Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_PROCESSOR_H
3#define _ASM_X86_PROCESSOR_H
4
5#include <asm/processor-flags.h>
6
7/* Forward declaration, a strange C thing */
8struct task_struct;
9struct mm_struct;
10struct vm86;
11
12#include <asm/math_emu.h>
13#include <asm/segment.h>
14#include <asm/types.h>
15#include <uapi/asm/sigcontext.h>
16#include <asm/current.h>
17#include <asm/cpufeatures.h>
18#include <asm/page.h>
19#include <asm/pgtable_types.h>
20#include <asm/percpu.h>
21#include <asm/msr.h>
22#include <asm/desc_defs.h>
23#include <asm/nops.h>
24#include <asm/special_insns.h>
25#include <asm/fpu/types.h>
26#include <asm/unwind_hints.h>
27
28#include <linux/personality.h>
29#include <linux/cache.h>
30#include <linux/threads.h>
31#include <linux/math64.h>
32#include <linux/err.h>
33#include <linux/irqflags.h>
34#include <linux/mem_encrypt.h>
35
36/*
37 * We handle most unaligned accesses in hardware. On the other hand
38 * unaligned DMA can be quite expensive on some Nehalem processors.
39 *
40 * Based on this we disable the IP header alignment in network drivers.
41 */
42#define NET_IP_ALIGN 0
43
44#define HBP_NUM 4
45/*
46 * Default implementation of macro that returns current
47 * instruction pointer ("program counter").
48 */
49static inline void *current_text_addr(void)
50{
51 void *pc;
52
53 asm volatile("mov $1f, %0; 1:":"=r" (pc));
54
55 return pc;
56}
57
58/*
59 * These alignment constraints are for performance in the vSMP case,
60 * but in the task_struct case we must also meet hardware imposed
61 * alignment requirements of the FPU state:
62 */
63#ifdef CONFIG_X86_VSMP
64# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
65# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
66#else
67# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
68# define ARCH_MIN_MMSTRUCT_ALIGN 0
69#endif
70
71enum tlb_infos {
72 ENTRIES,
73 NR_INFO
74};
75
76extern u16 __read_mostly tlb_lli_4k[NR_INFO];
77extern u16 __read_mostly tlb_lli_2m[NR_INFO];
78extern u16 __read_mostly tlb_lli_4m[NR_INFO];
79extern u16 __read_mostly tlb_lld_4k[NR_INFO];
80extern u16 __read_mostly tlb_lld_2m[NR_INFO];
81extern u16 __read_mostly tlb_lld_4m[NR_INFO];
82extern u16 __read_mostly tlb_lld_1g[NR_INFO];
83
84/*
85 * CPU type and hardware bug flags. Kept separately for each CPU.
86 * Members of this structure are referenced in head_32.S, so think twice
87 * before touching them. [mj]
88 */
89
90struct cpuinfo_x86 {
91 __u8 x86; /* CPU family */
92 __u8 x86_vendor; /* CPU vendor */
93 __u8 x86_model;
94 __u8 x86_mask;
95#ifdef CONFIG_X86_64
96 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
97 int x86_tlbsize;
98#endif
99 __u8 x86_virt_bits;
100 __u8 x86_phys_bits;
101 /* CPUID returned core id bits: */
102 __u8 x86_coreid_bits;
103 __u8 cu_id;
104 /* Max extended CPUID function supported: */
105 __u32 extended_cpuid_level;
106 /* Maximum supported CPUID level, -1=no CPUID: */
107 int cpuid_level;
108 __u32 x86_capability[NCAPINTS + NBUGINTS];
109 char x86_vendor_id[16];
110 char x86_model_id[64];
111 /* in KB - valid for CPUS which support this call: */
112 int x86_cache_size;
113 int x86_cache_alignment; /* In bytes */
114 /* Cache QoS architectural values: */
115 int x86_cache_max_rmid; /* max index */
116 int x86_cache_occ_scale; /* scale to bytes */
117 int x86_power;
118 unsigned long loops_per_jiffy;
119 /* cpuid returned max cores value: */
120 u16 x86_max_cores;
121 u16 apicid;
122 u16 initial_apicid;
123 u16 x86_clflush_size;
124 /* number of cores as seen by the OS: */
125 u16 booted_cores;
126 /* Physical processor id: */
127 u16 phys_proc_id;
128 /* Logical processor id: */
129 u16 logical_proc_id;
130 /* Core id: */
131 u16 cpu_core_id;
132 /* Index into per_cpu list: */
133 u16 cpu_index;
134 u32 microcode;
135 unsigned initialized : 1;
136} __randomize_layout;
137
138struct cpuid_regs {
139 u32 eax, ebx, ecx, edx;
140};
141
142enum cpuid_regs_idx {
143 CPUID_EAX = 0,
144 CPUID_EBX,
145 CPUID_ECX,
146 CPUID_EDX,
147};
148
149#define X86_VENDOR_INTEL 0
150#define X86_VENDOR_CYRIX 1
151#define X86_VENDOR_AMD 2
152#define X86_VENDOR_UMC 3
153#define X86_VENDOR_CENTAUR 5
154#define X86_VENDOR_TRANSMETA 7
155#define X86_VENDOR_NSC 8
156#define X86_VENDOR_NUM 9
157
158#define X86_VENDOR_UNKNOWN 0xff
159
160/*
161 * capabilities of CPUs
162 */
163extern struct cpuinfo_x86 boot_cpu_data;
164extern struct cpuinfo_x86 new_cpu_data;
165
166extern struct x86_hw_tss doublefault_tss;
167extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
168extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
169
170#ifdef CONFIG_SMP
171DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
172#define cpu_data(cpu) per_cpu(cpu_info, cpu)
173#else
174#define cpu_info boot_cpu_data
175#define cpu_data(cpu) boot_cpu_data
176#endif
177
178extern const struct seq_operations cpuinfo_op;
179
180#define cache_line_size() (boot_cpu_data.x86_cache_alignment)
181
182extern void cpu_detect(struct cpuinfo_x86 *c);
183
184extern void early_cpu_init(void);
185extern void identify_boot_cpu(void);
186extern void identify_secondary_cpu(struct cpuinfo_x86 *);
187extern void print_cpu_info(struct cpuinfo_x86 *);
188void print_cpu_msr(struct cpuinfo_x86 *);
189extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c);
190extern u32 get_scattered_cpuid_leaf(unsigned int level,
191 unsigned int sub_leaf,
192 enum cpuid_regs_idx reg);
193extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c);
194extern void init_amd_cacheinfo(struct cpuinfo_x86 *c);
195
196extern void detect_extended_topology(struct cpuinfo_x86 *c);
197extern void detect_ht(struct cpuinfo_x86 *c);
198
199#ifdef CONFIG_X86_32
200extern int have_cpuid_p(void);
201#else
202static inline int have_cpuid_p(void)
203{
204 return 1;
205}
206#endif
207static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
208 unsigned int *ecx, unsigned int *edx)
209{
210 /* ecx is often an input as well as an output. */
211 asm volatile("cpuid"
212 : "=a" (*eax),
213 "=b" (*ebx),
214 "=c" (*ecx),
215 "=d" (*edx)
216 : "0" (*eax), "2" (*ecx)
217 : "memory");
218}
219
220#define native_cpuid_reg(reg) \
221static inline unsigned int native_cpuid_##reg(unsigned int op) \
222{ \
223 unsigned int eax = op, ebx, ecx = 0, edx; \
224 \
225 native_cpuid(&eax, &ebx, &ecx, &edx); \
226 \
227 return reg; \
228}
229
230/*
231 * Native CPUID functions returning a single datum.
232 */
233native_cpuid_reg(eax)
234native_cpuid_reg(ebx)
235native_cpuid_reg(ecx)
236native_cpuid_reg(edx)
237
238/*
239 * Friendlier CR3 helpers.
240 */
241static inline unsigned long read_cr3_pa(void)
242{
243 return __read_cr3() & CR3_ADDR_MASK;
244}
245
246static inline unsigned long native_read_cr3_pa(void)
247{
248 return __native_read_cr3() & CR3_ADDR_MASK;
249}
250
251static inline void load_cr3(pgd_t *pgdir)
252{
253 write_cr3(__sme_pa(pgdir));
254}
255
256/*
257 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
258 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
259 * unrelated to the task-switch mechanism:
260 */
261#ifdef CONFIG_X86_32
262/* This is the TSS defined by the hardware. */
263struct x86_hw_tss {
264 unsigned short back_link, __blh;
265 unsigned long sp0;
266 unsigned short ss0, __ss0h;
267 unsigned long sp1;
268
269 /*
270 * We don't use ring 1, so ss1 is a convenient scratch space in
271 * the same cacheline as sp0. We use ss1 to cache the value in
272 * MSR_IA32_SYSENTER_CS. When we context switch
273 * MSR_IA32_SYSENTER_CS, we first check if the new value being
274 * written matches ss1, and, if it's not, then we wrmsr the new
275 * value and update ss1.
276 *
277 * The only reason we context switch MSR_IA32_SYSENTER_CS is
278 * that we set it to zero in vm86 tasks to avoid corrupting the
279 * stack if we were to go through the sysenter path from vm86
280 * mode.
281 */
282 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
283
284 unsigned short __ss1h;
285 unsigned long sp2;
286 unsigned short ss2, __ss2h;
287 unsigned long __cr3;
288 unsigned long ip;
289 unsigned long flags;
290 unsigned long ax;
291 unsigned long cx;
292 unsigned long dx;
293 unsigned long bx;
294 unsigned long sp;
295 unsigned long bp;
296 unsigned long si;
297 unsigned long di;
298 unsigned short es, __esh;
299 unsigned short cs, __csh;
300 unsigned short ss, __ssh;
301 unsigned short ds, __dsh;
302 unsigned short fs, __fsh;
303 unsigned short gs, __gsh;
304 unsigned short ldt, __ldth;
305 unsigned short trace;
306 unsigned short io_bitmap_base;
307
308} __attribute__((packed));
309#else
310struct x86_hw_tss {
311 u32 reserved1;
312 u64 sp0;
313
314 /*
315 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
316 * Linux does not use ring 1, so sp1 is not otherwise needed.
317 */
318 u64 sp1;
319
320 u64 sp2;
321 u64 reserved2;
322 u64 ist[7];
323 u32 reserved3;
324 u32 reserved4;
325 u16 reserved5;
326 u16 io_bitmap_base;
327
328} __attribute__((packed));
329#endif
330
331/*
332 * IO-bitmap sizes:
333 */
334#define IO_BITMAP_BITS 65536
335#define IO_BITMAP_BYTES (IO_BITMAP_BITS/8)
336#define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long))
337#define IO_BITMAP_OFFSET (offsetof(struct tss_struct, io_bitmap) - offsetof(struct tss_struct, x86_tss))
338#define INVALID_IO_BITMAP_OFFSET 0x8000
339
340struct entry_stack {
341 unsigned long words[64];
342};
343
344struct entry_stack_page {
345 struct entry_stack stack;
346} __aligned(PAGE_SIZE);
347
348struct tss_struct {
349 /*
350 * The fixed hardware portion. This must not cross a page boundary
351 * at risk of violating the SDM's advice and potentially triggering
352 * errata.
353 */
354 struct x86_hw_tss x86_tss;
355
356 /*
357 * The extra 1 is there because the CPU will access an
358 * additional byte beyond the end of the IO permission
359 * bitmap. The extra byte must be all 1 bits, and must
360 * be within the limit.
361 */
362 unsigned long io_bitmap[IO_BITMAP_LONGS + 1];
363} __aligned(PAGE_SIZE);
364
365DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
366
367/*
368 * sizeof(unsigned long) coming from an extra "long" at the end
369 * of the iobitmap.
370 *
371 * -1? seg base+limit should be pointing to the address of the
372 * last valid byte
373 */
374#define __KERNEL_TSS_LIMIT \
375 (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
376
377#ifdef CONFIG_X86_32
378DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
379#else
380/* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
381#define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
382#endif
383
384/*
385 * Save the original ist values for checking stack pointers during debugging
386 */
387struct orig_ist {
388 unsigned long ist[7];
389};
390
391#ifdef CONFIG_X86_64
392DECLARE_PER_CPU(struct orig_ist, orig_ist);
393
394union irq_stack_union {
395 char irq_stack[IRQ_STACK_SIZE];
396 /*
397 * GCC hardcodes the stack canary as %gs:40. Since the
398 * irq_stack is the object at %gs:0, we reserve the bottom
399 * 48 bytes of the irq stack for the canary.
400 */
401 struct {
402 char gs_base[40];
403 unsigned long stack_canary;
404 };
405};
406
407DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
408DECLARE_INIT_PER_CPU(irq_stack_union);
409
410DECLARE_PER_CPU(char *, irq_stack_ptr);
411DECLARE_PER_CPU(unsigned int, irq_count);
412extern asmlinkage void ignore_sysret(void);
413#else /* X86_64 */
414#ifdef CONFIG_CC_STACKPROTECTOR
415/*
416 * Make sure stack canary segment base is cached-aligned:
417 * "For Intel Atom processors, avoid non zero segment base address
418 * that is not aligned to cache line boundary at all cost."
419 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
420 */
421struct stack_canary {
422 char __pad[20]; /* canary at %gs:20 */
423 unsigned long canary;
424};
425DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
426#endif
427/*
428 * per-CPU IRQ handling stacks
429 */
430struct irq_stack {
431 u32 stack[THREAD_SIZE/sizeof(u32)];
432} __aligned(THREAD_SIZE);
433
434DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
435DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
436#endif /* X86_64 */
437
438extern unsigned int fpu_kernel_xstate_size;
439extern unsigned int fpu_user_xstate_size;
440
441struct perf_event;
442
443typedef struct {
444 unsigned long seg;
445} mm_segment_t;
446
447struct thread_struct {
448 /* Cached TLS descriptors: */
449 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
450#ifdef CONFIG_X86_32
451 unsigned long sp0;
452#endif
453 unsigned long sp;
454#ifdef CONFIG_X86_32
455 unsigned long sysenter_cs;
456#else
457 unsigned short es;
458 unsigned short ds;
459 unsigned short fsindex;
460 unsigned short gsindex;
461#endif
462
463 u32 status; /* thread synchronous flags */
464
465#ifdef CONFIG_X86_64
466 unsigned long fsbase;
467 unsigned long gsbase;
468#else
469 /*
470 * XXX: this could presumably be unsigned short. Alternatively,
471 * 32-bit kernels could be taught to use fsindex instead.
472 */
473 unsigned long fs;
474 unsigned long gs;
475#endif
476
477 /* Save middle states of ptrace breakpoints */
478 struct perf_event *ptrace_bps[HBP_NUM];
479 /* Debug status used for traps, single steps, etc... */
480 unsigned long debugreg6;
481 /* Keep track of the exact dr7 value set by the user */
482 unsigned long ptrace_dr7;
483 /* Fault info: */
484 unsigned long cr2;
485 unsigned long trap_nr;
486 unsigned long error_code;
487#ifdef CONFIG_VM86
488 /* Virtual 86 mode info */
489 struct vm86 *vm86;
490#endif
491 /* IO permissions: */
492 unsigned long *io_bitmap_ptr;
493 unsigned long iopl;
494 /* Max allowed port in the bitmap, in bytes: */
495 unsigned io_bitmap_max;
496
497 mm_segment_t addr_limit;
498
499 unsigned int sig_on_uaccess_err:1;
500 unsigned int uaccess_err:1; /* uaccess failed */
501
502 /* Floating point and extended processor state */
503 struct fpu fpu;
504 /*
505 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
506 * the end.
507 */
508};
509
510/*
511 * Thread-synchronous status.
512 *
513 * This is different from the flags in that nobody else
514 * ever touches our thread-synchronous status, so we don't
515 * have to worry about atomic accesses.
516 */
517#define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
518
519/*
520 * Set IOPL bits in EFLAGS from given mask
521 */
522static inline void native_set_iopl_mask(unsigned mask)
523{
524#ifdef CONFIG_X86_32
525 unsigned int reg;
526
527 asm volatile ("pushfl;"
528 "popl %0;"
529 "andl %1, %0;"
530 "orl %2, %0;"
531 "pushl %0;"
532 "popfl"
533 : "=&r" (reg)
534 : "i" (~X86_EFLAGS_IOPL), "r" (mask));
535#endif
536}
537
538static inline void
539native_load_sp0(unsigned long sp0)
540{
541 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
542}
543
544static inline void native_swapgs(void)
545{
546#ifdef CONFIG_X86_64
547 asm volatile("swapgs" ::: "memory");
548#endif
549}
550
551static inline unsigned long current_top_of_stack(void)
552{
553 /*
554 * We can't read directly from tss.sp0: sp0 on x86_32 is special in
555 * and around vm86 mode and sp0 on x86_64 is special because of the
556 * entry trampoline.
557 */
558 return this_cpu_read_stable(cpu_current_top_of_stack);
559}
560
561static inline bool on_thread_stack(void)
562{
563 return (unsigned long)(current_top_of_stack() -
564 current_stack_pointer) < THREAD_SIZE;
565}
566
567#ifdef CONFIG_PARAVIRT
568#include <asm/paravirt.h>
569#else
570#define __cpuid native_cpuid
571
572static inline void load_sp0(unsigned long sp0)
573{
574 native_load_sp0(sp0);
575}
576
577#define set_iopl_mask native_set_iopl_mask
578#endif /* CONFIG_PARAVIRT */
579
580/* Free all resources held by a thread. */
581extern void release_thread(struct task_struct *);
582
583unsigned long get_wchan(struct task_struct *p);
584
585/*
586 * Generic CPUID function
587 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
588 * resulting in stale register contents being returned.
589 */
590static inline void cpuid(unsigned int op,
591 unsigned int *eax, unsigned int *ebx,
592 unsigned int *ecx, unsigned int *edx)
593{
594 *eax = op;
595 *ecx = 0;
596 __cpuid(eax, ebx, ecx, edx);
597}
598
599/* Some CPUID calls want 'count' to be placed in ecx */
600static inline void cpuid_count(unsigned int op, int count,
601 unsigned int *eax, unsigned int *ebx,
602 unsigned int *ecx, unsigned int *edx)
603{
604 *eax = op;
605 *ecx = count;
606 __cpuid(eax, ebx, ecx, edx);
607}
608
609/*
610 * CPUID functions returning a single datum
611 */
612static inline unsigned int cpuid_eax(unsigned int op)
613{
614 unsigned int eax, ebx, ecx, edx;
615
616 cpuid(op, &eax, &ebx, &ecx, &edx);
617
618 return eax;
619}
620
621static inline unsigned int cpuid_ebx(unsigned int op)
622{
623 unsigned int eax, ebx, ecx, edx;
624
625 cpuid(op, &eax, &ebx, &ecx, &edx);
626
627 return ebx;
628}
629
630static inline unsigned int cpuid_ecx(unsigned int op)
631{
632 unsigned int eax, ebx, ecx, edx;
633
634 cpuid(op, &eax, &ebx, &ecx, &edx);
635
636 return ecx;
637}
638
639static inline unsigned int cpuid_edx(unsigned int op)
640{
641 unsigned int eax, ebx, ecx, edx;
642
643 cpuid(op, &eax, &ebx, &ecx, &edx);
644
645 return edx;
646}
647
648/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
649static __always_inline void rep_nop(void)
650{
651 asm volatile("rep; nop" ::: "memory");
652}
653
654static __always_inline void cpu_relax(void)
655{
656 rep_nop();
657}
658
659/*
660 * This function forces the icache and prefetched instruction stream to
661 * catch up with reality in two very specific cases:
662 *
663 * a) Text was modified using one virtual address and is about to be executed
664 * from the same physical page at a different virtual address.
665 *
666 * b) Text was modified on a different CPU, may subsequently be
667 * executed on this CPU, and you want to make sure the new version
668 * gets executed. This generally means you're calling this in a IPI.
669 *
670 * If you're calling this for a different reason, you're probably doing
671 * it wrong.
672 */
673static inline void sync_core(void)
674{
675 /*
676 * There are quite a few ways to do this. IRET-to-self is nice
677 * because it works on every CPU, at any CPL (so it's compatible
678 * with paravirtualization), and it never exits to a hypervisor.
679 * The only down sides are that it's a bit slow (it seems to be
680 * a bit more than 2x slower than the fastest options) and that
681 * it unmasks NMIs. The "push %cs" is needed because, in
682 * paravirtual environments, __KERNEL_CS may not be a valid CS
683 * value when we do IRET directly.
684 *
685 * In case NMI unmasking or performance ever becomes a problem,
686 * the next best option appears to be MOV-to-CR2 and an
687 * unconditional jump. That sequence also works on all CPUs,
688 * but it will fault at CPL3 (i.e. Xen PV).
689 *
690 * CPUID is the conventional way, but it's nasty: it doesn't
691 * exist on some 486-like CPUs, and it usually exits to a
692 * hypervisor.
693 *
694 * Like all of Linux's memory ordering operations, this is a
695 * compiler barrier as well.
696 */
697#ifdef CONFIG_X86_32
698 asm volatile (
699 "pushfl\n\t"
700 "pushl %%cs\n\t"
701 "pushl $1f\n\t"
702 "iret\n\t"
703 "1:"
704 : ASM_CALL_CONSTRAINT : : "memory");
705#else
706 unsigned int tmp;
707
708 asm volatile (
709 UNWIND_HINT_SAVE
710 "mov %%ss, %0\n\t"
711 "pushq %q0\n\t"
712 "pushq %%rsp\n\t"
713 "addq $8, (%%rsp)\n\t"
714 "pushfq\n\t"
715 "mov %%cs, %0\n\t"
716 "pushq %q0\n\t"
717 "pushq $1f\n\t"
718 "iretq\n\t"
719 UNWIND_HINT_RESTORE
720 "1:"
721 : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
722#endif
723}
724
725extern void select_idle_routine(const struct cpuinfo_x86 *c);
726extern void amd_e400_c1e_apic_setup(void);
727
728extern unsigned long boot_option_idle_override;
729
730enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
731 IDLE_POLL};
732
733extern void enable_sep_cpu(void);
734extern int sysenter_setup(void);
735
736extern void early_trap_init(void);
737void early_trap_pf_init(void);
738
739/* Defined in head.S */
740extern struct desc_ptr early_gdt_descr;
741
742extern void cpu_set_gdt(int);
743extern void switch_to_new_gdt(int);
744extern void load_direct_gdt(int);
745extern void load_fixmap_gdt(int);
746extern void load_percpu_segment(int);
747extern void cpu_init(void);
748
749static inline unsigned long get_debugctlmsr(void)
750{
751 unsigned long debugctlmsr = 0;
752
753#ifndef CONFIG_X86_DEBUGCTLMSR
754 if (boot_cpu_data.x86 < 6)
755 return 0;
756#endif
757 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
758
759 return debugctlmsr;
760}
761
762static inline void update_debugctlmsr(unsigned long debugctlmsr)
763{
764#ifndef CONFIG_X86_DEBUGCTLMSR
765 if (boot_cpu_data.x86 < 6)
766 return;
767#endif
768 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
769}
770
771extern void set_task_blockstep(struct task_struct *task, bool on);
772
773/* Boot loader type from the setup header: */
774extern int bootloader_type;
775extern int bootloader_version;
776
777extern char ignore_fpu_irq;
778
779#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
780#define ARCH_HAS_PREFETCHW
781#define ARCH_HAS_SPINLOCK_PREFETCH
782
783#ifdef CONFIG_X86_32
784# define BASE_PREFETCH ""
785# define ARCH_HAS_PREFETCH
786#else
787# define BASE_PREFETCH "prefetcht0 %P1"
788#endif
789
790/*
791 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
792 *
793 * It's not worth to care about 3dnow prefetches for the K6
794 * because they are microcoded there and very slow.
795 */
796static inline void prefetch(const void *x)
797{
798 alternative_input(BASE_PREFETCH, "prefetchnta %P1",
799 X86_FEATURE_XMM,
800 "m" (*(const char *)x));
801}
802
803/*
804 * 3dnow prefetch to get an exclusive cache line.
805 * Useful for spinlocks to avoid one state transition in the
806 * cache coherency protocol:
807 */
808static inline void prefetchw(const void *x)
809{
810 alternative_input(BASE_PREFETCH, "prefetchw %P1",
811 X86_FEATURE_3DNOWPREFETCH,
812 "m" (*(const char *)x));
813}
814
815static inline void spin_lock_prefetch(const void *x)
816{
817 prefetchw(x);
818}
819
820#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
821 TOP_OF_KERNEL_STACK_PADDING)
822
823#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
824
825#define task_pt_regs(task) \
826({ \
827 unsigned long __ptr = (unsigned long)task_stack_page(task); \
828 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
829 ((struct pt_regs *)__ptr) - 1; \
830})
831
832#ifdef CONFIG_X86_32
833/*
834 * User space process size: 3GB (default).
835 */
836#define IA32_PAGE_OFFSET PAGE_OFFSET
837#define TASK_SIZE PAGE_OFFSET
838#define TASK_SIZE_LOW TASK_SIZE
839#define TASK_SIZE_MAX TASK_SIZE
840#define DEFAULT_MAP_WINDOW TASK_SIZE
841#define STACK_TOP TASK_SIZE
842#define STACK_TOP_MAX STACK_TOP
843
844#define INIT_THREAD { \
845 .sp0 = TOP_OF_INIT_STACK, \
846 .sysenter_cs = __KERNEL_CS, \
847 .io_bitmap_ptr = NULL, \
848 .addr_limit = KERNEL_DS, \
849}
850
851#define KSTK_ESP(task) (task_pt_regs(task)->sp)
852
853#else
854/*
855 * User space process size. This is the first address outside the user range.
856 * There are a few constraints that determine this:
857 *
858 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
859 * address, then that syscall will enter the kernel with a
860 * non-canonical return address, and SYSRET will explode dangerously.
861 * We avoid this particular problem by preventing anything executable
862 * from being mapped at the maximum canonical address.
863 *
864 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
865 * CPUs malfunction if they execute code from the highest canonical page.
866 * They'll speculate right off the end of the canonical space, and
867 * bad things happen. This is worked around in the same way as the
868 * Intel problem.
869 *
870 * With page table isolation enabled, we map the LDT in ... [stay tuned]
871 */
872#define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
873
874#define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE)
875
876/* This decides where the kernel will search for a free chunk of vm
877 * space during mmap's.
878 */
879#define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
880 0xc0000000 : 0xFFFFe000)
881
882#define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \
883 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
884#define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
885 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
886#define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
887 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
888
889#define STACK_TOP TASK_SIZE_LOW
890#define STACK_TOP_MAX TASK_SIZE_MAX
891
892#define INIT_THREAD { \
893 .addr_limit = KERNEL_DS, \
894}
895
896extern unsigned long KSTK_ESP(struct task_struct *task);
897
898#endif /* CONFIG_X86_64 */
899
900extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
901 unsigned long new_sp);
902
903/*
904 * This decides where the kernel will search for a free chunk of vm
905 * space during mmap's.
906 */
907#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
908#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
909
910#define KSTK_EIP(task) (task_pt_regs(task)->ip)
911
912/* Get/set a process' ability to use the timestamp counter instruction */
913#define GET_TSC_CTL(adr) get_tsc_mode((adr))
914#define SET_TSC_CTL(val) set_tsc_mode((val))
915
916extern int get_tsc_mode(unsigned long adr);
917extern int set_tsc_mode(unsigned int val);
918
919DECLARE_PER_CPU(u64, msr_misc_features_shadow);
920
921/* Register/unregister a process' MPX related resource */
922#define MPX_ENABLE_MANAGEMENT() mpx_enable_management()
923#define MPX_DISABLE_MANAGEMENT() mpx_disable_management()
924
925#ifdef CONFIG_X86_INTEL_MPX
926extern int mpx_enable_management(void);
927extern int mpx_disable_management(void);
928#else
929static inline int mpx_enable_management(void)
930{
931 return -EINVAL;
932}
933static inline int mpx_disable_management(void)
934{
935 return -EINVAL;
936}
937#endif /* CONFIG_X86_INTEL_MPX */
938
939#ifdef CONFIG_CPU_SUP_AMD
940extern u16 amd_get_nb_id(int cpu);
941extern u32 amd_get_nodes_per_socket(void);
942#else
943static inline u16 amd_get_nb_id(int cpu) { return 0; }
944static inline u32 amd_get_nodes_per_socket(void) { return 0; }
945#endif
946
947static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
948{
949 uint32_t base, eax, signature[3];
950
951 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
952 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
953
954 if (!memcmp(sig, signature, 12) &&
955 (leaves == 0 || ((eax - base) >= leaves)))
956 return base;
957 }
958
959 return 0;
960}
961
962extern unsigned long arch_align_stack(unsigned long sp);
963extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
964
965void default_idle(void);
966#ifdef CONFIG_XEN
967bool xen_set_default_idle(void);
968#else
969#define xen_set_default_idle 0
970#endif
971
972void stop_this_cpu(void *dummy);
973void df_debug(struct pt_regs *regs, long error_code);
974#endif /* _ASM_X86_PROCESSOR_H */