at v4.15 18 kB view raw
1/* 2 * Software multibuffer async crypto daemon. 3 * 4 * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com> 5 * 6 * Adapted from crypto daemon. 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License as published by the Free 10 * Software Foundation; either version 2 of the License, or (at your option) 11 * any later version. 12 * 13 */ 14 15#include <crypto/algapi.h> 16#include <crypto/internal/hash.h> 17#include <crypto/internal/aead.h> 18#include <crypto/mcryptd.h> 19#include <crypto/crypto_wq.h> 20#include <linux/err.h> 21#include <linux/init.h> 22#include <linux/kernel.h> 23#include <linux/list.h> 24#include <linux/module.h> 25#include <linux/scatterlist.h> 26#include <linux/sched.h> 27#include <linux/sched/stat.h> 28#include <linux/slab.h> 29#include <linux/hardirq.h> 30 31#define MCRYPTD_MAX_CPU_QLEN 100 32#define MCRYPTD_BATCH 9 33 34static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head, 35 unsigned int tail); 36 37struct mcryptd_flush_list { 38 struct list_head list; 39 struct mutex lock; 40}; 41 42static struct mcryptd_flush_list __percpu *mcryptd_flist; 43 44struct hashd_instance_ctx { 45 struct crypto_ahash_spawn spawn; 46 struct mcryptd_queue *queue; 47}; 48 49static void mcryptd_queue_worker(struct work_struct *work); 50 51void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay) 52{ 53 struct mcryptd_flush_list *flist; 54 55 if (!cstate->flusher_engaged) { 56 /* put the flusher on the flush list */ 57 flist = per_cpu_ptr(mcryptd_flist, smp_processor_id()); 58 mutex_lock(&flist->lock); 59 list_add_tail(&cstate->flush_list, &flist->list); 60 cstate->flusher_engaged = true; 61 cstate->next_flush = jiffies + delay; 62 queue_delayed_work_on(smp_processor_id(), kcrypto_wq, 63 &cstate->flush, delay); 64 mutex_unlock(&flist->lock); 65 } 66} 67EXPORT_SYMBOL(mcryptd_arm_flusher); 68 69static int mcryptd_init_queue(struct mcryptd_queue *queue, 70 unsigned int max_cpu_qlen) 71{ 72 int cpu; 73 struct mcryptd_cpu_queue *cpu_queue; 74 75 queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue); 76 pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue); 77 if (!queue->cpu_queue) 78 return -ENOMEM; 79 for_each_possible_cpu(cpu) { 80 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); 81 pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue); 82 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen); 83 INIT_WORK(&cpu_queue->work, mcryptd_queue_worker); 84 spin_lock_init(&cpu_queue->q_lock); 85 } 86 return 0; 87} 88 89static void mcryptd_fini_queue(struct mcryptd_queue *queue) 90{ 91 int cpu; 92 struct mcryptd_cpu_queue *cpu_queue; 93 94 for_each_possible_cpu(cpu) { 95 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); 96 BUG_ON(cpu_queue->queue.qlen); 97 } 98 free_percpu(queue->cpu_queue); 99} 100 101static int mcryptd_enqueue_request(struct mcryptd_queue *queue, 102 struct crypto_async_request *request, 103 struct mcryptd_hash_request_ctx *rctx) 104{ 105 int cpu, err; 106 struct mcryptd_cpu_queue *cpu_queue; 107 108 cpu_queue = raw_cpu_ptr(queue->cpu_queue); 109 spin_lock(&cpu_queue->q_lock); 110 cpu = smp_processor_id(); 111 rctx->tag.cpu = smp_processor_id(); 112 113 err = crypto_enqueue_request(&cpu_queue->queue, request); 114 pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n", 115 cpu, cpu_queue, request); 116 spin_unlock(&cpu_queue->q_lock); 117 queue_work_on(cpu, kcrypto_wq, &cpu_queue->work); 118 119 return err; 120} 121 122/* 123 * Try to opportunisticlly flush the partially completed jobs if 124 * crypto daemon is the only task running. 125 */ 126static void mcryptd_opportunistic_flush(void) 127{ 128 struct mcryptd_flush_list *flist; 129 struct mcryptd_alg_cstate *cstate; 130 131 flist = per_cpu_ptr(mcryptd_flist, smp_processor_id()); 132 while (single_task_running()) { 133 mutex_lock(&flist->lock); 134 cstate = list_first_entry_or_null(&flist->list, 135 struct mcryptd_alg_cstate, flush_list); 136 if (!cstate || !cstate->flusher_engaged) { 137 mutex_unlock(&flist->lock); 138 return; 139 } 140 list_del(&cstate->flush_list); 141 cstate->flusher_engaged = false; 142 mutex_unlock(&flist->lock); 143 cstate->alg_state->flusher(cstate); 144 } 145} 146 147/* 148 * Called in workqueue context, do one real cryption work (via 149 * req->complete) and reschedule itself if there are more work to 150 * do. 151 */ 152static void mcryptd_queue_worker(struct work_struct *work) 153{ 154 struct mcryptd_cpu_queue *cpu_queue; 155 struct crypto_async_request *req, *backlog; 156 int i; 157 158 /* 159 * Need to loop through more than once for multi-buffer to 160 * be effective. 161 */ 162 163 cpu_queue = container_of(work, struct mcryptd_cpu_queue, work); 164 i = 0; 165 while (i < MCRYPTD_BATCH || single_task_running()) { 166 167 spin_lock_bh(&cpu_queue->q_lock); 168 backlog = crypto_get_backlog(&cpu_queue->queue); 169 req = crypto_dequeue_request(&cpu_queue->queue); 170 spin_unlock_bh(&cpu_queue->q_lock); 171 172 if (!req) { 173 mcryptd_opportunistic_flush(); 174 return; 175 } 176 177 if (backlog) 178 backlog->complete(backlog, -EINPROGRESS); 179 req->complete(req, 0); 180 if (!cpu_queue->queue.qlen) 181 return; 182 ++i; 183 } 184 if (cpu_queue->queue.qlen) 185 queue_work_on(smp_processor_id(), kcrypto_wq, &cpu_queue->work); 186} 187 188void mcryptd_flusher(struct work_struct *__work) 189{ 190 struct mcryptd_alg_cstate *alg_cpu_state; 191 struct mcryptd_alg_state *alg_state; 192 struct mcryptd_flush_list *flist; 193 int cpu; 194 195 cpu = smp_processor_id(); 196 alg_cpu_state = container_of(to_delayed_work(__work), 197 struct mcryptd_alg_cstate, flush); 198 alg_state = alg_cpu_state->alg_state; 199 if (alg_cpu_state->cpu != cpu) 200 pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n", 201 cpu, alg_cpu_state->cpu); 202 203 if (alg_cpu_state->flusher_engaged) { 204 flist = per_cpu_ptr(mcryptd_flist, cpu); 205 mutex_lock(&flist->lock); 206 list_del(&alg_cpu_state->flush_list); 207 alg_cpu_state->flusher_engaged = false; 208 mutex_unlock(&flist->lock); 209 alg_state->flusher(alg_cpu_state); 210 } 211} 212EXPORT_SYMBOL_GPL(mcryptd_flusher); 213 214static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm) 215{ 216 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); 217 struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst); 218 219 return ictx->queue; 220} 221 222static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head, 223 unsigned int tail) 224{ 225 char *p; 226 struct crypto_instance *inst; 227 int err; 228 229 p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL); 230 if (!p) 231 return ERR_PTR(-ENOMEM); 232 233 inst = (void *)(p + head); 234 235 err = -ENAMETOOLONG; 236 if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, 237 "mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME) 238 goto out_free_inst; 239 240 memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME); 241 242 inst->alg.cra_priority = alg->cra_priority + 50; 243 inst->alg.cra_blocksize = alg->cra_blocksize; 244 inst->alg.cra_alignmask = alg->cra_alignmask; 245 246out: 247 return p; 248 249out_free_inst: 250 kfree(p); 251 p = ERR_PTR(err); 252 goto out; 253} 254 255static inline bool mcryptd_check_internal(struct rtattr **tb, u32 *type, 256 u32 *mask) 257{ 258 struct crypto_attr_type *algt; 259 260 algt = crypto_get_attr_type(tb); 261 if (IS_ERR(algt)) 262 return false; 263 264 *type |= algt->type & CRYPTO_ALG_INTERNAL; 265 *mask |= algt->mask & CRYPTO_ALG_INTERNAL; 266 267 if (*type & *mask & CRYPTO_ALG_INTERNAL) 268 return true; 269 else 270 return false; 271} 272 273static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm) 274{ 275 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); 276 struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst); 277 struct crypto_ahash_spawn *spawn = &ictx->spawn; 278 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm); 279 struct crypto_ahash *hash; 280 281 hash = crypto_spawn_ahash(spawn); 282 if (IS_ERR(hash)) 283 return PTR_ERR(hash); 284 285 ctx->child = hash; 286 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), 287 sizeof(struct mcryptd_hash_request_ctx) + 288 crypto_ahash_reqsize(hash)); 289 return 0; 290} 291 292static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm) 293{ 294 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm); 295 296 crypto_free_ahash(ctx->child); 297} 298 299static int mcryptd_hash_setkey(struct crypto_ahash *parent, 300 const u8 *key, unsigned int keylen) 301{ 302 struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(parent); 303 struct crypto_ahash *child = ctx->child; 304 int err; 305 306 crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK); 307 crypto_ahash_set_flags(child, crypto_ahash_get_flags(parent) & 308 CRYPTO_TFM_REQ_MASK); 309 err = crypto_ahash_setkey(child, key, keylen); 310 crypto_ahash_set_flags(parent, crypto_ahash_get_flags(child) & 311 CRYPTO_TFM_RES_MASK); 312 return err; 313} 314 315static int mcryptd_hash_enqueue(struct ahash_request *req, 316 crypto_completion_t complete) 317{ 318 int ret; 319 320 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 321 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 322 struct mcryptd_queue *queue = 323 mcryptd_get_queue(crypto_ahash_tfm(tfm)); 324 325 rctx->complete = req->base.complete; 326 req->base.complete = complete; 327 328 ret = mcryptd_enqueue_request(queue, &req->base, rctx); 329 330 return ret; 331} 332 333static void mcryptd_hash_init(struct crypto_async_request *req_async, int err) 334{ 335 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm); 336 struct crypto_ahash *child = ctx->child; 337 struct ahash_request *req = ahash_request_cast(req_async); 338 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 339 struct ahash_request *desc = &rctx->areq; 340 341 if (unlikely(err == -EINPROGRESS)) 342 goto out; 343 344 ahash_request_set_tfm(desc, child); 345 ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP, 346 rctx->complete, req_async); 347 348 rctx->out = req->result; 349 err = crypto_ahash_init(desc); 350 351out: 352 local_bh_disable(); 353 rctx->complete(&req->base, err); 354 local_bh_enable(); 355} 356 357static int mcryptd_hash_init_enqueue(struct ahash_request *req) 358{ 359 return mcryptd_hash_enqueue(req, mcryptd_hash_init); 360} 361 362static void mcryptd_hash_update(struct crypto_async_request *req_async, int err) 363{ 364 struct ahash_request *req = ahash_request_cast(req_async); 365 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 366 367 if (unlikely(err == -EINPROGRESS)) 368 goto out; 369 370 rctx->out = req->result; 371 err = ahash_mcryptd_update(&rctx->areq); 372 if (err) { 373 req->base.complete = rctx->complete; 374 goto out; 375 } 376 377 return; 378out: 379 local_bh_disable(); 380 rctx->complete(&req->base, err); 381 local_bh_enable(); 382} 383 384static int mcryptd_hash_update_enqueue(struct ahash_request *req) 385{ 386 return mcryptd_hash_enqueue(req, mcryptd_hash_update); 387} 388 389static void mcryptd_hash_final(struct crypto_async_request *req_async, int err) 390{ 391 struct ahash_request *req = ahash_request_cast(req_async); 392 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 393 394 if (unlikely(err == -EINPROGRESS)) 395 goto out; 396 397 rctx->out = req->result; 398 err = ahash_mcryptd_final(&rctx->areq); 399 if (err) { 400 req->base.complete = rctx->complete; 401 goto out; 402 } 403 404 return; 405out: 406 local_bh_disable(); 407 rctx->complete(&req->base, err); 408 local_bh_enable(); 409} 410 411static int mcryptd_hash_final_enqueue(struct ahash_request *req) 412{ 413 return mcryptd_hash_enqueue(req, mcryptd_hash_final); 414} 415 416static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err) 417{ 418 struct ahash_request *req = ahash_request_cast(req_async); 419 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 420 421 if (unlikely(err == -EINPROGRESS)) 422 goto out; 423 rctx->out = req->result; 424 err = ahash_mcryptd_finup(&rctx->areq); 425 426 if (err) { 427 req->base.complete = rctx->complete; 428 goto out; 429 } 430 431 return; 432out: 433 local_bh_disable(); 434 rctx->complete(&req->base, err); 435 local_bh_enable(); 436} 437 438static int mcryptd_hash_finup_enqueue(struct ahash_request *req) 439{ 440 return mcryptd_hash_enqueue(req, mcryptd_hash_finup); 441} 442 443static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err) 444{ 445 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm); 446 struct crypto_ahash *child = ctx->child; 447 struct ahash_request *req = ahash_request_cast(req_async); 448 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 449 struct ahash_request *desc = &rctx->areq; 450 451 if (unlikely(err == -EINPROGRESS)) 452 goto out; 453 454 ahash_request_set_tfm(desc, child); 455 ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP, 456 rctx->complete, req_async); 457 458 rctx->out = req->result; 459 err = ahash_mcryptd_digest(desc); 460 461out: 462 local_bh_disable(); 463 rctx->complete(&req->base, err); 464 local_bh_enable(); 465} 466 467static int mcryptd_hash_digest_enqueue(struct ahash_request *req) 468{ 469 return mcryptd_hash_enqueue(req, mcryptd_hash_digest); 470} 471 472static int mcryptd_hash_export(struct ahash_request *req, void *out) 473{ 474 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 475 476 return crypto_ahash_export(&rctx->areq, out); 477} 478 479static int mcryptd_hash_import(struct ahash_request *req, const void *in) 480{ 481 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 482 483 return crypto_ahash_import(&rctx->areq, in); 484} 485 486static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb, 487 struct mcryptd_queue *queue) 488{ 489 struct hashd_instance_ctx *ctx; 490 struct ahash_instance *inst; 491 struct hash_alg_common *halg; 492 struct crypto_alg *alg; 493 u32 type = 0; 494 u32 mask = 0; 495 int err; 496 497 if (!mcryptd_check_internal(tb, &type, &mask)) 498 return -EINVAL; 499 500 halg = ahash_attr_alg(tb[1], type, mask); 501 if (IS_ERR(halg)) 502 return PTR_ERR(halg); 503 504 alg = &halg->base; 505 pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name); 506 inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(), 507 sizeof(*ctx)); 508 err = PTR_ERR(inst); 509 if (IS_ERR(inst)) 510 goto out_put_alg; 511 512 ctx = ahash_instance_ctx(inst); 513 ctx->queue = queue; 514 515 err = crypto_init_ahash_spawn(&ctx->spawn, halg, 516 ahash_crypto_instance(inst)); 517 if (err) 518 goto out_free_inst; 519 520 type = CRYPTO_ALG_ASYNC; 521 if (alg->cra_flags & CRYPTO_ALG_INTERNAL) 522 type |= CRYPTO_ALG_INTERNAL; 523 inst->alg.halg.base.cra_flags = type; 524 525 inst->alg.halg.digestsize = halg->digestsize; 526 inst->alg.halg.statesize = halg->statesize; 527 inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx); 528 529 inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm; 530 inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm; 531 532 inst->alg.init = mcryptd_hash_init_enqueue; 533 inst->alg.update = mcryptd_hash_update_enqueue; 534 inst->alg.final = mcryptd_hash_final_enqueue; 535 inst->alg.finup = mcryptd_hash_finup_enqueue; 536 inst->alg.export = mcryptd_hash_export; 537 inst->alg.import = mcryptd_hash_import; 538 inst->alg.setkey = mcryptd_hash_setkey; 539 inst->alg.digest = mcryptd_hash_digest_enqueue; 540 541 err = ahash_register_instance(tmpl, inst); 542 if (err) { 543 crypto_drop_ahash(&ctx->spawn); 544out_free_inst: 545 kfree(inst); 546 } 547 548out_put_alg: 549 crypto_mod_put(alg); 550 return err; 551} 552 553static struct mcryptd_queue mqueue; 554 555static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb) 556{ 557 struct crypto_attr_type *algt; 558 559 algt = crypto_get_attr_type(tb); 560 if (IS_ERR(algt)) 561 return PTR_ERR(algt); 562 563 switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) { 564 case CRYPTO_ALG_TYPE_DIGEST: 565 return mcryptd_create_hash(tmpl, tb, &mqueue); 566 break; 567 } 568 569 return -EINVAL; 570} 571 572static void mcryptd_free(struct crypto_instance *inst) 573{ 574 struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst); 575 struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst); 576 577 switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) { 578 case CRYPTO_ALG_TYPE_AHASH: 579 crypto_drop_ahash(&hctx->spawn); 580 kfree(ahash_instance(inst)); 581 return; 582 default: 583 crypto_drop_spawn(&ctx->spawn); 584 kfree(inst); 585 } 586} 587 588static struct crypto_template mcryptd_tmpl = { 589 .name = "mcryptd", 590 .create = mcryptd_create, 591 .free = mcryptd_free, 592 .module = THIS_MODULE, 593}; 594 595struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name, 596 u32 type, u32 mask) 597{ 598 char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME]; 599 struct crypto_ahash *tfm; 600 601 if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME, 602 "mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) 603 return ERR_PTR(-EINVAL); 604 tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask); 605 if (IS_ERR(tfm)) 606 return ERR_CAST(tfm); 607 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) { 608 crypto_free_ahash(tfm); 609 return ERR_PTR(-EINVAL); 610 } 611 612 return __mcryptd_ahash_cast(tfm); 613} 614EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash); 615 616int ahash_mcryptd_digest(struct ahash_request *desc) 617{ 618 return crypto_ahash_init(desc) ?: ahash_mcryptd_finup(desc); 619} 620 621int ahash_mcryptd_update(struct ahash_request *desc) 622{ 623 /* alignment is to be done by multi-buffer crypto algorithm if needed */ 624 625 return crypto_ahash_update(desc); 626} 627 628int ahash_mcryptd_finup(struct ahash_request *desc) 629{ 630 /* alignment is to be done by multi-buffer crypto algorithm if needed */ 631 632 return crypto_ahash_finup(desc); 633} 634 635int ahash_mcryptd_final(struct ahash_request *desc) 636{ 637 /* alignment is to be done by multi-buffer crypto algorithm if needed */ 638 639 return crypto_ahash_final(desc); 640} 641 642struct crypto_ahash *mcryptd_ahash_child(struct mcryptd_ahash *tfm) 643{ 644 struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base); 645 646 return ctx->child; 647} 648EXPORT_SYMBOL_GPL(mcryptd_ahash_child); 649 650struct ahash_request *mcryptd_ahash_desc(struct ahash_request *req) 651{ 652 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 653 return &rctx->areq; 654} 655EXPORT_SYMBOL_GPL(mcryptd_ahash_desc); 656 657void mcryptd_free_ahash(struct mcryptd_ahash *tfm) 658{ 659 crypto_free_ahash(&tfm->base); 660} 661EXPORT_SYMBOL_GPL(mcryptd_free_ahash); 662 663static int __init mcryptd_init(void) 664{ 665 int err, cpu; 666 struct mcryptd_flush_list *flist; 667 668 mcryptd_flist = alloc_percpu(struct mcryptd_flush_list); 669 for_each_possible_cpu(cpu) { 670 flist = per_cpu_ptr(mcryptd_flist, cpu); 671 INIT_LIST_HEAD(&flist->list); 672 mutex_init(&flist->lock); 673 } 674 675 err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN); 676 if (err) { 677 free_percpu(mcryptd_flist); 678 return err; 679 } 680 681 err = crypto_register_template(&mcryptd_tmpl); 682 if (err) { 683 mcryptd_fini_queue(&mqueue); 684 free_percpu(mcryptd_flist); 685 } 686 687 return err; 688} 689 690static void __exit mcryptd_exit(void) 691{ 692 mcryptd_fini_queue(&mqueue); 693 crypto_unregister_template(&mcryptd_tmpl); 694 free_percpu(mcryptd_flist); 695} 696 697subsys_initcall(mcryptd_init); 698module_exit(mcryptd_exit); 699 700MODULE_LICENSE("GPL"); 701MODULE_DESCRIPTION("Software async multibuffer crypto daemon"); 702MODULE_ALIAS_CRYPTO("mcryptd");