at v4.15 974 lines 25 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _ASM_X86_PROCESSOR_H 3#define _ASM_X86_PROCESSOR_H 4 5#include <asm/processor-flags.h> 6 7/* Forward declaration, a strange C thing */ 8struct task_struct; 9struct mm_struct; 10struct vm86; 11 12#include <asm/math_emu.h> 13#include <asm/segment.h> 14#include <asm/types.h> 15#include <uapi/asm/sigcontext.h> 16#include <asm/current.h> 17#include <asm/cpufeatures.h> 18#include <asm/page.h> 19#include <asm/pgtable_types.h> 20#include <asm/percpu.h> 21#include <asm/msr.h> 22#include <asm/desc_defs.h> 23#include <asm/nops.h> 24#include <asm/special_insns.h> 25#include <asm/fpu/types.h> 26#include <asm/unwind_hints.h> 27 28#include <linux/personality.h> 29#include <linux/cache.h> 30#include <linux/threads.h> 31#include <linux/math64.h> 32#include <linux/err.h> 33#include <linux/irqflags.h> 34#include <linux/mem_encrypt.h> 35 36/* 37 * We handle most unaligned accesses in hardware. On the other hand 38 * unaligned DMA can be quite expensive on some Nehalem processors. 39 * 40 * Based on this we disable the IP header alignment in network drivers. 41 */ 42#define NET_IP_ALIGN 0 43 44#define HBP_NUM 4 45/* 46 * Default implementation of macro that returns current 47 * instruction pointer ("program counter"). 48 */ 49static inline void *current_text_addr(void) 50{ 51 void *pc; 52 53 asm volatile("mov $1f, %0; 1:":"=r" (pc)); 54 55 return pc; 56} 57 58/* 59 * These alignment constraints are for performance in the vSMP case, 60 * but in the task_struct case we must also meet hardware imposed 61 * alignment requirements of the FPU state: 62 */ 63#ifdef CONFIG_X86_VSMP 64# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT) 65# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT) 66#else 67# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state) 68# define ARCH_MIN_MMSTRUCT_ALIGN 0 69#endif 70 71enum tlb_infos { 72 ENTRIES, 73 NR_INFO 74}; 75 76extern u16 __read_mostly tlb_lli_4k[NR_INFO]; 77extern u16 __read_mostly tlb_lli_2m[NR_INFO]; 78extern u16 __read_mostly tlb_lli_4m[NR_INFO]; 79extern u16 __read_mostly tlb_lld_4k[NR_INFO]; 80extern u16 __read_mostly tlb_lld_2m[NR_INFO]; 81extern u16 __read_mostly tlb_lld_4m[NR_INFO]; 82extern u16 __read_mostly tlb_lld_1g[NR_INFO]; 83 84/* 85 * CPU type and hardware bug flags. Kept separately for each CPU. 86 * Members of this structure are referenced in head_32.S, so think twice 87 * before touching them. [mj] 88 */ 89 90struct cpuinfo_x86 { 91 __u8 x86; /* CPU family */ 92 __u8 x86_vendor; /* CPU vendor */ 93 __u8 x86_model; 94 __u8 x86_mask; 95#ifdef CONFIG_X86_64 96 /* Number of 4K pages in DTLB/ITLB combined(in pages): */ 97 int x86_tlbsize; 98#endif 99 __u8 x86_virt_bits; 100 __u8 x86_phys_bits; 101 /* CPUID returned core id bits: */ 102 __u8 x86_coreid_bits; 103 __u8 cu_id; 104 /* Max extended CPUID function supported: */ 105 __u32 extended_cpuid_level; 106 /* Maximum supported CPUID level, -1=no CPUID: */ 107 int cpuid_level; 108 __u32 x86_capability[NCAPINTS + NBUGINTS]; 109 char x86_vendor_id[16]; 110 char x86_model_id[64]; 111 /* in KB - valid for CPUS which support this call: */ 112 int x86_cache_size; 113 int x86_cache_alignment; /* In bytes */ 114 /* Cache QoS architectural values: */ 115 int x86_cache_max_rmid; /* max index */ 116 int x86_cache_occ_scale; /* scale to bytes */ 117 int x86_power; 118 unsigned long loops_per_jiffy; 119 /* cpuid returned max cores value: */ 120 u16 x86_max_cores; 121 u16 apicid; 122 u16 initial_apicid; 123 u16 x86_clflush_size; 124 /* number of cores as seen by the OS: */ 125 u16 booted_cores; 126 /* Physical processor id: */ 127 u16 phys_proc_id; 128 /* Logical processor id: */ 129 u16 logical_proc_id; 130 /* Core id: */ 131 u16 cpu_core_id; 132 /* Index into per_cpu list: */ 133 u16 cpu_index; 134 u32 microcode; 135 unsigned initialized : 1; 136} __randomize_layout; 137 138struct cpuid_regs { 139 u32 eax, ebx, ecx, edx; 140}; 141 142enum cpuid_regs_idx { 143 CPUID_EAX = 0, 144 CPUID_EBX, 145 CPUID_ECX, 146 CPUID_EDX, 147}; 148 149#define X86_VENDOR_INTEL 0 150#define X86_VENDOR_CYRIX 1 151#define X86_VENDOR_AMD 2 152#define X86_VENDOR_UMC 3 153#define X86_VENDOR_CENTAUR 5 154#define X86_VENDOR_TRANSMETA 7 155#define X86_VENDOR_NSC 8 156#define X86_VENDOR_NUM 9 157 158#define X86_VENDOR_UNKNOWN 0xff 159 160/* 161 * capabilities of CPUs 162 */ 163extern struct cpuinfo_x86 boot_cpu_data; 164extern struct cpuinfo_x86 new_cpu_data; 165 166extern struct x86_hw_tss doublefault_tss; 167extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS]; 168extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS]; 169 170#ifdef CONFIG_SMP 171DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 172#define cpu_data(cpu) per_cpu(cpu_info, cpu) 173#else 174#define cpu_info boot_cpu_data 175#define cpu_data(cpu) boot_cpu_data 176#endif 177 178extern const struct seq_operations cpuinfo_op; 179 180#define cache_line_size() (boot_cpu_data.x86_cache_alignment) 181 182extern void cpu_detect(struct cpuinfo_x86 *c); 183 184extern void early_cpu_init(void); 185extern void identify_boot_cpu(void); 186extern void identify_secondary_cpu(struct cpuinfo_x86 *); 187extern void print_cpu_info(struct cpuinfo_x86 *); 188void print_cpu_msr(struct cpuinfo_x86 *); 189extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c); 190extern u32 get_scattered_cpuid_leaf(unsigned int level, 191 unsigned int sub_leaf, 192 enum cpuid_regs_idx reg); 193extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c); 194extern void init_amd_cacheinfo(struct cpuinfo_x86 *c); 195 196extern void detect_extended_topology(struct cpuinfo_x86 *c); 197extern void detect_ht(struct cpuinfo_x86 *c); 198 199#ifdef CONFIG_X86_32 200extern int have_cpuid_p(void); 201#else 202static inline int have_cpuid_p(void) 203{ 204 return 1; 205} 206#endif 207static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, 208 unsigned int *ecx, unsigned int *edx) 209{ 210 /* ecx is often an input as well as an output. */ 211 asm volatile("cpuid" 212 : "=a" (*eax), 213 "=b" (*ebx), 214 "=c" (*ecx), 215 "=d" (*edx) 216 : "0" (*eax), "2" (*ecx) 217 : "memory"); 218} 219 220#define native_cpuid_reg(reg) \ 221static inline unsigned int native_cpuid_##reg(unsigned int op) \ 222{ \ 223 unsigned int eax = op, ebx, ecx = 0, edx; \ 224 \ 225 native_cpuid(&eax, &ebx, &ecx, &edx); \ 226 \ 227 return reg; \ 228} 229 230/* 231 * Native CPUID functions returning a single datum. 232 */ 233native_cpuid_reg(eax) 234native_cpuid_reg(ebx) 235native_cpuid_reg(ecx) 236native_cpuid_reg(edx) 237 238/* 239 * Friendlier CR3 helpers. 240 */ 241static inline unsigned long read_cr3_pa(void) 242{ 243 return __read_cr3() & CR3_ADDR_MASK; 244} 245 246static inline unsigned long native_read_cr3_pa(void) 247{ 248 return __native_read_cr3() & CR3_ADDR_MASK; 249} 250 251static inline void load_cr3(pgd_t *pgdir) 252{ 253 write_cr3(__sme_pa(pgdir)); 254} 255 256/* 257 * Note that while the legacy 'TSS' name comes from 'Task State Segment', 258 * on modern x86 CPUs the TSS also holds information important to 64-bit mode, 259 * unrelated to the task-switch mechanism: 260 */ 261#ifdef CONFIG_X86_32 262/* This is the TSS defined by the hardware. */ 263struct x86_hw_tss { 264 unsigned short back_link, __blh; 265 unsigned long sp0; 266 unsigned short ss0, __ss0h; 267 unsigned long sp1; 268 269 /* 270 * We don't use ring 1, so ss1 is a convenient scratch space in 271 * the same cacheline as sp0. We use ss1 to cache the value in 272 * MSR_IA32_SYSENTER_CS. When we context switch 273 * MSR_IA32_SYSENTER_CS, we first check if the new value being 274 * written matches ss1, and, if it's not, then we wrmsr the new 275 * value and update ss1. 276 * 277 * The only reason we context switch MSR_IA32_SYSENTER_CS is 278 * that we set it to zero in vm86 tasks to avoid corrupting the 279 * stack if we were to go through the sysenter path from vm86 280 * mode. 281 */ 282 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */ 283 284 unsigned short __ss1h; 285 unsigned long sp2; 286 unsigned short ss2, __ss2h; 287 unsigned long __cr3; 288 unsigned long ip; 289 unsigned long flags; 290 unsigned long ax; 291 unsigned long cx; 292 unsigned long dx; 293 unsigned long bx; 294 unsigned long sp; 295 unsigned long bp; 296 unsigned long si; 297 unsigned long di; 298 unsigned short es, __esh; 299 unsigned short cs, __csh; 300 unsigned short ss, __ssh; 301 unsigned short ds, __dsh; 302 unsigned short fs, __fsh; 303 unsigned short gs, __gsh; 304 unsigned short ldt, __ldth; 305 unsigned short trace; 306 unsigned short io_bitmap_base; 307 308} __attribute__((packed)); 309#else 310struct x86_hw_tss { 311 u32 reserved1; 312 u64 sp0; 313 314 /* 315 * We store cpu_current_top_of_stack in sp1 so it's always accessible. 316 * Linux does not use ring 1, so sp1 is not otherwise needed. 317 */ 318 u64 sp1; 319 320 u64 sp2; 321 u64 reserved2; 322 u64 ist[7]; 323 u32 reserved3; 324 u32 reserved4; 325 u16 reserved5; 326 u16 io_bitmap_base; 327 328} __attribute__((packed)); 329#endif 330 331/* 332 * IO-bitmap sizes: 333 */ 334#define IO_BITMAP_BITS 65536 335#define IO_BITMAP_BYTES (IO_BITMAP_BITS/8) 336#define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long)) 337#define IO_BITMAP_OFFSET (offsetof(struct tss_struct, io_bitmap) - offsetof(struct tss_struct, x86_tss)) 338#define INVALID_IO_BITMAP_OFFSET 0x8000 339 340struct entry_stack { 341 unsigned long words[64]; 342}; 343 344struct entry_stack_page { 345 struct entry_stack stack; 346} __aligned(PAGE_SIZE); 347 348struct tss_struct { 349 /* 350 * The fixed hardware portion. This must not cross a page boundary 351 * at risk of violating the SDM's advice and potentially triggering 352 * errata. 353 */ 354 struct x86_hw_tss x86_tss; 355 356 /* 357 * The extra 1 is there because the CPU will access an 358 * additional byte beyond the end of the IO permission 359 * bitmap. The extra byte must be all 1 bits, and must 360 * be within the limit. 361 */ 362 unsigned long io_bitmap[IO_BITMAP_LONGS + 1]; 363} __aligned(PAGE_SIZE); 364 365DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw); 366 367/* 368 * sizeof(unsigned long) coming from an extra "long" at the end 369 * of the iobitmap. 370 * 371 * -1? seg base+limit should be pointing to the address of the 372 * last valid byte 373 */ 374#define __KERNEL_TSS_LIMIT \ 375 (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1) 376 377#ifdef CONFIG_X86_32 378DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack); 379#else 380/* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */ 381#define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1 382#endif 383 384/* 385 * Save the original ist values for checking stack pointers during debugging 386 */ 387struct orig_ist { 388 unsigned long ist[7]; 389}; 390 391#ifdef CONFIG_X86_64 392DECLARE_PER_CPU(struct orig_ist, orig_ist); 393 394union irq_stack_union { 395 char irq_stack[IRQ_STACK_SIZE]; 396 /* 397 * GCC hardcodes the stack canary as %gs:40. Since the 398 * irq_stack is the object at %gs:0, we reserve the bottom 399 * 48 bytes of the irq stack for the canary. 400 */ 401 struct { 402 char gs_base[40]; 403 unsigned long stack_canary; 404 }; 405}; 406 407DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible; 408DECLARE_INIT_PER_CPU(irq_stack_union); 409 410DECLARE_PER_CPU(char *, irq_stack_ptr); 411DECLARE_PER_CPU(unsigned int, irq_count); 412extern asmlinkage void ignore_sysret(void); 413#else /* X86_64 */ 414#ifdef CONFIG_CC_STACKPROTECTOR 415/* 416 * Make sure stack canary segment base is cached-aligned: 417 * "For Intel Atom processors, avoid non zero segment base address 418 * that is not aligned to cache line boundary at all cost." 419 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.) 420 */ 421struct stack_canary { 422 char __pad[20]; /* canary at %gs:20 */ 423 unsigned long canary; 424}; 425DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); 426#endif 427/* 428 * per-CPU IRQ handling stacks 429 */ 430struct irq_stack { 431 u32 stack[THREAD_SIZE/sizeof(u32)]; 432} __aligned(THREAD_SIZE); 433 434DECLARE_PER_CPU(struct irq_stack *, hardirq_stack); 435DECLARE_PER_CPU(struct irq_stack *, softirq_stack); 436#endif /* X86_64 */ 437 438extern unsigned int fpu_kernel_xstate_size; 439extern unsigned int fpu_user_xstate_size; 440 441struct perf_event; 442 443typedef struct { 444 unsigned long seg; 445} mm_segment_t; 446 447struct thread_struct { 448 /* Cached TLS descriptors: */ 449 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; 450#ifdef CONFIG_X86_32 451 unsigned long sp0; 452#endif 453 unsigned long sp; 454#ifdef CONFIG_X86_32 455 unsigned long sysenter_cs; 456#else 457 unsigned short es; 458 unsigned short ds; 459 unsigned short fsindex; 460 unsigned short gsindex; 461#endif 462 463 u32 status; /* thread synchronous flags */ 464 465#ifdef CONFIG_X86_64 466 unsigned long fsbase; 467 unsigned long gsbase; 468#else 469 /* 470 * XXX: this could presumably be unsigned short. Alternatively, 471 * 32-bit kernels could be taught to use fsindex instead. 472 */ 473 unsigned long fs; 474 unsigned long gs; 475#endif 476 477 /* Save middle states of ptrace breakpoints */ 478 struct perf_event *ptrace_bps[HBP_NUM]; 479 /* Debug status used for traps, single steps, etc... */ 480 unsigned long debugreg6; 481 /* Keep track of the exact dr7 value set by the user */ 482 unsigned long ptrace_dr7; 483 /* Fault info: */ 484 unsigned long cr2; 485 unsigned long trap_nr; 486 unsigned long error_code; 487#ifdef CONFIG_VM86 488 /* Virtual 86 mode info */ 489 struct vm86 *vm86; 490#endif 491 /* IO permissions: */ 492 unsigned long *io_bitmap_ptr; 493 unsigned long iopl; 494 /* Max allowed port in the bitmap, in bytes: */ 495 unsigned io_bitmap_max; 496 497 mm_segment_t addr_limit; 498 499 unsigned int sig_on_uaccess_err:1; 500 unsigned int uaccess_err:1; /* uaccess failed */ 501 502 /* Floating point and extended processor state */ 503 struct fpu fpu; 504 /* 505 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at 506 * the end. 507 */ 508}; 509 510/* 511 * Thread-synchronous status. 512 * 513 * This is different from the flags in that nobody else 514 * ever touches our thread-synchronous status, so we don't 515 * have to worry about atomic accesses. 516 */ 517#define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/ 518 519/* 520 * Set IOPL bits in EFLAGS from given mask 521 */ 522static inline void native_set_iopl_mask(unsigned mask) 523{ 524#ifdef CONFIG_X86_32 525 unsigned int reg; 526 527 asm volatile ("pushfl;" 528 "popl %0;" 529 "andl %1, %0;" 530 "orl %2, %0;" 531 "pushl %0;" 532 "popfl" 533 : "=&r" (reg) 534 : "i" (~X86_EFLAGS_IOPL), "r" (mask)); 535#endif 536} 537 538static inline void 539native_load_sp0(unsigned long sp0) 540{ 541 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0); 542} 543 544static inline void native_swapgs(void) 545{ 546#ifdef CONFIG_X86_64 547 asm volatile("swapgs" ::: "memory"); 548#endif 549} 550 551static inline unsigned long current_top_of_stack(void) 552{ 553 /* 554 * We can't read directly from tss.sp0: sp0 on x86_32 is special in 555 * and around vm86 mode and sp0 on x86_64 is special because of the 556 * entry trampoline. 557 */ 558 return this_cpu_read_stable(cpu_current_top_of_stack); 559} 560 561static inline bool on_thread_stack(void) 562{ 563 return (unsigned long)(current_top_of_stack() - 564 current_stack_pointer) < THREAD_SIZE; 565} 566 567#ifdef CONFIG_PARAVIRT 568#include <asm/paravirt.h> 569#else 570#define __cpuid native_cpuid 571 572static inline void load_sp0(unsigned long sp0) 573{ 574 native_load_sp0(sp0); 575} 576 577#define set_iopl_mask native_set_iopl_mask 578#endif /* CONFIG_PARAVIRT */ 579 580/* Free all resources held by a thread. */ 581extern void release_thread(struct task_struct *); 582 583unsigned long get_wchan(struct task_struct *p); 584 585/* 586 * Generic CPUID function 587 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx 588 * resulting in stale register contents being returned. 589 */ 590static inline void cpuid(unsigned int op, 591 unsigned int *eax, unsigned int *ebx, 592 unsigned int *ecx, unsigned int *edx) 593{ 594 *eax = op; 595 *ecx = 0; 596 __cpuid(eax, ebx, ecx, edx); 597} 598 599/* Some CPUID calls want 'count' to be placed in ecx */ 600static inline void cpuid_count(unsigned int op, int count, 601 unsigned int *eax, unsigned int *ebx, 602 unsigned int *ecx, unsigned int *edx) 603{ 604 *eax = op; 605 *ecx = count; 606 __cpuid(eax, ebx, ecx, edx); 607} 608 609/* 610 * CPUID functions returning a single datum 611 */ 612static inline unsigned int cpuid_eax(unsigned int op) 613{ 614 unsigned int eax, ebx, ecx, edx; 615 616 cpuid(op, &eax, &ebx, &ecx, &edx); 617 618 return eax; 619} 620 621static inline unsigned int cpuid_ebx(unsigned int op) 622{ 623 unsigned int eax, ebx, ecx, edx; 624 625 cpuid(op, &eax, &ebx, &ecx, &edx); 626 627 return ebx; 628} 629 630static inline unsigned int cpuid_ecx(unsigned int op) 631{ 632 unsigned int eax, ebx, ecx, edx; 633 634 cpuid(op, &eax, &ebx, &ecx, &edx); 635 636 return ecx; 637} 638 639static inline unsigned int cpuid_edx(unsigned int op) 640{ 641 unsigned int eax, ebx, ecx, edx; 642 643 cpuid(op, &eax, &ebx, &ecx, &edx); 644 645 return edx; 646} 647 648/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */ 649static __always_inline void rep_nop(void) 650{ 651 asm volatile("rep; nop" ::: "memory"); 652} 653 654static __always_inline void cpu_relax(void) 655{ 656 rep_nop(); 657} 658 659/* 660 * This function forces the icache and prefetched instruction stream to 661 * catch up with reality in two very specific cases: 662 * 663 * a) Text was modified using one virtual address and is about to be executed 664 * from the same physical page at a different virtual address. 665 * 666 * b) Text was modified on a different CPU, may subsequently be 667 * executed on this CPU, and you want to make sure the new version 668 * gets executed. This generally means you're calling this in a IPI. 669 * 670 * If you're calling this for a different reason, you're probably doing 671 * it wrong. 672 */ 673static inline void sync_core(void) 674{ 675 /* 676 * There are quite a few ways to do this. IRET-to-self is nice 677 * because it works on every CPU, at any CPL (so it's compatible 678 * with paravirtualization), and it never exits to a hypervisor. 679 * The only down sides are that it's a bit slow (it seems to be 680 * a bit more than 2x slower than the fastest options) and that 681 * it unmasks NMIs. The "push %cs" is needed because, in 682 * paravirtual environments, __KERNEL_CS may not be a valid CS 683 * value when we do IRET directly. 684 * 685 * In case NMI unmasking or performance ever becomes a problem, 686 * the next best option appears to be MOV-to-CR2 and an 687 * unconditional jump. That sequence also works on all CPUs, 688 * but it will fault at CPL3 (i.e. Xen PV). 689 * 690 * CPUID is the conventional way, but it's nasty: it doesn't 691 * exist on some 486-like CPUs, and it usually exits to a 692 * hypervisor. 693 * 694 * Like all of Linux's memory ordering operations, this is a 695 * compiler barrier as well. 696 */ 697#ifdef CONFIG_X86_32 698 asm volatile ( 699 "pushfl\n\t" 700 "pushl %%cs\n\t" 701 "pushl $1f\n\t" 702 "iret\n\t" 703 "1:" 704 : ASM_CALL_CONSTRAINT : : "memory"); 705#else 706 unsigned int tmp; 707 708 asm volatile ( 709 UNWIND_HINT_SAVE 710 "mov %%ss, %0\n\t" 711 "pushq %q0\n\t" 712 "pushq %%rsp\n\t" 713 "addq $8, (%%rsp)\n\t" 714 "pushfq\n\t" 715 "mov %%cs, %0\n\t" 716 "pushq %q0\n\t" 717 "pushq $1f\n\t" 718 "iretq\n\t" 719 UNWIND_HINT_RESTORE 720 "1:" 721 : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory"); 722#endif 723} 724 725extern void select_idle_routine(const struct cpuinfo_x86 *c); 726extern void amd_e400_c1e_apic_setup(void); 727 728extern unsigned long boot_option_idle_override; 729 730enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT, 731 IDLE_POLL}; 732 733extern void enable_sep_cpu(void); 734extern int sysenter_setup(void); 735 736extern void early_trap_init(void); 737void early_trap_pf_init(void); 738 739/* Defined in head.S */ 740extern struct desc_ptr early_gdt_descr; 741 742extern void cpu_set_gdt(int); 743extern void switch_to_new_gdt(int); 744extern void load_direct_gdt(int); 745extern void load_fixmap_gdt(int); 746extern void load_percpu_segment(int); 747extern void cpu_init(void); 748 749static inline unsigned long get_debugctlmsr(void) 750{ 751 unsigned long debugctlmsr = 0; 752 753#ifndef CONFIG_X86_DEBUGCTLMSR 754 if (boot_cpu_data.x86 < 6) 755 return 0; 756#endif 757 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 758 759 return debugctlmsr; 760} 761 762static inline void update_debugctlmsr(unsigned long debugctlmsr) 763{ 764#ifndef CONFIG_X86_DEBUGCTLMSR 765 if (boot_cpu_data.x86 < 6) 766 return; 767#endif 768 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 769} 770 771extern void set_task_blockstep(struct task_struct *task, bool on); 772 773/* Boot loader type from the setup header: */ 774extern int bootloader_type; 775extern int bootloader_version; 776 777extern char ignore_fpu_irq; 778 779#define HAVE_ARCH_PICK_MMAP_LAYOUT 1 780#define ARCH_HAS_PREFETCHW 781#define ARCH_HAS_SPINLOCK_PREFETCH 782 783#ifdef CONFIG_X86_32 784# define BASE_PREFETCH "" 785# define ARCH_HAS_PREFETCH 786#else 787# define BASE_PREFETCH "prefetcht0 %P1" 788#endif 789 790/* 791 * Prefetch instructions for Pentium III (+) and AMD Athlon (+) 792 * 793 * It's not worth to care about 3dnow prefetches for the K6 794 * because they are microcoded there and very slow. 795 */ 796static inline void prefetch(const void *x) 797{ 798 alternative_input(BASE_PREFETCH, "prefetchnta %P1", 799 X86_FEATURE_XMM, 800 "m" (*(const char *)x)); 801} 802 803/* 804 * 3dnow prefetch to get an exclusive cache line. 805 * Useful for spinlocks to avoid one state transition in the 806 * cache coherency protocol: 807 */ 808static inline void prefetchw(const void *x) 809{ 810 alternative_input(BASE_PREFETCH, "prefetchw %P1", 811 X86_FEATURE_3DNOWPREFETCH, 812 "m" (*(const char *)x)); 813} 814 815static inline void spin_lock_prefetch(const void *x) 816{ 817 prefetchw(x); 818} 819 820#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \ 821 TOP_OF_KERNEL_STACK_PADDING) 822 823#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1)) 824 825#define task_pt_regs(task) \ 826({ \ 827 unsigned long __ptr = (unsigned long)task_stack_page(task); \ 828 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \ 829 ((struct pt_regs *)__ptr) - 1; \ 830}) 831 832#ifdef CONFIG_X86_32 833/* 834 * User space process size: 3GB (default). 835 */ 836#define IA32_PAGE_OFFSET PAGE_OFFSET 837#define TASK_SIZE PAGE_OFFSET 838#define TASK_SIZE_LOW TASK_SIZE 839#define TASK_SIZE_MAX TASK_SIZE 840#define DEFAULT_MAP_WINDOW TASK_SIZE 841#define STACK_TOP TASK_SIZE 842#define STACK_TOP_MAX STACK_TOP 843 844#define INIT_THREAD { \ 845 .sp0 = TOP_OF_INIT_STACK, \ 846 .sysenter_cs = __KERNEL_CS, \ 847 .io_bitmap_ptr = NULL, \ 848 .addr_limit = KERNEL_DS, \ 849} 850 851#define KSTK_ESP(task) (task_pt_regs(task)->sp) 852 853#else 854/* 855 * User space process size. This is the first address outside the user range. 856 * There are a few constraints that determine this: 857 * 858 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical 859 * address, then that syscall will enter the kernel with a 860 * non-canonical return address, and SYSRET will explode dangerously. 861 * We avoid this particular problem by preventing anything executable 862 * from being mapped at the maximum canonical address. 863 * 864 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the 865 * CPUs malfunction if they execute code from the highest canonical page. 866 * They'll speculate right off the end of the canonical space, and 867 * bad things happen. This is worked around in the same way as the 868 * Intel problem. 869 * 870 * With page table isolation enabled, we map the LDT in ... [stay tuned] 871 */ 872#define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE) 873 874#define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE) 875 876/* This decides where the kernel will search for a free chunk of vm 877 * space during mmap's. 878 */ 879#define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \ 880 0xc0000000 : 0xFFFFe000) 881 882#define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \ 883 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW) 884#define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \ 885 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 886#define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \ 887 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 888 889#define STACK_TOP TASK_SIZE_LOW 890#define STACK_TOP_MAX TASK_SIZE_MAX 891 892#define INIT_THREAD { \ 893 .addr_limit = KERNEL_DS, \ 894} 895 896extern unsigned long KSTK_ESP(struct task_struct *task); 897 898#endif /* CONFIG_X86_64 */ 899 900extern void start_thread(struct pt_regs *regs, unsigned long new_ip, 901 unsigned long new_sp); 902 903/* 904 * This decides where the kernel will search for a free chunk of vm 905 * space during mmap's. 906 */ 907#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3)) 908#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW) 909 910#define KSTK_EIP(task) (task_pt_regs(task)->ip) 911 912/* Get/set a process' ability to use the timestamp counter instruction */ 913#define GET_TSC_CTL(adr) get_tsc_mode((adr)) 914#define SET_TSC_CTL(val) set_tsc_mode((val)) 915 916extern int get_tsc_mode(unsigned long adr); 917extern int set_tsc_mode(unsigned int val); 918 919DECLARE_PER_CPU(u64, msr_misc_features_shadow); 920 921/* Register/unregister a process' MPX related resource */ 922#define MPX_ENABLE_MANAGEMENT() mpx_enable_management() 923#define MPX_DISABLE_MANAGEMENT() mpx_disable_management() 924 925#ifdef CONFIG_X86_INTEL_MPX 926extern int mpx_enable_management(void); 927extern int mpx_disable_management(void); 928#else 929static inline int mpx_enable_management(void) 930{ 931 return -EINVAL; 932} 933static inline int mpx_disable_management(void) 934{ 935 return -EINVAL; 936} 937#endif /* CONFIG_X86_INTEL_MPX */ 938 939#ifdef CONFIG_CPU_SUP_AMD 940extern u16 amd_get_nb_id(int cpu); 941extern u32 amd_get_nodes_per_socket(void); 942#else 943static inline u16 amd_get_nb_id(int cpu) { return 0; } 944static inline u32 amd_get_nodes_per_socket(void) { return 0; } 945#endif 946 947static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves) 948{ 949 uint32_t base, eax, signature[3]; 950 951 for (base = 0x40000000; base < 0x40010000; base += 0x100) { 952 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]); 953 954 if (!memcmp(sig, signature, 12) && 955 (leaves == 0 || ((eax - base) >= leaves))) 956 return base; 957 } 958 959 return 0; 960} 961 962extern unsigned long arch_align_stack(unsigned long sp); 963extern void free_init_pages(char *what, unsigned long begin, unsigned long end); 964 965void default_idle(void); 966#ifdef CONFIG_XEN 967bool xen_set_default_idle(void); 968#else 969#define xen_set_default_idle 0 970#endif 971 972void stop_this_cpu(void *dummy); 973void df_debug(struct pt_regs *regs, long error_code); 974#endif /* _ASM_X86_PROCESSOR_H */