inode writeback failed " 69 "for block device %s (err=%d).\n", 70 bdevname(bdev, name), ret); 71 } 72 spin_lock(&inode->i_lock); 73 } 74 spin_unlock(&inode->i_lock); 75} 76 77/* Kill _all_ buffers and pagecache , dirty or not.. */ 78void kill_bdev(struct block_device *bdev) 79{ 80 struct address_space *mapping = bdev->bd_inode->i_mapping; 81 82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 83 return; 84 85 invalidate_bh_lrus(); 86 truncate_inode_pages(mapping, 0); 87} 88EXPORT_SYMBOL(kill_bdev); 89 90/* Invalidate clean unused buffers and pagecache. */ 91void invalidate_bdev(struct block_device *bdev) 92{ 93 struct address_space *mapping = bdev->bd_inode->i_mapping; 94 95 if (mapping->nrpages) { 96 invalidate_bh_lrus(); 97 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 98 invalidate_mapping_pages(mapping, 0, -1); 99 } 100 /* 99% of the time, we don't need to flush the cleancache on the bdev. 101 * But, for the strange corners, lets be cautious 102 */ 103 cleancache_invalidate_inode(mapping); 104} 105EXPORT_SYMBOL(invalidate_bdev); 106 107int set_blocksize(struct block_device *bdev, int size) 108{ 109 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 110 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 111 return -EINVAL; 112 113 /* Size cannot be smaller than the size supported by the device */ 114 if (size < bdev_logical_block_size(bdev)) 115 return -EINVAL; 116 117 /* Don't change the size if it is same as current */ 118 if (bdev->bd_block_size != size) { 119 sync_blockdev(bdev); 120 bdev->bd_block_size = size; 121 bdev->bd_inode->i_blkbits = blksize_bits(size); 122 kill_bdev(bdev); 123 } 124 return 0; 125} 126 127EXPORT_SYMBOL(set_blocksize); 128 129int sb_set_blocksize(struct super_block *sb, int size) 130{ 131 if (set_blocksize(sb->s_bdev, size)) 132 return 0; 133 /* If we get here, we know size is power of two 134 * and it's value is between 512 and PAGE_SIZE */ 135 sb->s_blocksize = size; 136 sb->s_blocksize_bits = blksize_bits(size); 137 return sb->s_blocksize; 138} 139 140EXPORT_SYMBOL(sb_set_blocksize); 141 142int sb_min_blocksize(struct super_block *sb, int size) 143{ 144 int minsize = bdev_logical_block_size(sb->s_bdev); 145 if (size < minsize) 146 size = minsize; 147 return sb_set_blocksize(sb, size); 148} 149 150EXPORT_SYMBOL(sb_min_blocksize); 151 152static int 153blkdev_get_block(struct inode *inode, sector_t iblock, 154 struct buffer_head *bh, int create) 155{ 156 bh->b_bdev = I_BDEV(inode); 157 bh->b_blocknr = iblock; 158 set_buffer_mapped(bh); 159 return 0; 160} 161 162static struct inode *bdev_file_inode(struct file *file) 163{ 164 return file->f_mapping->host; 165} 166 167static unsigned int dio_bio_write_op(struct kiocb *iocb) 168{ 169 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 170 171 /* avoid the need for a I/O completion work item */ 172 if (iocb->ki_flags & IOCB_DSYNC) 173 op |= REQ_FUA; 174 return op; 175} 176 177#define DIO_INLINE_BIO_VECS 4 178 179static void blkdev_bio_end_io_simple(struct bio *bio) 180{ 181 struct task_struct *waiter = bio->bi_private; 182 183 WRITE_ONCE(bio->bi_private, NULL); 184 wake_up_process(waiter); 185} 186 187static ssize_t 188__blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter, 189 int nr_pages) 190{ 191 struct file *file = iocb->ki_filp; 192 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 193 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec; 194 loff_t pos = iocb->ki_pos; 195 bool should_dirty = false; 196 struct bio bio; 197 ssize_t ret; 198 blk_qc_t qc; 199 int i; 200 201 if ((pos | iov_iter_alignment(iter)) & 202 (bdev_logical_block_size(bdev) - 1)) 203 return -EINVAL; 204 205 if (nr_pages <= DIO_INLINE_BIO_VECS) 206 vecs = inline_vecs; 207 else { 208 vecs = kmalloc(nr_pages * sizeof(struct bio_vec), GFP_KERNEL); 209 if (!vecs) 210 return -ENOMEM; 211 } 212 213 bio_init(&bio, vecs, nr_pages); 214 bio_set_dev(&bio, bdev); 215 bio.bi_iter.bi_sector = pos >> 9; 216 bio.bi_write_hint = iocb->ki_hint; 217 bio.bi_private = current; 218 bio.bi_end_io = blkdev_bio_end_io_simple; 219 220 ret = bio_iov_iter_get_pages(&bio, iter); 221 if (unlikely(ret)) 222 return ret; 223 ret = bio.bi_iter.bi_size; 224 225 if (iov_iter_rw(iter) == READ) { 226 bio.bi_opf = REQ_OP_READ; 227 if (iter_is_iovec(iter)) 228 should_dirty = true; 229 } else { 230 bio.bi_opf = dio_bio_write_op(iocb); 231 task_io_account_write(ret); 232 } 233 234 qc = submit_bio(&bio); 235 for (;;) { 236 set_current_state(TASK_UNINTERRUPTIBLE); 237 if (!READ_ONCE(bio.bi_private)) 238 break; 239 if (!(iocb->ki_flags & IOCB_HIPRI) || 240 !blk_poll(bdev_get_queue(bdev), qc)) 241 io_schedule(); 242 } 243 __set_current_state(TASK_RUNNING); 244 245 bio_for_each_segment_all(bvec, &bio, i) { 246 if (should_dirty && !PageCompound(bvec->bv_page)) 247 set_page_dirty_lock(bvec->bv_page); 248 put_page(bvec->bv_page); 249 } 250 251 if (vecs != inline_vecs) 252 kfree(vecs); 253 254 if (unlikely(bio.bi_status)) 255 ret = blk_status_to_errno(bio.bi_status); 256 257 bio_uninit(&bio); 258 259 return ret; 260} 261 262struct blkdev_dio { 263 union { 264 struct kiocb *iocb; 265 struct task_struct *waiter; 266 }; 267 size_t size; 268 atomic_t ref; 269 bool multi_bio : 1; 270 bool should_dirty : 1; 271 bool is_sync : 1; 272 struct bio bio; 273}; 274 275static struct bio_set *blkdev_dio_pool __read_mostly; 276 277static void blkdev_bio_end_io(struct bio *bio) 278{ 279 struct blkdev_dio *dio = bio->bi_private; 280 bool should_dirty = dio->should_dirty; 281 282 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) { 283 if (bio->bi_status && !dio->bio.bi_status) 284 dio->bio.bi_status = bio->bi_status; 285 } else { 286 if (!dio->is_sync) { 287 struct kiocb *iocb = dio->iocb; 288 ssize_t ret; 289 290 if (likely(!dio->bio.bi_status)) { 291 ret = dio->size; 292 iocb->ki_pos += ret; 293 } else { 294 ret = blk_status_to_errno(dio->bio.bi_status); 295 } 296 297 dio->iocb->ki_complete(iocb, ret, 0); 298 bio_put(&dio->bio); 299 } else { 300 struct task_struct *waiter = dio->waiter; 301 302 WRITE_ONCE(dio->waiter, NULL); 303 wake_up_process(waiter); 304 } 305 } 306 307 if (should_dirty) { 308 bio_check_pages_dirty(bio); 309 } else { 310 struct bio_vec *bvec; 311 int i; 312 313 bio_for_each_segment_all(bvec, bio, i) 314 put_page(bvec->bv_page); 315 bio_put(bio); 316 } 317} 318 319static ssize_t 320__blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages) 321{ 322 struct file *file = iocb->ki_filp; 323 struct inode *inode = bdev_file_inode(file); 324 struct block_device *bdev = I_BDEV(inode); 325 struct blk_plug plug; 326 struct blkdev_dio *dio; 327 struct bio *bio; 328 bool is_read = (iov_iter_rw(iter) == READ), is_sync; 329 loff_t pos = iocb->ki_pos; 330 blk_qc_t qc = BLK_QC_T_NONE; 331 int ret = 0; 332 333 if ((pos | iov_iter_alignment(iter)) & 334 (bdev_logical_block_size(bdev) - 1)) 335 return -EINVAL; 336 337 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, blkdev_dio_pool); 338 bio_get(bio); /* extra ref for the completion handler */ 339 340 dio = container_of(bio, struct blkdev_dio, bio); 341 dio->is_sync = is_sync = is_sync_kiocb(iocb); 342 if (dio->is_sync) 343 dio->waiter = current; 344 else 345 dio->iocb = iocb; 346 347 dio->size = 0; 348 dio->multi_bio = false; 349 dio->should_dirty = is_read && (iter->type == ITER_IOVEC); 350 351 blk_start_plug(&plug); 352 for (;;) { 353 bio_set_dev(bio, bdev); 354 bio->bi_iter.bi_sector = pos >> 9; 355 bio->bi_write_hint = iocb->ki_hint; 356 bio->bi_private = dio; 357 bio->bi_end_io = blkdev_bio_end_io; 358 359 ret = bio_iov_iter_get_pages(bio, iter); 360 if (unlikely(ret)) { 361 bio->bi_status = BLK_STS_IOERR; 362 bio_endio(bio); 363 break; 364 } 365 366 if (is_read) { 367 bio->bi_opf = REQ_OP_READ; 368 if (dio->should_dirty) 369 bio_set_pages_dirty(bio); 370 } else { 371 bio->bi_opf = dio_bio_write_op(iocb); 372 task_io_account_write(bio->bi_iter.bi_size); 373 } 374 375 dio->size += bio->bi_iter.bi_size; 376 pos += bio->bi_iter.bi_size; 377 378 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES); 379 if (!nr_pages) { 380 qc = submit_bio(bio); 381 break; 382 } 383 384 if (!dio->multi_bio) { 385 dio->multi_bio = true; 386 atomic_set(&dio->ref, 2); 387 } else { 388 atomic_inc(&dio->ref); 389 } 390 391 submit_bio(bio); 392 bio = bio_alloc(GFP_KERNEL, nr_pages); 393 } 394 blk_finish_plug(&plug); 395 396 if (!is_sync) 397 return -EIOCBQUEUED; 398 399 for (;;) { 400 set_current_state(TASK_UNINTERRUPTIBLE); 401 if (!READ_ONCE(dio->waiter)) 402 break; 403 404 if (!(iocb->ki_flags & IOCB_HIPRI) || 405 !blk_poll(bdev_get_queue(bdev), qc)) 406 io_schedule(); 407 } 408 __set_current_state(TASK_RUNNING); 409 410 if (!ret) 411 ret = blk_status_to_errno(dio->bio.bi_status); 412 if (likely(!ret)) 413 ret = dio->size; 414 415 bio_put(&dio->bio); 416 return ret; 417} 418 419static ssize_t 420blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 421{ 422 int nr_pages; 423 424 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1); 425 if (!nr_pages) 426 return 0; 427 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES) 428 return __blkdev_direct_IO_simple(iocb, iter, nr_pages); 429 430 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES)); 431} 432 433static __init int blkdev_init(void) 434{ 435 blkdev_dio_pool = bioset_create(4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS); 436 if (!blkdev_dio_pool) 437 return -ENOMEM; 438 return 0; 439} 440module_init(blkdev_init); 441 442int __sync_blockdev(struct block_device *bdev, int wait) 443{ 444 if (!bdev) 445 return 0; 446 if (!wait) 447 return filemap_flush(bdev->bd_inode->i_mapping); 448 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 449} 450 451/* 452 * Write out and wait upon all the dirty data associated with a block 453 * device via its mapping. Does not take the superblock lock. 454 */ 455int sync_blockdev(struct block_device *bdev) 456{ 457 return __sync_blockdev(bdev, 1); 458} 459EXPORT_SYMBOL(sync_blockdev); 460 461/* 462 * Write out and wait upon all dirty data associated with this 463 * device. Filesystem data as well as the underlying block 464 * device. Takes the superblock lock. 465 */ 466int fsync_bdev(struct block_device *bdev) 467{ 468 struct super_block *sb = get_super(bdev); 469 if (sb) { 470 int res = sync_filesystem(sb); 471 drop_super(sb); 472 return res; 473 } 474 return sync_blockdev(bdev); 475} 476EXPORT_SYMBOL(fsync_bdev); 477 478/** 479 * freeze_bdev -- lock a filesystem and force it into a consistent state 480 * @bdev: blockdevice to lock 481 * 482 * If a superblock is found on this device, we take the s_umount semaphore 483 * on it to make sure nobody unmounts until the snapshot creation is done. 484 * The reference counter (bd_fsfreeze_count) guarantees that only the last 485 * unfreeze process can unfreeze the frozen filesystem actually when multiple 486 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 487 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 488 * actually. 489 */ 490struct super_block *freeze_bdev(struct block_device *bdev) 491{ 492 struct super_block *sb; 493 int error = 0; 494 495 mutex_lock(&bdev->bd_fsfreeze_mutex); 496 if (++bdev->bd_fsfreeze_count > 1) { 497 /* 498 * We don't even need to grab a reference - the first call 499 * to freeze_bdev grab an active reference and only the last 500 * thaw_bdev drops it. 501 */ 502 sb = get_super(bdev); 503 if (sb) 504 drop_super(sb); 505 mutex_unlock(&bdev->bd_fsfreeze_mutex); 506 return sb; 507 } 508 509 sb = get_active_super(bdev); 510 if (!sb) 511 goto out; 512 if (sb->s_op->freeze_super) 513 error = sb->s_op->freeze_super(sb); 514 else 515 error = freeze_super(sb); 516 if (error) { 517 deactivate_super(sb); 518 bdev->bd_fsfreeze_count--; 519 mutex_unlock(&bdev->bd_fsfreeze_mutex); 520 return ERR_PTR(error); 521 } 522 deactivate_super(sb); 523 out: 524 sync_blockdev(bdev); 525 mutex_unlock(&bdev->bd_fsfreeze_mutex); 526 return sb; /* thaw_bdev releases s->s_umount */ 527} 528EXPORT_SYMBOL(freeze_bdev); 529 530/** 531 * thaw_bdev -- unlock filesystem 532 * @bdev: blockdevice to unlock 533 * @sb: associated superblock 534 * 535 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 536 */ 537int thaw_bdev(struct block_device *bdev, struct super_block *sb) 538{ 539 int error = -EINVAL; 540 541 mutex_lock(&bdev->bd_fsfreeze_mutex); 542 if (!bdev->bd_fsfreeze_count) 543 goto out; 544 545 error = 0; 546 if (--bdev->bd_fsfreeze_count > 0) 547 goto out; 548 549 if (!sb) 550 goto out; 551 552 if (sb->s_op->thaw_super) 553 error = sb->s_op->thaw_super(sb); 554 else 555 error = thaw_super(sb); 556 if (error) 557 bdev->bd_fsfreeze_count++; 558out: 559 mutex_unlock(&bdev->bd_fsfreeze_mutex); 560 return error; 561} 562EXPORT_SYMBOL(thaw_bdev); 563 564static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 565{ 566 return block_write_full_page(page, blkdev_get_block, wbc); 567} 568 569static int blkdev_readpage(struct file * file, struct page * page) 570{ 571 return block_read_full_page(page, blkdev_get_block); 572} 573 574static int blkdev_readpages(struct file *file, struct address_space *mapping, 575 struct list_head *pages, unsigned nr_pages) 576{ 577 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block); 578} 579 580static int blkdev_write_begin(struct file *file, struct address_space *mapping, 581 loff_t pos, unsigned len, unsigned flags, 582 struct page **pagep, void **fsdata) 583{ 584 return block_write_begin(mapping, pos, len, flags, pagep, 585 blkdev_get_block); 586} 587 588static int blkdev_write_end(struct file *file, struct address_space *mapping, 589 loff_t pos, unsigned len, unsigned copied, 590 struct page *page, void *fsdata) 591{ 592 int ret; 593 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 594 595 unlock_page(page); 596 put_page(page); 597 598 return ret; 599} 600 601/* 602 * private llseek: 603 * for a block special file file_inode(file)->i_size is zero 604 * so we compute the size by hand (just as in block_read/write above) 605 */ 606static loff_t block_llseek(struct file *file, loff_t offset, int whence) 607{ 608 struct inode *bd_inode = bdev_file_inode(file); 609 loff_t retval; 610 611 inode_lock(bd_inode); 612 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 613 inode_unlock(bd_inode); 614 return retval; 615} 616 617int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 618{ 619 struct inode *bd_inode = bdev_file_inode(filp); 620 struct block_device *bdev = I_BDEV(bd_inode); 621 int error; 622 623 error = file_write_and_wait_range(filp, start, end); 624 if (error) 625 return error; 626 627 /* 628 * There is no need to serialise calls to blkdev_issue_flush with 629 * i_mutex and doing so causes performance issues with concurrent 630 * O_SYNC writers to a block device. 631 */ 632 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 633 if (error == -EOPNOTSUPP) 634 error = 0; 635 636 return error; 637} 638EXPORT_SYMBOL(blkdev_fsync); 639 640/** 641 * bdev_read_page() - Start reading a page from a block device 642 * @bdev: The device to read the page from 643 * @sector: The offset on the device to read the page to (need not be aligned) 644 * @page: The page to read 645 * 646 * On entry, the page should be locked. It will be unlocked when the page 647 * has been read. If the block driver implements rw_page synchronously, 648 * that will be true on exit from this function, but it need not be. 649 * 650 * Errors returned by this function are usually "soft", eg out of memory, or 651 * queue full; callers should try a different route to read this page rather 652 * than propagate an error back up the stack. 653 * 654 * Return: negative errno if an error occurs, 0 if submission was successful. 655 */ 656int bdev_read_page(struct block_device *bdev, sector_t sector, 657 struct page *page) 658{ 659 const struct block_device_operations *ops = bdev->bd_disk->fops; 660 int result = -EOPNOTSUPP; 661 662 if (!ops->rw_page || bdev_get_integrity(bdev)) 663 return result; 664 665 result = blk_queue_enter(bdev->bd_queue, 0); 666 if (result) 667 return result; 668 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false); 669 blk_queue_exit(bdev->bd_queue); 670 return result; 671} 672EXPORT_SYMBOL_GPL(bdev_read_page); 673 674/** 675 * bdev_write_page() - Start writing a page to a block device 676 * @bdev: The device to write the page to 677 * @sector: The offset on the device to write the page to (need not be aligned) 678 * @page: The page to write 679 * @wbc: The writeback_control for the write 680 * 681 * On entry, the page should be locked and not currently under writeback. 682 * On exit, if the write started successfully, the page will be unlocked and 683 * under writeback. If the write failed already (eg the driver failed to 684 * queue the page to the device), the page will still be locked. If the 685 * caller is a ->writepage implementation, it will need to unlock the page. 686 * 687 * Errors returned by this function are usually "soft", eg out of memory, or 688 * queue full; callers should try a different route to write this page rather 689 * than propagate an error back up the stack. 690 * 691 * Return: negative errno if an error occurs, 0 if submission was successful. 692 */ 693int bdev_write_page(struct block_device *bdev, sector_t sector, 694 struct page *page, struct writeback_control *wbc) 695{ 696 int result; 697 const struct block_device_operations *ops = bdev->bd_disk->fops; 698 699 if (!ops->rw_page || bdev_get_integrity(bdev)) 700 return -EOPNOTSUPP; 701 result = blk_queue_enter(bdev->bd_queue, 0); 702 if (result) 703 return result; 704 705 set_page_writeback(page); 706 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true); 707 if (result) { 708 end_page_writeback(page); 709 } else { 710 clean_page_buffers(page); 711 unlock_page(page); 712 } 713 blk_queue_exit(bdev->bd_queue); 714 return result; 715} 716EXPORT_SYMBOL_GPL(bdev_write_page); 717 718/* 719 * pseudo-fs 720 */ 721 722static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 723static struct kmem_cache * bdev_cachep __read_mostly; 724 725static struct inode *bdev_alloc_inode(struct super_block *sb) 726{ 727 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 728 if (!ei) 729 return NULL; 730 return &ei->vfs_inode; 731} 732 733static void bdev_i_callback(struct rcu_head *head) 734{ 735 struct inode *inode = container_of(head, struct inode, i_rcu); 736 struct bdev_inode *bdi = BDEV_I(inode); 737 738 kmem_cache_free(bdev_cachep, bdi); 739} 740 741static void bdev_destroy_inode(struct inode *inode) 742{ 743 call_rcu(&inode->i_rcu, bdev_i_callback); 744} 745 746static void init_once(void *foo) 747{ 748 struct bdev_inode *ei = (struct bdev_inode *) foo; 749 struct block_device *bdev = &ei->bdev; 750 751 memset(bdev, 0, sizeof(*bdev)); 752 mutex_init(&bdev->bd_mutex); 753 INIT_LIST_HEAD(&bdev->bd_list); 754#ifdef CONFIG_SYSFS 755 INIT_LIST_HEAD(&bdev->bd_holder_disks); 756#endif 757 bdev->bd_bdi = &noop_backing_dev_info; 758 inode_init_once(&ei->vfs_inode); 759 /* Initialize mutex for freeze. */ 760 mutex_init(&bdev->bd_fsfreeze_mutex); 761} 762 763static void bdev_evict_inode(struct inode *inode) 764{ 765 struct block_device *bdev = &BDEV_I(inode)->bdev; 766 truncate_inode_pages_final(&inode->i_data); 767 invalidate_inode_buffers(inode); /* is it needed here? */ 768 clear_inode(inode); 769 spin_lock(&bdev_lock); 770 list_del_init(&bdev->bd_list); 771 spin_unlock(&bdev_lock); 772 /* Detach inode from wb early as bdi_put() may free bdi->wb */ 773 inode_detach_wb(inode); 774 if (bdev->bd_bdi != &noop_backing_dev_info) { 775 bdi_put(bdev->bd_bdi); 776 bdev->bd_bdi = &noop_backing_dev_info; 777 } 778} 779 780static const struct super_operations bdev_sops = { 781 .statfs = simple_statfs, 782 .alloc_inode = bdev_alloc_inode, 783 .destroy_inode = bdev_destroy_inode, 784 .drop_inode = generic_delete_inode, 785 .evict_inode = bdev_evict_inode, 786}; 787 788static struct dentry *bd_mount(struct file_system_type *fs_type, 789 int flags, const char *dev_name, void *data) 790{ 791 struct dentry *dent; 792 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 793 if (!IS_ERR(dent)) 794 dent->d_sb->s_iflags |= SB_I_CGROUPWB; 795 return dent; 796} 797 798static struct file_system_type bd_type = { 799 .name = "bdev", 800 .mount = bd_mount, 801 .kill_sb = kill_anon_super, 802}; 803 804struct super_block *blockdev_superblock __read_mostly; 805EXPORT_SYMBOL_GPL(blockdev_superblock); 806 807void __init bdev_cache_init(void) 808{ 809 int err; 810 static struct vfsmount *bd_mnt; 811 812 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 813 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 814 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC), 815 init_once); 816 err = register_filesystem(&bd_type); 817 if (err) 818 panic("Cannot register bdev pseudo-fs"); 819 bd_mnt = kern_mount(&bd_type); 820 if (IS_ERR(bd_mnt)) 821 panic("Cannot create bdev pseudo-fs"); 822 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 823} 824 825/* 826 * Most likely _very_ bad one - but then it's hardly critical for small 827 * /dev and can be fixed when somebody will need really large one. 828 * Keep in mind that it will be fed through icache hash function too. 829 */ 830static inline unsigned long hash(dev_t dev) 831{ 832 return MAJOR(dev)+MINOR(dev); 833} 834 835static int bdev_test(struct inode *inode, void *data) 836{ 837 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 838} 839 840static int bdev_set(struct inode *inode, void *data) 841{ 842 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 843 return 0; 844} 845 846static LIST_HEAD(all_bdevs); 847 848/* 849 * If there is a bdev inode for this device, unhash it so that it gets evicted 850 * as soon as last inode reference is dropped. 851 */ 852void bdev_unhash_inode(dev_t dev) 853{ 854 struct inode *inode; 855 856 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev); 857 if (inode) { 858 remove_inode_hash(inode); 859 iput(inode); 860 } 861} 862 863struct block_device *bdget(dev_t dev) 864{ 865 struct block_device *bdev; 866 struct inode *inode; 867 868 inode = iget5_locked(blockdev_superblock, hash(dev), 869 bdev_test, bdev_set, &dev); 870 871 if (!inode) 872 return NULL; 873 874 bdev = &BDEV_I(inode)->bdev; 875 876 if (inode->i_state & I_NEW) { 877 bdev->bd_contains = NULL; 878 bdev->bd_super = NULL; 879 bdev->bd_inode = inode; 880 bdev->bd_block_size = i_blocksize(inode); 881 bdev->bd_part_count = 0; 882 bdev->bd_invalidated = 0; 883 inode->i_mode = S_IFBLK; 884 inode->i_rdev = dev; 885 inode->i_bdev = bdev; 886 inode->i_data.a_ops = &def_blk_aops; 887 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 888 spin_lock(&bdev_lock); 889 list_add(&bdev->bd_list, &all_bdevs); 890 spin_unlock(&bdev_lock); 891 unlock_new_inode(inode); 892 } 893 return bdev; 894} 895 896EXPORT_SYMBOL(bdget); 897 898/** 899 * bdgrab -- Grab a reference to an already referenced block device 900 * @bdev: Block device to grab a reference to. 901 */ 902struct block_device *bdgrab(struct block_device *bdev) 903{ 904 ihold(bdev->bd_inode); 905 return bdev; 906} 907EXPORT_SYMBOL(bdgrab); 908 909long nr_blockdev_pages(void) 910{ 911 struct block_device *bdev; 912 long ret = 0; 913 spin_lock(&bdev_lock); 914 list_for_each_entry(bdev, &all_bdevs, bd_list) { 915 ret += bdev->bd_inode->i_mapping->nrpages; 916 } 917 spin_unlock(&bdev_lock); 918 return ret; 919} 920 921void bdput(struct block_device *bdev) 922{ 923 iput(bdev->bd_inode); 924} 925 926EXPORT_SYMBOL(bdput); 927 928static struct block_device *bd_acquire(struct inode *inode) 929{ 930 struct block_device *bdev; 931 932 spin_lock(&bdev_lock); 933 bdev = inode->i_bdev; 934 if (bdev && !inode_unhashed(bdev->bd_inode)) { 935 bdgrab(bdev); 936 spin_unlock(&bdev_lock); 937 return bdev; 938 } 939 spin_unlock(&bdev_lock); 940 941 /* 942 * i_bdev references block device inode that was already shut down 943 * (corresponding device got removed). Remove the reference and look 944 * up block device inode again just in case new device got 945 * reestablished under the same device number. 946 */ 947 if (bdev) 948 bd_forget(inode); 949 950 bdev = bdget(inode->i_rdev); 951 if (bdev) { 952 spin_lock(&bdev_lock); 953 if (!inode->i_bdev) { 954 /* 955 * We take an additional reference to bd_inode, 956 * and it's released in clear_inode() of inode. 957 * So, we can access it via ->i_mapping always 958 * without igrab(). 959 */ 960 bdgrab(bdev); 961 inode->i_bdev = bdev; 962 inode->i_mapping = bdev->bd_inode->i_mapping; 963 } 964 spin_unlock(&bdev_lock); 965 } 966 return bdev; 967} 968 969/* Call when you free inode */ 970 971void bd_forget(struct inode *inode) 972{ 973 struct block_device *bdev = NULL; 974 975 spin_lock(&bdev_lock); 976 if (!sb_is_blkdev_sb(inode->i_sb)) 977 bdev = inode->i_bdev; 978 inode->i_bdev = NULL; 979 inode->i_mapping = &inode->i_data; 980 spin_unlock(&bdev_lock); 981 982 if (bdev) 983 bdput(bdev); 984} 985 986/** 987 * bd_may_claim - test whether a block device can be claimed 988 * @bdev: block device of interest 989 * @whole: whole block device containing @bdev, may equal @bdev 990 * @holder: holder trying to claim @bdev 991 * 992 * Test whether @bdev can be claimed by @holder. 993 * 994 * CONTEXT: 995 * spin_lock(&bdev_lock). 996 * 997 * RETURNS: 998 * %true if @bdev can be claimed, %false otherwise. 999 */ 1000static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 1001 void *holder) 1002{ 1003 if (bdev->bd_holder == holder) 1004 return true; /* already a holder */ 1005 else if (bdev->bd_holder != NULL) 1006 return false; /* held by someone else */ 1007 else if (whole == bdev) 1008 return true; /* is a whole device which isn't held */ 1009 1010 else if (whole->bd_holder == bd_may_claim) 1011 return true; /* is a partition of a device that is being partitioned */ 1012 else if (whole->bd_holder != NULL) 1013 return false; /* is a partition of a held device */ 1014 else 1015 return true; /* is a partition of an un-held device */ 1016} 1017 1018/** 1019 * bd_prepare_to_claim - prepare to claim a block device 1020 * @bdev: block device of interest 1021 * @whole: the whole device containing @bdev, may equal @bdev 1022 * @holder: holder trying to claim @bdev 1023 * 1024 * Prepare to claim @bdev. This function fails if @bdev is already 1025 * claimed by another holder and waits if another claiming is in 1026 * progress. This function doesn't actually claim. On successful 1027 * return, the caller has ownership of bd_claiming and bd_holder[s]. 1028 * 1029 * CONTEXT: 1030 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 1031 * it multiple times. 1032 * 1033 * RETURNS: 1034 * 0 if @bdev can be claimed, -EBUSY otherwise. 1035 */ 1036static int bd_prepare_to_claim(struct block_device *bdev, 1037 struct block_device *whole, void *holder) 1038{ 1039retry: 1040 /* if someone else claimed, fail */ 1041 if (!bd_may_claim(bdev, whole, holder)) 1042 return -EBUSY; 1043 1044 /* if claiming is already in progress, wait for it to finish */ 1045 if (whole->bd_claiming) { 1046 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 1047 DEFINE_WAIT(wait); 1048 1049 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 1050 spin_unlock(&bdev_lock); 1051 schedule(); 1052 finish_wait(wq, &wait); 1053 spin_lock(&bdev_lock); 1054 goto retry; 1055 } 1056 1057 /* yay, all mine */ 1058 return 0; 1059} 1060 1061/** 1062 * bd_start_claiming - start claiming a block device 1063 * @bdev: block device of interest 1064 * @holder: holder trying to claim @bdev 1065 * 1066 * @bdev is about to be opened exclusively. Check @bdev can be opened 1067 * exclusively and mark that an exclusive open is in progress. Each 1068 * successful call to this function must be matched with a call to 1069 * either bd_finish_claiming() or bd_abort_claiming() (which do not 1070 * fail). 1071 * 1072 * This function is used to gain exclusive access to the block device 1073 * without actually causing other exclusive open attempts to fail. It 1074 * should be used when the open sequence itself requires exclusive 1075 * access but may subsequently fail. 1076 * 1077 * CONTEXT: 1078 * Might sleep. 1079 * 1080 * RETURNS: 1081 * Pointer to the block device containing @bdev on success, ERR_PTR() 1082 * value on failure. 1083 */ 1084static struct block_device *bd_start_claiming(struct block_device *bdev, 1085 void *holder) 1086{ 1087 struct gendisk *disk; 1088 struct block_device *whole; 1089 int partno, err; 1090 1091 might_sleep(); 1092 1093 /* 1094 * @bdev might not have been initialized properly yet, look up 1095 * and grab the outer block device the hard way. 1096 */ 1097 disk = get_gendisk(bdev->bd_dev, &partno); 1098 if (!disk) 1099 return ERR_PTR(-ENXIO); 1100 1101 /* 1102 * Normally, @bdev should equal what's returned from bdget_disk() 1103 * if partno is 0; however, some drivers (floppy) use multiple 1104 * bdev's for the same physical device and @bdev may be one of the 1105 * aliases. Keep @bdev if partno is 0. This means claimer 1106 * tracking is broken for those devices but it has always been that 1107 * way. 1108 */ 1109 if (partno) 1110 whole = bdget_disk(disk, 0); 1111 else 1112 whole = bdgrab(bdev); 1113 1114 module_put(disk->fops->owner); 1115 put_disk(disk); 1116 if (!whole) 1117 return ERR_PTR(-ENOMEM); 1118 1119 /* prepare to claim, if successful, mark claiming in progress */ 1120 spin_lock(&bdev_lock); 1121 1122 err = bd_prepare_to_claim(bdev, whole, holder); 1123 if (err == 0) { 1124 whole->bd_claiming = holder; 1125 spin_unlock(&bdev_lock); 1126 return whole; 1127 } else { 1128 spin_unlock(&bdev_lock); 1129 bdput(whole); 1130 return ERR_PTR(err); 1131 } 1132} 1133 1134#ifdef CONFIG_SYSFS 1135struct bd_holder_disk { 1136 struct list_head list; 1137 struct gendisk *disk; 1138 int refcnt; 1139}; 1140 1141static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 1142 struct gendisk *disk) 1143{ 1144 struct bd_holder_disk *holder; 1145 1146 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 1147 if (holder->disk == disk) 1148 return holder; 1149 return NULL; 1150} 1151 1152static int add_symlink(struct kobject *from, struct kobject *to) 1153{ 1154 return sysfs_create_link(from, to, kobject_name(to)); 1155} 1156 1157static void del_symlink(struct kobject *from, struct kobject *to) 1158{ 1159 sysfs_remove_link(from, kobject_name(to)); 1160} 1161 1162/** 1163 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 1164 * @bdev: the claimed slave bdev 1165 * @disk: the holding disk 1166 * 1167 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1168 * 1169 * This functions creates the following sysfs symlinks. 1170 * 1171 * - from "slaves" directory of the holder @disk to the claimed @bdev 1172 * - from "holders" directory of the @bdev to the holder @disk 1173 * 1174 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 1175 * passed to bd_link_disk_holder(), then: 1176 * 1177 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 1178 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 1179 * 1180 * The caller must have claimed @bdev before calling this function and 1181 * ensure that both @bdev and @disk are valid during the creation and 1182 * lifetime of these symlinks. 1183 * 1184 * CONTEXT: 1185 * Might sleep. 1186 * 1187 * RETURNS: 1188 * 0 on success, -errno on failure. 1189 */ 1190int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 1191{ 1192 struct bd_holder_disk *holder; 1193 int ret = 0; 1194 1195 mutex_lock(&bdev->bd_mutex); 1196 1197 WARN_ON_ONCE(!bdev->bd_holder); 1198 1199 /* FIXME: remove the following once add_disk() handles errors */ 1200 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 1201 goto out_unlock; 1202 1203 holder = bd_find_holder_disk(bdev, disk); 1204 if (holder) { 1205 holder->refcnt++; 1206 goto out_unlock; 1207 } 1208 1209 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 1210 if (!holder) { 1211 ret = -ENOMEM; 1212 goto out_unlock; 1213 } 1214 1215 INIT_LIST_HEAD(&holder->list); 1216 holder->disk = disk; 1217 holder->refcnt = 1; 1218 1219 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1220 if (ret) 1221 goto out_free; 1222 1223 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 1224 if (ret) 1225 goto out_del; 1226 /* 1227 * bdev could be deleted beneath us which would implicitly destroy 1228 * the holder directory. Hold on to it. 1229 */ 1230 kobject_get(bdev->bd_part->holder_dir); 1231 1232 list_add(&holder->list, &bdev->bd_holder_disks); 1233 goto out_unlock; 1234 1235out_del: 1236 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1237out_free: 1238 kfree(holder); 1239out_unlock: 1240 mutex_unlock(&bdev->bd_mutex); 1241 return ret; 1242} 1243EXPORT_SYMBOL_GPL(bd_link_disk_holder); 1244 1245/** 1246 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 1247 * @bdev: the calimed slave bdev 1248 * @disk: the holding disk 1249 * 1250 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1251 * 1252 * CONTEXT: 1253 * Might sleep. 1254 */ 1255void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 1256{ 1257 struct bd_holder_disk *holder; 1258 1259 mutex_lock(&bdev->bd_mutex); 1260 1261 holder = bd_find_holder_disk(bdev, disk); 1262 1263 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 1264 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1265 del_symlink(bdev->bd_part->holder_dir, 1266 &disk_to_dev(disk)->kobj); 1267 kobject_put(bdev->bd_part->holder_dir); 1268 list_del_init(&holder->list); 1269 kfree(holder); 1270 } 1271 1272 mutex_unlock(&bdev->bd_mutex); 1273} 1274EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 1275#endif 1276 1277/** 1278 * flush_disk - invalidates all buffer-cache entries on a disk 1279 * 1280 * @bdev: struct block device to be flushed 1281 * @kill_dirty: flag to guide handling of dirty inodes 1282 * 1283 * Invalidates all buffer-cache entries on a disk. It should be called 1284 * when a disk has been changed -- either by a media change or online 1285 * resize. 1286 */ 1287static void flush_disk(struct block_device *bdev, bool kill_dirty) 1288{ 1289 if (__invalidate_device(bdev, kill_dirty)) { 1290 printk(KERN_WARNING "VFS: busy inodes on changed media or " 1291 "resized disk %s\n", 1292 bdev->bd_disk ? bdev->bd_disk->disk_name : ""); 1293 } 1294 1295 if (!bdev->bd_disk) 1296 return; 1297 if (disk_part_scan_enabled(bdev->bd_disk)) 1298 bdev->bd_invalidated = 1; 1299} 1300 1301/** 1302 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1303 * @disk: struct gendisk to check 1304 * @bdev: struct bdev to adjust. 1305 * 1306 * This routine checks to see if the bdev size does not match the disk size 1307 * and adjusts it if it differs. 1308 */ 1309void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) 1310{ 1311 loff_t disk_size, bdev_size; 1312 1313 disk_size = (loff_t)get_capacity(disk) << 9; 1314 bdev_size = i_size_read(bdev->bd_inode); 1315 if (disk_size != bdev_size) { 1316 printk(KERN_INFO 1317 "%s: detected capacity change from %lld to %lld\n", 1318 disk->disk_name, bdev_size, disk_size); 1319 i_size_write(bdev->bd_inode, disk_size); 1320 flush_disk(bdev, false); 1321 } 1322} 1323EXPORT_SYMBOL(check_disk_size_change); 1324 1325/** 1326 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1327 * @disk: struct gendisk to be revalidated 1328 * 1329 * This routine is a wrapper for lower-level driver's revalidate_disk 1330 * call-backs. It is used to do common pre and post operations needed 1331 * for all revalidate_disk operations. 1332 */ 1333int revalidate_disk(struct gendisk *disk) 1334{ 1335 struct block_device *bdev; 1336 int ret = 0; 1337 1338 if (disk->fops->revalidate_disk) 1339 ret = disk->fops->revalidate_disk(disk); 1340 bdev = bdget_disk(disk, 0); 1341 if (!bdev) 1342 return ret; 1343 1344 mutex_lock(&bdev->bd_mutex); 1345 check_disk_size_change(disk, bdev); 1346 bdev->bd_invalidated = 0; 1347 mutex_unlock(&bdev->bd_mutex); 1348 bdput(bdev); 1349 return ret; 1350} 1351EXPORT_SYMBOL(revalidate_disk); 1352 1353/* 1354 * This routine checks whether a removable media has been changed, 1355 * and invalidates all buffer-cache-entries in that case. This 1356 * is a relatively slow routine, so we have to try to minimize using 1357 * it. Thus it is called only upon a 'mount' or 'open'. This 1358 * is the best way of combining speed and utility, I think. 1359 * People changing diskettes in the middle of an operation deserve 1360 * to lose :-) 1361 */ 1362int check_disk_change(struct block_device *bdev) 1363{ 1364 struct gendisk *disk = bdev->bd_disk; 1365 const struct block_device_operations *bdops = disk->fops; 1366 unsigned int events; 1367 1368 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1369 DISK_EVENT_EJECT_REQUEST); 1370 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1371 return 0; 1372 1373 flush_disk(bdev, true); 1374 if (bdops->revalidate_disk) 1375 bdops->revalidate_disk(bdev->bd_disk); 1376 return 1; 1377} 1378 1379EXPORT_SYMBOL(check_disk_change); 1380 1381void bd_set_size(struct block_device *bdev, loff_t size) 1382{ 1383 unsigned bsize = bdev_logical_block_size(bdev); 1384 1385 inode_lock(bdev->bd_inode); 1386 i_size_write(bdev->bd_inode, size); 1387 inode_unlock(bdev->bd_inode); 1388 while (bsize < PAGE_SIZE) { 1389 if (size & bsize) 1390 break; 1391 bsize <<= 1; 1392 } 1393 bdev->bd_block_size = bsize; 1394 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1395} 1396EXPORT_SYMBOL(bd_set_size); 1397 1398static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1399 1400/* 1401 * bd_mutex locking: 1402 * 1403 * mutex_lock(part->bd_mutex) 1404 * mutex_lock_nested(whole->bd_mutex, 1) 1405 */ 1406 1407static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1408{ 1409 struct gendisk *disk; 1410 struct module *owner; 1411 int ret; 1412 int partno; 1413 int perm = 0; 1414 1415 if (mode & FMODE_READ) 1416 perm |= MAY_READ; 1417 if (mode & FMODE_WRITE) 1418 perm |= MAY_WRITE; 1419 /* 1420 * hooks: /n/, see "layering violations". 1421 */ 1422 if (!for_part) { 1423 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1424 if (ret != 0) { 1425 bdput(bdev); 1426 return ret; 1427 } 1428 } 1429 1430 restart: 1431 1432 ret = -ENXIO; 1433 disk = get_gendisk(bdev->bd_dev, &partno); 1434 if (!disk) 1435 goto out; 1436 owner = disk->fops->owner; 1437 1438 disk_block_events(disk); 1439 mutex_lock_nested(&bdev->bd_mutex, for_part); 1440 if (!bdev->bd_openers) { 1441 bdev->bd_disk = disk; 1442 bdev->bd_queue = disk->queue; 1443 bdev->bd_contains = bdev; 1444 bdev->bd_partno = partno; 1445 1446 if (!partno) { 1447 ret = -ENXIO; 1448 bdev->bd_part = disk_get_part(disk, partno); 1449 if (!bdev->bd_part) 1450 goto out_clear; 1451 1452 ret = 0; 1453 if (disk->fops->open) { 1454 ret = disk->fops->open(bdev, mode); 1455 if (ret == -ERESTARTSYS) { 1456 /* Lost a race with 'disk' being 1457 * deleted, try again. 1458 * See md.c 1459 */ 1460 disk_put_part(bdev->bd_part); 1461 bdev->bd_part = NULL; 1462 bdev->bd_disk = NULL; 1463 bdev->bd_queue = NULL; 1464 mutex_unlock(&bdev->bd_mutex); 1465 disk_unblock_events(disk); 1466 put_disk(disk); 1467 module_put(owner); 1468 goto restart; 1469 } 1470 } 1471 1472 if (!ret) 1473 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1474 1475 /* 1476 * If the device is invalidated, rescan partition 1477 * if open succeeded or failed with -ENOMEDIUM. 1478 * The latter is necessary to prevent ghost 1479 * partitions on a removed medium. 1480 */ 1481 if (bdev->bd_invalidated) { 1482 if (!ret) 1483 rescan_partitions(disk, bdev); 1484 else if (ret == -ENOMEDIUM) 1485 invalidate_partitions(disk, bdev); 1486 } 1487 1488 if (ret) 1489 goto out_clear; 1490 } else { 1491 struct block_device *whole; 1492 whole = bdget_disk(disk, 0); 1493 ret = -ENOMEM; 1494 if (!whole) 1495 goto out_clear; 1496 BUG_ON(for_part); 1497 ret = __blkdev_get(whole, mode, 1); 1498 if (ret) 1499 goto out_clear; 1500 bdev->bd_contains = whole; 1501 bdev->bd_part = disk_get_part(disk, partno); 1502 if (!(disk->flags & GENHD_FL_UP) || 1503 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1504 ret = -ENXIO; 1505 goto out_clear; 1506 } 1507 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1508 } 1509 1510 if (bdev->bd_bdi == &noop_backing_dev_info) 1511 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info); 1512 } else { 1513 if (bdev->bd_contains == bdev) { 1514 ret = 0; 1515 if (bdev->bd_disk->fops->open) 1516 ret = bdev->bd_disk->fops->open(bdev, mode); 1517 /* the same as first opener case, read comment there */ 1518 if (bdev->bd_invalidated) { 1519 if (!ret) 1520 rescan_partitions(bdev->bd_disk, bdev); 1521 else if (ret == -ENOMEDIUM) 1522 invalidate_partitions(bdev->bd_disk, bdev); 1523 } 1524 if (ret) 1525 goto out_unlock_bdev; 1526 } 1527 /* only one opener holds refs to the module and disk */ 1528 put_disk(disk); 1529 module_put(owner); 1530 } 1531 bdev->bd_openers++; 1532 if (for_part) 1533 bdev->bd_part_count++; 1534 mutex_unlock(&bdev->bd_mutex); 1535 disk_unblock_events(disk); 1536 return 0; 1537 1538 out_clear: 1539 disk_put_part(bdev->bd_part); 1540 bdev->bd_disk = NULL; 1541 bdev->bd_part = NULL; 1542 bdev->bd_queue = NULL; 1543 if (bdev != bdev->bd_contains) 1544 __blkdev_put(bdev->bd_contains, mode, 1); 1545 bdev->bd_contains = NULL; 1546 out_unlock_bdev: 1547 mutex_unlock(&bdev->bd_mutex); 1548 disk_unblock_events(disk); 1549 put_disk(disk); 1550 module_put(owner); 1551 out: 1552 bdput(bdev); 1553 1554 return ret; 1555} 1556 1557/** 1558 * blkdev_get - open a block device 1559 * @bdev: block_device to open 1560 * @mode: FMODE_* mask 1561 * @holder: exclusive holder identifier 1562 * 1563 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1564 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1565 * @holder is invalid. Exclusive opens may nest for the same @holder. 1566 * 1567 * On success, the reference count of @bdev is unchanged. On failure, 1568 * @bdev is put. 1569 * 1570 * CONTEXT: 1571 * Might sleep. 1572 * 1573 * RETURNS: 1574 * 0 on success, -errno on failure. 1575 */ 1576int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1577{ 1578 struct block_device *whole = NULL; 1579 int res; 1580 1581 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1582 1583 if ((mode & FMODE_EXCL) && holder) { 1584 whole = bd_start_claiming(bdev, holder); 1585 if (IS_ERR(whole)) { 1586 bdput(bdev); 1587 return PTR_ERR(whole); 1588 } 1589 } 1590 1591 res = __blkdev_get(bdev, mode, 0); 1592 1593 if (whole) { 1594 struct gendisk *disk = whole->bd_disk; 1595 1596 /* finish claiming */ 1597 mutex_lock(&bdev->bd_mutex); 1598 spin_lock(&bdev_lock); 1599 1600 if (!res) { 1601 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1602 /* 1603 * Note that for a whole device bd_holders 1604 * will be incremented twice, and bd_holder 1605 * will be set to bd_may_claim before being 1606 * set to holder 1607 */ 1608 whole->bd_holders++; 1609 whole->bd_holder = bd_may_claim; 1610 bdev->bd_holders++; 1611 bdev->bd_holder = holder; 1612 } 1613 1614 /* tell others that we're done */ 1615 BUG_ON(whole->bd_claiming != holder); 1616 whole->bd_claiming = NULL; 1617 wake_up_bit(&whole->bd_claiming, 0); 1618 1619 spin_unlock(&bdev_lock); 1620 1621 /* 1622 * Block event polling for write claims if requested. Any 1623 * write holder makes the write_holder state stick until 1624 * all are released. This is good enough and tracking 1625 * individual writeable reference is too fragile given the 1626 * way @mode is used in blkdev_get/put(). 1627 */ 1628 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1629 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1630 bdev->bd_write_holder = true; 1631 disk_block_events(disk); 1632 } 1633 1634 mutex_unlock(&bdev->bd_mutex); 1635 bdput(whole); 1636 } 1637 1638 return res; 1639} 1640EXPORT_SYMBOL(blkdev_get); 1641 1642/** 1643 * blkdev_get_by_path - open a block device by name 1644 * @path: path to the block device to open 1645 * @mode: FMODE_* mask 1646 * @holder: exclusive holder identifier 1647 * 1648 * Open the blockdevice described by the device file at @path. @mode 1649 * and @holder are identical to blkdev_get(). 1650 * 1651 * On success, the returned block_device has reference count of one. 1652 * 1653 * CONTEXT: 1654 * Might sleep. 1655 * 1656 * RETURNS: 1657 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1658 */ 1659struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1660 void *holder) 1661{ 1662 struct block_device *bdev; 1663 int err; 1664 1665 bdev = lookup_bdev(path); 1666 if (IS_ERR(bdev)) 1667 return bdev; 1668 1669 err = blkdev_get(bdev, mode, holder); 1670 if (err) 1671 return ERR_PTR(err); 1672 1673 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1674 blkdev_put(bdev, mode); 1675 return ERR_PTR(-EACCES); 1676 } 1677 1678 return bdev; 1679} 1680EXPORT_SYMBOL(blkdev_get_by_path); 1681 1682/** 1683 * blkdev_get_by_dev - open a block device by device number 1684 * @dev: device number of block device to open 1685 * @mode: FMODE_* mask 1686 * @holder: exclusive holder identifier 1687 * 1688 * Open the blockdevice described by device number @dev. @mode and 1689 * @holder are identical to blkdev_get(). 1690 * 1691 * Use it ONLY if you really do not have anything better - i.e. when 1692 * you are behind a truly sucky interface and all you are given is a 1693 * device number. _Never_ to be used for internal purposes. If you 1694 * ever need it - reconsider your API. 1695 * 1696 * On success, the returned block_device has reference count of one. 1697 * 1698 * CONTEXT: 1699 * Might sleep. 1700 * 1701 * RETURNS: 1702 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1703 */ 1704struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1705{ 1706 struct block_device *bdev; 1707 int err; 1708 1709 bdev = bdget(dev); 1710 if (!bdev) 1711 return ERR_PTR(-ENOMEM); 1712 1713 err = blkdev_get(bdev, mode, holder); 1714 if (err) 1715 return ERR_PTR(err); 1716 1717 return bdev; 1718} 1719EXPORT_SYMBOL(blkdev_get_by_dev); 1720 1721static int blkdev_open(struct inode * inode, struct file * filp) 1722{ 1723 struct block_device *bdev; 1724 1725 /* 1726 * Preserve backwards compatibility and allow large file access 1727 * even if userspace doesn't ask for it explicitly. Some mkfs 1728 * binary needs it. We might want to drop this workaround 1729 * during an unstable branch. 1730 */ 1731 filp->f_flags |= O_LARGEFILE; 1732 1733 filp->f_mode |= FMODE_NOWAIT; 1734 1735 if (filp->f_flags & O_NDELAY) 1736 filp->f_mode |= FMODE_NDELAY; 1737 if (filp->f_flags & O_EXCL) 1738 filp->f_mode |= FMODE_EXCL; 1739 if ((filp->f_flags & O_ACCMODE) == 3) 1740 filp->f_mode |= FMODE_WRITE_IOCTL; 1741 1742 bdev = bd_acquire(inode); 1743 if (bdev == NULL) 1744 return -ENOMEM; 1745 1746 filp->f_mapping = bdev->bd_inode->i_mapping; 1747 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping); 1748 1749 return blkdev_get(bdev, filp->f_mode, filp); 1750} 1751 1752static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1753{ 1754 struct gendisk *disk = bdev->bd_disk; 1755 struct block_device *victim = NULL; 1756 1757 mutex_lock_nested(&bdev->bd_mutex, for_part); 1758 if (for_part) 1759 bdev->bd_part_count--; 1760 1761 if (!--bdev->bd_openers) { 1762 WARN_ON_ONCE(bdev->bd_holders); 1763 sync_blockdev(bdev); 1764 kill_bdev(bdev); 1765 1766 bdev_write_inode(bdev); 1767 } 1768 if (bdev->bd_contains == bdev) { 1769 if (disk->fops->release) 1770 disk->fops->release(disk, mode); 1771 } 1772 if (!bdev->bd_openers) { 1773 struct module *owner = disk->fops->owner; 1774 1775 disk_put_part(bdev->bd_part); 1776 bdev->bd_part = NULL; 1777 bdev->bd_disk = NULL; 1778 if (bdev != bdev->bd_contains) 1779 victim = bdev->bd_contains; 1780 bdev->bd_contains = NULL; 1781 1782 put_disk(disk); 1783 module_put(owner); 1784 } 1785 mutex_unlock(&bdev->bd_mutex); 1786 bdput(bdev); 1787 if (victim) 1788 __blkdev_put(victim, mode, 1); 1789} 1790 1791void blkdev_put(struct block_device *bdev, fmode_t mode) 1792{ 1793 mutex_lock(&bdev->bd_mutex); 1794 1795 if (mode & FMODE_EXCL) { 1796 bool bdev_free; 1797 1798 /* 1799 * Release a claim on the device. The holder fields 1800 * are protected with bdev_lock. bd_mutex is to 1801 * synchronize disk_holder unlinking. 1802 */ 1803 spin_lock(&bdev_lock); 1804 1805 WARN_ON_ONCE(--bdev->bd_holders < 0); 1806 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1807 1808 /* bd_contains might point to self, check in a separate step */ 1809 if ((bdev_free = !bdev->bd_holders)) 1810 bdev->bd_holder = NULL; 1811 if (!bdev->bd_contains->bd_holders) 1812 bdev->bd_contains->bd_holder = NULL; 1813 1814 spin_unlock(&bdev_lock); 1815 1816 /* 1817 * If this was the last claim, remove holder link and 1818 * unblock evpoll if it was a write holder. 1819 */ 1820 if (bdev_free && bdev->bd_write_holder) { 1821 disk_unblock_events(bdev->bd_disk); 1822 bdev->bd_write_holder = false; 1823 } 1824 } 1825 1826 /* 1827 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1828 * event. This is to ensure detection of media removal commanded 1829 * from userland - e.g. eject(1). 1830 */ 1831 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1832 1833 mutex_unlock(&bdev->bd_mutex); 1834 1835 __blkdev_put(bdev, mode, 0); 1836} 1837EXPORT_SYMBOL(blkdev_put); 1838 1839static int blkdev_close(struct inode * inode, struct file * filp) 1840{ 1841 struct block_device *bdev = I_BDEV(bdev_file_inode(filp)); 1842 blkdev_put(bdev, filp->f_mode); 1843 return 0; 1844} 1845 1846static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1847{ 1848 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1849 fmode_t mode = file->f_mode; 1850 1851 /* 1852 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1853 * to updated it before every ioctl. 1854 */ 1855 if (file->f_flags & O_NDELAY) 1856 mode |= FMODE_NDELAY; 1857 else 1858 mode &= ~FMODE_NDELAY; 1859 1860 return blkdev_ioctl(bdev, mode, cmd, arg); 1861} 1862 1863/* 1864 * Write data to the block device. Only intended for the block device itself 1865 * and the raw driver which basically is a fake block device. 1866 * 1867 * Does not take i_mutex for the write and thus is not for general purpose 1868 * use. 1869 */ 1870ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1871{ 1872 struct file *file = iocb->ki_filp; 1873 struct inode *bd_inode = bdev_file_inode(file); 1874 loff_t size = i_size_read(bd_inode); 1875 struct blk_plug plug; 1876 ssize_t ret; 1877 1878 if (bdev_read_only(I_BDEV(bd_inode))) 1879 return -EPERM; 1880 1881 if (!iov_iter_count(from)) 1882 return 0; 1883 1884 if (iocb->ki_pos >= size) 1885 return -ENOSPC; 1886 1887 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT) 1888 return -EOPNOTSUPP; 1889 1890 iov_iter_truncate(from, size - iocb->ki_pos); 1891 1892 blk_start_plug(&plug); 1893 ret = __generic_file_write_iter(iocb, from); 1894 if (ret > 0) 1895 ret = generic_write_sync(iocb, ret); 1896 blk_finish_plug(&plug); 1897 return ret; 1898} 1899EXPORT_SYMBOL_GPL(blkdev_write_iter); 1900 1901ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 1902{ 1903 struct file *file = iocb->ki_filp; 1904 struct inode *bd_inode = bdev_file_inode(file); 1905 loff_t size = i_size_read(bd_inode); 1906 loff_t pos = iocb->ki_pos; 1907 1908 if (pos >= size) 1909 return 0; 1910 1911 size -= pos; 1912 iov_iter_truncate(to, size); 1913 return generic_file_read_iter(iocb, to); 1914} 1915EXPORT_SYMBOL_GPL(blkdev_read_iter); 1916 1917/* 1918 * Try to release a page associated with block device when the system 1919 * is under memory pressure. 1920 */ 1921static int blkdev_releasepage(struct page *page, gfp_t wait) 1922{ 1923 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1924 1925 if (super && super->s_op->bdev_try_to_free_page) 1926 return super->s_op->bdev_try_to_free_page(super, page, wait); 1927 1928 return try_to_free_buffers(page); 1929} 1930 1931static int blkdev_writepages(struct address_space *mapping, 1932 struct writeback_control *wbc) 1933{ 1934 if (dax_mapping(mapping)) { 1935 struct block_device *bdev = I_BDEV(mapping->host); 1936 1937 return dax_writeback_mapping_range(mapping, bdev, wbc); 1938 } 1939 return generic_writepages(mapping, wbc); 1940} 1941 1942static const struct address_space_operations def_blk_aops = { 1943 .readpage = blkdev_readpage, 1944 .readpages = blkdev_readpages, 1945 .writepage = blkdev_writepage, 1946 .write_begin = blkdev_write_begin, 1947 .write_end = blkdev_write_end, 1948 .writepages = blkdev_writepages, 1949 .releasepage = blkdev_releasepage, 1950 .direct_IO = blkdev_direct_IO, 1951 .is_dirty_writeback = buffer_check_dirty_writeback, 1952}; 1953 1954#define BLKDEV_FALLOC_FL_SUPPORTED \ 1955 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 1956 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE) 1957 1958static long blkdev_fallocate(struct file *file, int mode, loff_t start, 1959 loff_t len) 1960{ 1961 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1962 struct address_space *mapping; 1963 loff_t end = start + len - 1; 1964 loff_t isize; 1965 int error; 1966 1967 /* Fail if we don't recognize the flags. */ 1968 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED) 1969 return -EOPNOTSUPP; 1970 1971 /* Don't go off the end of the device. */ 1972 isize = i_size_read(bdev->bd_inode); 1973 if (start >= isize) 1974 return -EINVAL; 1975 if (end >= isize) { 1976 if (mode & FALLOC_FL_KEEP_SIZE) { 1977 len = isize - start; 1978 end = start + len - 1; 1979 } else 1980 return -EINVAL; 1981 } 1982 1983 /* 1984 * Don't allow IO that isn't aligned to logical block size. 1985 */ 1986 if ((start | len) & (bdev_logical_block_size(bdev) - 1)) 1987 return -EINVAL; 1988 1989 /* Invalidate the page cache, including dirty pages. */ 1990 mapping = bdev->bd_inode->i_mapping; 1991 truncate_inode_pages_range(mapping, start, end); 1992 1993 switch (mode) { 1994 case FALLOC_FL_ZERO_RANGE: 1995 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE: 1996 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 1997 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP); 1998 break; 1999 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE: 2000 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2001 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK); 2002 break; 2003 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE: 2004 error = blkdev_issue_discard(bdev, start >> 9, len >> 9, 2005 GFP_KERNEL, 0); 2006 break; 2007 default: 2008 return -EOPNOTSUPP; 2009 } 2010 if (error) 2011 return error; 2012 2013 /* 2014 * Invalidate again; if someone wandered in and dirtied a page, 2015 * the caller will be given -EBUSY. The third argument is 2016 * inclusive, so the rounding here is safe. 2017 */ 2018 return invalidate_inode_pages2_range(mapping, 2019 start >> PAGE_SHIFT, 2020 end >> PAGE_SHIFT); 2021} 2022 2023const struct file_operations def_blk_fops = { 2024 .open = blkdev_open, 2025 .release = blkdev_close, 2026 .llseek = block_llseek, 2027 .read_iter = blkdev_read_iter, 2028 .write_iter = blkdev_write_iter, 2029 .mmap = generic_file_mmap, 2030 .fsync = blkdev_fsync, 2031 .unlocked_ioctl = block_ioctl, 2032#ifdef CONFIG_COMPAT 2033 .compat_ioctl = compat_blkdev_ioctl, 2034#endif 2035 .splice_read = generic_file_splice_read, 2036 .splice_write = iter_file_splice_write, 2037 .fallocate = blkdev_fallocate, 2038}; 2039 2040int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 2041{ 2042 int res; 2043 mm_segment_t old_fs = get_fs(); 2044 set_fs(KERNEL_DS); 2045 res = blkdev_ioctl(bdev, 0, cmd, arg); 2046 set_fs(old_fs); 2047 return res; 2048} 2049 2050EXPORT_SYMBOL(ioctl_by_bdev); 2051 2052/** 2053 * lookup_bdev - lookup a struct block_device by name 2054 * @pathname: special file representing the block device 2055 * 2056 * Get a reference to the blockdevice at @pathname in the current 2057 * namespace if possible and return it. Return ERR_PTR(error) 2058 * otherwise. 2059 */ 2060struct block_device *lookup_bdev(const char *pathname) 2061{ 2062 struct block_device *bdev; 2063 struct inode *inode; 2064 struct path path; 2065 int error; 2066 2067 if (!pathname || !*pathname) 2068 return ERR_PTR(-EINVAL); 2069 2070 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 2071 if (error) 2072 return ERR_PTR(error); 2073 2074 inode = d_backing_inode(path.dentry); 2075 error = -ENOTBLK; 2076 if (!S_ISBLK(inode->i_mode)) 2077 goto fail; 2078 error = -EACCES; 2079 if (!may_open_dev(&path)) 2080 goto fail; 2081 error = -ENOMEM; 2082 bdev = bd_acquire(inode); 2083 if (!bdev) 2084 goto fail; 2085out: 2086 path_put(&path); 2087 return bdev; 2088fail: 2089 bdev = ERR_PTR(error); 2090 goto out; 2091} 2092EXPORT_SYMBOL(lookup_bdev); 2093 2094int __invalidate_device(struct block_device *bdev, bool kill_dirty) 2095{ 2096 struct super_block *sb = get_super(bdev); 2097 int res = 0; 2098 2099 if (sb) { 2100 /* 2101 * no need to lock the super, get_super holds the 2102 * read mutex so the filesystem cannot go away 2103 * under us (->put_super runs with the write lock 2104 * hold). 2105 */ 2106 shrink_dcache_sb(sb); 2107 res = invalidate_inodes(sb, kill_dirty); 2108 drop_super(sb); 2109 } 2110 invalidate_bdev(bdev); 2111 return res; 2112} 2113EXPORT_SYMBOL(__invalidate_device); 2114 2115void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 2116{ 2117 struct inode *inode, *old_inode = NULL; 2118 2119 spin_lock(&blockdev_superblock->s_inode_list_lock); 2120 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 2121 struct address_space *mapping = inode->i_mapping; 2122 struct block_device *bdev; 2123 2124 spin_lock(&inode->i_lock); 2125 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 2126 mapping->nrpages == 0) { 2127 spin_unlock(&inode->i_lock); 2128 continue; 2129 } 2130 __iget(inode); 2131 spin_unlock(&inode->i_lock); 2132 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2133 /* 2134 * We hold a reference to 'inode' so it couldn't have been 2135 * removed from s_inodes list while we dropped the 2136 * s_inode_list_lock We cannot iput the inode now as we can 2137 * be holding the last reference and we cannot iput it under 2138 * s_inode_list_lock. So we keep the reference and iput it 2139 * later. 2140 */ 2141 iput(old_inode); 2142 old_inode = inode; 2143 bdev = I_BDEV(inode); 2144 2145 mutex_lock(&bdev->bd_mutex); 2146 if (bdev->bd_openers) 2147 func(bdev, arg); 2148 mutex_unlock(&bdev->bd_mutex); 2149 2150 spin_lock(&blockdev_superblock->s_inode_list_lock); 2151 } 2152 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2153 iput(old_inode); 2154}