at v4.15 3114 lines 94 kB view raw
1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2/* 3 * RocketPort device driver for Linux 4 * 5 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000. 6 * 7 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc. 8 */ 9 10/* 11 * Kernel Synchronization: 12 * 13 * This driver has 2 kernel control paths - exception handlers (calls into the driver 14 * from user mode) and the timer bottom half (tasklet). This is a polled driver, interrupts 15 * are not used. 16 * 17 * Critical data: 18 * - rp_table[], accessed through passed "info" pointers, is a global (static) array of 19 * serial port state information and the xmit_buf circular buffer. Protected by 20 * a per port spinlock. 21 * - xmit_flags[], an array of ints indexed by line (port) number, indicating that there 22 * is data to be transmitted. Protected by atomic bit operations. 23 * - rp_num_ports, int indicating number of open ports, protected by atomic operations. 24 * 25 * rp_write() and rp_write_char() functions use a per port semaphore to protect against 26 * simultaneous access to the same port by more than one process. 27 */ 28 29/****** Defines ******/ 30#define ROCKET_PARANOIA_CHECK 31#define ROCKET_DISABLE_SIMUSAGE 32 33#undef ROCKET_SOFT_FLOW 34#undef ROCKET_DEBUG_OPEN 35#undef ROCKET_DEBUG_INTR 36#undef ROCKET_DEBUG_WRITE 37#undef ROCKET_DEBUG_FLOW 38#undef ROCKET_DEBUG_THROTTLE 39#undef ROCKET_DEBUG_WAIT_UNTIL_SENT 40#undef ROCKET_DEBUG_RECEIVE 41#undef ROCKET_DEBUG_HANGUP 42#undef REV_PCI_ORDER 43#undef ROCKET_DEBUG_IO 44 45#define POLL_PERIOD (HZ/100) /* Polling period .01 seconds (10ms) */ 46 47/****** Kernel includes ******/ 48 49#include <linux/module.h> 50#include <linux/errno.h> 51#include <linux/major.h> 52#include <linux/kernel.h> 53#include <linux/signal.h> 54#include <linux/slab.h> 55#include <linux/mm.h> 56#include <linux/sched.h> 57#include <linux/timer.h> 58#include <linux/interrupt.h> 59#include <linux/tty.h> 60#include <linux/tty_driver.h> 61#include <linux/tty_flip.h> 62#include <linux/serial.h> 63#include <linux/string.h> 64#include <linux/fcntl.h> 65#include <linux/ptrace.h> 66#include <linux/mutex.h> 67#include <linux/ioport.h> 68#include <linux/delay.h> 69#include <linux/completion.h> 70#include <linux/wait.h> 71#include <linux/pci.h> 72#include <linux/uaccess.h> 73#include <linux/atomic.h> 74#include <asm/unaligned.h> 75#include <linux/bitops.h> 76#include <linux/spinlock.h> 77#include <linux/init.h> 78 79/****** RocketPort includes ******/ 80 81#include "rocket_int.h" 82#include "rocket.h" 83 84#define ROCKET_VERSION "2.09" 85#define ROCKET_DATE "12-June-2003" 86 87/****** RocketPort Local Variables ******/ 88 89static void rp_do_poll(struct timer_list *unused); 90 91static struct tty_driver *rocket_driver; 92 93static struct rocket_version driver_version = { 94 ROCKET_VERSION, ROCKET_DATE 95}; 96 97static struct r_port *rp_table[MAX_RP_PORTS]; /* The main repository of serial port state information. */ 98static unsigned int xmit_flags[NUM_BOARDS]; /* Bit significant, indicates port had data to transmit. */ 99 /* eg. Bit 0 indicates port 0 has xmit data, ... */ 100static atomic_t rp_num_ports_open; /* Number of serial ports open */ 101static DEFINE_TIMER(rocket_timer, rp_do_poll); 102 103static unsigned long board1; /* ISA addresses, retrieved from rocketport.conf */ 104static unsigned long board2; 105static unsigned long board3; 106static unsigned long board4; 107static unsigned long controller; 108static bool support_low_speed; 109static unsigned long modem1; 110static unsigned long modem2; 111static unsigned long modem3; 112static unsigned long modem4; 113static unsigned long pc104_1[8]; 114static unsigned long pc104_2[8]; 115static unsigned long pc104_3[8]; 116static unsigned long pc104_4[8]; 117static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 }; 118 119static int rp_baud_base[NUM_BOARDS]; /* Board config info (Someday make a per-board structure) */ 120static unsigned long rcktpt_io_addr[NUM_BOARDS]; 121static int rcktpt_type[NUM_BOARDS]; 122static int is_PCI[NUM_BOARDS]; 123static rocketModel_t rocketModel[NUM_BOARDS]; 124static int max_board; 125static const struct tty_port_operations rocket_port_ops; 126 127/* 128 * The following arrays define the interrupt bits corresponding to each AIOP. 129 * These bits are different between the ISA and regular PCI boards and the 130 * Universal PCI boards. 131 */ 132 133static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = { 134 AIOP_INTR_BIT_0, 135 AIOP_INTR_BIT_1, 136 AIOP_INTR_BIT_2, 137 AIOP_INTR_BIT_3 138}; 139 140#ifdef CONFIG_PCI 141static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = { 142 UPCI_AIOP_INTR_BIT_0, 143 UPCI_AIOP_INTR_BIT_1, 144 UPCI_AIOP_INTR_BIT_2, 145 UPCI_AIOP_INTR_BIT_3 146}; 147#endif 148 149static Byte_t RData[RDATASIZE] = { 150 0x00, 0x09, 0xf6, 0x82, 151 0x02, 0x09, 0x86, 0xfb, 152 0x04, 0x09, 0x00, 0x0a, 153 0x06, 0x09, 0x01, 0x0a, 154 0x08, 0x09, 0x8a, 0x13, 155 0x0a, 0x09, 0xc5, 0x11, 156 0x0c, 0x09, 0x86, 0x85, 157 0x0e, 0x09, 0x20, 0x0a, 158 0x10, 0x09, 0x21, 0x0a, 159 0x12, 0x09, 0x41, 0xff, 160 0x14, 0x09, 0x82, 0x00, 161 0x16, 0x09, 0x82, 0x7b, 162 0x18, 0x09, 0x8a, 0x7d, 163 0x1a, 0x09, 0x88, 0x81, 164 0x1c, 0x09, 0x86, 0x7a, 165 0x1e, 0x09, 0x84, 0x81, 166 0x20, 0x09, 0x82, 0x7c, 167 0x22, 0x09, 0x0a, 0x0a 168}; 169 170static Byte_t RRegData[RREGDATASIZE] = { 171 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */ 172 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */ 173 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */ 174 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */ 175 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */ 176 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */ 177 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */ 178 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */ 179 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */ 180 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */ 181 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */ 182 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */ 183 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */ 184}; 185 186static CONTROLLER_T sController[CTL_SIZE] = { 187 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 188 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 189 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 190 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 191 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 192 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 193 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 194 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}} 195}; 196 197static Byte_t sBitMapClrTbl[8] = { 198 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f 199}; 200 201static Byte_t sBitMapSetTbl[8] = { 202 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 203}; 204 205static int sClockPrescale = 0x14; 206 207/* 208 * Line number is the ttySIx number (x), the Minor number. We 209 * assign them sequentially, starting at zero. The following 210 * array keeps track of the line number assigned to a given board/aiop/channel. 211 */ 212static unsigned char lineNumbers[MAX_RP_PORTS]; 213static unsigned long nextLineNumber; 214 215/***** RocketPort Static Prototypes *********/ 216static int __init init_ISA(int i); 217static void rp_wait_until_sent(struct tty_struct *tty, int timeout); 218static void rp_flush_buffer(struct tty_struct *tty); 219static unsigned char GetLineNumber(int ctrl, int aiop, int ch); 220static unsigned char SetLineNumber(int ctrl, int aiop, int ch); 221static void rp_start(struct tty_struct *tty); 222static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum, 223 int ChanNum); 224static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode); 225static void sFlushRxFIFO(CHANNEL_T * ChP); 226static void sFlushTxFIFO(CHANNEL_T * ChP); 227static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags); 228static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags); 229static void sModemReset(CONTROLLER_T * CtlP, int chan, int on); 230static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on); 231static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data); 232static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO, 233 ByteIO_t * AiopIOList, int AiopIOListSize, 234 int IRQNum, Byte_t Frequency, int PeriodicOnly); 235static int sReadAiopID(ByteIO_t io); 236static int sReadAiopNumChan(WordIO_t io); 237 238MODULE_AUTHOR("Theodore Ts'o"); 239MODULE_DESCRIPTION("Comtrol RocketPort driver"); 240module_param_hw(board1, ulong, ioport, 0); 241MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1"); 242module_param_hw(board2, ulong, ioport, 0); 243MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2"); 244module_param_hw(board3, ulong, ioport, 0); 245MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3"); 246module_param_hw(board4, ulong, ioport, 0); 247MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4"); 248module_param_hw(controller, ulong, ioport, 0); 249MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller"); 250module_param(support_low_speed, bool, 0); 251MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud"); 252module_param(modem1, ulong, 0); 253MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem"); 254module_param(modem2, ulong, 0); 255MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem"); 256module_param(modem3, ulong, 0); 257MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem"); 258module_param(modem4, ulong, 0); 259MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem"); 260module_param_array(pc104_1, ulong, NULL, 0); 261MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,..."); 262module_param_array(pc104_2, ulong, NULL, 0); 263MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,..."); 264module_param_array(pc104_3, ulong, NULL, 0); 265MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,..."); 266module_param_array(pc104_4, ulong, NULL, 0); 267MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,..."); 268 269static int rp_init(void); 270static void rp_cleanup_module(void); 271 272module_init(rp_init); 273module_exit(rp_cleanup_module); 274 275 276MODULE_LICENSE("Dual BSD/GPL"); 277 278/*************************************************************************/ 279/* Module code starts here */ 280 281static inline int rocket_paranoia_check(struct r_port *info, 282 const char *routine) 283{ 284#ifdef ROCKET_PARANOIA_CHECK 285 if (!info) 286 return 1; 287 if (info->magic != RPORT_MAGIC) { 288 printk(KERN_WARNING "Warning: bad magic number for rocketport " 289 "struct in %s\n", routine); 290 return 1; 291 } 292#endif 293 return 0; 294} 295 296 297/* Serial port receive data function. Called (from timer poll) when an AIOPIC signals 298 * that receive data is present on a serial port. Pulls data from FIFO, moves it into the 299 * tty layer. 300 */ 301static void rp_do_receive(struct r_port *info, CHANNEL_t *cp, 302 unsigned int ChanStatus) 303{ 304 unsigned int CharNStat; 305 int ToRecv, wRecv, space; 306 unsigned char *cbuf; 307 308 ToRecv = sGetRxCnt(cp); 309#ifdef ROCKET_DEBUG_INTR 310 printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv); 311#endif 312 if (ToRecv == 0) 313 return; 314 315 /* 316 * if status indicates there are errored characters in the 317 * FIFO, then enter status mode (a word in FIFO holds 318 * character and status). 319 */ 320 if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) { 321 if (!(ChanStatus & STATMODE)) { 322#ifdef ROCKET_DEBUG_RECEIVE 323 printk(KERN_INFO "Entering STATMODE...\n"); 324#endif 325 ChanStatus |= STATMODE; 326 sEnRxStatusMode(cp); 327 } 328 } 329 330 /* 331 * if we previously entered status mode, then read down the 332 * FIFO one word at a time, pulling apart the character and 333 * the status. Update error counters depending on status 334 */ 335 if (ChanStatus & STATMODE) { 336#ifdef ROCKET_DEBUG_RECEIVE 337 printk(KERN_INFO "Ignore %x, read %x...\n", 338 info->ignore_status_mask, info->read_status_mask); 339#endif 340 while (ToRecv) { 341 char flag; 342 343 CharNStat = sInW(sGetTxRxDataIO(cp)); 344#ifdef ROCKET_DEBUG_RECEIVE 345 printk(KERN_INFO "%x...\n", CharNStat); 346#endif 347 if (CharNStat & STMBREAKH) 348 CharNStat &= ~(STMFRAMEH | STMPARITYH); 349 if (CharNStat & info->ignore_status_mask) { 350 ToRecv--; 351 continue; 352 } 353 CharNStat &= info->read_status_mask; 354 if (CharNStat & STMBREAKH) 355 flag = TTY_BREAK; 356 else if (CharNStat & STMPARITYH) 357 flag = TTY_PARITY; 358 else if (CharNStat & STMFRAMEH) 359 flag = TTY_FRAME; 360 else if (CharNStat & STMRCVROVRH) 361 flag = TTY_OVERRUN; 362 else 363 flag = TTY_NORMAL; 364 tty_insert_flip_char(&info->port, CharNStat & 0xff, 365 flag); 366 ToRecv--; 367 } 368 369 /* 370 * after we've emptied the FIFO in status mode, turn 371 * status mode back off 372 */ 373 if (sGetRxCnt(cp) == 0) { 374#ifdef ROCKET_DEBUG_RECEIVE 375 printk(KERN_INFO "Status mode off.\n"); 376#endif 377 sDisRxStatusMode(cp); 378 } 379 } else { 380 /* 381 * we aren't in status mode, so read down the FIFO two 382 * characters at time by doing repeated word IO 383 * transfer. 384 */ 385 space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv); 386 if (space < ToRecv) { 387#ifdef ROCKET_DEBUG_RECEIVE 388 printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space); 389#endif 390 if (space <= 0) 391 return; 392 ToRecv = space; 393 } 394 wRecv = ToRecv >> 1; 395 if (wRecv) 396 sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv); 397 if (ToRecv & 1) 398 cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp)); 399 } 400 /* Push the data up to the tty layer */ 401 tty_flip_buffer_push(&info->port); 402} 403 404/* 405 * Serial port transmit data function. Called from the timer polling loop as a 406 * result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready 407 * to be sent out the serial port. Data is buffered in rp_table[line].xmit_buf, it is 408 * moved to the port's xmit FIFO. *info is critical data, protected by spinlocks. 409 */ 410static void rp_do_transmit(struct r_port *info) 411{ 412 int c; 413 CHANNEL_t *cp = &info->channel; 414 struct tty_struct *tty; 415 unsigned long flags; 416 417#ifdef ROCKET_DEBUG_INTR 418 printk(KERN_DEBUG "%s\n", __func__); 419#endif 420 if (!info) 421 return; 422 tty = tty_port_tty_get(&info->port); 423 424 if (tty == NULL) { 425 printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__); 426 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 427 return; 428 } 429 430 spin_lock_irqsave(&info->slock, flags); 431 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 432 433 /* Loop sending data to FIFO until done or FIFO full */ 434 while (1) { 435 if (tty->stopped) 436 break; 437 c = min(info->xmit_fifo_room, info->xmit_cnt); 438 c = min(c, XMIT_BUF_SIZE - info->xmit_tail); 439 if (c <= 0 || info->xmit_fifo_room <= 0) 440 break; 441 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2); 442 if (c & 1) 443 sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]); 444 info->xmit_tail += c; 445 info->xmit_tail &= XMIT_BUF_SIZE - 1; 446 info->xmit_cnt -= c; 447 info->xmit_fifo_room -= c; 448#ifdef ROCKET_DEBUG_INTR 449 printk(KERN_INFO "tx %d chars...\n", c); 450#endif 451 } 452 453 if (info->xmit_cnt == 0) 454 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 455 456 if (info->xmit_cnt < WAKEUP_CHARS) { 457 tty_wakeup(tty); 458#ifdef ROCKETPORT_HAVE_POLL_WAIT 459 wake_up_interruptible(&tty->poll_wait); 460#endif 461 } 462 463 spin_unlock_irqrestore(&info->slock, flags); 464 tty_kref_put(tty); 465 466#ifdef ROCKET_DEBUG_INTR 467 printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head, 468 info->xmit_tail, info->xmit_fifo_room); 469#endif 470} 471 472/* 473 * Called when a serial port signals it has read data in it's RX FIFO. 474 * It checks what interrupts are pending and services them, including 475 * receiving serial data. 476 */ 477static void rp_handle_port(struct r_port *info) 478{ 479 CHANNEL_t *cp; 480 unsigned int IntMask, ChanStatus; 481 482 if (!info) 483 return; 484 485 if (!tty_port_initialized(&info->port)) { 486 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with " 487 "info->flags & NOT_INIT\n"); 488 return; 489 } 490 491 cp = &info->channel; 492 493 IntMask = sGetChanIntID(cp) & info->intmask; 494#ifdef ROCKET_DEBUG_INTR 495 printk(KERN_INFO "rp_interrupt %02x...\n", IntMask); 496#endif 497 ChanStatus = sGetChanStatus(cp); 498 if (IntMask & RXF_TRIG) { /* Rx FIFO trigger level */ 499 rp_do_receive(info, cp, ChanStatus); 500 } 501 if (IntMask & DELTA_CD) { /* CD change */ 502#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP)) 503 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line, 504 (ChanStatus & CD_ACT) ? "on" : "off"); 505#endif 506 if (!(ChanStatus & CD_ACT) && info->cd_status) { 507#ifdef ROCKET_DEBUG_HANGUP 508 printk(KERN_INFO "CD drop, calling hangup.\n"); 509#endif 510 tty_port_tty_hangup(&info->port, false); 511 } 512 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0; 513 wake_up_interruptible(&info->port.open_wait); 514 } 515#ifdef ROCKET_DEBUG_INTR 516 if (IntMask & DELTA_CTS) { /* CTS change */ 517 printk(KERN_INFO "CTS change...\n"); 518 } 519 if (IntMask & DELTA_DSR) { /* DSR change */ 520 printk(KERN_INFO "DSR change...\n"); 521 } 522#endif 523} 524 525/* 526 * The top level polling routine. Repeats every 1/100 HZ (10ms). 527 */ 528static void rp_do_poll(struct timer_list *unused) 529{ 530 CONTROLLER_t *ctlp; 531 int ctrl, aiop, ch, line; 532 unsigned int xmitmask, i; 533 unsigned int CtlMask; 534 unsigned char AiopMask; 535 Word_t bit; 536 537 /* Walk through all the boards (ctrl's) */ 538 for (ctrl = 0; ctrl < max_board; ctrl++) { 539 if (rcktpt_io_addr[ctrl] <= 0) 540 continue; 541 542 /* Get a ptr to the board's control struct */ 543 ctlp = sCtlNumToCtlPtr(ctrl); 544 545 /* Get the interrupt status from the board */ 546#ifdef CONFIG_PCI 547 if (ctlp->BusType == isPCI) 548 CtlMask = sPCIGetControllerIntStatus(ctlp); 549 else 550#endif 551 CtlMask = sGetControllerIntStatus(ctlp); 552 553 /* Check if any AIOP read bits are set */ 554 for (aiop = 0; CtlMask; aiop++) { 555 bit = ctlp->AiopIntrBits[aiop]; 556 if (CtlMask & bit) { 557 CtlMask &= ~bit; 558 AiopMask = sGetAiopIntStatus(ctlp, aiop); 559 560 /* Check if any port read bits are set */ 561 for (ch = 0; AiopMask; AiopMask >>= 1, ch++) { 562 if (AiopMask & 1) { 563 564 /* Get the line number (/dev/ttyRx number). */ 565 /* Read the data from the port. */ 566 line = GetLineNumber(ctrl, aiop, ch); 567 rp_handle_port(rp_table[line]); 568 } 569 } 570 } 571 } 572 573 xmitmask = xmit_flags[ctrl]; 574 575 /* 576 * xmit_flags contains bit-significant flags, indicating there is data 577 * to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port 578 * 1, ... (32 total possible). The variable i has the aiop and ch 579 * numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc). 580 */ 581 if (xmitmask) { 582 for (i = 0; i < rocketModel[ctrl].numPorts; i++) { 583 if (xmitmask & (1 << i)) { 584 aiop = (i & 0x18) >> 3; 585 ch = i & 0x07; 586 line = GetLineNumber(ctrl, aiop, ch); 587 rp_do_transmit(rp_table[line]); 588 } 589 } 590 } 591 } 592 593 /* 594 * Reset the timer so we get called at the next clock tick (10ms). 595 */ 596 if (atomic_read(&rp_num_ports_open)) 597 mod_timer(&rocket_timer, jiffies + POLL_PERIOD); 598} 599 600/* 601 * Initializes the r_port structure for a port, as well as enabling the port on 602 * the board. 603 * Inputs: board, aiop, chan numbers 604 */ 605static void __init 606init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev) 607{ 608 unsigned rocketMode; 609 struct r_port *info; 610 int line; 611 CONTROLLER_T *ctlp; 612 613 /* Get the next available line number */ 614 line = SetLineNumber(board, aiop, chan); 615 616 ctlp = sCtlNumToCtlPtr(board); 617 618 /* Get a r_port struct for the port, fill it in and save it globally, indexed by line number */ 619 info = kzalloc(sizeof (struct r_port), GFP_KERNEL); 620 if (!info) { 621 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n", 622 line); 623 return; 624 } 625 626 info->magic = RPORT_MAGIC; 627 info->line = line; 628 info->ctlp = ctlp; 629 info->board = board; 630 info->aiop = aiop; 631 info->chan = chan; 632 tty_port_init(&info->port); 633 info->port.ops = &rocket_port_ops; 634 info->flags &= ~ROCKET_MODE_MASK; 635 switch (pc104[board][line]) { 636 case 422: 637 info->flags |= ROCKET_MODE_RS422; 638 break; 639 case 485: 640 info->flags |= ROCKET_MODE_RS485; 641 break; 642 case 232: 643 default: 644 info->flags |= ROCKET_MODE_RS232; 645 break; 646 } 647 648 info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR; 649 if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) { 650 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n", 651 board, aiop, chan); 652 tty_port_destroy(&info->port); 653 kfree(info); 654 return; 655 } 656 657 rocketMode = info->flags & ROCKET_MODE_MASK; 658 659 if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485)) 660 sEnRTSToggle(&info->channel); 661 else 662 sDisRTSToggle(&info->channel); 663 664 if (ctlp->boardType == ROCKET_TYPE_PC104) { 665 switch (rocketMode) { 666 case ROCKET_MODE_RS485: 667 sSetInterfaceMode(&info->channel, InterfaceModeRS485); 668 break; 669 case ROCKET_MODE_RS422: 670 sSetInterfaceMode(&info->channel, InterfaceModeRS422); 671 break; 672 case ROCKET_MODE_RS232: 673 default: 674 if (info->flags & ROCKET_RTS_TOGGLE) 675 sSetInterfaceMode(&info->channel, InterfaceModeRS232T); 676 else 677 sSetInterfaceMode(&info->channel, InterfaceModeRS232); 678 break; 679 } 680 } 681 spin_lock_init(&info->slock); 682 mutex_init(&info->write_mtx); 683 rp_table[line] = info; 684 tty_port_register_device(&info->port, rocket_driver, line, 685 pci_dev ? &pci_dev->dev : NULL); 686} 687 688/* 689 * Configures a rocketport port according to its termio settings. Called from 690 * user mode into the driver (exception handler). *info CD manipulation is spinlock protected. 691 */ 692static void configure_r_port(struct tty_struct *tty, struct r_port *info, 693 struct ktermios *old_termios) 694{ 695 unsigned cflag; 696 unsigned long flags; 697 unsigned rocketMode; 698 int bits, baud, divisor; 699 CHANNEL_t *cp; 700 struct ktermios *t = &tty->termios; 701 702 cp = &info->channel; 703 cflag = t->c_cflag; 704 705 /* Byte size and parity */ 706 if ((cflag & CSIZE) == CS8) { 707 sSetData8(cp); 708 bits = 10; 709 } else { 710 sSetData7(cp); 711 bits = 9; 712 } 713 if (cflag & CSTOPB) { 714 sSetStop2(cp); 715 bits++; 716 } else { 717 sSetStop1(cp); 718 } 719 720 if (cflag & PARENB) { 721 sEnParity(cp); 722 bits++; 723 if (cflag & PARODD) { 724 sSetOddParity(cp); 725 } else { 726 sSetEvenParity(cp); 727 } 728 } else { 729 sDisParity(cp); 730 } 731 732 /* baud rate */ 733 baud = tty_get_baud_rate(tty); 734 if (!baud) 735 baud = 9600; 736 divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1; 737 if ((divisor >= 8192 || divisor < 0) && old_termios) { 738 baud = tty_termios_baud_rate(old_termios); 739 if (!baud) 740 baud = 9600; 741 divisor = (rp_baud_base[info->board] / baud) - 1; 742 } 743 if (divisor >= 8192 || divisor < 0) { 744 baud = 9600; 745 divisor = (rp_baud_base[info->board] / baud) - 1; 746 } 747 info->cps = baud / bits; 748 sSetBaud(cp, divisor); 749 750 /* FIXME: Should really back compute a baud rate from the divisor */ 751 tty_encode_baud_rate(tty, baud, baud); 752 753 if (cflag & CRTSCTS) { 754 info->intmask |= DELTA_CTS; 755 sEnCTSFlowCtl(cp); 756 } else { 757 info->intmask &= ~DELTA_CTS; 758 sDisCTSFlowCtl(cp); 759 } 760 if (cflag & CLOCAL) { 761 info->intmask &= ~DELTA_CD; 762 } else { 763 spin_lock_irqsave(&info->slock, flags); 764 if (sGetChanStatus(cp) & CD_ACT) 765 info->cd_status = 1; 766 else 767 info->cd_status = 0; 768 info->intmask |= DELTA_CD; 769 spin_unlock_irqrestore(&info->slock, flags); 770 } 771 772 /* 773 * Handle software flow control in the board 774 */ 775#ifdef ROCKET_SOFT_FLOW 776 if (I_IXON(tty)) { 777 sEnTxSoftFlowCtl(cp); 778 if (I_IXANY(tty)) { 779 sEnIXANY(cp); 780 } else { 781 sDisIXANY(cp); 782 } 783 sSetTxXONChar(cp, START_CHAR(tty)); 784 sSetTxXOFFChar(cp, STOP_CHAR(tty)); 785 } else { 786 sDisTxSoftFlowCtl(cp); 787 sDisIXANY(cp); 788 sClrTxXOFF(cp); 789 } 790#endif 791 792 /* 793 * Set up ignore/read mask words 794 */ 795 info->read_status_mask = STMRCVROVRH | 0xFF; 796 if (I_INPCK(tty)) 797 info->read_status_mask |= STMFRAMEH | STMPARITYH; 798 if (I_BRKINT(tty) || I_PARMRK(tty)) 799 info->read_status_mask |= STMBREAKH; 800 801 /* 802 * Characters to ignore 803 */ 804 info->ignore_status_mask = 0; 805 if (I_IGNPAR(tty)) 806 info->ignore_status_mask |= STMFRAMEH | STMPARITYH; 807 if (I_IGNBRK(tty)) { 808 info->ignore_status_mask |= STMBREAKH; 809 /* 810 * If we're ignoring parity and break indicators, 811 * ignore overruns too. (For real raw support). 812 */ 813 if (I_IGNPAR(tty)) 814 info->ignore_status_mask |= STMRCVROVRH; 815 } 816 817 rocketMode = info->flags & ROCKET_MODE_MASK; 818 819 if ((info->flags & ROCKET_RTS_TOGGLE) 820 || (rocketMode == ROCKET_MODE_RS485)) 821 sEnRTSToggle(cp); 822 else 823 sDisRTSToggle(cp); 824 825 sSetRTS(&info->channel); 826 827 if (cp->CtlP->boardType == ROCKET_TYPE_PC104) { 828 switch (rocketMode) { 829 case ROCKET_MODE_RS485: 830 sSetInterfaceMode(cp, InterfaceModeRS485); 831 break; 832 case ROCKET_MODE_RS422: 833 sSetInterfaceMode(cp, InterfaceModeRS422); 834 break; 835 case ROCKET_MODE_RS232: 836 default: 837 if (info->flags & ROCKET_RTS_TOGGLE) 838 sSetInterfaceMode(cp, InterfaceModeRS232T); 839 else 840 sSetInterfaceMode(cp, InterfaceModeRS232); 841 break; 842 } 843 } 844} 845 846static int carrier_raised(struct tty_port *port) 847{ 848 struct r_port *info = container_of(port, struct r_port, port); 849 return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0; 850} 851 852static void dtr_rts(struct tty_port *port, int on) 853{ 854 struct r_port *info = container_of(port, struct r_port, port); 855 if (on) { 856 sSetDTR(&info->channel); 857 sSetRTS(&info->channel); 858 } else { 859 sClrDTR(&info->channel); 860 sClrRTS(&info->channel); 861 } 862} 863 864/* 865 * Exception handler that opens a serial port. Creates xmit_buf storage, fills in 866 * port's r_port struct. Initializes the port hardware. 867 */ 868static int rp_open(struct tty_struct *tty, struct file *filp) 869{ 870 struct r_port *info; 871 struct tty_port *port; 872 int retval; 873 CHANNEL_t *cp; 874 unsigned long page; 875 876 info = rp_table[tty->index]; 877 if (info == NULL) 878 return -ENXIO; 879 port = &info->port; 880 881 page = __get_free_page(GFP_KERNEL); 882 if (!page) 883 return -ENOMEM; 884 885 /* 886 * We must not sleep from here until the port is marked fully in use. 887 */ 888 if (info->xmit_buf) 889 free_page(page); 890 else 891 info->xmit_buf = (unsigned char *) page; 892 893 tty->driver_data = info; 894 tty_port_tty_set(port, tty); 895 896 if (port->count++ == 0) { 897 atomic_inc(&rp_num_ports_open); 898 899#ifdef ROCKET_DEBUG_OPEN 900 printk(KERN_INFO "rocket mod++ = %d...\n", 901 atomic_read(&rp_num_ports_open)); 902#endif 903 } 904#ifdef ROCKET_DEBUG_OPEN 905 printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count); 906#endif 907 908 /* 909 * Info->count is now 1; so it's safe to sleep now. 910 */ 911 if (!tty_port_initialized(port)) { 912 cp = &info->channel; 913 sSetRxTrigger(cp, TRIG_1); 914 if (sGetChanStatus(cp) & CD_ACT) 915 info->cd_status = 1; 916 else 917 info->cd_status = 0; 918 sDisRxStatusMode(cp); 919 sFlushRxFIFO(cp); 920 sFlushTxFIFO(cp); 921 922 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 923 sSetRxTrigger(cp, TRIG_1); 924 925 sGetChanStatus(cp); 926 sDisRxStatusMode(cp); 927 sClrTxXOFF(cp); 928 929 sDisCTSFlowCtl(cp); 930 sDisTxSoftFlowCtl(cp); 931 932 sEnRxFIFO(cp); 933 sEnTransmit(cp); 934 935 tty_port_set_initialized(&info->port, 1); 936 937 configure_r_port(tty, info, NULL); 938 if (C_BAUD(tty)) { 939 sSetDTR(cp); 940 sSetRTS(cp); 941 } 942 } 943 /* Starts (or resets) the maint polling loop */ 944 mod_timer(&rocket_timer, jiffies + POLL_PERIOD); 945 946 retval = tty_port_block_til_ready(port, tty, filp); 947 if (retval) { 948#ifdef ROCKET_DEBUG_OPEN 949 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval); 950#endif 951 return retval; 952 } 953 return 0; 954} 955 956/* 957 * Exception handler that closes a serial port. info->port.count is considered critical. 958 */ 959static void rp_close(struct tty_struct *tty, struct file *filp) 960{ 961 struct r_port *info = tty->driver_data; 962 struct tty_port *port = &info->port; 963 int timeout; 964 CHANNEL_t *cp; 965 966 if (rocket_paranoia_check(info, "rp_close")) 967 return; 968 969#ifdef ROCKET_DEBUG_OPEN 970 printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count); 971#endif 972 973 if (tty_port_close_start(port, tty, filp) == 0) 974 return; 975 976 mutex_lock(&port->mutex); 977 cp = &info->channel; 978 /* 979 * Before we drop DTR, make sure the UART transmitter 980 * has completely drained; this is especially 981 * important if there is a transmit FIFO! 982 */ 983 timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps; 984 if (timeout == 0) 985 timeout = 1; 986 rp_wait_until_sent(tty, timeout); 987 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 988 989 sDisTransmit(cp); 990 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 991 sDisCTSFlowCtl(cp); 992 sDisTxSoftFlowCtl(cp); 993 sClrTxXOFF(cp); 994 sFlushRxFIFO(cp); 995 sFlushTxFIFO(cp); 996 sClrRTS(cp); 997 if (C_HUPCL(tty)) 998 sClrDTR(cp); 999 1000 rp_flush_buffer(tty); 1001 1002 tty_ldisc_flush(tty); 1003 1004 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1005 1006 /* We can't yet use tty_port_close_end as the buffer handling in this 1007 driver is a bit different to the usual */ 1008 1009 if (port->blocked_open) { 1010 if (port->close_delay) { 1011 msleep_interruptible(jiffies_to_msecs(port->close_delay)); 1012 } 1013 wake_up_interruptible(&port->open_wait); 1014 } else { 1015 if (info->xmit_buf) { 1016 free_page((unsigned long) info->xmit_buf); 1017 info->xmit_buf = NULL; 1018 } 1019 } 1020 spin_lock_irq(&port->lock); 1021 tty->closing = 0; 1022 spin_unlock_irq(&port->lock); 1023 tty_port_set_initialized(port, 0); 1024 tty_port_set_active(port, 0); 1025 mutex_unlock(&port->mutex); 1026 tty_port_tty_set(port, NULL); 1027 1028 atomic_dec(&rp_num_ports_open); 1029 1030#ifdef ROCKET_DEBUG_OPEN 1031 printk(KERN_INFO "rocket mod-- = %d...\n", 1032 atomic_read(&rp_num_ports_open)); 1033 printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line); 1034#endif 1035 1036} 1037 1038static void rp_set_termios(struct tty_struct *tty, 1039 struct ktermios *old_termios) 1040{ 1041 struct r_port *info = tty->driver_data; 1042 CHANNEL_t *cp; 1043 unsigned cflag; 1044 1045 if (rocket_paranoia_check(info, "rp_set_termios")) 1046 return; 1047 1048 cflag = tty->termios.c_cflag; 1049 1050 /* 1051 * This driver doesn't support CS5 or CS6 1052 */ 1053 if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6)) 1054 tty->termios.c_cflag = 1055 ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE)); 1056 /* Or CMSPAR */ 1057 tty->termios.c_cflag &= ~CMSPAR; 1058 1059 configure_r_port(tty, info, old_termios); 1060 1061 cp = &info->channel; 1062 1063 /* Handle transition to B0 status */ 1064 if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) { 1065 sClrDTR(cp); 1066 sClrRTS(cp); 1067 } 1068 1069 /* Handle transition away from B0 status */ 1070 if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) { 1071 sSetRTS(cp); 1072 sSetDTR(cp); 1073 } 1074 1075 if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty)) 1076 rp_start(tty); 1077} 1078 1079static int rp_break(struct tty_struct *tty, int break_state) 1080{ 1081 struct r_port *info = tty->driver_data; 1082 unsigned long flags; 1083 1084 if (rocket_paranoia_check(info, "rp_break")) 1085 return -EINVAL; 1086 1087 spin_lock_irqsave(&info->slock, flags); 1088 if (break_state == -1) 1089 sSendBreak(&info->channel); 1090 else 1091 sClrBreak(&info->channel); 1092 spin_unlock_irqrestore(&info->slock, flags); 1093 return 0; 1094} 1095 1096/* 1097 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for 1098 * the UPCI boards was added, it was decided to make this a function because 1099 * the macro was getting too complicated. All cases except the first one 1100 * (UPCIRingInd) are taken directly from the original macro. 1101 */ 1102static int sGetChanRI(CHANNEL_T * ChP) 1103{ 1104 CONTROLLER_t *CtlP = ChP->CtlP; 1105 int ChanNum = ChP->ChanNum; 1106 int RingInd = 0; 1107 1108 if (CtlP->UPCIRingInd) 1109 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]); 1110 else if (CtlP->AltChanRingIndicator) 1111 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT; 1112 else if (CtlP->boardType == ROCKET_TYPE_PC104) 1113 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]); 1114 1115 return RingInd; 1116} 1117 1118/********************************************************************************************/ 1119/* Here are the routines used by rp_ioctl. These are all called from exception handlers. */ 1120 1121/* 1122 * Returns the state of the serial modem control lines. These next 2 functions 1123 * are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs. 1124 */ 1125static int rp_tiocmget(struct tty_struct *tty) 1126{ 1127 struct r_port *info = tty->driver_data; 1128 unsigned int control, result, ChanStatus; 1129 1130 ChanStatus = sGetChanStatusLo(&info->channel); 1131 control = info->channel.TxControl[3]; 1132 result = ((control & SET_RTS) ? TIOCM_RTS : 0) | 1133 ((control & SET_DTR) ? TIOCM_DTR : 0) | 1134 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) | 1135 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) | 1136 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) | 1137 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0); 1138 1139 return result; 1140} 1141 1142/* 1143 * Sets the modem control lines 1144 */ 1145static int rp_tiocmset(struct tty_struct *tty, 1146 unsigned int set, unsigned int clear) 1147{ 1148 struct r_port *info = tty->driver_data; 1149 1150 if (set & TIOCM_RTS) 1151 info->channel.TxControl[3] |= SET_RTS; 1152 if (set & TIOCM_DTR) 1153 info->channel.TxControl[3] |= SET_DTR; 1154 if (clear & TIOCM_RTS) 1155 info->channel.TxControl[3] &= ~SET_RTS; 1156 if (clear & TIOCM_DTR) 1157 info->channel.TxControl[3] &= ~SET_DTR; 1158 1159 out32(info->channel.IndexAddr, info->channel.TxControl); 1160 return 0; 1161} 1162 1163static int get_config(struct r_port *info, struct rocket_config __user *retinfo) 1164{ 1165 struct rocket_config tmp; 1166 1167 memset(&tmp, 0, sizeof (tmp)); 1168 mutex_lock(&info->port.mutex); 1169 tmp.line = info->line; 1170 tmp.flags = info->flags; 1171 tmp.close_delay = info->port.close_delay; 1172 tmp.closing_wait = info->port.closing_wait; 1173 tmp.port = rcktpt_io_addr[(info->line >> 5) & 3]; 1174 mutex_unlock(&info->port.mutex); 1175 1176 if (copy_to_user(retinfo, &tmp, sizeof (*retinfo))) 1177 return -EFAULT; 1178 return 0; 1179} 1180 1181static int set_config(struct tty_struct *tty, struct r_port *info, 1182 struct rocket_config __user *new_info) 1183{ 1184 struct rocket_config new_serial; 1185 1186 if (copy_from_user(&new_serial, new_info, sizeof (new_serial))) 1187 return -EFAULT; 1188 1189 mutex_lock(&info->port.mutex); 1190 if (!capable(CAP_SYS_ADMIN)) 1191 { 1192 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) { 1193 mutex_unlock(&info->port.mutex); 1194 return -EPERM; 1195 } 1196 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK)); 1197 mutex_unlock(&info->port.mutex); 1198 return 0; 1199 } 1200 1201 if ((new_serial.flags ^ info->flags) & ROCKET_SPD_MASK) { 1202 /* warn about deprecation, unless clearing */ 1203 if (new_serial.flags & ROCKET_SPD_MASK) 1204 dev_warn_ratelimited(tty->dev, "use of SPD flags is deprecated\n"); 1205 } 1206 1207 info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS)); 1208 info->port.close_delay = new_serial.close_delay; 1209 info->port.closing_wait = new_serial.closing_wait; 1210 1211 mutex_unlock(&info->port.mutex); 1212 1213 configure_r_port(tty, info, NULL); 1214 return 0; 1215} 1216 1217/* 1218 * This function fills in a rocket_ports struct with information 1219 * about what boards/ports are in the system. This info is passed 1220 * to user space. See setrocket.c where the info is used to create 1221 * the /dev/ttyRx ports. 1222 */ 1223static int get_ports(struct r_port *info, struct rocket_ports __user *retports) 1224{ 1225 struct rocket_ports tmp; 1226 int board; 1227 1228 memset(&tmp, 0, sizeof (tmp)); 1229 tmp.tty_major = rocket_driver->major; 1230 1231 for (board = 0; board < 4; board++) { 1232 tmp.rocketModel[board].model = rocketModel[board].model; 1233 strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString); 1234 tmp.rocketModel[board].numPorts = rocketModel[board].numPorts; 1235 tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2; 1236 tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber; 1237 } 1238 if (copy_to_user(retports, &tmp, sizeof (*retports))) 1239 return -EFAULT; 1240 return 0; 1241} 1242 1243static int reset_rm2(struct r_port *info, void __user *arg) 1244{ 1245 int reset; 1246 1247 if (!capable(CAP_SYS_ADMIN)) 1248 return -EPERM; 1249 1250 if (copy_from_user(&reset, arg, sizeof (int))) 1251 return -EFAULT; 1252 if (reset) 1253 reset = 1; 1254 1255 if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII && 1256 rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII) 1257 return -EINVAL; 1258 1259 if (info->ctlp->BusType == isISA) 1260 sModemReset(info->ctlp, info->chan, reset); 1261 else 1262 sPCIModemReset(info->ctlp, info->chan, reset); 1263 1264 return 0; 1265} 1266 1267static int get_version(struct r_port *info, struct rocket_version __user *retvers) 1268{ 1269 if (copy_to_user(retvers, &driver_version, sizeof (*retvers))) 1270 return -EFAULT; 1271 return 0; 1272} 1273 1274/* IOCTL call handler into the driver */ 1275static int rp_ioctl(struct tty_struct *tty, 1276 unsigned int cmd, unsigned long arg) 1277{ 1278 struct r_port *info = tty->driver_data; 1279 void __user *argp = (void __user *)arg; 1280 int ret = 0; 1281 1282 if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl")) 1283 return -ENXIO; 1284 1285 switch (cmd) { 1286 case RCKP_GET_STRUCT: 1287 if (copy_to_user(argp, info, sizeof (struct r_port))) 1288 ret = -EFAULT; 1289 break; 1290 case RCKP_GET_CONFIG: 1291 ret = get_config(info, argp); 1292 break; 1293 case RCKP_SET_CONFIG: 1294 ret = set_config(tty, info, argp); 1295 break; 1296 case RCKP_GET_PORTS: 1297 ret = get_ports(info, argp); 1298 break; 1299 case RCKP_RESET_RM2: 1300 ret = reset_rm2(info, argp); 1301 break; 1302 case RCKP_GET_VERSION: 1303 ret = get_version(info, argp); 1304 break; 1305 default: 1306 ret = -ENOIOCTLCMD; 1307 } 1308 return ret; 1309} 1310 1311static void rp_send_xchar(struct tty_struct *tty, char ch) 1312{ 1313 struct r_port *info = tty->driver_data; 1314 CHANNEL_t *cp; 1315 1316 if (rocket_paranoia_check(info, "rp_send_xchar")) 1317 return; 1318 1319 cp = &info->channel; 1320 if (sGetTxCnt(cp)) 1321 sWriteTxPrioByte(cp, ch); 1322 else 1323 sWriteTxByte(sGetTxRxDataIO(cp), ch); 1324} 1325 1326static void rp_throttle(struct tty_struct *tty) 1327{ 1328 struct r_port *info = tty->driver_data; 1329 1330#ifdef ROCKET_DEBUG_THROTTLE 1331 printk(KERN_INFO "throttle %s ....\n", tty->name); 1332#endif 1333 1334 if (rocket_paranoia_check(info, "rp_throttle")) 1335 return; 1336 1337 if (I_IXOFF(tty)) 1338 rp_send_xchar(tty, STOP_CHAR(tty)); 1339 1340 sClrRTS(&info->channel); 1341} 1342 1343static void rp_unthrottle(struct tty_struct *tty) 1344{ 1345 struct r_port *info = tty->driver_data; 1346#ifdef ROCKET_DEBUG_THROTTLE 1347 printk(KERN_INFO "unthrottle %s ....\n", tty->name); 1348#endif 1349 1350 if (rocket_paranoia_check(info, "rp_unthrottle")) 1351 return; 1352 1353 if (I_IXOFF(tty)) 1354 rp_send_xchar(tty, START_CHAR(tty)); 1355 1356 sSetRTS(&info->channel); 1357} 1358 1359/* 1360 * ------------------------------------------------------------ 1361 * rp_stop() and rp_start() 1362 * 1363 * This routines are called before setting or resetting tty->stopped. 1364 * They enable or disable transmitter interrupts, as necessary. 1365 * ------------------------------------------------------------ 1366 */ 1367static void rp_stop(struct tty_struct *tty) 1368{ 1369 struct r_port *info = tty->driver_data; 1370 1371#ifdef ROCKET_DEBUG_FLOW 1372 printk(KERN_INFO "stop %s: %d %d....\n", tty->name, 1373 info->xmit_cnt, info->xmit_fifo_room); 1374#endif 1375 1376 if (rocket_paranoia_check(info, "rp_stop")) 1377 return; 1378 1379 if (sGetTxCnt(&info->channel)) 1380 sDisTransmit(&info->channel); 1381} 1382 1383static void rp_start(struct tty_struct *tty) 1384{ 1385 struct r_port *info = tty->driver_data; 1386 1387#ifdef ROCKET_DEBUG_FLOW 1388 printk(KERN_INFO "start %s: %d %d....\n", tty->name, 1389 info->xmit_cnt, info->xmit_fifo_room); 1390#endif 1391 1392 if (rocket_paranoia_check(info, "rp_stop")) 1393 return; 1394 1395 sEnTransmit(&info->channel); 1396 set_bit((info->aiop * 8) + info->chan, 1397 (void *) &xmit_flags[info->board]); 1398} 1399 1400/* 1401 * rp_wait_until_sent() --- wait until the transmitter is empty 1402 */ 1403static void rp_wait_until_sent(struct tty_struct *tty, int timeout) 1404{ 1405 struct r_port *info = tty->driver_data; 1406 CHANNEL_t *cp; 1407 unsigned long orig_jiffies; 1408 int check_time, exit_time; 1409 int txcnt; 1410 1411 if (rocket_paranoia_check(info, "rp_wait_until_sent")) 1412 return; 1413 1414 cp = &info->channel; 1415 1416 orig_jiffies = jiffies; 1417#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1418 printk(KERN_INFO "In %s(%d) (jiff=%lu)...\n", __func__, timeout, 1419 jiffies); 1420 printk(KERN_INFO "cps=%d...\n", info->cps); 1421#endif 1422 while (1) { 1423 txcnt = sGetTxCnt(cp); 1424 if (!txcnt) { 1425 if (sGetChanStatusLo(cp) & TXSHRMT) 1426 break; 1427 check_time = (HZ / info->cps) / 5; 1428 } else { 1429 check_time = HZ * txcnt / info->cps; 1430 } 1431 if (timeout) { 1432 exit_time = orig_jiffies + timeout - jiffies; 1433 if (exit_time <= 0) 1434 break; 1435 if (exit_time < check_time) 1436 check_time = exit_time; 1437 } 1438 if (check_time == 0) 1439 check_time = 1; 1440#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1441 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt, 1442 jiffies, check_time); 1443#endif 1444 msleep_interruptible(jiffies_to_msecs(check_time)); 1445 if (signal_pending(current)) 1446 break; 1447 } 1448 __set_current_state(TASK_RUNNING); 1449#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1450 printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies); 1451#endif 1452} 1453 1454/* 1455 * rp_hangup() --- called by tty_hangup() when a hangup is signaled. 1456 */ 1457static void rp_hangup(struct tty_struct *tty) 1458{ 1459 CHANNEL_t *cp; 1460 struct r_port *info = tty->driver_data; 1461 unsigned long flags; 1462 1463 if (rocket_paranoia_check(info, "rp_hangup")) 1464 return; 1465 1466#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP)) 1467 printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line); 1468#endif 1469 rp_flush_buffer(tty); 1470 spin_lock_irqsave(&info->port.lock, flags); 1471 if (info->port.count) 1472 atomic_dec(&rp_num_ports_open); 1473 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1474 spin_unlock_irqrestore(&info->port.lock, flags); 1475 1476 tty_port_hangup(&info->port); 1477 1478 cp = &info->channel; 1479 sDisRxFIFO(cp); 1480 sDisTransmit(cp); 1481 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 1482 sDisCTSFlowCtl(cp); 1483 sDisTxSoftFlowCtl(cp); 1484 sClrTxXOFF(cp); 1485 tty_port_set_initialized(&info->port, 0); 1486 1487 wake_up_interruptible(&info->port.open_wait); 1488} 1489 1490/* 1491 * Exception handler - write char routine. The RocketPort driver uses a 1492 * double-buffering strategy, with the twist that if the in-memory CPU 1493 * buffer is empty, and there's space in the transmit FIFO, the 1494 * writing routines will write directly to transmit FIFO. 1495 * Write buffer and counters protected by spinlocks 1496 */ 1497static int rp_put_char(struct tty_struct *tty, unsigned char ch) 1498{ 1499 struct r_port *info = tty->driver_data; 1500 CHANNEL_t *cp; 1501 unsigned long flags; 1502 1503 if (rocket_paranoia_check(info, "rp_put_char")) 1504 return 0; 1505 1506 /* 1507 * Grab the port write mutex, locking out other processes that try to 1508 * write to this port 1509 */ 1510 mutex_lock(&info->write_mtx); 1511 1512#ifdef ROCKET_DEBUG_WRITE 1513 printk(KERN_INFO "rp_put_char %c...\n", ch); 1514#endif 1515 1516 spin_lock_irqsave(&info->slock, flags); 1517 cp = &info->channel; 1518 1519 if (!tty->stopped && info->xmit_fifo_room == 0) 1520 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 1521 1522 if (tty->stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) { 1523 info->xmit_buf[info->xmit_head++] = ch; 1524 info->xmit_head &= XMIT_BUF_SIZE - 1; 1525 info->xmit_cnt++; 1526 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1527 } else { 1528 sOutB(sGetTxRxDataIO(cp), ch); 1529 info->xmit_fifo_room--; 1530 } 1531 spin_unlock_irqrestore(&info->slock, flags); 1532 mutex_unlock(&info->write_mtx); 1533 return 1; 1534} 1535 1536/* 1537 * Exception handler - write routine, called when user app writes to the device. 1538 * A per port write mutex is used to protect from another process writing to 1539 * this port at the same time. This other process could be running on the other CPU 1540 * or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out). 1541 * Spinlocks protect the info xmit members. 1542 */ 1543static int rp_write(struct tty_struct *tty, 1544 const unsigned char *buf, int count) 1545{ 1546 struct r_port *info = tty->driver_data; 1547 CHANNEL_t *cp; 1548 const unsigned char *b; 1549 int c, retval = 0; 1550 unsigned long flags; 1551 1552 if (count <= 0 || rocket_paranoia_check(info, "rp_write")) 1553 return 0; 1554 1555 if (mutex_lock_interruptible(&info->write_mtx)) 1556 return -ERESTARTSYS; 1557 1558#ifdef ROCKET_DEBUG_WRITE 1559 printk(KERN_INFO "rp_write %d chars...\n", count); 1560#endif 1561 cp = &info->channel; 1562 1563 if (!tty->stopped && info->xmit_fifo_room < count) 1564 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 1565 1566 /* 1567 * If the write queue for the port is empty, and there is FIFO space, stuff bytes 1568 * into FIFO. Use the write queue for temp storage. 1569 */ 1570 if (!tty->stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) { 1571 c = min(count, info->xmit_fifo_room); 1572 b = buf; 1573 1574 /* Push data into FIFO, 2 bytes at a time */ 1575 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2); 1576 1577 /* If there is a byte remaining, write it */ 1578 if (c & 1) 1579 sOutB(sGetTxRxDataIO(cp), b[c - 1]); 1580 1581 retval += c; 1582 buf += c; 1583 count -= c; 1584 1585 spin_lock_irqsave(&info->slock, flags); 1586 info->xmit_fifo_room -= c; 1587 spin_unlock_irqrestore(&info->slock, flags); 1588 } 1589 1590 /* If count is zero, we wrote it all and are done */ 1591 if (!count) 1592 goto end; 1593 1594 /* Write remaining data into the port's xmit_buf */ 1595 while (1) { 1596 /* Hung up ? */ 1597 if (!tty_port_active(&info->port)) 1598 goto end; 1599 c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1); 1600 c = min(c, XMIT_BUF_SIZE - info->xmit_head); 1601 if (c <= 0) 1602 break; 1603 1604 b = buf; 1605 memcpy(info->xmit_buf + info->xmit_head, b, c); 1606 1607 spin_lock_irqsave(&info->slock, flags); 1608 info->xmit_head = 1609 (info->xmit_head + c) & (XMIT_BUF_SIZE - 1); 1610 info->xmit_cnt += c; 1611 spin_unlock_irqrestore(&info->slock, flags); 1612 1613 buf += c; 1614 count -= c; 1615 retval += c; 1616 } 1617 1618 if ((retval > 0) && !tty->stopped) 1619 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1620 1621end: 1622 if (info->xmit_cnt < WAKEUP_CHARS) { 1623 tty_wakeup(tty); 1624#ifdef ROCKETPORT_HAVE_POLL_WAIT 1625 wake_up_interruptible(&tty->poll_wait); 1626#endif 1627 } 1628 mutex_unlock(&info->write_mtx); 1629 return retval; 1630} 1631 1632/* 1633 * Return the number of characters that can be sent. We estimate 1634 * only using the in-memory transmit buffer only, and ignore the 1635 * potential space in the transmit FIFO. 1636 */ 1637static int rp_write_room(struct tty_struct *tty) 1638{ 1639 struct r_port *info = tty->driver_data; 1640 int ret; 1641 1642 if (rocket_paranoia_check(info, "rp_write_room")) 1643 return 0; 1644 1645 ret = XMIT_BUF_SIZE - info->xmit_cnt - 1; 1646 if (ret < 0) 1647 ret = 0; 1648#ifdef ROCKET_DEBUG_WRITE 1649 printk(KERN_INFO "rp_write_room returns %d...\n", ret); 1650#endif 1651 return ret; 1652} 1653 1654/* 1655 * Return the number of characters in the buffer. Again, this only 1656 * counts those characters in the in-memory transmit buffer. 1657 */ 1658static int rp_chars_in_buffer(struct tty_struct *tty) 1659{ 1660 struct r_port *info = tty->driver_data; 1661 1662 if (rocket_paranoia_check(info, "rp_chars_in_buffer")) 1663 return 0; 1664 1665#ifdef ROCKET_DEBUG_WRITE 1666 printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt); 1667#endif 1668 return info->xmit_cnt; 1669} 1670 1671/* 1672 * Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the 1673 * r_port struct for the port. Note that spinlock are used to protect info members, 1674 * do not call this function if the spinlock is already held. 1675 */ 1676static void rp_flush_buffer(struct tty_struct *tty) 1677{ 1678 struct r_port *info = tty->driver_data; 1679 CHANNEL_t *cp; 1680 unsigned long flags; 1681 1682 if (rocket_paranoia_check(info, "rp_flush_buffer")) 1683 return; 1684 1685 spin_lock_irqsave(&info->slock, flags); 1686 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; 1687 spin_unlock_irqrestore(&info->slock, flags); 1688 1689#ifdef ROCKETPORT_HAVE_POLL_WAIT 1690 wake_up_interruptible(&tty->poll_wait); 1691#endif 1692 tty_wakeup(tty); 1693 1694 cp = &info->channel; 1695 sFlushTxFIFO(cp); 1696} 1697 1698#ifdef CONFIG_PCI 1699 1700static const struct pci_device_id rocket_pci_ids[] = { 1701 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) }, 1702 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) }, 1703 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) }, 1704 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) }, 1705 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) }, 1706 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) }, 1707 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) }, 1708 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) }, 1709 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) }, 1710 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) }, 1711 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) }, 1712 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) }, 1713 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) }, 1714 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) }, 1715 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) }, 1716 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) }, 1717 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) }, 1718 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) }, 1719 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) }, 1720 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) }, 1721 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) }, 1722 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) }, 1723 { } 1724}; 1725MODULE_DEVICE_TABLE(pci, rocket_pci_ids); 1726 1727/* Resets the speaker controller on RocketModem II and III devices */ 1728static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model) 1729{ 1730 ByteIO_t addr; 1731 1732 /* RocketModem II speaker control is at the 8th port location of offset 0x40 */ 1733 if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) { 1734 addr = CtlP->AiopIO[0] + 0x4F; 1735 sOutB(addr, 0); 1736 } 1737 1738 /* RocketModem III speaker control is at the 1st port location of offset 0x80 */ 1739 if ((model == MODEL_UPCI_RM3_8PORT) 1740 || (model == MODEL_UPCI_RM3_4PORT)) { 1741 addr = CtlP->AiopIO[0] + 0x88; 1742 sOutB(addr, 0); 1743 } 1744} 1745 1746/*************************************************************************** 1747Function: sPCIInitController 1748Purpose: Initialization of controller global registers and controller 1749 structure. 1750Call: sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize, 1751 IRQNum,Frequency,PeriodicOnly) 1752 CONTROLLER_T *CtlP; Ptr to controller structure 1753 int CtlNum; Controller number 1754 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP. 1755 This list must be in the order the AIOPs will be found on the 1756 controller. Once an AIOP in the list is not found, it is 1757 assumed that there are no more AIOPs on the controller. 1758 int AiopIOListSize; Number of addresses in AiopIOList 1759 int IRQNum; Interrupt Request number. Can be any of the following: 1760 0: Disable global interrupts 1761 3: IRQ 3 1762 4: IRQ 4 1763 5: IRQ 5 1764 9: IRQ 9 1765 10: IRQ 10 1766 11: IRQ 11 1767 12: IRQ 12 1768 15: IRQ 15 1769 Byte_t Frequency: A flag identifying the frequency 1770 of the periodic interrupt, can be any one of the following: 1771 FREQ_DIS - periodic interrupt disabled 1772 FREQ_137HZ - 137 Hertz 1773 FREQ_69HZ - 69 Hertz 1774 FREQ_34HZ - 34 Hertz 1775 FREQ_17HZ - 17 Hertz 1776 FREQ_9HZ - 9 Hertz 1777 FREQ_4HZ - 4 Hertz 1778 If IRQNum is set to 0 the Frequency parameter is 1779 overidden, it is forced to a value of FREQ_DIS. 1780 int PeriodicOnly: 1 if all interrupts except the periodic 1781 interrupt are to be blocked. 1782 0 is both the periodic interrupt and 1783 other channel interrupts are allowed. 1784 If IRQNum is set to 0 the PeriodicOnly parameter is 1785 overidden, it is forced to a value of 0. 1786Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller 1787 initialization failed. 1788 1789Comments: 1790 If periodic interrupts are to be disabled but AIOP interrupts 1791 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0. 1792 1793 If interrupts are to be completely disabled set IRQNum to 0. 1794 1795 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an 1796 invalid combination. 1797 1798 This function performs initialization of global interrupt modes, 1799 but it does not actually enable global interrupts. To enable 1800 and disable global interrupts use functions sEnGlobalInt() and 1801 sDisGlobalInt(). Enabling of global interrupts is normally not 1802 done until all other initializations are complete. 1803 1804 Even if interrupts are globally enabled, they must also be 1805 individually enabled for each channel that is to generate 1806 interrupts. 1807 1808Warnings: No range checking on any of the parameters is done. 1809 1810 No context switches are allowed while executing this function. 1811 1812 After this function all AIOPs on the controller are disabled, 1813 they can be enabled with sEnAiop(). 1814*/ 1815static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum, 1816 ByteIO_t * AiopIOList, int AiopIOListSize, 1817 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency, 1818 int PeriodicOnly, int altChanRingIndicator, 1819 int UPCIRingInd) 1820{ 1821 int i; 1822 ByteIO_t io; 1823 1824 CtlP->AltChanRingIndicator = altChanRingIndicator; 1825 CtlP->UPCIRingInd = UPCIRingInd; 1826 CtlP->CtlNum = CtlNum; 1827 CtlP->CtlID = CTLID_0001; /* controller release 1 */ 1828 CtlP->BusType = isPCI; /* controller release 1 */ 1829 1830 if (ConfigIO) { 1831 CtlP->isUPCI = 1; 1832 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL; 1833 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL; 1834 CtlP->AiopIntrBits = upci_aiop_intr_bits; 1835 } else { 1836 CtlP->isUPCI = 0; 1837 CtlP->PCIIO = 1838 (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC); 1839 CtlP->AiopIntrBits = aiop_intr_bits; 1840 } 1841 1842 sPCIControllerEOI(CtlP); /* clear EOI if warm init */ 1843 /* Init AIOPs */ 1844 CtlP->NumAiop = 0; 1845 for (i = 0; i < AiopIOListSize; i++) { 1846 io = AiopIOList[i]; 1847 CtlP->AiopIO[i] = (WordIO_t) io; 1848 CtlP->AiopIntChanIO[i] = io + _INT_CHAN; 1849 1850 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */ 1851 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */ 1852 break; /* done looking for AIOPs */ 1853 1854 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */ 1855 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */ 1856 sOutB(io + _INDX_DATA, sClockPrescale); 1857 CtlP->NumAiop++; /* bump count of AIOPs */ 1858 } 1859 1860 if (CtlP->NumAiop == 0) 1861 return (-1); 1862 else 1863 return (CtlP->NumAiop); 1864} 1865 1866/* 1867 * Called when a PCI card is found. Retrieves and stores model information, 1868 * init's aiopic and serial port hardware. 1869 * Inputs: i is the board number (0-n) 1870 */ 1871static __init int register_PCI(int i, struct pci_dev *dev) 1872{ 1873 int num_aiops, aiop, max_num_aiops, num_chan, chan; 1874 unsigned int aiopio[MAX_AIOPS_PER_BOARD]; 1875 CONTROLLER_t *ctlp; 1876 1877 int fast_clock = 0; 1878 int altChanRingIndicator = 0; 1879 int ports_per_aiop = 8; 1880 WordIO_t ConfigIO = 0; 1881 ByteIO_t UPCIRingInd = 0; 1882 1883 if (!dev || !pci_match_id(rocket_pci_ids, dev) || 1884 pci_enable_device(dev)) 1885 return 0; 1886 1887 rcktpt_io_addr[i] = pci_resource_start(dev, 0); 1888 1889 rcktpt_type[i] = ROCKET_TYPE_NORMAL; 1890 rocketModel[i].loadrm2 = 0; 1891 rocketModel[i].startingPortNumber = nextLineNumber; 1892 1893 /* Depending on the model, set up some config variables */ 1894 switch (dev->device) { 1895 case PCI_DEVICE_ID_RP4QUAD: 1896 max_num_aiops = 1; 1897 ports_per_aiop = 4; 1898 rocketModel[i].model = MODEL_RP4QUAD; 1899 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable"); 1900 rocketModel[i].numPorts = 4; 1901 break; 1902 case PCI_DEVICE_ID_RP8OCTA: 1903 max_num_aiops = 1; 1904 rocketModel[i].model = MODEL_RP8OCTA; 1905 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable"); 1906 rocketModel[i].numPorts = 8; 1907 break; 1908 case PCI_DEVICE_ID_URP8OCTA: 1909 max_num_aiops = 1; 1910 rocketModel[i].model = MODEL_UPCI_RP8OCTA; 1911 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable"); 1912 rocketModel[i].numPorts = 8; 1913 break; 1914 case PCI_DEVICE_ID_RP8INTF: 1915 max_num_aiops = 1; 1916 rocketModel[i].model = MODEL_RP8INTF; 1917 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F"); 1918 rocketModel[i].numPorts = 8; 1919 break; 1920 case PCI_DEVICE_ID_URP8INTF: 1921 max_num_aiops = 1; 1922 rocketModel[i].model = MODEL_UPCI_RP8INTF; 1923 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F"); 1924 rocketModel[i].numPorts = 8; 1925 break; 1926 case PCI_DEVICE_ID_RP8J: 1927 max_num_aiops = 1; 1928 rocketModel[i].model = MODEL_RP8J; 1929 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors"); 1930 rocketModel[i].numPorts = 8; 1931 break; 1932 case PCI_DEVICE_ID_RP4J: 1933 max_num_aiops = 1; 1934 ports_per_aiop = 4; 1935 rocketModel[i].model = MODEL_RP4J; 1936 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors"); 1937 rocketModel[i].numPorts = 4; 1938 break; 1939 case PCI_DEVICE_ID_RP8SNI: 1940 max_num_aiops = 1; 1941 rocketModel[i].model = MODEL_RP8SNI; 1942 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78"); 1943 rocketModel[i].numPorts = 8; 1944 break; 1945 case PCI_DEVICE_ID_RP16SNI: 1946 max_num_aiops = 2; 1947 rocketModel[i].model = MODEL_RP16SNI; 1948 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78"); 1949 rocketModel[i].numPorts = 16; 1950 break; 1951 case PCI_DEVICE_ID_RP16INTF: 1952 max_num_aiops = 2; 1953 rocketModel[i].model = MODEL_RP16INTF; 1954 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F"); 1955 rocketModel[i].numPorts = 16; 1956 break; 1957 case PCI_DEVICE_ID_URP16INTF: 1958 max_num_aiops = 2; 1959 rocketModel[i].model = MODEL_UPCI_RP16INTF; 1960 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F"); 1961 rocketModel[i].numPorts = 16; 1962 break; 1963 case PCI_DEVICE_ID_CRP16INTF: 1964 max_num_aiops = 2; 1965 rocketModel[i].model = MODEL_CPCI_RP16INTF; 1966 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F"); 1967 rocketModel[i].numPorts = 16; 1968 break; 1969 case PCI_DEVICE_ID_RP32INTF: 1970 max_num_aiops = 4; 1971 rocketModel[i].model = MODEL_RP32INTF; 1972 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F"); 1973 rocketModel[i].numPorts = 32; 1974 break; 1975 case PCI_DEVICE_ID_URP32INTF: 1976 max_num_aiops = 4; 1977 rocketModel[i].model = MODEL_UPCI_RP32INTF; 1978 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F"); 1979 rocketModel[i].numPorts = 32; 1980 break; 1981 case PCI_DEVICE_ID_RPP4: 1982 max_num_aiops = 1; 1983 ports_per_aiop = 4; 1984 altChanRingIndicator++; 1985 fast_clock++; 1986 rocketModel[i].model = MODEL_RPP4; 1987 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port"); 1988 rocketModel[i].numPorts = 4; 1989 break; 1990 case PCI_DEVICE_ID_RPP8: 1991 max_num_aiops = 2; 1992 ports_per_aiop = 4; 1993 altChanRingIndicator++; 1994 fast_clock++; 1995 rocketModel[i].model = MODEL_RPP8; 1996 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port"); 1997 rocketModel[i].numPorts = 8; 1998 break; 1999 case PCI_DEVICE_ID_RP2_232: 2000 max_num_aiops = 1; 2001 ports_per_aiop = 2; 2002 altChanRingIndicator++; 2003 fast_clock++; 2004 rocketModel[i].model = MODEL_RP2_232; 2005 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232"); 2006 rocketModel[i].numPorts = 2; 2007 break; 2008 case PCI_DEVICE_ID_RP2_422: 2009 max_num_aiops = 1; 2010 ports_per_aiop = 2; 2011 altChanRingIndicator++; 2012 fast_clock++; 2013 rocketModel[i].model = MODEL_RP2_422; 2014 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422"); 2015 rocketModel[i].numPorts = 2; 2016 break; 2017 case PCI_DEVICE_ID_RP6M: 2018 2019 max_num_aiops = 1; 2020 ports_per_aiop = 6; 2021 2022 /* If revision is 1, the rocketmodem flash must be loaded. 2023 * If it is 2 it is a "socketed" version. */ 2024 if (dev->revision == 1) { 2025 rcktpt_type[i] = ROCKET_TYPE_MODEMII; 2026 rocketModel[i].loadrm2 = 1; 2027 } else { 2028 rcktpt_type[i] = ROCKET_TYPE_MODEM; 2029 } 2030 2031 rocketModel[i].model = MODEL_RP6M; 2032 strcpy(rocketModel[i].modelString, "RocketModem 6 port"); 2033 rocketModel[i].numPorts = 6; 2034 break; 2035 case PCI_DEVICE_ID_RP4M: 2036 max_num_aiops = 1; 2037 ports_per_aiop = 4; 2038 if (dev->revision == 1) { 2039 rcktpt_type[i] = ROCKET_TYPE_MODEMII; 2040 rocketModel[i].loadrm2 = 1; 2041 } else { 2042 rcktpt_type[i] = ROCKET_TYPE_MODEM; 2043 } 2044 2045 rocketModel[i].model = MODEL_RP4M; 2046 strcpy(rocketModel[i].modelString, "RocketModem 4 port"); 2047 rocketModel[i].numPorts = 4; 2048 break; 2049 default: 2050 max_num_aiops = 0; 2051 break; 2052 } 2053 2054 /* 2055 * Check for UPCI boards. 2056 */ 2057 2058 switch (dev->device) { 2059 case PCI_DEVICE_ID_URP32INTF: 2060 case PCI_DEVICE_ID_URP8INTF: 2061 case PCI_DEVICE_ID_URP16INTF: 2062 case PCI_DEVICE_ID_CRP16INTF: 2063 case PCI_DEVICE_ID_URP8OCTA: 2064 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 2065 ConfigIO = pci_resource_start(dev, 1); 2066 if (dev->device == PCI_DEVICE_ID_URP8OCTA) { 2067 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 2068 2069 /* 2070 * Check for octa or quad cable. 2071 */ 2072 if (! 2073 (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) & 2074 PCI_GPIO_CTRL_8PORT)) { 2075 ports_per_aiop = 4; 2076 rocketModel[i].numPorts = 4; 2077 } 2078 } 2079 break; 2080 case PCI_DEVICE_ID_UPCI_RM3_8PORT: 2081 max_num_aiops = 1; 2082 rocketModel[i].model = MODEL_UPCI_RM3_8PORT; 2083 strcpy(rocketModel[i].modelString, "RocketModem III 8 port"); 2084 rocketModel[i].numPorts = 8; 2085 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 2086 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 2087 ConfigIO = pci_resource_start(dev, 1); 2088 rcktpt_type[i] = ROCKET_TYPE_MODEMIII; 2089 break; 2090 case PCI_DEVICE_ID_UPCI_RM3_4PORT: 2091 max_num_aiops = 1; 2092 rocketModel[i].model = MODEL_UPCI_RM3_4PORT; 2093 strcpy(rocketModel[i].modelString, "RocketModem III 4 port"); 2094 rocketModel[i].numPorts = 4; 2095 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 2096 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 2097 ConfigIO = pci_resource_start(dev, 1); 2098 rcktpt_type[i] = ROCKET_TYPE_MODEMIII; 2099 break; 2100 default: 2101 break; 2102 } 2103 2104 if (fast_clock) { 2105 sClockPrescale = 0x12; /* mod 2 (divide by 3) */ 2106 rp_baud_base[i] = 921600; 2107 } else { 2108 /* 2109 * If support_low_speed is set, use the slow clock 2110 * prescale, which supports 50 bps 2111 */ 2112 if (support_low_speed) { 2113 /* mod 9 (divide by 10) prescale */ 2114 sClockPrescale = 0x19; 2115 rp_baud_base[i] = 230400; 2116 } else { 2117 /* mod 4 (divide by 5) prescale */ 2118 sClockPrescale = 0x14; 2119 rp_baud_base[i] = 460800; 2120 } 2121 } 2122 2123 for (aiop = 0; aiop < max_num_aiops; aiop++) 2124 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40); 2125 ctlp = sCtlNumToCtlPtr(i); 2126 num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd); 2127 for (aiop = 0; aiop < max_num_aiops; aiop++) 2128 ctlp->AiopNumChan[aiop] = ports_per_aiop; 2129 2130 dev_info(&dev->dev, "comtrol PCI controller #%d found at " 2131 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n", 2132 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString, 2133 rocketModel[i].startingPortNumber, 2134 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1); 2135 2136 if (num_aiops <= 0) { 2137 rcktpt_io_addr[i] = 0; 2138 return (0); 2139 } 2140 is_PCI[i] = 1; 2141 2142 /* Reset the AIOPIC, init the serial ports */ 2143 for (aiop = 0; aiop < num_aiops; aiop++) { 2144 sResetAiopByNum(ctlp, aiop); 2145 num_chan = ports_per_aiop; 2146 for (chan = 0; chan < num_chan; chan++) 2147 init_r_port(i, aiop, chan, dev); 2148 } 2149 2150 /* Rocket modems must be reset */ 2151 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || 2152 (rcktpt_type[i] == ROCKET_TYPE_MODEMII) || 2153 (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) { 2154 num_chan = ports_per_aiop; 2155 for (chan = 0; chan < num_chan; chan++) 2156 sPCIModemReset(ctlp, chan, 1); 2157 msleep(500); 2158 for (chan = 0; chan < num_chan; chan++) 2159 sPCIModemReset(ctlp, chan, 0); 2160 msleep(500); 2161 rmSpeakerReset(ctlp, rocketModel[i].model); 2162 } 2163 return (1); 2164} 2165 2166/* 2167 * Probes for PCI cards, inits them if found 2168 * Input: board_found = number of ISA boards already found, or the 2169 * starting board number 2170 * Returns: Number of PCI boards found 2171 */ 2172static int __init init_PCI(int boards_found) 2173{ 2174 struct pci_dev *dev = NULL; 2175 int count = 0; 2176 2177 /* Work through the PCI device list, pulling out ours */ 2178 while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) { 2179 if (register_PCI(count + boards_found, dev)) 2180 count++; 2181 } 2182 return (count); 2183} 2184 2185#endif /* CONFIG_PCI */ 2186 2187/* 2188 * Probes for ISA cards 2189 * Input: i = the board number to look for 2190 * Returns: 1 if board found, 0 else 2191 */ 2192static int __init init_ISA(int i) 2193{ 2194 int num_aiops, num_chan = 0, total_num_chan = 0; 2195 int aiop, chan; 2196 unsigned int aiopio[MAX_AIOPS_PER_BOARD]; 2197 CONTROLLER_t *ctlp; 2198 char *type_string; 2199 2200 /* If io_addr is zero, no board configured */ 2201 if (rcktpt_io_addr[i] == 0) 2202 return (0); 2203 2204 /* Reserve the IO region */ 2205 if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) { 2206 printk(KERN_ERR "Unable to reserve IO region for configured " 2207 "ISA RocketPort at address 0x%lx, board not " 2208 "installed...\n", rcktpt_io_addr[i]); 2209 rcktpt_io_addr[i] = 0; 2210 return (0); 2211 } 2212 2213 ctlp = sCtlNumToCtlPtr(i); 2214 2215 ctlp->boardType = rcktpt_type[i]; 2216 2217 switch (rcktpt_type[i]) { 2218 case ROCKET_TYPE_PC104: 2219 type_string = "(PC104)"; 2220 break; 2221 case ROCKET_TYPE_MODEM: 2222 type_string = "(RocketModem)"; 2223 break; 2224 case ROCKET_TYPE_MODEMII: 2225 type_string = "(RocketModem II)"; 2226 break; 2227 default: 2228 type_string = ""; 2229 break; 2230 } 2231 2232 /* 2233 * If support_low_speed is set, use the slow clock prescale, 2234 * which supports 50 bps 2235 */ 2236 if (support_low_speed) { 2237 sClockPrescale = 0x19; /* mod 9 (divide by 10) prescale */ 2238 rp_baud_base[i] = 230400; 2239 } else { 2240 sClockPrescale = 0x14; /* mod 4 (divide by 5) prescale */ 2241 rp_baud_base[i] = 460800; 2242 } 2243 2244 for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++) 2245 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400); 2246 2247 num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0); 2248 2249 if (ctlp->boardType == ROCKET_TYPE_PC104) { 2250 sEnAiop(ctlp, 2); /* only one AIOPIC, but these */ 2251 sEnAiop(ctlp, 3); /* CSels used for other stuff */ 2252 } 2253 2254 /* If something went wrong initing the AIOP's release the ISA IO memory */ 2255 if (num_aiops <= 0) { 2256 release_region(rcktpt_io_addr[i], 64); 2257 rcktpt_io_addr[i] = 0; 2258 return (0); 2259 } 2260 2261 rocketModel[i].startingPortNumber = nextLineNumber; 2262 2263 for (aiop = 0; aiop < num_aiops; aiop++) { 2264 sResetAiopByNum(ctlp, aiop); 2265 sEnAiop(ctlp, aiop); 2266 num_chan = sGetAiopNumChan(ctlp, aiop); 2267 total_num_chan += num_chan; 2268 for (chan = 0; chan < num_chan; chan++) 2269 init_r_port(i, aiop, chan, NULL); 2270 } 2271 is_PCI[i] = 0; 2272 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) { 2273 num_chan = sGetAiopNumChan(ctlp, 0); 2274 total_num_chan = num_chan; 2275 for (chan = 0; chan < num_chan; chan++) 2276 sModemReset(ctlp, chan, 1); 2277 msleep(500); 2278 for (chan = 0; chan < num_chan; chan++) 2279 sModemReset(ctlp, chan, 0); 2280 msleep(500); 2281 strcpy(rocketModel[i].modelString, "RocketModem ISA"); 2282 } else { 2283 strcpy(rocketModel[i].modelString, "RocketPort ISA"); 2284 } 2285 rocketModel[i].numPorts = total_num_chan; 2286 rocketModel[i].model = MODEL_ISA; 2287 2288 printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n", 2289 i, rcktpt_io_addr[i], num_aiops, type_string); 2290 2291 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n", 2292 rocketModel[i].modelString, 2293 rocketModel[i].startingPortNumber, 2294 rocketModel[i].startingPortNumber + 2295 rocketModel[i].numPorts - 1); 2296 2297 return (1); 2298} 2299 2300static const struct tty_operations rocket_ops = { 2301 .open = rp_open, 2302 .close = rp_close, 2303 .write = rp_write, 2304 .put_char = rp_put_char, 2305 .write_room = rp_write_room, 2306 .chars_in_buffer = rp_chars_in_buffer, 2307 .flush_buffer = rp_flush_buffer, 2308 .ioctl = rp_ioctl, 2309 .throttle = rp_throttle, 2310 .unthrottle = rp_unthrottle, 2311 .set_termios = rp_set_termios, 2312 .stop = rp_stop, 2313 .start = rp_start, 2314 .hangup = rp_hangup, 2315 .break_ctl = rp_break, 2316 .send_xchar = rp_send_xchar, 2317 .wait_until_sent = rp_wait_until_sent, 2318 .tiocmget = rp_tiocmget, 2319 .tiocmset = rp_tiocmset, 2320}; 2321 2322static const struct tty_port_operations rocket_port_ops = { 2323 .carrier_raised = carrier_raised, 2324 .dtr_rts = dtr_rts, 2325}; 2326 2327/* 2328 * The module "startup" routine; it's run when the module is loaded. 2329 */ 2330static int __init rp_init(void) 2331{ 2332 int ret = -ENOMEM, pci_boards_found, isa_boards_found, i; 2333 2334 printk(KERN_INFO "RocketPort device driver module, version %s, %s\n", 2335 ROCKET_VERSION, ROCKET_DATE); 2336 2337 rocket_driver = alloc_tty_driver(MAX_RP_PORTS); 2338 if (!rocket_driver) 2339 goto err; 2340 2341 /* 2342 * If board 1 is non-zero, there is at least one ISA configured. If controller is 2343 * zero, use the default controller IO address of board1 + 0x40. 2344 */ 2345 if (board1) { 2346 if (controller == 0) 2347 controller = board1 + 0x40; 2348 } else { 2349 controller = 0; /* Used as a flag, meaning no ISA boards */ 2350 } 2351 2352 /* If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */ 2353 if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) { 2354 printk(KERN_ERR "Unable to reserve IO region for first " 2355 "configured ISA RocketPort controller 0x%lx. " 2356 "Driver exiting\n", controller); 2357 ret = -EBUSY; 2358 goto err_tty; 2359 } 2360 2361 /* Store ISA variable retrieved from command line or .conf file. */ 2362 rcktpt_io_addr[0] = board1; 2363 rcktpt_io_addr[1] = board2; 2364 rcktpt_io_addr[2] = board3; 2365 rcktpt_io_addr[3] = board4; 2366 2367 rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2368 rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0]; 2369 rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2370 rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1]; 2371 rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2372 rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2]; 2373 rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2374 rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3]; 2375 2376 /* 2377 * Set up the tty driver structure and then register this 2378 * driver with the tty layer. 2379 */ 2380 2381 rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV; 2382 rocket_driver->name = "ttyR"; 2383 rocket_driver->driver_name = "Comtrol RocketPort"; 2384 rocket_driver->major = TTY_ROCKET_MAJOR; 2385 rocket_driver->minor_start = 0; 2386 rocket_driver->type = TTY_DRIVER_TYPE_SERIAL; 2387 rocket_driver->subtype = SERIAL_TYPE_NORMAL; 2388 rocket_driver->init_termios = tty_std_termios; 2389 rocket_driver->init_termios.c_cflag = 2390 B9600 | CS8 | CREAD | HUPCL | CLOCAL; 2391 rocket_driver->init_termios.c_ispeed = 9600; 2392 rocket_driver->init_termios.c_ospeed = 9600; 2393#ifdef ROCKET_SOFT_FLOW 2394 rocket_driver->flags |= TTY_DRIVER_REAL_RAW; 2395#endif 2396 tty_set_operations(rocket_driver, &rocket_ops); 2397 2398 ret = tty_register_driver(rocket_driver); 2399 if (ret < 0) { 2400 printk(KERN_ERR "Couldn't install tty RocketPort driver\n"); 2401 goto err_controller; 2402 } 2403 2404#ifdef ROCKET_DEBUG_OPEN 2405 printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major); 2406#endif 2407 2408 /* 2409 * OK, let's probe each of the controllers looking for boards. Any boards found 2410 * will be initialized here. 2411 */ 2412 isa_boards_found = 0; 2413 pci_boards_found = 0; 2414 2415 for (i = 0; i < NUM_BOARDS; i++) { 2416 if (init_ISA(i)) 2417 isa_boards_found++; 2418 } 2419 2420#ifdef CONFIG_PCI 2421 if (isa_boards_found < NUM_BOARDS) 2422 pci_boards_found = init_PCI(isa_boards_found); 2423#endif 2424 2425 max_board = pci_boards_found + isa_boards_found; 2426 2427 if (max_board == 0) { 2428 printk(KERN_ERR "No rocketport ports found; unloading driver\n"); 2429 ret = -ENXIO; 2430 goto err_ttyu; 2431 } 2432 2433 return 0; 2434err_ttyu: 2435 tty_unregister_driver(rocket_driver); 2436err_controller: 2437 if (controller) 2438 release_region(controller, 4); 2439err_tty: 2440 put_tty_driver(rocket_driver); 2441err: 2442 return ret; 2443} 2444 2445 2446static void rp_cleanup_module(void) 2447{ 2448 int retval; 2449 int i; 2450 2451 del_timer_sync(&rocket_timer); 2452 2453 retval = tty_unregister_driver(rocket_driver); 2454 if (retval) 2455 printk(KERN_ERR "Error %d while trying to unregister " 2456 "rocketport driver\n", -retval); 2457 2458 for (i = 0; i < MAX_RP_PORTS; i++) 2459 if (rp_table[i]) { 2460 tty_unregister_device(rocket_driver, i); 2461 tty_port_destroy(&rp_table[i]->port); 2462 kfree(rp_table[i]); 2463 } 2464 2465 put_tty_driver(rocket_driver); 2466 2467 for (i = 0; i < NUM_BOARDS; i++) { 2468 if (rcktpt_io_addr[i] <= 0 || is_PCI[i]) 2469 continue; 2470 release_region(rcktpt_io_addr[i], 64); 2471 } 2472 if (controller) 2473 release_region(controller, 4); 2474} 2475 2476/*************************************************************************** 2477Function: sInitController 2478Purpose: Initialization of controller global registers and controller 2479 structure. 2480Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize, 2481 IRQNum,Frequency,PeriodicOnly) 2482 CONTROLLER_T *CtlP; Ptr to controller structure 2483 int CtlNum; Controller number 2484 ByteIO_t MudbacIO; Mudbac base I/O address. 2485 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP. 2486 This list must be in the order the AIOPs will be found on the 2487 controller. Once an AIOP in the list is not found, it is 2488 assumed that there are no more AIOPs on the controller. 2489 int AiopIOListSize; Number of addresses in AiopIOList 2490 int IRQNum; Interrupt Request number. Can be any of the following: 2491 0: Disable global interrupts 2492 3: IRQ 3 2493 4: IRQ 4 2494 5: IRQ 5 2495 9: IRQ 9 2496 10: IRQ 10 2497 11: IRQ 11 2498 12: IRQ 12 2499 15: IRQ 15 2500 Byte_t Frequency: A flag identifying the frequency 2501 of the periodic interrupt, can be any one of the following: 2502 FREQ_DIS - periodic interrupt disabled 2503 FREQ_137HZ - 137 Hertz 2504 FREQ_69HZ - 69 Hertz 2505 FREQ_34HZ - 34 Hertz 2506 FREQ_17HZ - 17 Hertz 2507 FREQ_9HZ - 9 Hertz 2508 FREQ_4HZ - 4 Hertz 2509 If IRQNum is set to 0 the Frequency parameter is 2510 overidden, it is forced to a value of FREQ_DIS. 2511 int PeriodicOnly: 1 if all interrupts except the periodic 2512 interrupt are to be blocked. 2513 0 is both the periodic interrupt and 2514 other channel interrupts are allowed. 2515 If IRQNum is set to 0 the PeriodicOnly parameter is 2516 overidden, it is forced to a value of 0. 2517Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller 2518 initialization failed. 2519 2520Comments: 2521 If periodic interrupts are to be disabled but AIOP interrupts 2522 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0. 2523 2524 If interrupts are to be completely disabled set IRQNum to 0. 2525 2526 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an 2527 invalid combination. 2528 2529 This function performs initialization of global interrupt modes, 2530 but it does not actually enable global interrupts. To enable 2531 and disable global interrupts use functions sEnGlobalInt() and 2532 sDisGlobalInt(). Enabling of global interrupts is normally not 2533 done until all other initializations are complete. 2534 2535 Even if interrupts are globally enabled, they must also be 2536 individually enabled for each channel that is to generate 2537 interrupts. 2538 2539Warnings: No range checking on any of the parameters is done. 2540 2541 No context switches are allowed while executing this function. 2542 2543 After this function all AIOPs on the controller are disabled, 2544 they can be enabled with sEnAiop(). 2545*/ 2546static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO, 2547 ByteIO_t * AiopIOList, int AiopIOListSize, 2548 int IRQNum, Byte_t Frequency, int PeriodicOnly) 2549{ 2550 int i; 2551 ByteIO_t io; 2552 int done; 2553 2554 CtlP->AiopIntrBits = aiop_intr_bits; 2555 CtlP->AltChanRingIndicator = 0; 2556 CtlP->CtlNum = CtlNum; 2557 CtlP->CtlID = CTLID_0001; /* controller release 1 */ 2558 CtlP->BusType = isISA; 2559 CtlP->MBaseIO = MudbacIO; 2560 CtlP->MReg1IO = MudbacIO + 1; 2561 CtlP->MReg2IO = MudbacIO + 2; 2562 CtlP->MReg3IO = MudbacIO + 3; 2563#if 1 2564 CtlP->MReg2 = 0; /* interrupt disable */ 2565 CtlP->MReg3 = 0; /* no periodic interrupts */ 2566#else 2567 if (sIRQMap[IRQNum] == 0) { /* interrupts globally disabled */ 2568 CtlP->MReg2 = 0; /* interrupt disable */ 2569 CtlP->MReg3 = 0; /* no periodic interrupts */ 2570 } else { 2571 CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */ 2572 CtlP->MReg3 = Frequency; /* set frequency */ 2573 if (PeriodicOnly) { /* periodic interrupt only */ 2574 CtlP->MReg3 |= PERIODIC_ONLY; 2575 } 2576 } 2577#endif 2578 sOutB(CtlP->MReg2IO, CtlP->MReg2); 2579 sOutB(CtlP->MReg3IO, CtlP->MReg3); 2580 sControllerEOI(CtlP); /* clear EOI if warm init */ 2581 /* Init AIOPs */ 2582 CtlP->NumAiop = 0; 2583 for (i = done = 0; i < AiopIOListSize; i++) { 2584 io = AiopIOList[i]; 2585 CtlP->AiopIO[i] = (WordIO_t) io; 2586 CtlP->AiopIntChanIO[i] = io + _INT_CHAN; 2587 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */ 2588 sOutB(MudbacIO, (Byte_t) (io >> 6)); /* set up AIOP I/O in MUDBAC */ 2589 if (done) 2590 continue; 2591 sEnAiop(CtlP, i); /* enable the AIOP */ 2592 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */ 2593 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */ 2594 done = 1; /* done looking for AIOPs */ 2595 else { 2596 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */ 2597 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */ 2598 sOutB(io + _INDX_DATA, sClockPrescale); 2599 CtlP->NumAiop++; /* bump count of AIOPs */ 2600 } 2601 sDisAiop(CtlP, i); /* disable AIOP */ 2602 } 2603 2604 if (CtlP->NumAiop == 0) 2605 return (-1); 2606 else 2607 return (CtlP->NumAiop); 2608} 2609 2610/*************************************************************************** 2611Function: sReadAiopID 2612Purpose: Read the AIOP idenfication number directly from an AIOP. 2613Call: sReadAiopID(io) 2614 ByteIO_t io: AIOP base I/O address 2615Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X 2616 is replace by an identifying number. 2617 Flag AIOPID_NULL if no valid AIOP is found 2618Warnings: No context switches are allowed while executing this function. 2619 2620*/ 2621static int sReadAiopID(ByteIO_t io) 2622{ 2623 Byte_t AiopID; /* ID byte from AIOP */ 2624 2625 sOutB(io + _CMD_REG, RESET_ALL); /* reset AIOP */ 2626 sOutB(io + _CMD_REG, 0x0); 2627 AiopID = sInW(io + _CHN_STAT0) & 0x07; 2628 if (AiopID == 0x06) 2629 return (1); 2630 else /* AIOP does not exist */ 2631 return (-1); 2632} 2633 2634/*************************************************************************** 2635Function: sReadAiopNumChan 2636Purpose: Read the number of channels available in an AIOP directly from 2637 an AIOP. 2638Call: sReadAiopNumChan(io) 2639 WordIO_t io: AIOP base I/O address 2640Return: int: The number of channels available 2641Comments: The number of channels is determined by write/reads from identical 2642 offsets within the SRAM address spaces for channels 0 and 4. 2643 If the channel 4 space is mirrored to channel 0 it is a 4 channel 2644 AIOP, otherwise it is an 8 channel. 2645Warnings: No context switches are allowed while executing this function. 2646*/ 2647static int sReadAiopNumChan(WordIO_t io) 2648{ 2649 Word_t x; 2650 static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 }; 2651 2652 /* write to chan 0 SRAM */ 2653 out32((DWordIO_t) io + _INDX_ADDR, R); 2654 sOutW(io + _INDX_ADDR, 0); /* read from SRAM, chan 0 */ 2655 x = sInW(io + _INDX_DATA); 2656 sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */ 2657 if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */ 2658 return (8); 2659 else 2660 return (4); 2661} 2662 2663/*************************************************************************** 2664Function: sInitChan 2665Purpose: Initialization of a channel and channel structure 2666Call: sInitChan(CtlP,ChP,AiopNum,ChanNum) 2667 CONTROLLER_T *CtlP; Ptr to controller structure 2668 CHANNEL_T *ChP; Ptr to channel structure 2669 int AiopNum; AIOP number within controller 2670 int ChanNum; Channel number within AIOP 2671Return: int: 1 if initialization succeeded, 0 if it fails because channel 2672 number exceeds number of channels available in AIOP. 2673Comments: This function must be called before a channel can be used. 2674Warnings: No range checking on any of the parameters is done. 2675 2676 No context switches are allowed while executing this function. 2677*/ 2678static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum, 2679 int ChanNum) 2680{ 2681 int i; 2682 WordIO_t AiopIO; 2683 WordIO_t ChIOOff; 2684 Byte_t *ChR; 2685 Word_t ChOff; 2686 static Byte_t R[4]; 2687 int brd9600; 2688 2689 if (ChanNum >= CtlP->AiopNumChan[AiopNum]) 2690 return 0; /* exceeds num chans in AIOP */ 2691 2692 /* Channel, AIOP, and controller identifiers */ 2693 ChP->CtlP = CtlP; 2694 ChP->ChanID = CtlP->AiopID[AiopNum]; 2695 ChP->AiopNum = AiopNum; 2696 ChP->ChanNum = ChanNum; 2697 2698 /* Global direct addresses */ 2699 AiopIO = CtlP->AiopIO[AiopNum]; 2700 ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG; 2701 ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN; 2702 ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK; 2703 ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR; 2704 ChP->IndexData = AiopIO + _INDX_DATA; 2705 2706 /* Channel direct addresses */ 2707 ChIOOff = AiopIO + ChP->ChanNum * 2; 2708 ChP->TxRxData = ChIOOff + _TD0; 2709 ChP->ChanStat = ChIOOff + _CHN_STAT0; 2710 ChP->TxRxCount = ChIOOff + _FIFO_CNT0; 2711 ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0; 2712 2713 /* Initialize the channel from the RData array */ 2714 for (i = 0; i < RDATASIZE; i += 4) { 2715 R[0] = RData[i]; 2716 R[1] = RData[i + 1] + 0x10 * ChanNum; 2717 R[2] = RData[i + 2]; 2718 R[3] = RData[i + 3]; 2719 out32(ChP->IndexAddr, R); 2720 } 2721 2722 ChR = ChP->R; 2723 for (i = 0; i < RREGDATASIZE; i += 4) { 2724 ChR[i] = RRegData[i]; 2725 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum; 2726 ChR[i + 2] = RRegData[i + 2]; 2727 ChR[i + 3] = RRegData[i + 3]; 2728 } 2729 2730 /* Indexed registers */ 2731 ChOff = (Word_t) ChanNum *0x1000; 2732 2733 if (sClockPrescale == 0x14) 2734 brd9600 = 47; 2735 else 2736 brd9600 = 23; 2737 2738 ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD); 2739 ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8); 2740 ChP->BaudDiv[2] = (Byte_t) brd9600; 2741 ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8); 2742 out32(ChP->IndexAddr, ChP->BaudDiv); 2743 2744 ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL); 2745 ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8); 2746 ChP->TxControl[2] = 0; 2747 ChP->TxControl[3] = 0; 2748 out32(ChP->IndexAddr, ChP->TxControl); 2749 2750 ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL); 2751 ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8); 2752 ChP->RxControl[2] = 0; 2753 ChP->RxControl[3] = 0; 2754 out32(ChP->IndexAddr, ChP->RxControl); 2755 2756 ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS); 2757 ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8); 2758 ChP->TxEnables[2] = 0; 2759 ChP->TxEnables[3] = 0; 2760 out32(ChP->IndexAddr, ChP->TxEnables); 2761 2762 ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1); 2763 ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8); 2764 ChP->TxCompare[2] = 0; 2765 ChP->TxCompare[3] = 0; 2766 out32(ChP->IndexAddr, ChP->TxCompare); 2767 2768 ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1); 2769 ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8); 2770 ChP->TxReplace1[2] = 0; 2771 ChP->TxReplace1[3] = 0; 2772 out32(ChP->IndexAddr, ChP->TxReplace1); 2773 2774 ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2); 2775 ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8); 2776 ChP->TxReplace2[2] = 0; 2777 ChP->TxReplace2[3] = 0; 2778 out32(ChP->IndexAddr, ChP->TxReplace2); 2779 2780 ChP->TxFIFOPtrs = ChOff + _TXF_OUTP; 2781 ChP->TxFIFO = ChOff + _TX_FIFO; 2782 2783 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */ 2784 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Tx FIFO count */ 2785 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */ 2786 sOutW(ChP->IndexData, 0); 2787 ChP->RxFIFOPtrs = ChOff + _RXF_OUTP; 2788 ChP->RxFIFO = ChOff + _RX_FIFO; 2789 2790 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */ 2791 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Rx FIFO count */ 2792 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */ 2793 sOutW(ChP->IndexData, 0); 2794 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */ 2795 sOutW(ChP->IndexData, 0); 2796 ChP->TxPrioCnt = ChOff + _TXP_CNT; 2797 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt); 2798 sOutB(ChP->IndexData, 0); 2799 ChP->TxPrioPtr = ChOff + _TXP_PNTR; 2800 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr); 2801 sOutB(ChP->IndexData, 0); 2802 ChP->TxPrioBuf = ChOff + _TXP_BUF; 2803 sEnRxProcessor(ChP); /* start the Rx processor */ 2804 2805 return 1; 2806} 2807 2808/*************************************************************************** 2809Function: sStopRxProcessor 2810Purpose: Stop the receive processor from processing a channel. 2811Call: sStopRxProcessor(ChP) 2812 CHANNEL_T *ChP; Ptr to channel structure 2813 2814Comments: The receive processor can be started again with sStartRxProcessor(). 2815 This function causes the receive processor to skip over the 2816 stopped channel. It does not stop it from processing other channels. 2817 2818Warnings: No context switches are allowed while executing this function. 2819 2820 Do not leave the receive processor stopped for more than one 2821 character time. 2822 2823 After calling this function a delay of 4 uS is required to ensure 2824 that the receive processor is no longer processing this channel. 2825*/ 2826static void sStopRxProcessor(CHANNEL_T * ChP) 2827{ 2828 Byte_t R[4]; 2829 2830 R[0] = ChP->R[0]; 2831 R[1] = ChP->R[1]; 2832 R[2] = 0x0a; 2833 R[3] = ChP->R[3]; 2834 out32(ChP->IndexAddr, R); 2835} 2836 2837/*************************************************************************** 2838Function: sFlushRxFIFO 2839Purpose: Flush the Rx FIFO 2840Call: sFlushRxFIFO(ChP) 2841 CHANNEL_T *ChP; Ptr to channel structure 2842Return: void 2843Comments: To prevent data from being enqueued or dequeued in the Tx FIFO 2844 while it is being flushed the receive processor is stopped 2845 and the transmitter is disabled. After these operations a 2846 4 uS delay is done before clearing the pointers to allow 2847 the receive processor to stop. These items are handled inside 2848 this function. 2849Warnings: No context switches are allowed while executing this function. 2850*/ 2851static void sFlushRxFIFO(CHANNEL_T * ChP) 2852{ 2853 int i; 2854 Byte_t Ch; /* channel number within AIOP */ 2855 int RxFIFOEnabled; /* 1 if Rx FIFO enabled */ 2856 2857 if (sGetRxCnt(ChP) == 0) /* Rx FIFO empty */ 2858 return; /* don't need to flush */ 2859 2860 RxFIFOEnabled = 0; 2861 if (ChP->R[0x32] == 0x08) { /* Rx FIFO is enabled */ 2862 RxFIFOEnabled = 1; 2863 sDisRxFIFO(ChP); /* disable it */ 2864 for (i = 0; i < 2000 / 200; i++) /* delay 2 uS to allow proc to disable FIFO */ 2865 sInB(ChP->IntChan); /* depends on bus i/o timing */ 2866 } 2867 sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */ 2868 Ch = (Byte_t) sGetChanNum(ChP); 2869 sOutB(ChP->Cmd, Ch | RESRXFCNT); /* apply reset Rx FIFO count */ 2870 sOutB(ChP->Cmd, Ch); /* remove reset Rx FIFO count */ 2871 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */ 2872 sOutW(ChP->IndexData, 0); 2873 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */ 2874 sOutW(ChP->IndexData, 0); 2875 if (RxFIFOEnabled) 2876 sEnRxFIFO(ChP); /* enable Rx FIFO */ 2877} 2878 2879/*************************************************************************** 2880Function: sFlushTxFIFO 2881Purpose: Flush the Tx FIFO 2882Call: sFlushTxFIFO(ChP) 2883 CHANNEL_T *ChP; Ptr to channel structure 2884Return: void 2885Comments: To prevent data from being enqueued or dequeued in the Tx FIFO 2886 while it is being flushed the receive processor is stopped 2887 and the transmitter is disabled. After these operations a 2888 4 uS delay is done before clearing the pointers to allow 2889 the receive processor to stop. These items are handled inside 2890 this function. 2891Warnings: No context switches are allowed while executing this function. 2892*/ 2893static void sFlushTxFIFO(CHANNEL_T * ChP) 2894{ 2895 int i; 2896 Byte_t Ch; /* channel number within AIOP */ 2897 int TxEnabled; /* 1 if transmitter enabled */ 2898 2899 if (sGetTxCnt(ChP) == 0) /* Tx FIFO empty */ 2900 return; /* don't need to flush */ 2901 2902 TxEnabled = 0; 2903 if (ChP->TxControl[3] & TX_ENABLE) { 2904 TxEnabled = 1; 2905 sDisTransmit(ChP); /* disable transmitter */ 2906 } 2907 sStopRxProcessor(ChP); /* stop Rx processor */ 2908 for (i = 0; i < 4000 / 200; i++) /* delay 4 uS to allow proc to stop */ 2909 sInB(ChP->IntChan); /* depends on bus i/o timing */ 2910 Ch = (Byte_t) sGetChanNum(ChP); 2911 sOutB(ChP->Cmd, Ch | RESTXFCNT); /* apply reset Tx FIFO count */ 2912 sOutB(ChP->Cmd, Ch); /* remove reset Tx FIFO count */ 2913 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */ 2914 sOutW(ChP->IndexData, 0); 2915 if (TxEnabled) 2916 sEnTransmit(ChP); /* enable transmitter */ 2917 sStartRxProcessor(ChP); /* restart Rx processor */ 2918} 2919 2920/*************************************************************************** 2921Function: sWriteTxPrioByte 2922Purpose: Write a byte of priority transmit data to a channel 2923Call: sWriteTxPrioByte(ChP,Data) 2924 CHANNEL_T *ChP; Ptr to channel structure 2925 Byte_t Data; The transmit data byte 2926 2927Return: int: 1 if the bytes is successfully written, otherwise 0. 2928 2929Comments: The priority byte is transmitted before any data in the Tx FIFO. 2930 2931Warnings: No context switches are allowed while executing this function. 2932*/ 2933static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data) 2934{ 2935 Byte_t DWBuf[4]; /* buffer for double word writes */ 2936 Word_t *WordPtr; /* must be far because Win SS != DS */ 2937 register DWordIO_t IndexAddr; 2938 2939 if (sGetTxCnt(ChP) > 1) { /* write it to Tx priority buffer */ 2940 IndexAddr = ChP->IndexAddr; 2941 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt); /* get priority buffer status */ 2942 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */ 2943 return (0); /* nothing sent */ 2944 2945 WordPtr = (Word_t *) (&DWBuf[0]); 2946 *WordPtr = ChP->TxPrioBuf; /* data byte address */ 2947 2948 DWBuf[2] = Data; /* data byte value */ 2949 out32(IndexAddr, DWBuf); /* write it out */ 2950 2951 *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */ 2952 2953 DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */ 2954 DWBuf[3] = 0; /* priority buffer pointer */ 2955 out32(IndexAddr, DWBuf); /* write it out */ 2956 } else { /* write it to Tx FIFO */ 2957 2958 sWriteTxByte(sGetTxRxDataIO(ChP), Data); 2959 } 2960 return (1); /* 1 byte sent */ 2961} 2962 2963/*************************************************************************** 2964Function: sEnInterrupts 2965Purpose: Enable one or more interrupts for a channel 2966Call: sEnInterrupts(ChP,Flags) 2967 CHANNEL_T *ChP; Ptr to channel structure 2968 Word_t Flags: Interrupt enable flags, can be any combination 2969 of the following flags: 2970 TXINT_EN: Interrupt on Tx FIFO empty 2971 RXINT_EN: Interrupt on Rx FIFO at trigger level (see 2972 sSetRxTrigger()) 2973 SRCINT_EN: Interrupt on SRC (Special Rx Condition) 2974 MCINT_EN: Interrupt on modem input change 2975 CHANINT_EN: Allow channel interrupt signal to the AIOP's 2976 Interrupt Channel Register. 2977Return: void 2978Comments: If an interrupt enable flag is set in Flags, that interrupt will be 2979 enabled. If an interrupt enable flag is not set in Flags, that 2980 interrupt will not be changed. Interrupts can be disabled with 2981 function sDisInterrupts(). 2982 2983 This function sets the appropriate bit for the channel in the AIOP's 2984 Interrupt Mask Register if the CHANINT_EN flag is set. This allows 2985 this channel's bit to be set in the AIOP's Interrupt Channel Register. 2986 2987 Interrupts must also be globally enabled before channel interrupts 2988 will be passed on to the host. This is done with function 2989 sEnGlobalInt(). 2990 2991 In some cases it may be desirable to disable interrupts globally but 2992 enable channel interrupts. This would allow the global interrupt 2993 status register to be used to determine which AIOPs need service. 2994*/ 2995static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags) 2996{ 2997 Byte_t Mask; /* Interrupt Mask Register */ 2998 2999 ChP->RxControl[2] |= 3000 ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN)); 3001 3002 out32(ChP->IndexAddr, ChP->RxControl); 3003 3004 ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN); 3005 3006 out32(ChP->IndexAddr, ChP->TxControl); 3007 3008 if (Flags & CHANINT_EN) { 3009 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum]; 3010 sOutB(ChP->IntMask, Mask); 3011 } 3012} 3013 3014/*************************************************************************** 3015Function: sDisInterrupts 3016Purpose: Disable one or more interrupts for a channel 3017Call: sDisInterrupts(ChP,Flags) 3018 CHANNEL_T *ChP; Ptr to channel structure 3019 Word_t Flags: Interrupt flags, can be any combination 3020 of the following flags: 3021 TXINT_EN: Interrupt on Tx FIFO empty 3022 RXINT_EN: Interrupt on Rx FIFO at trigger level (see 3023 sSetRxTrigger()) 3024 SRCINT_EN: Interrupt on SRC (Special Rx Condition) 3025 MCINT_EN: Interrupt on modem input change 3026 CHANINT_EN: Disable channel interrupt signal to the 3027 AIOP's Interrupt Channel Register. 3028Return: void 3029Comments: If an interrupt flag is set in Flags, that interrupt will be 3030 disabled. If an interrupt flag is not set in Flags, that 3031 interrupt will not be changed. Interrupts can be enabled with 3032 function sEnInterrupts(). 3033 3034 This function clears the appropriate bit for the channel in the AIOP's 3035 Interrupt Mask Register if the CHANINT_EN flag is set. This blocks 3036 this channel's bit from being set in the AIOP's Interrupt Channel 3037 Register. 3038*/ 3039static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags) 3040{ 3041 Byte_t Mask; /* Interrupt Mask Register */ 3042 3043 ChP->RxControl[2] &= 3044 ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN)); 3045 out32(ChP->IndexAddr, ChP->RxControl); 3046 ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN); 3047 out32(ChP->IndexAddr, ChP->TxControl); 3048 3049 if (Flags & CHANINT_EN) { 3050 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum]; 3051 sOutB(ChP->IntMask, Mask); 3052 } 3053} 3054 3055static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode) 3056{ 3057 sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum); 3058} 3059 3060/* 3061 * Not an official SSCI function, but how to reset RocketModems. 3062 * ISA bus version 3063 */ 3064static void sModemReset(CONTROLLER_T * CtlP, int chan, int on) 3065{ 3066 ByteIO_t addr; 3067 Byte_t val; 3068 3069 addr = CtlP->AiopIO[0] + 0x400; 3070 val = sInB(CtlP->MReg3IO); 3071 /* if AIOP[1] is not enabled, enable it */ 3072 if ((val & 2) == 0) { 3073 val = sInB(CtlP->MReg2IO); 3074 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03)); 3075 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6)); 3076 } 3077 3078 sEnAiop(CtlP, 1); 3079 if (!on) 3080 addr += 8; 3081 sOutB(addr + chan, 0); /* apply or remove reset */ 3082 sDisAiop(CtlP, 1); 3083} 3084 3085/* 3086 * Not an official SSCI function, but how to reset RocketModems. 3087 * PCI bus version 3088 */ 3089static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on) 3090{ 3091 ByteIO_t addr; 3092 3093 addr = CtlP->AiopIO[0] + 0x40; /* 2nd AIOP */ 3094 if (!on) 3095 addr += 8; 3096 sOutB(addr + chan, 0); /* apply or remove reset */ 3097} 3098 3099/* Returns the line number given the controller (board), aiop and channel number */ 3100static unsigned char GetLineNumber(int ctrl, int aiop, int ch) 3101{ 3102 return lineNumbers[(ctrl << 5) | (aiop << 3) | ch]; 3103} 3104 3105/* 3106 * Stores the line number associated with a given controller (board), aiop 3107 * and channel number. 3108 * Returns: The line number assigned 3109 */ 3110static unsigned char SetLineNumber(int ctrl, int aiop, int ch) 3111{ 3112 lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++; 3113 return (nextLineNumber - 1); 3114}