at v4.15-rc9 226 kB view raw
1/* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75#include <linux/uaccess.h> 76#include <linux/bitops.h> 77#include <linux/capability.h> 78#include <linux/cpu.h> 79#include <linux/types.h> 80#include <linux/kernel.h> 81#include <linux/hash.h> 82#include <linux/slab.h> 83#include <linux/sched.h> 84#include <linux/sched/mm.h> 85#include <linux/mutex.h> 86#include <linux/string.h> 87#include <linux/mm.h> 88#include <linux/socket.h> 89#include <linux/sockios.h> 90#include <linux/errno.h> 91#include <linux/interrupt.h> 92#include <linux/if_ether.h> 93#include <linux/netdevice.h> 94#include <linux/etherdevice.h> 95#include <linux/ethtool.h> 96#include <linux/notifier.h> 97#include <linux/skbuff.h> 98#include <linux/bpf.h> 99#include <linux/bpf_trace.h> 100#include <net/net_namespace.h> 101#include <net/sock.h> 102#include <net/busy_poll.h> 103#include <linux/rtnetlink.h> 104#include <linux/stat.h> 105#include <net/dst.h> 106#include <net/dst_metadata.h> 107#include <net/pkt_sched.h> 108#include <net/pkt_cls.h> 109#include <net/checksum.h> 110#include <net/xfrm.h> 111#include <linux/highmem.h> 112#include <linux/init.h> 113#include <linux/module.h> 114#include <linux/netpoll.h> 115#include <linux/rcupdate.h> 116#include <linux/delay.h> 117#include <net/iw_handler.h> 118#include <asm/current.h> 119#include <linux/audit.h> 120#include <linux/dmaengine.h> 121#include <linux/err.h> 122#include <linux/ctype.h> 123#include <linux/if_arp.h> 124#include <linux/if_vlan.h> 125#include <linux/ip.h> 126#include <net/ip.h> 127#include <net/mpls.h> 128#include <linux/ipv6.h> 129#include <linux/in.h> 130#include <linux/jhash.h> 131#include <linux/random.h> 132#include <trace/events/napi.h> 133#include <trace/events/net.h> 134#include <trace/events/skb.h> 135#include <linux/pci.h> 136#include <linux/inetdevice.h> 137#include <linux/cpu_rmap.h> 138#include <linux/static_key.h> 139#include <linux/hashtable.h> 140#include <linux/vmalloc.h> 141#include <linux/if_macvlan.h> 142#include <linux/errqueue.h> 143#include <linux/hrtimer.h> 144#include <linux/netfilter_ingress.h> 145#include <linux/crash_dump.h> 146#include <linux/sctp.h> 147#include <net/udp_tunnel.h> 148#include <linux/net_namespace.h> 149 150#include "net-sysfs.h" 151 152/* Instead of increasing this, you should create a hash table. */ 153#define MAX_GRO_SKBS 8 154 155/* This should be increased if a protocol with a bigger head is added. */ 156#define GRO_MAX_HEAD (MAX_HEADER + 128) 157 158static DEFINE_SPINLOCK(ptype_lock); 159static DEFINE_SPINLOCK(offload_lock); 160struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 161struct list_head ptype_all __read_mostly; /* Taps */ 162static struct list_head offload_base __read_mostly; 163 164static int netif_rx_internal(struct sk_buff *skb); 165static int call_netdevice_notifiers_info(unsigned long val, 166 struct netdev_notifier_info *info); 167static struct napi_struct *napi_by_id(unsigned int napi_id); 168 169/* 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 171 * semaphore. 172 * 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 174 * 175 * Writers must hold the rtnl semaphore while they loop through the 176 * dev_base_head list, and hold dev_base_lock for writing when they do the 177 * actual updates. This allows pure readers to access the list even 178 * while a writer is preparing to update it. 179 * 180 * To put it another way, dev_base_lock is held for writing only to 181 * protect against pure readers; the rtnl semaphore provides the 182 * protection against other writers. 183 * 184 * See, for example usages, register_netdevice() and 185 * unregister_netdevice(), which must be called with the rtnl 186 * semaphore held. 187 */ 188DEFINE_RWLOCK(dev_base_lock); 189EXPORT_SYMBOL(dev_base_lock); 190 191static DEFINE_MUTEX(ifalias_mutex); 192 193/* protects napi_hash addition/deletion and napi_gen_id */ 194static DEFINE_SPINLOCK(napi_hash_lock); 195 196static unsigned int napi_gen_id = NR_CPUS; 197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 198 199static seqcount_t devnet_rename_seq; 200 201static inline void dev_base_seq_inc(struct net *net) 202{ 203 while (++net->dev_base_seq == 0) 204 ; 205} 206 207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 208{ 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 210 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 212} 213 214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 215{ 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 217} 218 219static inline void rps_lock(struct softnet_data *sd) 220{ 221#ifdef CONFIG_RPS 222 spin_lock(&sd->input_pkt_queue.lock); 223#endif 224} 225 226static inline void rps_unlock(struct softnet_data *sd) 227{ 228#ifdef CONFIG_RPS 229 spin_unlock(&sd->input_pkt_queue.lock); 230#endif 231} 232 233/* Device list insertion */ 234static void list_netdevice(struct net_device *dev) 235{ 236 struct net *net = dev_net(dev); 237 238 ASSERT_RTNL(); 239 240 write_lock_bh(&dev_base_lock); 241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 243 hlist_add_head_rcu(&dev->index_hlist, 244 dev_index_hash(net, dev->ifindex)); 245 write_unlock_bh(&dev_base_lock); 246 247 dev_base_seq_inc(net); 248} 249 250/* Device list removal 251 * caller must respect a RCU grace period before freeing/reusing dev 252 */ 253static void unlist_netdevice(struct net_device *dev) 254{ 255 ASSERT_RTNL(); 256 257 /* Unlink dev from the device chain */ 258 write_lock_bh(&dev_base_lock); 259 list_del_rcu(&dev->dev_list); 260 hlist_del_rcu(&dev->name_hlist); 261 hlist_del_rcu(&dev->index_hlist); 262 write_unlock_bh(&dev_base_lock); 263 264 dev_base_seq_inc(dev_net(dev)); 265} 266 267/* 268 * Our notifier list 269 */ 270 271static RAW_NOTIFIER_HEAD(netdev_chain); 272 273/* 274 * Device drivers call our routines to queue packets here. We empty the 275 * queue in the local softnet handler. 276 */ 277 278DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 279EXPORT_PER_CPU_SYMBOL(softnet_data); 280 281#ifdef CONFIG_LOCKDEP 282/* 283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 284 * according to dev->type 285 */ 286static const unsigned short netdev_lock_type[] = { 287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 302 303static const char *const netdev_lock_name[] = { 304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 319 320static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 321static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 322 323static inline unsigned short netdev_lock_pos(unsigned short dev_type) 324{ 325 int i; 326 327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 328 if (netdev_lock_type[i] == dev_type) 329 return i; 330 /* the last key is used by default */ 331 return ARRAY_SIZE(netdev_lock_type) - 1; 332} 333 334static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 335 unsigned short dev_type) 336{ 337 int i; 338 339 i = netdev_lock_pos(dev_type); 340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 341 netdev_lock_name[i]); 342} 343 344static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 345{ 346 int i; 347 348 i = netdev_lock_pos(dev->type); 349 lockdep_set_class_and_name(&dev->addr_list_lock, 350 &netdev_addr_lock_key[i], 351 netdev_lock_name[i]); 352} 353#else 354static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 355 unsigned short dev_type) 356{ 357} 358static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 359{ 360} 361#endif 362 363/******************************************************************************* 364 * 365 * Protocol management and registration routines 366 * 367 *******************************************************************************/ 368 369 370/* 371 * Add a protocol ID to the list. Now that the input handler is 372 * smarter we can dispense with all the messy stuff that used to be 373 * here. 374 * 375 * BEWARE!!! Protocol handlers, mangling input packets, 376 * MUST BE last in hash buckets and checking protocol handlers 377 * MUST start from promiscuous ptype_all chain in net_bh. 378 * It is true now, do not change it. 379 * Explanation follows: if protocol handler, mangling packet, will 380 * be the first on list, it is not able to sense, that packet 381 * is cloned and should be copied-on-write, so that it will 382 * change it and subsequent readers will get broken packet. 383 * --ANK (980803) 384 */ 385 386static inline struct list_head *ptype_head(const struct packet_type *pt) 387{ 388 if (pt->type == htons(ETH_P_ALL)) 389 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 390 else 391 return pt->dev ? &pt->dev->ptype_specific : 392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 393} 394 395/** 396 * dev_add_pack - add packet handler 397 * @pt: packet type declaration 398 * 399 * Add a protocol handler to the networking stack. The passed &packet_type 400 * is linked into kernel lists and may not be freed until it has been 401 * removed from the kernel lists. 402 * 403 * This call does not sleep therefore it can not 404 * guarantee all CPU's that are in middle of receiving packets 405 * will see the new packet type (until the next received packet). 406 */ 407 408void dev_add_pack(struct packet_type *pt) 409{ 410 struct list_head *head = ptype_head(pt); 411 412 spin_lock(&ptype_lock); 413 list_add_rcu(&pt->list, head); 414 spin_unlock(&ptype_lock); 415} 416EXPORT_SYMBOL(dev_add_pack); 417 418/** 419 * __dev_remove_pack - remove packet handler 420 * @pt: packet type declaration 421 * 422 * Remove a protocol handler that was previously added to the kernel 423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 424 * from the kernel lists and can be freed or reused once this function 425 * returns. 426 * 427 * The packet type might still be in use by receivers 428 * and must not be freed until after all the CPU's have gone 429 * through a quiescent state. 430 */ 431void __dev_remove_pack(struct packet_type *pt) 432{ 433 struct list_head *head = ptype_head(pt); 434 struct packet_type *pt1; 435 436 spin_lock(&ptype_lock); 437 438 list_for_each_entry(pt1, head, list) { 439 if (pt == pt1) { 440 list_del_rcu(&pt->list); 441 goto out; 442 } 443 } 444 445 pr_warn("dev_remove_pack: %p not found\n", pt); 446out: 447 spin_unlock(&ptype_lock); 448} 449EXPORT_SYMBOL(__dev_remove_pack); 450 451/** 452 * dev_remove_pack - remove packet handler 453 * @pt: packet type declaration 454 * 455 * Remove a protocol handler that was previously added to the kernel 456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 457 * from the kernel lists and can be freed or reused once this function 458 * returns. 459 * 460 * This call sleeps to guarantee that no CPU is looking at the packet 461 * type after return. 462 */ 463void dev_remove_pack(struct packet_type *pt) 464{ 465 __dev_remove_pack(pt); 466 467 synchronize_net(); 468} 469EXPORT_SYMBOL(dev_remove_pack); 470 471 472/** 473 * dev_add_offload - register offload handlers 474 * @po: protocol offload declaration 475 * 476 * Add protocol offload handlers to the networking stack. The passed 477 * &proto_offload is linked into kernel lists and may not be freed until 478 * it has been removed from the kernel lists. 479 * 480 * This call does not sleep therefore it can not 481 * guarantee all CPU's that are in middle of receiving packets 482 * will see the new offload handlers (until the next received packet). 483 */ 484void dev_add_offload(struct packet_offload *po) 485{ 486 struct packet_offload *elem; 487 488 spin_lock(&offload_lock); 489 list_for_each_entry(elem, &offload_base, list) { 490 if (po->priority < elem->priority) 491 break; 492 } 493 list_add_rcu(&po->list, elem->list.prev); 494 spin_unlock(&offload_lock); 495} 496EXPORT_SYMBOL(dev_add_offload); 497 498/** 499 * __dev_remove_offload - remove offload handler 500 * @po: packet offload declaration 501 * 502 * Remove a protocol offload handler that was previously added to the 503 * kernel offload handlers by dev_add_offload(). The passed &offload_type 504 * is removed from the kernel lists and can be freed or reused once this 505 * function returns. 506 * 507 * The packet type might still be in use by receivers 508 * and must not be freed until after all the CPU's have gone 509 * through a quiescent state. 510 */ 511static void __dev_remove_offload(struct packet_offload *po) 512{ 513 struct list_head *head = &offload_base; 514 struct packet_offload *po1; 515 516 spin_lock(&offload_lock); 517 518 list_for_each_entry(po1, head, list) { 519 if (po == po1) { 520 list_del_rcu(&po->list); 521 goto out; 522 } 523 } 524 525 pr_warn("dev_remove_offload: %p not found\n", po); 526out: 527 spin_unlock(&offload_lock); 528} 529 530/** 531 * dev_remove_offload - remove packet offload handler 532 * @po: packet offload declaration 533 * 534 * Remove a packet offload handler that was previously added to the kernel 535 * offload handlers by dev_add_offload(). The passed &offload_type is 536 * removed from the kernel lists and can be freed or reused once this 537 * function returns. 538 * 539 * This call sleeps to guarantee that no CPU is looking at the packet 540 * type after return. 541 */ 542void dev_remove_offload(struct packet_offload *po) 543{ 544 __dev_remove_offload(po); 545 546 synchronize_net(); 547} 548EXPORT_SYMBOL(dev_remove_offload); 549 550/****************************************************************************** 551 * 552 * Device Boot-time Settings Routines 553 * 554 ******************************************************************************/ 555 556/* Boot time configuration table */ 557static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 558 559/** 560 * netdev_boot_setup_add - add new setup entry 561 * @name: name of the device 562 * @map: configured settings for the device 563 * 564 * Adds new setup entry to the dev_boot_setup list. The function 565 * returns 0 on error and 1 on success. This is a generic routine to 566 * all netdevices. 567 */ 568static int netdev_boot_setup_add(char *name, struct ifmap *map) 569{ 570 struct netdev_boot_setup *s; 571 int i; 572 573 s = dev_boot_setup; 574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 576 memset(s[i].name, 0, sizeof(s[i].name)); 577 strlcpy(s[i].name, name, IFNAMSIZ); 578 memcpy(&s[i].map, map, sizeof(s[i].map)); 579 break; 580 } 581 } 582 583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 584} 585 586/** 587 * netdev_boot_setup_check - check boot time settings 588 * @dev: the netdevice 589 * 590 * Check boot time settings for the device. 591 * The found settings are set for the device to be used 592 * later in the device probing. 593 * Returns 0 if no settings found, 1 if they are. 594 */ 595int netdev_boot_setup_check(struct net_device *dev) 596{ 597 struct netdev_boot_setup *s = dev_boot_setup; 598 int i; 599 600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 602 !strcmp(dev->name, s[i].name)) { 603 dev->irq = s[i].map.irq; 604 dev->base_addr = s[i].map.base_addr; 605 dev->mem_start = s[i].map.mem_start; 606 dev->mem_end = s[i].map.mem_end; 607 return 1; 608 } 609 } 610 return 0; 611} 612EXPORT_SYMBOL(netdev_boot_setup_check); 613 614 615/** 616 * netdev_boot_base - get address from boot time settings 617 * @prefix: prefix for network device 618 * @unit: id for network device 619 * 620 * Check boot time settings for the base address of device. 621 * The found settings are set for the device to be used 622 * later in the device probing. 623 * Returns 0 if no settings found. 624 */ 625unsigned long netdev_boot_base(const char *prefix, int unit) 626{ 627 const struct netdev_boot_setup *s = dev_boot_setup; 628 char name[IFNAMSIZ]; 629 int i; 630 631 sprintf(name, "%s%d", prefix, unit); 632 633 /* 634 * If device already registered then return base of 1 635 * to indicate not to probe for this interface 636 */ 637 if (__dev_get_by_name(&init_net, name)) 638 return 1; 639 640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 641 if (!strcmp(name, s[i].name)) 642 return s[i].map.base_addr; 643 return 0; 644} 645 646/* 647 * Saves at boot time configured settings for any netdevice. 648 */ 649int __init netdev_boot_setup(char *str) 650{ 651 int ints[5]; 652 struct ifmap map; 653 654 str = get_options(str, ARRAY_SIZE(ints), ints); 655 if (!str || !*str) 656 return 0; 657 658 /* Save settings */ 659 memset(&map, 0, sizeof(map)); 660 if (ints[0] > 0) 661 map.irq = ints[1]; 662 if (ints[0] > 1) 663 map.base_addr = ints[2]; 664 if (ints[0] > 2) 665 map.mem_start = ints[3]; 666 if (ints[0] > 3) 667 map.mem_end = ints[4]; 668 669 /* Add new entry to the list */ 670 return netdev_boot_setup_add(str, &map); 671} 672 673__setup("netdev=", netdev_boot_setup); 674 675/******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681/** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689int dev_get_iflink(const struct net_device *dev) 690{ 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return dev->ifindex; 695} 696EXPORT_SYMBOL(dev_get_iflink); 697 698/** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708{ 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721} 722EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724/** 725 * __dev_get_by_name - find a device by its name 726 * @net: the applicable net namespace 727 * @name: name to find 728 * 729 * Find an interface by name. Must be called under RTNL semaphore 730 * or @dev_base_lock. If the name is found a pointer to the device 731 * is returned. If the name is not found then %NULL is returned. The 732 * reference counters are not incremented so the caller must be 733 * careful with locks. 734 */ 735 736struct net_device *__dev_get_by_name(struct net *net, const char *name) 737{ 738 struct net_device *dev; 739 struct hlist_head *head = dev_name_hash(net, name); 740 741 hlist_for_each_entry(dev, head, name_hlist) 742 if (!strncmp(dev->name, name, IFNAMSIZ)) 743 return dev; 744 745 return NULL; 746} 747EXPORT_SYMBOL(__dev_get_by_name); 748 749/** 750 * dev_get_by_name_rcu - find a device by its name 751 * @net: the applicable net namespace 752 * @name: name to find 753 * 754 * Find an interface by name. 755 * If the name is found a pointer to the device is returned. 756 * If the name is not found then %NULL is returned. 757 * The reference counters are not incremented so the caller must be 758 * careful with locks. The caller must hold RCU lock. 759 */ 760 761struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 762{ 763 struct net_device *dev; 764 struct hlist_head *head = dev_name_hash(net, name); 765 766 hlist_for_each_entry_rcu(dev, head, name_hlist) 767 if (!strncmp(dev->name, name, IFNAMSIZ)) 768 return dev; 769 770 return NULL; 771} 772EXPORT_SYMBOL(dev_get_by_name_rcu); 773 774/** 775 * dev_get_by_name - find a device by its name 776 * @net: the applicable net namespace 777 * @name: name to find 778 * 779 * Find an interface by name. This can be called from any 780 * context and does its own locking. The returned handle has 781 * the usage count incremented and the caller must use dev_put() to 782 * release it when it is no longer needed. %NULL is returned if no 783 * matching device is found. 784 */ 785 786struct net_device *dev_get_by_name(struct net *net, const char *name) 787{ 788 struct net_device *dev; 789 790 rcu_read_lock(); 791 dev = dev_get_by_name_rcu(net, name); 792 if (dev) 793 dev_hold(dev); 794 rcu_read_unlock(); 795 return dev; 796} 797EXPORT_SYMBOL(dev_get_by_name); 798 799/** 800 * __dev_get_by_index - find a device by its ifindex 801 * @net: the applicable net namespace 802 * @ifindex: index of device 803 * 804 * Search for an interface by index. Returns %NULL if the device 805 * is not found or a pointer to the device. The device has not 806 * had its reference counter increased so the caller must be careful 807 * about locking. The caller must hold either the RTNL semaphore 808 * or @dev_base_lock. 809 */ 810 811struct net_device *__dev_get_by_index(struct net *net, int ifindex) 812{ 813 struct net_device *dev; 814 struct hlist_head *head = dev_index_hash(net, ifindex); 815 816 hlist_for_each_entry(dev, head, index_hlist) 817 if (dev->ifindex == ifindex) 818 return dev; 819 820 return NULL; 821} 822EXPORT_SYMBOL(__dev_get_by_index); 823 824/** 825 * dev_get_by_index_rcu - find a device by its ifindex 826 * @net: the applicable net namespace 827 * @ifindex: index of device 828 * 829 * Search for an interface by index. Returns %NULL if the device 830 * is not found or a pointer to the device. The device has not 831 * had its reference counter increased so the caller must be careful 832 * about locking. The caller must hold RCU lock. 833 */ 834 835struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 836{ 837 struct net_device *dev; 838 struct hlist_head *head = dev_index_hash(net, ifindex); 839 840 hlist_for_each_entry_rcu(dev, head, index_hlist) 841 if (dev->ifindex == ifindex) 842 return dev; 843 844 return NULL; 845} 846EXPORT_SYMBOL(dev_get_by_index_rcu); 847 848 849/** 850 * dev_get_by_index - find a device by its ifindex 851 * @net: the applicable net namespace 852 * @ifindex: index of device 853 * 854 * Search for an interface by index. Returns NULL if the device 855 * is not found or a pointer to the device. The device returned has 856 * had a reference added and the pointer is safe until the user calls 857 * dev_put to indicate they have finished with it. 858 */ 859 860struct net_device *dev_get_by_index(struct net *net, int ifindex) 861{ 862 struct net_device *dev; 863 864 rcu_read_lock(); 865 dev = dev_get_by_index_rcu(net, ifindex); 866 if (dev) 867 dev_hold(dev); 868 rcu_read_unlock(); 869 return dev; 870} 871EXPORT_SYMBOL(dev_get_by_index); 872 873/** 874 * dev_get_by_napi_id - find a device by napi_id 875 * @napi_id: ID of the NAPI struct 876 * 877 * Search for an interface by NAPI ID. Returns %NULL if the device 878 * is not found or a pointer to the device. The device has not had 879 * its reference counter increased so the caller must be careful 880 * about locking. The caller must hold RCU lock. 881 */ 882 883struct net_device *dev_get_by_napi_id(unsigned int napi_id) 884{ 885 struct napi_struct *napi; 886 887 WARN_ON_ONCE(!rcu_read_lock_held()); 888 889 if (napi_id < MIN_NAPI_ID) 890 return NULL; 891 892 napi = napi_by_id(napi_id); 893 894 return napi ? napi->dev : NULL; 895} 896EXPORT_SYMBOL(dev_get_by_napi_id); 897 898/** 899 * netdev_get_name - get a netdevice name, knowing its ifindex. 900 * @net: network namespace 901 * @name: a pointer to the buffer where the name will be stored. 902 * @ifindex: the ifindex of the interface to get the name from. 903 * 904 * The use of raw_seqcount_begin() and cond_resched() before 905 * retrying is required as we want to give the writers a chance 906 * to complete when CONFIG_PREEMPT is not set. 907 */ 908int netdev_get_name(struct net *net, char *name, int ifindex) 909{ 910 struct net_device *dev; 911 unsigned int seq; 912 913retry: 914 seq = raw_seqcount_begin(&devnet_rename_seq); 915 rcu_read_lock(); 916 dev = dev_get_by_index_rcu(net, ifindex); 917 if (!dev) { 918 rcu_read_unlock(); 919 return -ENODEV; 920 } 921 922 strcpy(name, dev->name); 923 rcu_read_unlock(); 924 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 925 cond_resched(); 926 goto retry; 927 } 928 929 return 0; 930} 931 932/** 933 * dev_getbyhwaddr_rcu - find a device by its hardware address 934 * @net: the applicable net namespace 935 * @type: media type of device 936 * @ha: hardware address 937 * 938 * Search for an interface by MAC address. Returns NULL if the device 939 * is not found or a pointer to the device. 940 * The caller must hold RCU or RTNL. 941 * The returned device has not had its ref count increased 942 * and the caller must therefore be careful about locking 943 * 944 */ 945 946struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 947 const char *ha) 948{ 949 struct net_device *dev; 950 951 for_each_netdev_rcu(net, dev) 952 if (dev->type == type && 953 !memcmp(dev->dev_addr, ha, dev->addr_len)) 954 return dev; 955 956 return NULL; 957} 958EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 959 960struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 961{ 962 struct net_device *dev; 963 964 ASSERT_RTNL(); 965 for_each_netdev(net, dev) 966 if (dev->type == type) 967 return dev; 968 969 return NULL; 970} 971EXPORT_SYMBOL(__dev_getfirstbyhwtype); 972 973struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 974{ 975 struct net_device *dev, *ret = NULL; 976 977 rcu_read_lock(); 978 for_each_netdev_rcu(net, dev) 979 if (dev->type == type) { 980 dev_hold(dev); 981 ret = dev; 982 break; 983 } 984 rcu_read_unlock(); 985 return ret; 986} 987EXPORT_SYMBOL(dev_getfirstbyhwtype); 988 989/** 990 * __dev_get_by_flags - find any device with given flags 991 * @net: the applicable net namespace 992 * @if_flags: IFF_* values 993 * @mask: bitmask of bits in if_flags to check 994 * 995 * Search for any interface with the given flags. Returns NULL if a device 996 * is not found or a pointer to the device. Must be called inside 997 * rtnl_lock(), and result refcount is unchanged. 998 */ 999 1000struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1001 unsigned short mask) 1002{ 1003 struct net_device *dev, *ret; 1004 1005 ASSERT_RTNL(); 1006 1007 ret = NULL; 1008 for_each_netdev(net, dev) { 1009 if (((dev->flags ^ if_flags) & mask) == 0) { 1010 ret = dev; 1011 break; 1012 } 1013 } 1014 return ret; 1015} 1016EXPORT_SYMBOL(__dev_get_by_flags); 1017 1018/** 1019 * dev_valid_name - check if name is okay for network device 1020 * @name: name string 1021 * 1022 * Network device names need to be valid file names to 1023 * to allow sysfs to work. We also disallow any kind of 1024 * whitespace. 1025 */ 1026bool dev_valid_name(const char *name) 1027{ 1028 if (*name == '\0') 1029 return false; 1030 if (strlen(name) >= IFNAMSIZ) 1031 return false; 1032 if (!strcmp(name, ".") || !strcmp(name, "..")) 1033 return false; 1034 1035 while (*name) { 1036 if (*name == '/' || *name == ':' || isspace(*name)) 1037 return false; 1038 name++; 1039 } 1040 return true; 1041} 1042EXPORT_SYMBOL(dev_valid_name); 1043 1044/** 1045 * __dev_alloc_name - allocate a name for a device 1046 * @net: network namespace to allocate the device name in 1047 * @name: name format string 1048 * @buf: scratch buffer and result name string 1049 * 1050 * Passed a format string - eg "lt%d" it will try and find a suitable 1051 * id. It scans list of devices to build up a free map, then chooses 1052 * the first empty slot. The caller must hold the dev_base or rtnl lock 1053 * while allocating the name and adding the device in order to avoid 1054 * duplicates. 1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1056 * Returns the number of the unit assigned or a negative errno code. 1057 */ 1058 1059static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1060{ 1061 int i = 0; 1062 const char *p; 1063 const int max_netdevices = 8*PAGE_SIZE; 1064 unsigned long *inuse; 1065 struct net_device *d; 1066 1067 if (!dev_valid_name(name)) 1068 return -EINVAL; 1069 1070 p = strchr(name, '%'); 1071 if (p) { 1072 /* 1073 * Verify the string as this thing may have come from 1074 * the user. There must be either one "%d" and no other "%" 1075 * characters. 1076 */ 1077 if (p[1] != 'd' || strchr(p + 2, '%')) 1078 return -EINVAL; 1079 1080 /* Use one page as a bit array of possible slots */ 1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1082 if (!inuse) 1083 return -ENOMEM; 1084 1085 for_each_netdev(net, d) { 1086 if (!sscanf(d->name, name, &i)) 1087 continue; 1088 if (i < 0 || i >= max_netdevices) 1089 continue; 1090 1091 /* avoid cases where sscanf is not exact inverse of printf */ 1092 snprintf(buf, IFNAMSIZ, name, i); 1093 if (!strncmp(buf, d->name, IFNAMSIZ)) 1094 set_bit(i, inuse); 1095 } 1096 1097 i = find_first_zero_bit(inuse, max_netdevices); 1098 free_page((unsigned long) inuse); 1099 } 1100 1101 snprintf(buf, IFNAMSIZ, name, i); 1102 if (!__dev_get_by_name(net, buf)) 1103 return i; 1104 1105 /* It is possible to run out of possible slots 1106 * when the name is long and there isn't enough space left 1107 * for the digits, or if all bits are used. 1108 */ 1109 return -ENFILE; 1110} 1111 1112static int dev_alloc_name_ns(struct net *net, 1113 struct net_device *dev, 1114 const char *name) 1115{ 1116 char buf[IFNAMSIZ]; 1117 int ret; 1118 1119 BUG_ON(!net); 1120 ret = __dev_alloc_name(net, name, buf); 1121 if (ret >= 0) 1122 strlcpy(dev->name, buf, IFNAMSIZ); 1123 return ret; 1124} 1125 1126/** 1127 * dev_alloc_name - allocate a name for a device 1128 * @dev: device 1129 * @name: name format string 1130 * 1131 * Passed a format string - eg "lt%d" it will try and find a suitable 1132 * id. It scans list of devices to build up a free map, then chooses 1133 * the first empty slot. The caller must hold the dev_base or rtnl lock 1134 * while allocating the name and adding the device in order to avoid 1135 * duplicates. 1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1137 * Returns the number of the unit assigned or a negative errno code. 1138 */ 1139 1140int dev_alloc_name(struct net_device *dev, const char *name) 1141{ 1142 return dev_alloc_name_ns(dev_net(dev), dev, name); 1143} 1144EXPORT_SYMBOL(dev_alloc_name); 1145 1146int dev_get_valid_name(struct net *net, struct net_device *dev, 1147 const char *name) 1148{ 1149 BUG_ON(!net); 1150 1151 if (!dev_valid_name(name)) 1152 return -EINVAL; 1153 1154 if (strchr(name, '%')) 1155 return dev_alloc_name_ns(net, dev, name); 1156 else if (__dev_get_by_name(net, name)) 1157 return -EEXIST; 1158 else if (dev->name != name) 1159 strlcpy(dev->name, name, IFNAMSIZ); 1160 1161 return 0; 1162} 1163EXPORT_SYMBOL(dev_get_valid_name); 1164 1165/** 1166 * dev_change_name - change name of a device 1167 * @dev: device 1168 * @newname: name (or format string) must be at least IFNAMSIZ 1169 * 1170 * Change name of a device, can pass format strings "eth%d". 1171 * for wildcarding. 1172 */ 1173int dev_change_name(struct net_device *dev, const char *newname) 1174{ 1175 unsigned char old_assign_type; 1176 char oldname[IFNAMSIZ]; 1177 int err = 0; 1178 int ret; 1179 struct net *net; 1180 1181 ASSERT_RTNL(); 1182 BUG_ON(!dev_net(dev)); 1183 1184 net = dev_net(dev); 1185 if (dev->flags & IFF_UP) 1186 return -EBUSY; 1187 1188 write_seqcount_begin(&devnet_rename_seq); 1189 1190 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1191 write_seqcount_end(&devnet_rename_seq); 1192 return 0; 1193 } 1194 1195 memcpy(oldname, dev->name, IFNAMSIZ); 1196 1197 err = dev_get_valid_name(net, dev, newname); 1198 if (err < 0) { 1199 write_seqcount_end(&devnet_rename_seq); 1200 return err; 1201 } 1202 1203 if (oldname[0] && !strchr(oldname, '%')) 1204 netdev_info(dev, "renamed from %s\n", oldname); 1205 1206 old_assign_type = dev->name_assign_type; 1207 dev->name_assign_type = NET_NAME_RENAMED; 1208 1209rollback: 1210 ret = device_rename(&dev->dev, dev->name); 1211 if (ret) { 1212 memcpy(dev->name, oldname, IFNAMSIZ); 1213 dev->name_assign_type = old_assign_type; 1214 write_seqcount_end(&devnet_rename_seq); 1215 return ret; 1216 } 1217 1218 write_seqcount_end(&devnet_rename_seq); 1219 1220 netdev_adjacent_rename_links(dev, oldname); 1221 1222 write_lock_bh(&dev_base_lock); 1223 hlist_del_rcu(&dev->name_hlist); 1224 write_unlock_bh(&dev_base_lock); 1225 1226 synchronize_rcu(); 1227 1228 write_lock_bh(&dev_base_lock); 1229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1230 write_unlock_bh(&dev_base_lock); 1231 1232 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1233 ret = notifier_to_errno(ret); 1234 1235 if (ret) { 1236 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1237 if (err >= 0) { 1238 err = ret; 1239 write_seqcount_begin(&devnet_rename_seq); 1240 memcpy(dev->name, oldname, IFNAMSIZ); 1241 memcpy(oldname, newname, IFNAMSIZ); 1242 dev->name_assign_type = old_assign_type; 1243 old_assign_type = NET_NAME_RENAMED; 1244 goto rollback; 1245 } else { 1246 pr_err("%s: name change rollback failed: %d\n", 1247 dev->name, ret); 1248 } 1249 } 1250 1251 return err; 1252} 1253 1254/** 1255 * dev_set_alias - change ifalias of a device 1256 * @dev: device 1257 * @alias: name up to IFALIASZ 1258 * @len: limit of bytes to copy from info 1259 * 1260 * Set ifalias for a device, 1261 */ 1262int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1263{ 1264 struct dev_ifalias *new_alias = NULL; 1265 1266 if (len >= IFALIASZ) 1267 return -EINVAL; 1268 1269 if (len) { 1270 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1271 if (!new_alias) 1272 return -ENOMEM; 1273 1274 memcpy(new_alias->ifalias, alias, len); 1275 new_alias->ifalias[len] = 0; 1276 } 1277 1278 mutex_lock(&ifalias_mutex); 1279 rcu_swap_protected(dev->ifalias, new_alias, 1280 mutex_is_locked(&ifalias_mutex)); 1281 mutex_unlock(&ifalias_mutex); 1282 1283 if (new_alias) 1284 kfree_rcu(new_alias, rcuhead); 1285 1286 return len; 1287} 1288 1289/** 1290 * dev_get_alias - get ifalias of a device 1291 * @dev: device 1292 * @name: buffer to store name of ifalias 1293 * @len: size of buffer 1294 * 1295 * get ifalias for a device. Caller must make sure dev cannot go 1296 * away, e.g. rcu read lock or own a reference count to device. 1297 */ 1298int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1299{ 1300 const struct dev_ifalias *alias; 1301 int ret = 0; 1302 1303 rcu_read_lock(); 1304 alias = rcu_dereference(dev->ifalias); 1305 if (alias) 1306 ret = snprintf(name, len, "%s", alias->ifalias); 1307 rcu_read_unlock(); 1308 1309 return ret; 1310} 1311 1312/** 1313 * netdev_features_change - device changes features 1314 * @dev: device to cause notification 1315 * 1316 * Called to indicate a device has changed features. 1317 */ 1318void netdev_features_change(struct net_device *dev) 1319{ 1320 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1321} 1322EXPORT_SYMBOL(netdev_features_change); 1323 1324/** 1325 * netdev_state_change - device changes state 1326 * @dev: device to cause notification 1327 * 1328 * Called to indicate a device has changed state. This function calls 1329 * the notifier chains for netdev_chain and sends a NEWLINK message 1330 * to the routing socket. 1331 */ 1332void netdev_state_change(struct net_device *dev) 1333{ 1334 if (dev->flags & IFF_UP) { 1335 struct netdev_notifier_change_info change_info = { 1336 .info.dev = dev, 1337 }; 1338 1339 call_netdevice_notifiers_info(NETDEV_CHANGE, 1340 &change_info.info); 1341 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1342 } 1343} 1344EXPORT_SYMBOL(netdev_state_change); 1345 1346/** 1347 * netdev_notify_peers - notify network peers about existence of @dev 1348 * @dev: network device 1349 * 1350 * Generate traffic such that interested network peers are aware of 1351 * @dev, such as by generating a gratuitous ARP. This may be used when 1352 * a device wants to inform the rest of the network about some sort of 1353 * reconfiguration such as a failover event or virtual machine 1354 * migration. 1355 */ 1356void netdev_notify_peers(struct net_device *dev) 1357{ 1358 rtnl_lock(); 1359 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1360 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1361 rtnl_unlock(); 1362} 1363EXPORT_SYMBOL(netdev_notify_peers); 1364 1365static int __dev_open(struct net_device *dev) 1366{ 1367 const struct net_device_ops *ops = dev->netdev_ops; 1368 int ret; 1369 1370 ASSERT_RTNL(); 1371 1372 if (!netif_device_present(dev)) 1373 return -ENODEV; 1374 1375 /* Block netpoll from trying to do any rx path servicing. 1376 * If we don't do this there is a chance ndo_poll_controller 1377 * or ndo_poll may be running while we open the device 1378 */ 1379 netpoll_poll_disable(dev); 1380 1381 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1382 ret = notifier_to_errno(ret); 1383 if (ret) 1384 return ret; 1385 1386 set_bit(__LINK_STATE_START, &dev->state); 1387 1388 if (ops->ndo_validate_addr) 1389 ret = ops->ndo_validate_addr(dev); 1390 1391 if (!ret && ops->ndo_open) 1392 ret = ops->ndo_open(dev); 1393 1394 netpoll_poll_enable(dev); 1395 1396 if (ret) 1397 clear_bit(__LINK_STATE_START, &dev->state); 1398 else { 1399 dev->flags |= IFF_UP; 1400 dev_set_rx_mode(dev); 1401 dev_activate(dev); 1402 add_device_randomness(dev->dev_addr, dev->addr_len); 1403 } 1404 1405 return ret; 1406} 1407 1408/** 1409 * dev_open - prepare an interface for use. 1410 * @dev: device to open 1411 * 1412 * Takes a device from down to up state. The device's private open 1413 * function is invoked and then the multicast lists are loaded. Finally 1414 * the device is moved into the up state and a %NETDEV_UP message is 1415 * sent to the netdev notifier chain. 1416 * 1417 * Calling this function on an active interface is a nop. On a failure 1418 * a negative errno code is returned. 1419 */ 1420int dev_open(struct net_device *dev) 1421{ 1422 int ret; 1423 1424 if (dev->flags & IFF_UP) 1425 return 0; 1426 1427 ret = __dev_open(dev); 1428 if (ret < 0) 1429 return ret; 1430 1431 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1432 call_netdevice_notifiers(NETDEV_UP, dev); 1433 1434 return ret; 1435} 1436EXPORT_SYMBOL(dev_open); 1437 1438static void __dev_close_many(struct list_head *head) 1439{ 1440 struct net_device *dev; 1441 1442 ASSERT_RTNL(); 1443 might_sleep(); 1444 1445 list_for_each_entry(dev, head, close_list) { 1446 /* Temporarily disable netpoll until the interface is down */ 1447 netpoll_poll_disable(dev); 1448 1449 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1450 1451 clear_bit(__LINK_STATE_START, &dev->state); 1452 1453 /* Synchronize to scheduled poll. We cannot touch poll list, it 1454 * can be even on different cpu. So just clear netif_running(). 1455 * 1456 * dev->stop() will invoke napi_disable() on all of it's 1457 * napi_struct instances on this device. 1458 */ 1459 smp_mb__after_atomic(); /* Commit netif_running(). */ 1460 } 1461 1462 dev_deactivate_many(head); 1463 1464 list_for_each_entry(dev, head, close_list) { 1465 const struct net_device_ops *ops = dev->netdev_ops; 1466 1467 /* 1468 * Call the device specific close. This cannot fail. 1469 * Only if device is UP 1470 * 1471 * We allow it to be called even after a DETACH hot-plug 1472 * event. 1473 */ 1474 if (ops->ndo_stop) 1475 ops->ndo_stop(dev); 1476 1477 dev->flags &= ~IFF_UP; 1478 netpoll_poll_enable(dev); 1479 } 1480} 1481 1482static void __dev_close(struct net_device *dev) 1483{ 1484 LIST_HEAD(single); 1485 1486 list_add(&dev->close_list, &single); 1487 __dev_close_many(&single); 1488 list_del(&single); 1489} 1490 1491void dev_close_many(struct list_head *head, bool unlink) 1492{ 1493 struct net_device *dev, *tmp; 1494 1495 /* Remove the devices that don't need to be closed */ 1496 list_for_each_entry_safe(dev, tmp, head, close_list) 1497 if (!(dev->flags & IFF_UP)) 1498 list_del_init(&dev->close_list); 1499 1500 __dev_close_many(head); 1501 1502 list_for_each_entry_safe(dev, tmp, head, close_list) { 1503 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1504 call_netdevice_notifiers(NETDEV_DOWN, dev); 1505 if (unlink) 1506 list_del_init(&dev->close_list); 1507 } 1508} 1509EXPORT_SYMBOL(dev_close_many); 1510 1511/** 1512 * dev_close - shutdown an interface. 1513 * @dev: device to shutdown 1514 * 1515 * This function moves an active device into down state. A 1516 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1517 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1518 * chain. 1519 */ 1520void dev_close(struct net_device *dev) 1521{ 1522 if (dev->flags & IFF_UP) { 1523 LIST_HEAD(single); 1524 1525 list_add(&dev->close_list, &single); 1526 dev_close_many(&single, true); 1527 list_del(&single); 1528 } 1529} 1530EXPORT_SYMBOL(dev_close); 1531 1532 1533/** 1534 * dev_disable_lro - disable Large Receive Offload on a device 1535 * @dev: device 1536 * 1537 * Disable Large Receive Offload (LRO) on a net device. Must be 1538 * called under RTNL. This is needed if received packets may be 1539 * forwarded to another interface. 1540 */ 1541void dev_disable_lro(struct net_device *dev) 1542{ 1543 struct net_device *lower_dev; 1544 struct list_head *iter; 1545 1546 dev->wanted_features &= ~NETIF_F_LRO; 1547 netdev_update_features(dev); 1548 1549 if (unlikely(dev->features & NETIF_F_LRO)) 1550 netdev_WARN(dev, "failed to disable LRO!\n"); 1551 1552 netdev_for_each_lower_dev(dev, lower_dev, iter) 1553 dev_disable_lro(lower_dev); 1554} 1555EXPORT_SYMBOL(dev_disable_lro); 1556 1557static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1558 struct net_device *dev) 1559{ 1560 struct netdev_notifier_info info = { 1561 .dev = dev, 1562 }; 1563 1564 return nb->notifier_call(nb, val, &info); 1565} 1566 1567static int dev_boot_phase = 1; 1568 1569/** 1570 * register_netdevice_notifier - register a network notifier block 1571 * @nb: notifier 1572 * 1573 * Register a notifier to be called when network device events occur. 1574 * The notifier passed is linked into the kernel structures and must 1575 * not be reused until it has been unregistered. A negative errno code 1576 * is returned on a failure. 1577 * 1578 * When registered all registration and up events are replayed 1579 * to the new notifier to allow device to have a race free 1580 * view of the network device list. 1581 */ 1582 1583int register_netdevice_notifier(struct notifier_block *nb) 1584{ 1585 struct net_device *dev; 1586 struct net_device *last; 1587 struct net *net; 1588 int err; 1589 1590 rtnl_lock(); 1591 err = raw_notifier_chain_register(&netdev_chain, nb); 1592 if (err) 1593 goto unlock; 1594 if (dev_boot_phase) 1595 goto unlock; 1596 for_each_net(net) { 1597 for_each_netdev(net, dev) { 1598 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1599 err = notifier_to_errno(err); 1600 if (err) 1601 goto rollback; 1602 1603 if (!(dev->flags & IFF_UP)) 1604 continue; 1605 1606 call_netdevice_notifier(nb, NETDEV_UP, dev); 1607 } 1608 } 1609 1610unlock: 1611 rtnl_unlock(); 1612 return err; 1613 1614rollback: 1615 last = dev; 1616 for_each_net(net) { 1617 for_each_netdev(net, dev) { 1618 if (dev == last) 1619 goto outroll; 1620 1621 if (dev->flags & IFF_UP) { 1622 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1623 dev); 1624 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1625 } 1626 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1627 } 1628 } 1629 1630outroll: 1631 raw_notifier_chain_unregister(&netdev_chain, nb); 1632 goto unlock; 1633} 1634EXPORT_SYMBOL(register_netdevice_notifier); 1635 1636/** 1637 * unregister_netdevice_notifier - unregister a network notifier block 1638 * @nb: notifier 1639 * 1640 * Unregister a notifier previously registered by 1641 * register_netdevice_notifier(). The notifier is unlinked into the 1642 * kernel structures and may then be reused. A negative errno code 1643 * is returned on a failure. 1644 * 1645 * After unregistering unregister and down device events are synthesized 1646 * for all devices on the device list to the removed notifier to remove 1647 * the need for special case cleanup code. 1648 */ 1649 1650int unregister_netdevice_notifier(struct notifier_block *nb) 1651{ 1652 struct net_device *dev; 1653 struct net *net; 1654 int err; 1655 1656 rtnl_lock(); 1657 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1658 if (err) 1659 goto unlock; 1660 1661 for_each_net(net) { 1662 for_each_netdev(net, dev) { 1663 if (dev->flags & IFF_UP) { 1664 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1665 dev); 1666 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1667 } 1668 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1669 } 1670 } 1671unlock: 1672 rtnl_unlock(); 1673 return err; 1674} 1675EXPORT_SYMBOL(unregister_netdevice_notifier); 1676 1677/** 1678 * call_netdevice_notifiers_info - call all network notifier blocks 1679 * @val: value passed unmodified to notifier function 1680 * @dev: net_device pointer passed unmodified to notifier function 1681 * @info: notifier information data 1682 * 1683 * Call all network notifier blocks. Parameters and return value 1684 * are as for raw_notifier_call_chain(). 1685 */ 1686 1687static int call_netdevice_notifiers_info(unsigned long val, 1688 struct netdev_notifier_info *info) 1689{ 1690 ASSERT_RTNL(); 1691 return raw_notifier_call_chain(&netdev_chain, val, info); 1692} 1693 1694/** 1695 * call_netdevice_notifiers - call all network notifier blocks 1696 * @val: value passed unmodified to notifier function 1697 * @dev: net_device pointer passed unmodified to notifier function 1698 * 1699 * Call all network notifier blocks. Parameters and return value 1700 * are as for raw_notifier_call_chain(). 1701 */ 1702 1703int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1704{ 1705 struct netdev_notifier_info info = { 1706 .dev = dev, 1707 }; 1708 1709 return call_netdevice_notifiers_info(val, &info); 1710} 1711EXPORT_SYMBOL(call_netdevice_notifiers); 1712 1713#ifdef CONFIG_NET_INGRESS 1714static struct static_key ingress_needed __read_mostly; 1715 1716void net_inc_ingress_queue(void) 1717{ 1718 static_key_slow_inc(&ingress_needed); 1719} 1720EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1721 1722void net_dec_ingress_queue(void) 1723{ 1724 static_key_slow_dec(&ingress_needed); 1725} 1726EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1727#endif 1728 1729#ifdef CONFIG_NET_EGRESS 1730static struct static_key egress_needed __read_mostly; 1731 1732void net_inc_egress_queue(void) 1733{ 1734 static_key_slow_inc(&egress_needed); 1735} 1736EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1737 1738void net_dec_egress_queue(void) 1739{ 1740 static_key_slow_dec(&egress_needed); 1741} 1742EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1743#endif 1744 1745static struct static_key netstamp_needed __read_mostly; 1746#ifdef HAVE_JUMP_LABEL 1747static atomic_t netstamp_needed_deferred; 1748static atomic_t netstamp_wanted; 1749static void netstamp_clear(struct work_struct *work) 1750{ 1751 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1752 int wanted; 1753 1754 wanted = atomic_add_return(deferred, &netstamp_wanted); 1755 if (wanted > 0) 1756 static_key_enable(&netstamp_needed); 1757 else 1758 static_key_disable(&netstamp_needed); 1759} 1760static DECLARE_WORK(netstamp_work, netstamp_clear); 1761#endif 1762 1763void net_enable_timestamp(void) 1764{ 1765#ifdef HAVE_JUMP_LABEL 1766 int wanted; 1767 1768 while (1) { 1769 wanted = atomic_read(&netstamp_wanted); 1770 if (wanted <= 0) 1771 break; 1772 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1773 return; 1774 } 1775 atomic_inc(&netstamp_needed_deferred); 1776 schedule_work(&netstamp_work); 1777#else 1778 static_key_slow_inc(&netstamp_needed); 1779#endif 1780} 1781EXPORT_SYMBOL(net_enable_timestamp); 1782 1783void net_disable_timestamp(void) 1784{ 1785#ifdef HAVE_JUMP_LABEL 1786 int wanted; 1787 1788 while (1) { 1789 wanted = atomic_read(&netstamp_wanted); 1790 if (wanted <= 1) 1791 break; 1792 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1793 return; 1794 } 1795 atomic_dec(&netstamp_needed_deferred); 1796 schedule_work(&netstamp_work); 1797#else 1798 static_key_slow_dec(&netstamp_needed); 1799#endif 1800} 1801EXPORT_SYMBOL(net_disable_timestamp); 1802 1803static inline void net_timestamp_set(struct sk_buff *skb) 1804{ 1805 skb->tstamp = 0; 1806 if (static_key_false(&netstamp_needed)) 1807 __net_timestamp(skb); 1808} 1809 1810#define net_timestamp_check(COND, SKB) \ 1811 if (static_key_false(&netstamp_needed)) { \ 1812 if ((COND) && !(SKB)->tstamp) \ 1813 __net_timestamp(SKB); \ 1814 } \ 1815 1816bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1817{ 1818 unsigned int len; 1819 1820 if (!(dev->flags & IFF_UP)) 1821 return false; 1822 1823 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1824 if (skb->len <= len) 1825 return true; 1826 1827 /* if TSO is enabled, we don't care about the length as the packet 1828 * could be forwarded without being segmented before 1829 */ 1830 if (skb_is_gso(skb)) 1831 return true; 1832 1833 return false; 1834} 1835EXPORT_SYMBOL_GPL(is_skb_forwardable); 1836 1837int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1838{ 1839 int ret = ____dev_forward_skb(dev, skb); 1840 1841 if (likely(!ret)) { 1842 skb->protocol = eth_type_trans(skb, dev); 1843 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1844 } 1845 1846 return ret; 1847} 1848EXPORT_SYMBOL_GPL(__dev_forward_skb); 1849 1850/** 1851 * dev_forward_skb - loopback an skb to another netif 1852 * 1853 * @dev: destination network device 1854 * @skb: buffer to forward 1855 * 1856 * return values: 1857 * NET_RX_SUCCESS (no congestion) 1858 * NET_RX_DROP (packet was dropped, but freed) 1859 * 1860 * dev_forward_skb can be used for injecting an skb from the 1861 * start_xmit function of one device into the receive queue 1862 * of another device. 1863 * 1864 * The receiving device may be in another namespace, so 1865 * we have to clear all information in the skb that could 1866 * impact namespace isolation. 1867 */ 1868int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1869{ 1870 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1871} 1872EXPORT_SYMBOL_GPL(dev_forward_skb); 1873 1874static inline int deliver_skb(struct sk_buff *skb, 1875 struct packet_type *pt_prev, 1876 struct net_device *orig_dev) 1877{ 1878 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1879 return -ENOMEM; 1880 refcount_inc(&skb->users); 1881 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1882} 1883 1884static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1885 struct packet_type **pt, 1886 struct net_device *orig_dev, 1887 __be16 type, 1888 struct list_head *ptype_list) 1889{ 1890 struct packet_type *ptype, *pt_prev = *pt; 1891 1892 list_for_each_entry_rcu(ptype, ptype_list, list) { 1893 if (ptype->type != type) 1894 continue; 1895 if (pt_prev) 1896 deliver_skb(skb, pt_prev, orig_dev); 1897 pt_prev = ptype; 1898 } 1899 *pt = pt_prev; 1900} 1901 1902static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1903{ 1904 if (!ptype->af_packet_priv || !skb->sk) 1905 return false; 1906 1907 if (ptype->id_match) 1908 return ptype->id_match(ptype, skb->sk); 1909 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1910 return true; 1911 1912 return false; 1913} 1914 1915/* 1916 * Support routine. Sends outgoing frames to any network 1917 * taps currently in use. 1918 */ 1919 1920void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1921{ 1922 struct packet_type *ptype; 1923 struct sk_buff *skb2 = NULL; 1924 struct packet_type *pt_prev = NULL; 1925 struct list_head *ptype_list = &ptype_all; 1926 1927 rcu_read_lock(); 1928again: 1929 list_for_each_entry_rcu(ptype, ptype_list, list) { 1930 /* Never send packets back to the socket 1931 * they originated from - MvS (miquels@drinkel.ow.org) 1932 */ 1933 if (skb_loop_sk(ptype, skb)) 1934 continue; 1935 1936 if (pt_prev) { 1937 deliver_skb(skb2, pt_prev, skb->dev); 1938 pt_prev = ptype; 1939 continue; 1940 } 1941 1942 /* need to clone skb, done only once */ 1943 skb2 = skb_clone(skb, GFP_ATOMIC); 1944 if (!skb2) 1945 goto out_unlock; 1946 1947 net_timestamp_set(skb2); 1948 1949 /* skb->nh should be correctly 1950 * set by sender, so that the second statement is 1951 * just protection against buggy protocols. 1952 */ 1953 skb_reset_mac_header(skb2); 1954 1955 if (skb_network_header(skb2) < skb2->data || 1956 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1957 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1958 ntohs(skb2->protocol), 1959 dev->name); 1960 skb_reset_network_header(skb2); 1961 } 1962 1963 skb2->transport_header = skb2->network_header; 1964 skb2->pkt_type = PACKET_OUTGOING; 1965 pt_prev = ptype; 1966 } 1967 1968 if (ptype_list == &ptype_all) { 1969 ptype_list = &dev->ptype_all; 1970 goto again; 1971 } 1972out_unlock: 1973 if (pt_prev) { 1974 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 1975 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1976 else 1977 kfree_skb(skb2); 1978 } 1979 rcu_read_unlock(); 1980} 1981EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1982 1983/** 1984 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1985 * @dev: Network device 1986 * @txq: number of queues available 1987 * 1988 * If real_num_tx_queues is changed the tc mappings may no longer be 1989 * valid. To resolve this verify the tc mapping remains valid and if 1990 * not NULL the mapping. With no priorities mapping to this 1991 * offset/count pair it will no longer be used. In the worst case TC0 1992 * is invalid nothing can be done so disable priority mappings. If is 1993 * expected that drivers will fix this mapping if they can before 1994 * calling netif_set_real_num_tx_queues. 1995 */ 1996static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1997{ 1998 int i; 1999 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2000 2001 /* If TC0 is invalidated disable TC mapping */ 2002 if (tc->offset + tc->count > txq) { 2003 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2004 dev->num_tc = 0; 2005 return; 2006 } 2007 2008 /* Invalidated prio to tc mappings set to TC0 */ 2009 for (i = 1; i < TC_BITMASK + 1; i++) { 2010 int q = netdev_get_prio_tc_map(dev, i); 2011 2012 tc = &dev->tc_to_txq[q]; 2013 if (tc->offset + tc->count > txq) { 2014 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2015 i, q); 2016 netdev_set_prio_tc_map(dev, i, 0); 2017 } 2018 } 2019} 2020 2021int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2022{ 2023 if (dev->num_tc) { 2024 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2025 int i; 2026 2027 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2028 if ((txq - tc->offset) < tc->count) 2029 return i; 2030 } 2031 2032 return -1; 2033 } 2034 2035 return 0; 2036} 2037EXPORT_SYMBOL(netdev_txq_to_tc); 2038 2039#ifdef CONFIG_XPS 2040static DEFINE_MUTEX(xps_map_mutex); 2041#define xmap_dereference(P) \ 2042 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2043 2044static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2045 int tci, u16 index) 2046{ 2047 struct xps_map *map = NULL; 2048 int pos; 2049 2050 if (dev_maps) 2051 map = xmap_dereference(dev_maps->cpu_map[tci]); 2052 if (!map) 2053 return false; 2054 2055 for (pos = map->len; pos--;) { 2056 if (map->queues[pos] != index) 2057 continue; 2058 2059 if (map->len > 1) { 2060 map->queues[pos] = map->queues[--map->len]; 2061 break; 2062 } 2063 2064 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 2065 kfree_rcu(map, rcu); 2066 return false; 2067 } 2068 2069 return true; 2070} 2071 2072static bool remove_xps_queue_cpu(struct net_device *dev, 2073 struct xps_dev_maps *dev_maps, 2074 int cpu, u16 offset, u16 count) 2075{ 2076 int num_tc = dev->num_tc ? : 1; 2077 bool active = false; 2078 int tci; 2079 2080 for (tci = cpu * num_tc; num_tc--; tci++) { 2081 int i, j; 2082 2083 for (i = count, j = offset; i--; j++) { 2084 if (!remove_xps_queue(dev_maps, cpu, j)) 2085 break; 2086 } 2087 2088 active |= i < 0; 2089 } 2090 2091 return active; 2092} 2093 2094static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2095 u16 count) 2096{ 2097 struct xps_dev_maps *dev_maps; 2098 int cpu, i; 2099 bool active = false; 2100 2101 mutex_lock(&xps_map_mutex); 2102 dev_maps = xmap_dereference(dev->xps_maps); 2103 2104 if (!dev_maps) 2105 goto out_no_maps; 2106 2107 for_each_possible_cpu(cpu) 2108 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2109 offset, count); 2110 2111 if (!active) { 2112 RCU_INIT_POINTER(dev->xps_maps, NULL); 2113 kfree_rcu(dev_maps, rcu); 2114 } 2115 2116 for (i = offset + (count - 1); count--; i--) 2117 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2118 NUMA_NO_NODE); 2119 2120out_no_maps: 2121 mutex_unlock(&xps_map_mutex); 2122} 2123 2124static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2125{ 2126 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2127} 2128 2129static struct xps_map *expand_xps_map(struct xps_map *map, 2130 int cpu, u16 index) 2131{ 2132 struct xps_map *new_map; 2133 int alloc_len = XPS_MIN_MAP_ALLOC; 2134 int i, pos; 2135 2136 for (pos = 0; map && pos < map->len; pos++) { 2137 if (map->queues[pos] != index) 2138 continue; 2139 return map; 2140 } 2141 2142 /* Need to add queue to this CPU's existing map */ 2143 if (map) { 2144 if (pos < map->alloc_len) 2145 return map; 2146 2147 alloc_len = map->alloc_len * 2; 2148 } 2149 2150 /* Need to allocate new map to store queue on this CPU's map */ 2151 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2152 cpu_to_node(cpu)); 2153 if (!new_map) 2154 return NULL; 2155 2156 for (i = 0; i < pos; i++) 2157 new_map->queues[i] = map->queues[i]; 2158 new_map->alloc_len = alloc_len; 2159 new_map->len = pos; 2160 2161 return new_map; 2162} 2163 2164int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2165 u16 index) 2166{ 2167 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2168 int i, cpu, tci, numa_node_id = -2; 2169 int maps_sz, num_tc = 1, tc = 0; 2170 struct xps_map *map, *new_map; 2171 bool active = false; 2172 2173 if (dev->num_tc) { 2174 num_tc = dev->num_tc; 2175 tc = netdev_txq_to_tc(dev, index); 2176 if (tc < 0) 2177 return -EINVAL; 2178 } 2179 2180 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2181 if (maps_sz < L1_CACHE_BYTES) 2182 maps_sz = L1_CACHE_BYTES; 2183 2184 mutex_lock(&xps_map_mutex); 2185 2186 dev_maps = xmap_dereference(dev->xps_maps); 2187 2188 /* allocate memory for queue storage */ 2189 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2190 if (!new_dev_maps) 2191 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2192 if (!new_dev_maps) { 2193 mutex_unlock(&xps_map_mutex); 2194 return -ENOMEM; 2195 } 2196 2197 tci = cpu * num_tc + tc; 2198 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2199 NULL; 2200 2201 map = expand_xps_map(map, cpu, index); 2202 if (!map) 2203 goto error; 2204 2205 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2206 } 2207 2208 if (!new_dev_maps) 2209 goto out_no_new_maps; 2210 2211 for_each_possible_cpu(cpu) { 2212 /* copy maps belonging to foreign traffic classes */ 2213 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2214 /* fill in the new device map from the old device map */ 2215 map = xmap_dereference(dev_maps->cpu_map[tci]); 2216 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2217 } 2218 2219 /* We need to explicitly update tci as prevous loop 2220 * could break out early if dev_maps is NULL. 2221 */ 2222 tci = cpu * num_tc + tc; 2223 2224 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2225 /* add queue to CPU maps */ 2226 int pos = 0; 2227 2228 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2229 while ((pos < map->len) && (map->queues[pos] != index)) 2230 pos++; 2231 2232 if (pos == map->len) 2233 map->queues[map->len++] = index; 2234#ifdef CONFIG_NUMA 2235 if (numa_node_id == -2) 2236 numa_node_id = cpu_to_node(cpu); 2237 else if (numa_node_id != cpu_to_node(cpu)) 2238 numa_node_id = -1; 2239#endif 2240 } else if (dev_maps) { 2241 /* fill in the new device map from the old device map */ 2242 map = xmap_dereference(dev_maps->cpu_map[tci]); 2243 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2244 } 2245 2246 /* copy maps belonging to foreign traffic classes */ 2247 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2248 /* fill in the new device map from the old device map */ 2249 map = xmap_dereference(dev_maps->cpu_map[tci]); 2250 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2251 } 2252 } 2253 2254 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2255 2256 /* Cleanup old maps */ 2257 if (!dev_maps) 2258 goto out_no_old_maps; 2259 2260 for_each_possible_cpu(cpu) { 2261 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2262 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2263 map = xmap_dereference(dev_maps->cpu_map[tci]); 2264 if (map && map != new_map) 2265 kfree_rcu(map, rcu); 2266 } 2267 } 2268 2269 kfree_rcu(dev_maps, rcu); 2270 2271out_no_old_maps: 2272 dev_maps = new_dev_maps; 2273 active = true; 2274 2275out_no_new_maps: 2276 /* update Tx queue numa node */ 2277 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2278 (numa_node_id >= 0) ? numa_node_id : 2279 NUMA_NO_NODE); 2280 2281 if (!dev_maps) 2282 goto out_no_maps; 2283 2284 /* removes queue from unused CPUs */ 2285 for_each_possible_cpu(cpu) { 2286 for (i = tc, tci = cpu * num_tc; i--; tci++) 2287 active |= remove_xps_queue(dev_maps, tci, index); 2288 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2289 active |= remove_xps_queue(dev_maps, tci, index); 2290 for (i = num_tc - tc, tci++; --i; tci++) 2291 active |= remove_xps_queue(dev_maps, tci, index); 2292 } 2293 2294 /* free map if not active */ 2295 if (!active) { 2296 RCU_INIT_POINTER(dev->xps_maps, NULL); 2297 kfree_rcu(dev_maps, rcu); 2298 } 2299 2300out_no_maps: 2301 mutex_unlock(&xps_map_mutex); 2302 2303 return 0; 2304error: 2305 /* remove any maps that we added */ 2306 for_each_possible_cpu(cpu) { 2307 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2308 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2309 map = dev_maps ? 2310 xmap_dereference(dev_maps->cpu_map[tci]) : 2311 NULL; 2312 if (new_map && new_map != map) 2313 kfree(new_map); 2314 } 2315 } 2316 2317 mutex_unlock(&xps_map_mutex); 2318 2319 kfree(new_dev_maps); 2320 return -ENOMEM; 2321} 2322EXPORT_SYMBOL(netif_set_xps_queue); 2323 2324#endif 2325void netdev_reset_tc(struct net_device *dev) 2326{ 2327#ifdef CONFIG_XPS 2328 netif_reset_xps_queues_gt(dev, 0); 2329#endif 2330 dev->num_tc = 0; 2331 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2332 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2333} 2334EXPORT_SYMBOL(netdev_reset_tc); 2335 2336int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2337{ 2338 if (tc >= dev->num_tc) 2339 return -EINVAL; 2340 2341#ifdef CONFIG_XPS 2342 netif_reset_xps_queues(dev, offset, count); 2343#endif 2344 dev->tc_to_txq[tc].count = count; 2345 dev->tc_to_txq[tc].offset = offset; 2346 return 0; 2347} 2348EXPORT_SYMBOL(netdev_set_tc_queue); 2349 2350int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2351{ 2352 if (num_tc > TC_MAX_QUEUE) 2353 return -EINVAL; 2354 2355#ifdef CONFIG_XPS 2356 netif_reset_xps_queues_gt(dev, 0); 2357#endif 2358 dev->num_tc = num_tc; 2359 return 0; 2360} 2361EXPORT_SYMBOL(netdev_set_num_tc); 2362 2363/* 2364 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2365 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2366 */ 2367int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2368{ 2369 int rc; 2370 2371 if (txq < 1 || txq > dev->num_tx_queues) 2372 return -EINVAL; 2373 2374 if (dev->reg_state == NETREG_REGISTERED || 2375 dev->reg_state == NETREG_UNREGISTERING) { 2376 ASSERT_RTNL(); 2377 2378 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2379 txq); 2380 if (rc) 2381 return rc; 2382 2383 if (dev->num_tc) 2384 netif_setup_tc(dev, txq); 2385 2386 if (txq < dev->real_num_tx_queues) { 2387 qdisc_reset_all_tx_gt(dev, txq); 2388#ifdef CONFIG_XPS 2389 netif_reset_xps_queues_gt(dev, txq); 2390#endif 2391 } 2392 } 2393 2394 dev->real_num_tx_queues = txq; 2395 return 0; 2396} 2397EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2398 2399#ifdef CONFIG_SYSFS 2400/** 2401 * netif_set_real_num_rx_queues - set actual number of RX queues used 2402 * @dev: Network device 2403 * @rxq: Actual number of RX queues 2404 * 2405 * This must be called either with the rtnl_lock held or before 2406 * registration of the net device. Returns 0 on success, or a 2407 * negative error code. If called before registration, it always 2408 * succeeds. 2409 */ 2410int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2411{ 2412 int rc; 2413 2414 if (rxq < 1 || rxq > dev->num_rx_queues) 2415 return -EINVAL; 2416 2417 if (dev->reg_state == NETREG_REGISTERED) { 2418 ASSERT_RTNL(); 2419 2420 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2421 rxq); 2422 if (rc) 2423 return rc; 2424 } 2425 2426 dev->real_num_rx_queues = rxq; 2427 return 0; 2428} 2429EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2430#endif 2431 2432/** 2433 * netif_get_num_default_rss_queues - default number of RSS queues 2434 * 2435 * This routine should set an upper limit on the number of RSS queues 2436 * used by default by multiqueue devices. 2437 */ 2438int netif_get_num_default_rss_queues(void) 2439{ 2440 return is_kdump_kernel() ? 2441 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2442} 2443EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2444 2445static void __netif_reschedule(struct Qdisc *q) 2446{ 2447 struct softnet_data *sd; 2448 unsigned long flags; 2449 2450 local_irq_save(flags); 2451 sd = this_cpu_ptr(&softnet_data); 2452 q->next_sched = NULL; 2453 *sd->output_queue_tailp = q; 2454 sd->output_queue_tailp = &q->next_sched; 2455 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2456 local_irq_restore(flags); 2457} 2458 2459void __netif_schedule(struct Qdisc *q) 2460{ 2461 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2462 __netif_reschedule(q); 2463} 2464EXPORT_SYMBOL(__netif_schedule); 2465 2466struct dev_kfree_skb_cb { 2467 enum skb_free_reason reason; 2468}; 2469 2470static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2471{ 2472 return (struct dev_kfree_skb_cb *)skb->cb; 2473} 2474 2475void netif_schedule_queue(struct netdev_queue *txq) 2476{ 2477 rcu_read_lock(); 2478 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2479 struct Qdisc *q = rcu_dereference(txq->qdisc); 2480 2481 __netif_schedule(q); 2482 } 2483 rcu_read_unlock(); 2484} 2485EXPORT_SYMBOL(netif_schedule_queue); 2486 2487void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2488{ 2489 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2490 struct Qdisc *q; 2491 2492 rcu_read_lock(); 2493 q = rcu_dereference(dev_queue->qdisc); 2494 __netif_schedule(q); 2495 rcu_read_unlock(); 2496 } 2497} 2498EXPORT_SYMBOL(netif_tx_wake_queue); 2499 2500void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2501{ 2502 unsigned long flags; 2503 2504 if (unlikely(!skb)) 2505 return; 2506 2507 if (likely(refcount_read(&skb->users) == 1)) { 2508 smp_rmb(); 2509 refcount_set(&skb->users, 0); 2510 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2511 return; 2512 } 2513 get_kfree_skb_cb(skb)->reason = reason; 2514 local_irq_save(flags); 2515 skb->next = __this_cpu_read(softnet_data.completion_queue); 2516 __this_cpu_write(softnet_data.completion_queue, skb); 2517 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2518 local_irq_restore(flags); 2519} 2520EXPORT_SYMBOL(__dev_kfree_skb_irq); 2521 2522void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2523{ 2524 if (in_irq() || irqs_disabled()) 2525 __dev_kfree_skb_irq(skb, reason); 2526 else 2527 dev_kfree_skb(skb); 2528} 2529EXPORT_SYMBOL(__dev_kfree_skb_any); 2530 2531 2532/** 2533 * netif_device_detach - mark device as removed 2534 * @dev: network device 2535 * 2536 * Mark device as removed from system and therefore no longer available. 2537 */ 2538void netif_device_detach(struct net_device *dev) 2539{ 2540 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2541 netif_running(dev)) { 2542 netif_tx_stop_all_queues(dev); 2543 } 2544} 2545EXPORT_SYMBOL(netif_device_detach); 2546 2547/** 2548 * netif_device_attach - mark device as attached 2549 * @dev: network device 2550 * 2551 * Mark device as attached from system and restart if needed. 2552 */ 2553void netif_device_attach(struct net_device *dev) 2554{ 2555 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2556 netif_running(dev)) { 2557 netif_tx_wake_all_queues(dev); 2558 __netdev_watchdog_up(dev); 2559 } 2560} 2561EXPORT_SYMBOL(netif_device_attach); 2562 2563/* 2564 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2565 * to be used as a distribution range. 2566 */ 2567u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2568 unsigned int num_tx_queues) 2569{ 2570 u32 hash; 2571 u16 qoffset = 0; 2572 u16 qcount = num_tx_queues; 2573 2574 if (skb_rx_queue_recorded(skb)) { 2575 hash = skb_get_rx_queue(skb); 2576 while (unlikely(hash >= num_tx_queues)) 2577 hash -= num_tx_queues; 2578 return hash; 2579 } 2580 2581 if (dev->num_tc) { 2582 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2583 2584 qoffset = dev->tc_to_txq[tc].offset; 2585 qcount = dev->tc_to_txq[tc].count; 2586 } 2587 2588 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2589} 2590EXPORT_SYMBOL(__skb_tx_hash); 2591 2592static void skb_warn_bad_offload(const struct sk_buff *skb) 2593{ 2594 static const netdev_features_t null_features; 2595 struct net_device *dev = skb->dev; 2596 const char *name = ""; 2597 2598 if (!net_ratelimit()) 2599 return; 2600 2601 if (dev) { 2602 if (dev->dev.parent) 2603 name = dev_driver_string(dev->dev.parent); 2604 else 2605 name = netdev_name(dev); 2606 } 2607 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2608 "gso_type=%d ip_summed=%d\n", 2609 name, dev ? &dev->features : &null_features, 2610 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2611 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2612 skb_shinfo(skb)->gso_type, skb->ip_summed); 2613} 2614 2615/* 2616 * Invalidate hardware checksum when packet is to be mangled, and 2617 * complete checksum manually on outgoing path. 2618 */ 2619int skb_checksum_help(struct sk_buff *skb) 2620{ 2621 __wsum csum; 2622 int ret = 0, offset; 2623 2624 if (skb->ip_summed == CHECKSUM_COMPLETE) 2625 goto out_set_summed; 2626 2627 if (unlikely(skb_shinfo(skb)->gso_size)) { 2628 skb_warn_bad_offload(skb); 2629 return -EINVAL; 2630 } 2631 2632 /* Before computing a checksum, we should make sure no frag could 2633 * be modified by an external entity : checksum could be wrong. 2634 */ 2635 if (skb_has_shared_frag(skb)) { 2636 ret = __skb_linearize(skb); 2637 if (ret) 2638 goto out; 2639 } 2640 2641 offset = skb_checksum_start_offset(skb); 2642 BUG_ON(offset >= skb_headlen(skb)); 2643 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2644 2645 offset += skb->csum_offset; 2646 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2647 2648 if (skb_cloned(skb) && 2649 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2650 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2651 if (ret) 2652 goto out; 2653 } 2654 2655 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2656out_set_summed: 2657 skb->ip_summed = CHECKSUM_NONE; 2658out: 2659 return ret; 2660} 2661EXPORT_SYMBOL(skb_checksum_help); 2662 2663int skb_crc32c_csum_help(struct sk_buff *skb) 2664{ 2665 __le32 crc32c_csum; 2666 int ret = 0, offset, start; 2667 2668 if (skb->ip_summed != CHECKSUM_PARTIAL) 2669 goto out; 2670 2671 if (unlikely(skb_is_gso(skb))) 2672 goto out; 2673 2674 /* Before computing a checksum, we should make sure no frag could 2675 * be modified by an external entity : checksum could be wrong. 2676 */ 2677 if (unlikely(skb_has_shared_frag(skb))) { 2678 ret = __skb_linearize(skb); 2679 if (ret) 2680 goto out; 2681 } 2682 start = skb_checksum_start_offset(skb); 2683 offset = start + offsetof(struct sctphdr, checksum); 2684 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2685 ret = -EINVAL; 2686 goto out; 2687 } 2688 if (skb_cloned(skb) && 2689 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2690 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2691 if (ret) 2692 goto out; 2693 } 2694 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2695 skb->len - start, ~(__u32)0, 2696 crc32c_csum_stub)); 2697 *(__le32 *)(skb->data + offset) = crc32c_csum; 2698 skb->ip_summed = CHECKSUM_NONE; 2699 skb->csum_not_inet = 0; 2700out: 2701 return ret; 2702} 2703 2704__be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2705{ 2706 __be16 type = skb->protocol; 2707 2708 /* Tunnel gso handlers can set protocol to ethernet. */ 2709 if (type == htons(ETH_P_TEB)) { 2710 struct ethhdr *eth; 2711 2712 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2713 return 0; 2714 2715 eth = (struct ethhdr *)skb_mac_header(skb); 2716 type = eth->h_proto; 2717 } 2718 2719 return __vlan_get_protocol(skb, type, depth); 2720} 2721 2722/** 2723 * skb_mac_gso_segment - mac layer segmentation handler. 2724 * @skb: buffer to segment 2725 * @features: features for the output path (see dev->features) 2726 */ 2727struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2728 netdev_features_t features) 2729{ 2730 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2731 struct packet_offload *ptype; 2732 int vlan_depth = skb->mac_len; 2733 __be16 type = skb_network_protocol(skb, &vlan_depth); 2734 2735 if (unlikely(!type)) 2736 return ERR_PTR(-EINVAL); 2737 2738 __skb_pull(skb, vlan_depth); 2739 2740 rcu_read_lock(); 2741 list_for_each_entry_rcu(ptype, &offload_base, list) { 2742 if (ptype->type == type && ptype->callbacks.gso_segment) { 2743 segs = ptype->callbacks.gso_segment(skb, features); 2744 break; 2745 } 2746 } 2747 rcu_read_unlock(); 2748 2749 __skb_push(skb, skb->data - skb_mac_header(skb)); 2750 2751 return segs; 2752} 2753EXPORT_SYMBOL(skb_mac_gso_segment); 2754 2755 2756/* openvswitch calls this on rx path, so we need a different check. 2757 */ 2758static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2759{ 2760 if (tx_path) 2761 return skb->ip_summed != CHECKSUM_PARTIAL && 2762 skb->ip_summed != CHECKSUM_UNNECESSARY; 2763 2764 return skb->ip_summed == CHECKSUM_NONE; 2765} 2766 2767/** 2768 * __skb_gso_segment - Perform segmentation on skb. 2769 * @skb: buffer to segment 2770 * @features: features for the output path (see dev->features) 2771 * @tx_path: whether it is called in TX path 2772 * 2773 * This function segments the given skb and returns a list of segments. 2774 * 2775 * It may return NULL if the skb requires no segmentation. This is 2776 * only possible when GSO is used for verifying header integrity. 2777 * 2778 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2779 */ 2780struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2781 netdev_features_t features, bool tx_path) 2782{ 2783 struct sk_buff *segs; 2784 2785 if (unlikely(skb_needs_check(skb, tx_path))) { 2786 int err; 2787 2788 /* We're going to init ->check field in TCP or UDP header */ 2789 err = skb_cow_head(skb, 0); 2790 if (err < 0) 2791 return ERR_PTR(err); 2792 } 2793 2794 /* Only report GSO partial support if it will enable us to 2795 * support segmentation on this frame without needing additional 2796 * work. 2797 */ 2798 if (features & NETIF_F_GSO_PARTIAL) { 2799 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2800 struct net_device *dev = skb->dev; 2801 2802 partial_features |= dev->features & dev->gso_partial_features; 2803 if (!skb_gso_ok(skb, features | partial_features)) 2804 features &= ~NETIF_F_GSO_PARTIAL; 2805 } 2806 2807 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2808 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2809 2810 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2811 SKB_GSO_CB(skb)->encap_level = 0; 2812 2813 skb_reset_mac_header(skb); 2814 skb_reset_mac_len(skb); 2815 2816 segs = skb_mac_gso_segment(skb, features); 2817 2818 if (unlikely(skb_needs_check(skb, tx_path))) 2819 skb_warn_bad_offload(skb); 2820 2821 return segs; 2822} 2823EXPORT_SYMBOL(__skb_gso_segment); 2824 2825/* Take action when hardware reception checksum errors are detected. */ 2826#ifdef CONFIG_BUG 2827void netdev_rx_csum_fault(struct net_device *dev) 2828{ 2829 if (net_ratelimit()) { 2830 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2831 dump_stack(); 2832 } 2833} 2834EXPORT_SYMBOL(netdev_rx_csum_fault); 2835#endif 2836 2837/* Actually, we should eliminate this check as soon as we know, that: 2838 * 1. IOMMU is present and allows to map all the memory. 2839 * 2. No high memory really exists on this machine. 2840 */ 2841 2842static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2843{ 2844#ifdef CONFIG_HIGHMEM 2845 int i; 2846 2847 if (!(dev->features & NETIF_F_HIGHDMA)) { 2848 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2849 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2850 2851 if (PageHighMem(skb_frag_page(frag))) 2852 return 1; 2853 } 2854 } 2855 2856 if (PCI_DMA_BUS_IS_PHYS) { 2857 struct device *pdev = dev->dev.parent; 2858 2859 if (!pdev) 2860 return 0; 2861 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2862 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2863 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2864 2865 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2866 return 1; 2867 } 2868 } 2869#endif 2870 return 0; 2871} 2872 2873/* If MPLS offload request, verify we are testing hardware MPLS features 2874 * instead of standard features for the netdev. 2875 */ 2876#if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2877static netdev_features_t net_mpls_features(struct sk_buff *skb, 2878 netdev_features_t features, 2879 __be16 type) 2880{ 2881 if (eth_p_mpls(type)) 2882 features &= skb->dev->mpls_features; 2883 2884 return features; 2885} 2886#else 2887static netdev_features_t net_mpls_features(struct sk_buff *skb, 2888 netdev_features_t features, 2889 __be16 type) 2890{ 2891 return features; 2892} 2893#endif 2894 2895static netdev_features_t harmonize_features(struct sk_buff *skb, 2896 netdev_features_t features) 2897{ 2898 int tmp; 2899 __be16 type; 2900 2901 type = skb_network_protocol(skb, &tmp); 2902 features = net_mpls_features(skb, features, type); 2903 2904 if (skb->ip_summed != CHECKSUM_NONE && 2905 !can_checksum_protocol(features, type)) { 2906 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2907 } 2908 if (illegal_highdma(skb->dev, skb)) 2909 features &= ~NETIF_F_SG; 2910 2911 return features; 2912} 2913 2914netdev_features_t passthru_features_check(struct sk_buff *skb, 2915 struct net_device *dev, 2916 netdev_features_t features) 2917{ 2918 return features; 2919} 2920EXPORT_SYMBOL(passthru_features_check); 2921 2922static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2923 struct net_device *dev, 2924 netdev_features_t features) 2925{ 2926 return vlan_features_check(skb, features); 2927} 2928 2929static netdev_features_t gso_features_check(const struct sk_buff *skb, 2930 struct net_device *dev, 2931 netdev_features_t features) 2932{ 2933 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2934 2935 if (gso_segs > dev->gso_max_segs) 2936 return features & ~NETIF_F_GSO_MASK; 2937 2938 /* Support for GSO partial features requires software 2939 * intervention before we can actually process the packets 2940 * so we need to strip support for any partial features now 2941 * and we can pull them back in after we have partially 2942 * segmented the frame. 2943 */ 2944 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2945 features &= ~dev->gso_partial_features; 2946 2947 /* Make sure to clear the IPv4 ID mangling feature if the 2948 * IPv4 header has the potential to be fragmented. 2949 */ 2950 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2951 struct iphdr *iph = skb->encapsulation ? 2952 inner_ip_hdr(skb) : ip_hdr(skb); 2953 2954 if (!(iph->frag_off & htons(IP_DF))) 2955 features &= ~NETIF_F_TSO_MANGLEID; 2956 } 2957 2958 return features; 2959} 2960 2961netdev_features_t netif_skb_features(struct sk_buff *skb) 2962{ 2963 struct net_device *dev = skb->dev; 2964 netdev_features_t features = dev->features; 2965 2966 if (skb_is_gso(skb)) 2967 features = gso_features_check(skb, dev, features); 2968 2969 /* If encapsulation offload request, verify we are testing 2970 * hardware encapsulation features instead of standard 2971 * features for the netdev 2972 */ 2973 if (skb->encapsulation) 2974 features &= dev->hw_enc_features; 2975 2976 if (skb_vlan_tagged(skb)) 2977 features = netdev_intersect_features(features, 2978 dev->vlan_features | 2979 NETIF_F_HW_VLAN_CTAG_TX | 2980 NETIF_F_HW_VLAN_STAG_TX); 2981 2982 if (dev->netdev_ops->ndo_features_check) 2983 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2984 features); 2985 else 2986 features &= dflt_features_check(skb, dev, features); 2987 2988 return harmonize_features(skb, features); 2989} 2990EXPORT_SYMBOL(netif_skb_features); 2991 2992static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2993 struct netdev_queue *txq, bool more) 2994{ 2995 unsigned int len; 2996 int rc; 2997 2998 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2999 dev_queue_xmit_nit(skb, dev); 3000 3001 len = skb->len; 3002 trace_net_dev_start_xmit(skb, dev); 3003 rc = netdev_start_xmit(skb, dev, txq, more); 3004 trace_net_dev_xmit(skb, rc, dev, len); 3005 3006 return rc; 3007} 3008 3009struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3010 struct netdev_queue *txq, int *ret) 3011{ 3012 struct sk_buff *skb = first; 3013 int rc = NETDEV_TX_OK; 3014 3015 while (skb) { 3016 struct sk_buff *next = skb->next; 3017 3018 skb->next = NULL; 3019 rc = xmit_one(skb, dev, txq, next != NULL); 3020 if (unlikely(!dev_xmit_complete(rc))) { 3021 skb->next = next; 3022 goto out; 3023 } 3024 3025 skb = next; 3026 if (netif_xmit_stopped(txq) && skb) { 3027 rc = NETDEV_TX_BUSY; 3028 break; 3029 } 3030 } 3031 3032out: 3033 *ret = rc; 3034 return skb; 3035} 3036 3037static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3038 netdev_features_t features) 3039{ 3040 if (skb_vlan_tag_present(skb) && 3041 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3042 skb = __vlan_hwaccel_push_inside(skb); 3043 return skb; 3044} 3045 3046int skb_csum_hwoffload_help(struct sk_buff *skb, 3047 const netdev_features_t features) 3048{ 3049 if (unlikely(skb->csum_not_inet)) 3050 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3051 skb_crc32c_csum_help(skb); 3052 3053 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3054} 3055EXPORT_SYMBOL(skb_csum_hwoffload_help); 3056 3057static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 3058{ 3059 netdev_features_t features; 3060 3061 features = netif_skb_features(skb); 3062 skb = validate_xmit_vlan(skb, features); 3063 if (unlikely(!skb)) 3064 goto out_null; 3065 3066 if (netif_needs_gso(skb, features)) { 3067 struct sk_buff *segs; 3068 3069 segs = skb_gso_segment(skb, features); 3070 if (IS_ERR(segs)) { 3071 goto out_kfree_skb; 3072 } else if (segs) { 3073 consume_skb(skb); 3074 skb = segs; 3075 } 3076 } else { 3077 if (skb_needs_linearize(skb, features) && 3078 __skb_linearize(skb)) 3079 goto out_kfree_skb; 3080 3081 if (validate_xmit_xfrm(skb, features)) 3082 goto out_kfree_skb; 3083 3084 /* If packet is not checksummed and device does not 3085 * support checksumming for this protocol, complete 3086 * checksumming here. 3087 */ 3088 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3089 if (skb->encapsulation) 3090 skb_set_inner_transport_header(skb, 3091 skb_checksum_start_offset(skb)); 3092 else 3093 skb_set_transport_header(skb, 3094 skb_checksum_start_offset(skb)); 3095 if (skb_csum_hwoffload_help(skb, features)) 3096 goto out_kfree_skb; 3097 } 3098 } 3099 3100 return skb; 3101 3102out_kfree_skb: 3103 kfree_skb(skb); 3104out_null: 3105 atomic_long_inc(&dev->tx_dropped); 3106 return NULL; 3107} 3108 3109struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 3110{ 3111 struct sk_buff *next, *head = NULL, *tail; 3112 3113 for (; skb != NULL; skb = next) { 3114 next = skb->next; 3115 skb->next = NULL; 3116 3117 /* in case skb wont be segmented, point to itself */ 3118 skb->prev = skb; 3119 3120 skb = validate_xmit_skb(skb, dev); 3121 if (!skb) 3122 continue; 3123 3124 if (!head) 3125 head = skb; 3126 else 3127 tail->next = skb; 3128 /* If skb was segmented, skb->prev points to 3129 * the last segment. If not, it still contains skb. 3130 */ 3131 tail = skb->prev; 3132 } 3133 return head; 3134} 3135EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3136 3137static void qdisc_pkt_len_init(struct sk_buff *skb) 3138{ 3139 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3140 3141 qdisc_skb_cb(skb)->pkt_len = skb->len; 3142 3143 /* To get more precise estimation of bytes sent on wire, 3144 * we add to pkt_len the headers size of all segments 3145 */ 3146 if (shinfo->gso_size) { 3147 unsigned int hdr_len; 3148 u16 gso_segs = shinfo->gso_segs; 3149 3150 /* mac layer + network layer */ 3151 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3152 3153 /* + transport layer */ 3154 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3155 hdr_len += tcp_hdrlen(skb); 3156 else 3157 hdr_len += sizeof(struct udphdr); 3158 3159 if (shinfo->gso_type & SKB_GSO_DODGY) 3160 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3161 shinfo->gso_size); 3162 3163 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3164 } 3165} 3166 3167static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3168 struct net_device *dev, 3169 struct netdev_queue *txq) 3170{ 3171 spinlock_t *root_lock = qdisc_lock(q); 3172 struct sk_buff *to_free = NULL; 3173 bool contended; 3174 int rc; 3175 3176 qdisc_calculate_pkt_len(skb, q); 3177 /* 3178 * Heuristic to force contended enqueues to serialize on a 3179 * separate lock before trying to get qdisc main lock. 3180 * This permits qdisc->running owner to get the lock more 3181 * often and dequeue packets faster. 3182 */ 3183 contended = qdisc_is_running(q); 3184 if (unlikely(contended)) 3185 spin_lock(&q->busylock); 3186 3187 spin_lock(root_lock); 3188 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3189 __qdisc_drop(skb, &to_free); 3190 rc = NET_XMIT_DROP; 3191 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3192 qdisc_run_begin(q)) { 3193 /* 3194 * This is a work-conserving queue; there are no old skbs 3195 * waiting to be sent out; and the qdisc is not running - 3196 * xmit the skb directly. 3197 */ 3198 3199 qdisc_bstats_update(q, skb); 3200 3201 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3202 if (unlikely(contended)) { 3203 spin_unlock(&q->busylock); 3204 contended = false; 3205 } 3206 __qdisc_run(q); 3207 } else 3208 qdisc_run_end(q); 3209 3210 rc = NET_XMIT_SUCCESS; 3211 } else { 3212 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3213 if (qdisc_run_begin(q)) { 3214 if (unlikely(contended)) { 3215 spin_unlock(&q->busylock); 3216 contended = false; 3217 } 3218 __qdisc_run(q); 3219 } 3220 } 3221 spin_unlock(root_lock); 3222 if (unlikely(to_free)) 3223 kfree_skb_list(to_free); 3224 if (unlikely(contended)) 3225 spin_unlock(&q->busylock); 3226 return rc; 3227} 3228 3229#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3230static void skb_update_prio(struct sk_buff *skb) 3231{ 3232 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3233 3234 if (!skb->priority && skb->sk && map) { 3235 unsigned int prioidx = 3236 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3237 3238 if (prioidx < map->priomap_len) 3239 skb->priority = map->priomap[prioidx]; 3240 } 3241} 3242#else 3243#define skb_update_prio(skb) 3244#endif 3245 3246DEFINE_PER_CPU(int, xmit_recursion); 3247EXPORT_SYMBOL(xmit_recursion); 3248 3249/** 3250 * dev_loopback_xmit - loop back @skb 3251 * @net: network namespace this loopback is happening in 3252 * @sk: sk needed to be a netfilter okfn 3253 * @skb: buffer to transmit 3254 */ 3255int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3256{ 3257 skb_reset_mac_header(skb); 3258 __skb_pull(skb, skb_network_offset(skb)); 3259 skb->pkt_type = PACKET_LOOPBACK; 3260 skb->ip_summed = CHECKSUM_UNNECESSARY; 3261 WARN_ON(!skb_dst(skb)); 3262 skb_dst_force(skb); 3263 netif_rx_ni(skb); 3264 return 0; 3265} 3266EXPORT_SYMBOL(dev_loopback_xmit); 3267 3268#ifdef CONFIG_NET_EGRESS 3269static struct sk_buff * 3270sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3271{ 3272 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3273 struct tcf_result cl_res; 3274 3275 if (!miniq) 3276 return skb; 3277 3278 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3279 mini_qdisc_bstats_cpu_update(miniq, skb); 3280 3281 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3282 case TC_ACT_OK: 3283 case TC_ACT_RECLASSIFY: 3284 skb->tc_index = TC_H_MIN(cl_res.classid); 3285 break; 3286 case TC_ACT_SHOT: 3287 mini_qdisc_qstats_cpu_drop(miniq); 3288 *ret = NET_XMIT_DROP; 3289 kfree_skb(skb); 3290 return NULL; 3291 case TC_ACT_STOLEN: 3292 case TC_ACT_QUEUED: 3293 case TC_ACT_TRAP: 3294 *ret = NET_XMIT_SUCCESS; 3295 consume_skb(skb); 3296 return NULL; 3297 case TC_ACT_REDIRECT: 3298 /* No need to push/pop skb's mac_header here on egress! */ 3299 skb_do_redirect(skb); 3300 *ret = NET_XMIT_SUCCESS; 3301 return NULL; 3302 default: 3303 break; 3304 } 3305 3306 return skb; 3307} 3308#endif /* CONFIG_NET_EGRESS */ 3309 3310static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3311{ 3312#ifdef CONFIG_XPS 3313 struct xps_dev_maps *dev_maps; 3314 struct xps_map *map; 3315 int queue_index = -1; 3316 3317 rcu_read_lock(); 3318 dev_maps = rcu_dereference(dev->xps_maps); 3319 if (dev_maps) { 3320 unsigned int tci = skb->sender_cpu - 1; 3321 3322 if (dev->num_tc) { 3323 tci *= dev->num_tc; 3324 tci += netdev_get_prio_tc_map(dev, skb->priority); 3325 } 3326 3327 map = rcu_dereference(dev_maps->cpu_map[tci]); 3328 if (map) { 3329 if (map->len == 1) 3330 queue_index = map->queues[0]; 3331 else 3332 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3333 map->len)]; 3334 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3335 queue_index = -1; 3336 } 3337 } 3338 rcu_read_unlock(); 3339 3340 return queue_index; 3341#else 3342 return -1; 3343#endif 3344} 3345 3346static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3347{ 3348 struct sock *sk = skb->sk; 3349 int queue_index = sk_tx_queue_get(sk); 3350 3351 if (queue_index < 0 || skb->ooo_okay || 3352 queue_index >= dev->real_num_tx_queues) { 3353 int new_index = get_xps_queue(dev, skb); 3354 3355 if (new_index < 0) 3356 new_index = skb_tx_hash(dev, skb); 3357 3358 if (queue_index != new_index && sk && 3359 sk_fullsock(sk) && 3360 rcu_access_pointer(sk->sk_dst_cache)) 3361 sk_tx_queue_set(sk, new_index); 3362 3363 queue_index = new_index; 3364 } 3365 3366 return queue_index; 3367} 3368 3369struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3370 struct sk_buff *skb, 3371 void *accel_priv) 3372{ 3373 int queue_index = 0; 3374 3375#ifdef CONFIG_XPS 3376 u32 sender_cpu = skb->sender_cpu - 1; 3377 3378 if (sender_cpu >= (u32)NR_CPUS) 3379 skb->sender_cpu = raw_smp_processor_id() + 1; 3380#endif 3381 3382 if (dev->real_num_tx_queues != 1) { 3383 const struct net_device_ops *ops = dev->netdev_ops; 3384 3385 if (ops->ndo_select_queue) 3386 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3387 __netdev_pick_tx); 3388 else 3389 queue_index = __netdev_pick_tx(dev, skb); 3390 3391 if (!accel_priv) 3392 queue_index = netdev_cap_txqueue(dev, queue_index); 3393 } 3394 3395 skb_set_queue_mapping(skb, queue_index); 3396 return netdev_get_tx_queue(dev, queue_index); 3397} 3398 3399/** 3400 * __dev_queue_xmit - transmit a buffer 3401 * @skb: buffer to transmit 3402 * @accel_priv: private data used for L2 forwarding offload 3403 * 3404 * Queue a buffer for transmission to a network device. The caller must 3405 * have set the device and priority and built the buffer before calling 3406 * this function. The function can be called from an interrupt. 3407 * 3408 * A negative errno code is returned on a failure. A success does not 3409 * guarantee the frame will be transmitted as it may be dropped due 3410 * to congestion or traffic shaping. 3411 * 3412 * ----------------------------------------------------------------------------------- 3413 * I notice this method can also return errors from the queue disciplines, 3414 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3415 * be positive. 3416 * 3417 * Regardless of the return value, the skb is consumed, so it is currently 3418 * difficult to retry a send to this method. (You can bump the ref count 3419 * before sending to hold a reference for retry if you are careful.) 3420 * 3421 * When calling this method, interrupts MUST be enabled. This is because 3422 * the BH enable code must have IRQs enabled so that it will not deadlock. 3423 * --BLG 3424 */ 3425static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3426{ 3427 struct net_device *dev = skb->dev; 3428 struct netdev_queue *txq; 3429 struct Qdisc *q; 3430 int rc = -ENOMEM; 3431 3432 skb_reset_mac_header(skb); 3433 3434 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3435 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3436 3437 /* Disable soft irqs for various locks below. Also 3438 * stops preemption for RCU. 3439 */ 3440 rcu_read_lock_bh(); 3441 3442 skb_update_prio(skb); 3443 3444 qdisc_pkt_len_init(skb); 3445#ifdef CONFIG_NET_CLS_ACT 3446 skb->tc_at_ingress = 0; 3447# ifdef CONFIG_NET_EGRESS 3448 if (static_key_false(&egress_needed)) { 3449 skb = sch_handle_egress(skb, &rc, dev); 3450 if (!skb) 3451 goto out; 3452 } 3453# endif 3454#endif 3455 /* If device/qdisc don't need skb->dst, release it right now while 3456 * its hot in this cpu cache. 3457 */ 3458 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3459 skb_dst_drop(skb); 3460 else 3461 skb_dst_force(skb); 3462 3463 txq = netdev_pick_tx(dev, skb, accel_priv); 3464 q = rcu_dereference_bh(txq->qdisc); 3465 3466 trace_net_dev_queue(skb); 3467 if (q->enqueue) { 3468 rc = __dev_xmit_skb(skb, q, dev, txq); 3469 goto out; 3470 } 3471 3472 /* The device has no queue. Common case for software devices: 3473 * loopback, all the sorts of tunnels... 3474 3475 * Really, it is unlikely that netif_tx_lock protection is necessary 3476 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3477 * counters.) 3478 * However, it is possible, that they rely on protection 3479 * made by us here. 3480 3481 * Check this and shot the lock. It is not prone from deadlocks. 3482 *Either shot noqueue qdisc, it is even simpler 8) 3483 */ 3484 if (dev->flags & IFF_UP) { 3485 int cpu = smp_processor_id(); /* ok because BHs are off */ 3486 3487 if (txq->xmit_lock_owner != cpu) { 3488 if (unlikely(__this_cpu_read(xmit_recursion) > 3489 XMIT_RECURSION_LIMIT)) 3490 goto recursion_alert; 3491 3492 skb = validate_xmit_skb(skb, dev); 3493 if (!skb) 3494 goto out; 3495 3496 HARD_TX_LOCK(dev, txq, cpu); 3497 3498 if (!netif_xmit_stopped(txq)) { 3499 __this_cpu_inc(xmit_recursion); 3500 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3501 __this_cpu_dec(xmit_recursion); 3502 if (dev_xmit_complete(rc)) { 3503 HARD_TX_UNLOCK(dev, txq); 3504 goto out; 3505 } 3506 } 3507 HARD_TX_UNLOCK(dev, txq); 3508 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3509 dev->name); 3510 } else { 3511 /* Recursion is detected! It is possible, 3512 * unfortunately 3513 */ 3514recursion_alert: 3515 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3516 dev->name); 3517 } 3518 } 3519 3520 rc = -ENETDOWN; 3521 rcu_read_unlock_bh(); 3522 3523 atomic_long_inc(&dev->tx_dropped); 3524 kfree_skb_list(skb); 3525 return rc; 3526out: 3527 rcu_read_unlock_bh(); 3528 return rc; 3529} 3530 3531int dev_queue_xmit(struct sk_buff *skb) 3532{ 3533 return __dev_queue_xmit(skb, NULL); 3534} 3535EXPORT_SYMBOL(dev_queue_xmit); 3536 3537int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3538{ 3539 return __dev_queue_xmit(skb, accel_priv); 3540} 3541EXPORT_SYMBOL(dev_queue_xmit_accel); 3542 3543 3544/************************************************************************* 3545 * Receiver routines 3546 *************************************************************************/ 3547 3548int netdev_max_backlog __read_mostly = 1000; 3549EXPORT_SYMBOL(netdev_max_backlog); 3550 3551int netdev_tstamp_prequeue __read_mostly = 1; 3552int netdev_budget __read_mostly = 300; 3553unsigned int __read_mostly netdev_budget_usecs = 2000; 3554int weight_p __read_mostly = 64; /* old backlog weight */ 3555int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3556int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3557int dev_rx_weight __read_mostly = 64; 3558int dev_tx_weight __read_mostly = 64; 3559 3560/* Called with irq disabled */ 3561static inline void ____napi_schedule(struct softnet_data *sd, 3562 struct napi_struct *napi) 3563{ 3564 list_add_tail(&napi->poll_list, &sd->poll_list); 3565 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3566} 3567 3568#ifdef CONFIG_RPS 3569 3570/* One global table that all flow-based protocols share. */ 3571struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3572EXPORT_SYMBOL(rps_sock_flow_table); 3573u32 rps_cpu_mask __read_mostly; 3574EXPORT_SYMBOL(rps_cpu_mask); 3575 3576struct static_key rps_needed __read_mostly; 3577EXPORT_SYMBOL(rps_needed); 3578struct static_key rfs_needed __read_mostly; 3579EXPORT_SYMBOL(rfs_needed); 3580 3581static struct rps_dev_flow * 3582set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3583 struct rps_dev_flow *rflow, u16 next_cpu) 3584{ 3585 if (next_cpu < nr_cpu_ids) { 3586#ifdef CONFIG_RFS_ACCEL 3587 struct netdev_rx_queue *rxqueue; 3588 struct rps_dev_flow_table *flow_table; 3589 struct rps_dev_flow *old_rflow; 3590 u32 flow_id; 3591 u16 rxq_index; 3592 int rc; 3593 3594 /* Should we steer this flow to a different hardware queue? */ 3595 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3596 !(dev->features & NETIF_F_NTUPLE)) 3597 goto out; 3598 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3599 if (rxq_index == skb_get_rx_queue(skb)) 3600 goto out; 3601 3602 rxqueue = dev->_rx + rxq_index; 3603 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3604 if (!flow_table) 3605 goto out; 3606 flow_id = skb_get_hash(skb) & flow_table->mask; 3607 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3608 rxq_index, flow_id); 3609 if (rc < 0) 3610 goto out; 3611 old_rflow = rflow; 3612 rflow = &flow_table->flows[flow_id]; 3613 rflow->filter = rc; 3614 if (old_rflow->filter == rflow->filter) 3615 old_rflow->filter = RPS_NO_FILTER; 3616 out: 3617#endif 3618 rflow->last_qtail = 3619 per_cpu(softnet_data, next_cpu).input_queue_head; 3620 } 3621 3622 rflow->cpu = next_cpu; 3623 return rflow; 3624} 3625 3626/* 3627 * get_rps_cpu is called from netif_receive_skb and returns the target 3628 * CPU from the RPS map of the receiving queue for a given skb. 3629 * rcu_read_lock must be held on entry. 3630 */ 3631static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3632 struct rps_dev_flow **rflowp) 3633{ 3634 const struct rps_sock_flow_table *sock_flow_table; 3635 struct netdev_rx_queue *rxqueue = dev->_rx; 3636 struct rps_dev_flow_table *flow_table; 3637 struct rps_map *map; 3638 int cpu = -1; 3639 u32 tcpu; 3640 u32 hash; 3641 3642 if (skb_rx_queue_recorded(skb)) { 3643 u16 index = skb_get_rx_queue(skb); 3644 3645 if (unlikely(index >= dev->real_num_rx_queues)) { 3646 WARN_ONCE(dev->real_num_rx_queues > 1, 3647 "%s received packet on queue %u, but number " 3648 "of RX queues is %u\n", 3649 dev->name, index, dev->real_num_rx_queues); 3650 goto done; 3651 } 3652 rxqueue += index; 3653 } 3654 3655 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3656 3657 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3658 map = rcu_dereference(rxqueue->rps_map); 3659 if (!flow_table && !map) 3660 goto done; 3661 3662 skb_reset_network_header(skb); 3663 hash = skb_get_hash(skb); 3664 if (!hash) 3665 goto done; 3666 3667 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3668 if (flow_table && sock_flow_table) { 3669 struct rps_dev_flow *rflow; 3670 u32 next_cpu; 3671 u32 ident; 3672 3673 /* First check into global flow table if there is a match */ 3674 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3675 if ((ident ^ hash) & ~rps_cpu_mask) 3676 goto try_rps; 3677 3678 next_cpu = ident & rps_cpu_mask; 3679 3680 /* OK, now we know there is a match, 3681 * we can look at the local (per receive queue) flow table 3682 */ 3683 rflow = &flow_table->flows[hash & flow_table->mask]; 3684 tcpu = rflow->cpu; 3685 3686 /* 3687 * If the desired CPU (where last recvmsg was done) is 3688 * different from current CPU (one in the rx-queue flow 3689 * table entry), switch if one of the following holds: 3690 * - Current CPU is unset (>= nr_cpu_ids). 3691 * - Current CPU is offline. 3692 * - The current CPU's queue tail has advanced beyond the 3693 * last packet that was enqueued using this table entry. 3694 * This guarantees that all previous packets for the flow 3695 * have been dequeued, thus preserving in order delivery. 3696 */ 3697 if (unlikely(tcpu != next_cpu) && 3698 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3699 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3700 rflow->last_qtail)) >= 0)) { 3701 tcpu = next_cpu; 3702 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3703 } 3704 3705 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3706 *rflowp = rflow; 3707 cpu = tcpu; 3708 goto done; 3709 } 3710 } 3711 3712try_rps: 3713 3714 if (map) { 3715 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3716 if (cpu_online(tcpu)) { 3717 cpu = tcpu; 3718 goto done; 3719 } 3720 } 3721 3722done: 3723 return cpu; 3724} 3725 3726#ifdef CONFIG_RFS_ACCEL 3727 3728/** 3729 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3730 * @dev: Device on which the filter was set 3731 * @rxq_index: RX queue index 3732 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3733 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3734 * 3735 * Drivers that implement ndo_rx_flow_steer() should periodically call 3736 * this function for each installed filter and remove the filters for 3737 * which it returns %true. 3738 */ 3739bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3740 u32 flow_id, u16 filter_id) 3741{ 3742 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3743 struct rps_dev_flow_table *flow_table; 3744 struct rps_dev_flow *rflow; 3745 bool expire = true; 3746 unsigned int cpu; 3747 3748 rcu_read_lock(); 3749 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3750 if (flow_table && flow_id <= flow_table->mask) { 3751 rflow = &flow_table->flows[flow_id]; 3752 cpu = READ_ONCE(rflow->cpu); 3753 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3754 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3755 rflow->last_qtail) < 3756 (int)(10 * flow_table->mask))) 3757 expire = false; 3758 } 3759 rcu_read_unlock(); 3760 return expire; 3761} 3762EXPORT_SYMBOL(rps_may_expire_flow); 3763 3764#endif /* CONFIG_RFS_ACCEL */ 3765 3766/* Called from hardirq (IPI) context */ 3767static void rps_trigger_softirq(void *data) 3768{ 3769 struct softnet_data *sd = data; 3770 3771 ____napi_schedule(sd, &sd->backlog); 3772 sd->received_rps++; 3773} 3774 3775#endif /* CONFIG_RPS */ 3776 3777/* 3778 * Check if this softnet_data structure is another cpu one 3779 * If yes, queue it to our IPI list and return 1 3780 * If no, return 0 3781 */ 3782static int rps_ipi_queued(struct softnet_data *sd) 3783{ 3784#ifdef CONFIG_RPS 3785 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3786 3787 if (sd != mysd) { 3788 sd->rps_ipi_next = mysd->rps_ipi_list; 3789 mysd->rps_ipi_list = sd; 3790 3791 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3792 return 1; 3793 } 3794#endif /* CONFIG_RPS */ 3795 return 0; 3796} 3797 3798#ifdef CONFIG_NET_FLOW_LIMIT 3799int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3800#endif 3801 3802static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3803{ 3804#ifdef CONFIG_NET_FLOW_LIMIT 3805 struct sd_flow_limit *fl; 3806 struct softnet_data *sd; 3807 unsigned int old_flow, new_flow; 3808 3809 if (qlen < (netdev_max_backlog >> 1)) 3810 return false; 3811 3812 sd = this_cpu_ptr(&softnet_data); 3813 3814 rcu_read_lock(); 3815 fl = rcu_dereference(sd->flow_limit); 3816 if (fl) { 3817 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3818 old_flow = fl->history[fl->history_head]; 3819 fl->history[fl->history_head] = new_flow; 3820 3821 fl->history_head++; 3822 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3823 3824 if (likely(fl->buckets[old_flow])) 3825 fl->buckets[old_flow]--; 3826 3827 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3828 fl->count++; 3829 rcu_read_unlock(); 3830 return true; 3831 } 3832 } 3833 rcu_read_unlock(); 3834#endif 3835 return false; 3836} 3837 3838/* 3839 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3840 * queue (may be a remote CPU queue). 3841 */ 3842static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3843 unsigned int *qtail) 3844{ 3845 struct softnet_data *sd; 3846 unsigned long flags; 3847 unsigned int qlen; 3848 3849 sd = &per_cpu(softnet_data, cpu); 3850 3851 local_irq_save(flags); 3852 3853 rps_lock(sd); 3854 if (!netif_running(skb->dev)) 3855 goto drop; 3856 qlen = skb_queue_len(&sd->input_pkt_queue); 3857 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3858 if (qlen) { 3859enqueue: 3860 __skb_queue_tail(&sd->input_pkt_queue, skb); 3861 input_queue_tail_incr_save(sd, qtail); 3862 rps_unlock(sd); 3863 local_irq_restore(flags); 3864 return NET_RX_SUCCESS; 3865 } 3866 3867 /* Schedule NAPI for backlog device 3868 * We can use non atomic operation since we own the queue lock 3869 */ 3870 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3871 if (!rps_ipi_queued(sd)) 3872 ____napi_schedule(sd, &sd->backlog); 3873 } 3874 goto enqueue; 3875 } 3876 3877drop: 3878 sd->dropped++; 3879 rps_unlock(sd); 3880 3881 local_irq_restore(flags); 3882 3883 atomic_long_inc(&skb->dev->rx_dropped); 3884 kfree_skb(skb); 3885 return NET_RX_DROP; 3886} 3887 3888static u32 netif_receive_generic_xdp(struct sk_buff *skb, 3889 struct bpf_prog *xdp_prog) 3890{ 3891 u32 metalen, act = XDP_DROP; 3892 struct xdp_buff xdp; 3893 void *orig_data; 3894 int hlen, off; 3895 u32 mac_len; 3896 3897 /* Reinjected packets coming from act_mirred or similar should 3898 * not get XDP generic processing. 3899 */ 3900 if (skb_cloned(skb)) 3901 return XDP_PASS; 3902 3903 /* XDP packets must be linear and must have sufficient headroom 3904 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 3905 * native XDP provides, thus we need to do it here as well. 3906 */ 3907 if (skb_is_nonlinear(skb) || 3908 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 3909 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 3910 int troom = skb->tail + skb->data_len - skb->end; 3911 3912 /* In case we have to go down the path and also linearize, 3913 * then lets do the pskb_expand_head() work just once here. 3914 */ 3915 if (pskb_expand_head(skb, 3916 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 3917 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 3918 goto do_drop; 3919 if (skb_linearize(skb)) 3920 goto do_drop; 3921 } 3922 3923 /* The XDP program wants to see the packet starting at the MAC 3924 * header. 3925 */ 3926 mac_len = skb->data - skb_mac_header(skb); 3927 hlen = skb_headlen(skb) + mac_len; 3928 xdp.data = skb->data - mac_len; 3929 xdp.data_meta = xdp.data; 3930 xdp.data_end = xdp.data + hlen; 3931 xdp.data_hard_start = skb->data - skb_headroom(skb); 3932 orig_data = xdp.data; 3933 3934 act = bpf_prog_run_xdp(xdp_prog, &xdp); 3935 3936 off = xdp.data - orig_data; 3937 if (off > 0) 3938 __skb_pull(skb, off); 3939 else if (off < 0) 3940 __skb_push(skb, -off); 3941 skb->mac_header += off; 3942 3943 switch (act) { 3944 case XDP_REDIRECT: 3945 case XDP_TX: 3946 __skb_push(skb, mac_len); 3947 break; 3948 case XDP_PASS: 3949 metalen = xdp.data - xdp.data_meta; 3950 if (metalen) 3951 skb_metadata_set(skb, metalen); 3952 break; 3953 default: 3954 bpf_warn_invalid_xdp_action(act); 3955 /* fall through */ 3956 case XDP_ABORTED: 3957 trace_xdp_exception(skb->dev, xdp_prog, act); 3958 /* fall through */ 3959 case XDP_DROP: 3960 do_drop: 3961 kfree_skb(skb); 3962 break; 3963 } 3964 3965 return act; 3966} 3967 3968/* When doing generic XDP we have to bypass the qdisc layer and the 3969 * network taps in order to match in-driver-XDP behavior. 3970 */ 3971void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 3972{ 3973 struct net_device *dev = skb->dev; 3974 struct netdev_queue *txq; 3975 bool free_skb = true; 3976 int cpu, rc; 3977 3978 txq = netdev_pick_tx(dev, skb, NULL); 3979 cpu = smp_processor_id(); 3980 HARD_TX_LOCK(dev, txq, cpu); 3981 if (!netif_xmit_stopped(txq)) { 3982 rc = netdev_start_xmit(skb, dev, txq, 0); 3983 if (dev_xmit_complete(rc)) 3984 free_skb = false; 3985 } 3986 HARD_TX_UNLOCK(dev, txq); 3987 if (free_skb) { 3988 trace_xdp_exception(dev, xdp_prog, XDP_TX); 3989 kfree_skb(skb); 3990 } 3991} 3992EXPORT_SYMBOL_GPL(generic_xdp_tx); 3993 3994static struct static_key generic_xdp_needed __read_mostly; 3995 3996int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 3997{ 3998 if (xdp_prog) { 3999 u32 act = netif_receive_generic_xdp(skb, xdp_prog); 4000 int err; 4001 4002 if (act != XDP_PASS) { 4003 switch (act) { 4004 case XDP_REDIRECT: 4005 err = xdp_do_generic_redirect(skb->dev, skb, 4006 xdp_prog); 4007 if (err) 4008 goto out_redir; 4009 /* fallthru to submit skb */ 4010 case XDP_TX: 4011 generic_xdp_tx(skb, xdp_prog); 4012 break; 4013 } 4014 return XDP_DROP; 4015 } 4016 } 4017 return XDP_PASS; 4018out_redir: 4019 kfree_skb(skb); 4020 return XDP_DROP; 4021} 4022EXPORT_SYMBOL_GPL(do_xdp_generic); 4023 4024static int netif_rx_internal(struct sk_buff *skb) 4025{ 4026 int ret; 4027 4028 net_timestamp_check(netdev_tstamp_prequeue, skb); 4029 4030 trace_netif_rx(skb); 4031 4032 if (static_key_false(&generic_xdp_needed)) { 4033 int ret; 4034 4035 preempt_disable(); 4036 rcu_read_lock(); 4037 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4038 rcu_read_unlock(); 4039 preempt_enable(); 4040 4041 /* Consider XDP consuming the packet a success from 4042 * the netdev point of view we do not want to count 4043 * this as an error. 4044 */ 4045 if (ret != XDP_PASS) 4046 return NET_RX_SUCCESS; 4047 } 4048 4049#ifdef CONFIG_RPS 4050 if (static_key_false(&rps_needed)) { 4051 struct rps_dev_flow voidflow, *rflow = &voidflow; 4052 int cpu; 4053 4054 preempt_disable(); 4055 rcu_read_lock(); 4056 4057 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4058 if (cpu < 0) 4059 cpu = smp_processor_id(); 4060 4061 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4062 4063 rcu_read_unlock(); 4064 preempt_enable(); 4065 } else 4066#endif 4067 { 4068 unsigned int qtail; 4069 4070 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4071 put_cpu(); 4072 } 4073 return ret; 4074} 4075 4076/** 4077 * netif_rx - post buffer to the network code 4078 * @skb: buffer to post 4079 * 4080 * This function receives a packet from a device driver and queues it for 4081 * the upper (protocol) levels to process. It always succeeds. The buffer 4082 * may be dropped during processing for congestion control or by the 4083 * protocol layers. 4084 * 4085 * return values: 4086 * NET_RX_SUCCESS (no congestion) 4087 * NET_RX_DROP (packet was dropped) 4088 * 4089 */ 4090 4091int netif_rx(struct sk_buff *skb) 4092{ 4093 trace_netif_rx_entry(skb); 4094 4095 return netif_rx_internal(skb); 4096} 4097EXPORT_SYMBOL(netif_rx); 4098 4099int netif_rx_ni(struct sk_buff *skb) 4100{ 4101 int err; 4102 4103 trace_netif_rx_ni_entry(skb); 4104 4105 preempt_disable(); 4106 err = netif_rx_internal(skb); 4107 if (local_softirq_pending()) 4108 do_softirq(); 4109 preempt_enable(); 4110 4111 return err; 4112} 4113EXPORT_SYMBOL(netif_rx_ni); 4114 4115static __latent_entropy void net_tx_action(struct softirq_action *h) 4116{ 4117 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4118 4119 if (sd->completion_queue) { 4120 struct sk_buff *clist; 4121 4122 local_irq_disable(); 4123 clist = sd->completion_queue; 4124 sd->completion_queue = NULL; 4125 local_irq_enable(); 4126 4127 while (clist) { 4128 struct sk_buff *skb = clist; 4129 4130 clist = clist->next; 4131 4132 WARN_ON(refcount_read(&skb->users)); 4133 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4134 trace_consume_skb(skb); 4135 else 4136 trace_kfree_skb(skb, net_tx_action); 4137 4138 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4139 __kfree_skb(skb); 4140 else 4141 __kfree_skb_defer(skb); 4142 } 4143 4144 __kfree_skb_flush(); 4145 } 4146 4147 if (sd->output_queue) { 4148 struct Qdisc *head; 4149 4150 local_irq_disable(); 4151 head = sd->output_queue; 4152 sd->output_queue = NULL; 4153 sd->output_queue_tailp = &sd->output_queue; 4154 local_irq_enable(); 4155 4156 while (head) { 4157 struct Qdisc *q = head; 4158 spinlock_t *root_lock; 4159 4160 head = head->next_sched; 4161 4162 root_lock = qdisc_lock(q); 4163 spin_lock(root_lock); 4164 /* We need to make sure head->next_sched is read 4165 * before clearing __QDISC_STATE_SCHED 4166 */ 4167 smp_mb__before_atomic(); 4168 clear_bit(__QDISC_STATE_SCHED, &q->state); 4169 qdisc_run(q); 4170 spin_unlock(root_lock); 4171 } 4172 } 4173} 4174 4175#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4176/* This hook is defined here for ATM LANE */ 4177int (*br_fdb_test_addr_hook)(struct net_device *dev, 4178 unsigned char *addr) __read_mostly; 4179EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4180#endif 4181 4182static inline struct sk_buff * 4183sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4184 struct net_device *orig_dev) 4185{ 4186#ifdef CONFIG_NET_CLS_ACT 4187 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4188 struct tcf_result cl_res; 4189 4190 /* If there's at least one ingress present somewhere (so 4191 * we get here via enabled static key), remaining devices 4192 * that are not configured with an ingress qdisc will bail 4193 * out here. 4194 */ 4195 if (!miniq) 4196 return skb; 4197 4198 if (*pt_prev) { 4199 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4200 *pt_prev = NULL; 4201 } 4202 4203 qdisc_skb_cb(skb)->pkt_len = skb->len; 4204 skb->tc_at_ingress = 1; 4205 mini_qdisc_bstats_cpu_update(miniq, skb); 4206 4207 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4208 case TC_ACT_OK: 4209 case TC_ACT_RECLASSIFY: 4210 skb->tc_index = TC_H_MIN(cl_res.classid); 4211 break; 4212 case TC_ACT_SHOT: 4213 mini_qdisc_qstats_cpu_drop(miniq); 4214 kfree_skb(skb); 4215 return NULL; 4216 case TC_ACT_STOLEN: 4217 case TC_ACT_QUEUED: 4218 case TC_ACT_TRAP: 4219 consume_skb(skb); 4220 return NULL; 4221 case TC_ACT_REDIRECT: 4222 /* skb_mac_header check was done by cls/act_bpf, so 4223 * we can safely push the L2 header back before 4224 * redirecting to another netdev 4225 */ 4226 __skb_push(skb, skb->mac_len); 4227 skb_do_redirect(skb); 4228 return NULL; 4229 default: 4230 break; 4231 } 4232#endif /* CONFIG_NET_CLS_ACT */ 4233 return skb; 4234} 4235 4236/** 4237 * netdev_is_rx_handler_busy - check if receive handler is registered 4238 * @dev: device to check 4239 * 4240 * Check if a receive handler is already registered for a given device. 4241 * Return true if there one. 4242 * 4243 * The caller must hold the rtnl_mutex. 4244 */ 4245bool netdev_is_rx_handler_busy(struct net_device *dev) 4246{ 4247 ASSERT_RTNL(); 4248 return dev && rtnl_dereference(dev->rx_handler); 4249} 4250EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4251 4252/** 4253 * netdev_rx_handler_register - register receive handler 4254 * @dev: device to register a handler for 4255 * @rx_handler: receive handler to register 4256 * @rx_handler_data: data pointer that is used by rx handler 4257 * 4258 * Register a receive handler for a device. This handler will then be 4259 * called from __netif_receive_skb. A negative errno code is returned 4260 * on a failure. 4261 * 4262 * The caller must hold the rtnl_mutex. 4263 * 4264 * For a general description of rx_handler, see enum rx_handler_result. 4265 */ 4266int netdev_rx_handler_register(struct net_device *dev, 4267 rx_handler_func_t *rx_handler, 4268 void *rx_handler_data) 4269{ 4270 if (netdev_is_rx_handler_busy(dev)) 4271 return -EBUSY; 4272 4273 /* Note: rx_handler_data must be set before rx_handler */ 4274 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4275 rcu_assign_pointer(dev->rx_handler, rx_handler); 4276 4277 return 0; 4278} 4279EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4280 4281/** 4282 * netdev_rx_handler_unregister - unregister receive handler 4283 * @dev: device to unregister a handler from 4284 * 4285 * Unregister a receive handler from a device. 4286 * 4287 * The caller must hold the rtnl_mutex. 4288 */ 4289void netdev_rx_handler_unregister(struct net_device *dev) 4290{ 4291 4292 ASSERT_RTNL(); 4293 RCU_INIT_POINTER(dev->rx_handler, NULL); 4294 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4295 * section has a guarantee to see a non NULL rx_handler_data 4296 * as well. 4297 */ 4298 synchronize_net(); 4299 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4300} 4301EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4302 4303/* 4304 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4305 * the special handling of PFMEMALLOC skbs. 4306 */ 4307static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4308{ 4309 switch (skb->protocol) { 4310 case htons(ETH_P_ARP): 4311 case htons(ETH_P_IP): 4312 case htons(ETH_P_IPV6): 4313 case htons(ETH_P_8021Q): 4314 case htons(ETH_P_8021AD): 4315 return true; 4316 default: 4317 return false; 4318 } 4319} 4320 4321static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4322 int *ret, struct net_device *orig_dev) 4323{ 4324#ifdef CONFIG_NETFILTER_INGRESS 4325 if (nf_hook_ingress_active(skb)) { 4326 int ingress_retval; 4327 4328 if (*pt_prev) { 4329 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4330 *pt_prev = NULL; 4331 } 4332 4333 rcu_read_lock(); 4334 ingress_retval = nf_hook_ingress(skb); 4335 rcu_read_unlock(); 4336 return ingress_retval; 4337 } 4338#endif /* CONFIG_NETFILTER_INGRESS */ 4339 return 0; 4340} 4341 4342static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4343{ 4344 struct packet_type *ptype, *pt_prev; 4345 rx_handler_func_t *rx_handler; 4346 struct net_device *orig_dev; 4347 bool deliver_exact = false; 4348 int ret = NET_RX_DROP; 4349 __be16 type; 4350 4351 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4352 4353 trace_netif_receive_skb(skb); 4354 4355 orig_dev = skb->dev; 4356 4357 skb_reset_network_header(skb); 4358 if (!skb_transport_header_was_set(skb)) 4359 skb_reset_transport_header(skb); 4360 skb_reset_mac_len(skb); 4361 4362 pt_prev = NULL; 4363 4364another_round: 4365 skb->skb_iif = skb->dev->ifindex; 4366 4367 __this_cpu_inc(softnet_data.processed); 4368 4369 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4370 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4371 skb = skb_vlan_untag(skb); 4372 if (unlikely(!skb)) 4373 goto out; 4374 } 4375 4376 if (skb_skip_tc_classify(skb)) 4377 goto skip_classify; 4378 4379 if (pfmemalloc) 4380 goto skip_taps; 4381 4382 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4383 if (pt_prev) 4384 ret = deliver_skb(skb, pt_prev, orig_dev); 4385 pt_prev = ptype; 4386 } 4387 4388 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4389 if (pt_prev) 4390 ret = deliver_skb(skb, pt_prev, orig_dev); 4391 pt_prev = ptype; 4392 } 4393 4394skip_taps: 4395#ifdef CONFIG_NET_INGRESS 4396 if (static_key_false(&ingress_needed)) { 4397 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4398 if (!skb) 4399 goto out; 4400 4401 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4402 goto out; 4403 } 4404#endif 4405 skb_reset_tc(skb); 4406skip_classify: 4407 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4408 goto drop; 4409 4410 if (skb_vlan_tag_present(skb)) { 4411 if (pt_prev) { 4412 ret = deliver_skb(skb, pt_prev, orig_dev); 4413 pt_prev = NULL; 4414 } 4415 if (vlan_do_receive(&skb)) 4416 goto another_round; 4417 else if (unlikely(!skb)) 4418 goto out; 4419 } 4420 4421 rx_handler = rcu_dereference(skb->dev->rx_handler); 4422 if (rx_handler) { 4423 if (pt_prev) { 4424 ret = deliver_skb(skb, pt_prev, orig_dev); 4425 pt_prev = NULL; 4426 } 4427 switch (rx_handler(&skb)) { 4428 case RX_HANDLER_CONSUMED: 4429 ret = NET_RX_SUCCESS; 4430 goto out; 4431 case RX_HANDLER_ANOTHER: 4432 goto another_round; 4433 case RX_HANDLER_EXACT: 4434 deliver_exact = true; 4435 case RX_HANDLER_PASS: 4436 break; 4437 default: 4438 BUG(); 4439 } 4440 } 4441 4442 if (unlikely(skb_vlan_tag_present(skb))) { 4443 if (skb_vlan_tag_get_id(skb)) 4444 skb->pkt_type = PACKET_OTHERHOST; 4445 /* Note: we might in the future use prio bits 4446 * and set skb->priority like in vlan_do_receive() 4447 * For the time being, just ignore Priority Code Point 4448 */ 4449 skb->vlan_tci = 0; 4450 } 4451 4452 type = skb->protocol; 4453 4454 /* deliver only exact match when indicated */ 4455 if (likely(!deliver_exact)) { 4456 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4457 &ptype_base[ntohs(type) & 4458 PTYPE_HASH_MASK]); 4459 } 4460 4461 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4462 &orig_dev->ptype_specific); 4463 4464 if (unlikely(skb->dev != orig_dev)) { 4465 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4466 &skb->dev->ptype_specific); 4467 } 4468 4469 if (pt_prev) { 4470 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4471 goto drop; 4472 else 4473 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4474 } else { 4475drop: 4476 if (!deliver_exact) 4477 atomic_long_inc(&skb->dev->rx_dropped); 4478 else 4479 atomic_long_inc(&skb->dev->rx_nohandler); 4480 kfree_skb(skb); 4481 /* Jamal, now you will not able to escape explaining 4482 * me how you were going to use this. :-) 4483 */ 4484 ret = NET_RX_DROP; 4485 } 4486 4487out: 4488 return ret; 4489} 4490 4491/** 4492 * netif_receive_skb_core - special purpose version of netif_receive_skb 4493 * @skb: buffer to process 4494 * 4495 * More direct receive version of netif_receive_skb(). It should 4496 * only be used by callers that have a need to skip RPS and Generic XDP. 4497 * Caller must also take care of handling if (page_is_)pfmemalloc. 4498 * 4499 * This function may only be called from softirq context and interrupts 4500 * should be enabled. 4501 * 4502 * Return values (usually ignored): 4503 * NET_RX_SUCCESS: no congestion 4504 * NET_RX_DROP: packet was dropped 4505 */ 4506int netif_receive_skb_core(struct sk_buff *skb) 4507{ 4508 int ret; 4509 4510 rcu_read_lock(); 4511 ret = __netif_receive_skb_core(skb, false); 4512 rcu_read_unlock(); 4513 4514 return ret; 4515} 4516EXPORT_SYMBOL(netif_receive_skb_core); 4517 4518static int __netif_receive_skb(struct sk_buff *skb) 4519{ 4520 int ret; 4521 4522 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4523 unsigned int noreclaim_flag; 4524 4525 /* 4526 * PFMEMALLOC skbs are special, they should 4527 * - be delivered to SOCK_MEMALLOC sockets only 4528 * - stay away from userspace 4529 * - have bounded memory usage 4530 * 4531 * Use PF_MEMALLOC as this saves us from propagating the allocation 4532 * context down to all allocation sites. 4533 */ 4534 noreclaim_flag = memalloc_noreclaim_save(); 4535 ret = __netif_receive_skb_core(skb, true); 4536 memalloc_noreclaim_restore(noreclaim_flag); 4537 } else 4538 ret = __netif_receive_skb_core(skb, false); 4539 4540 return ret; 4541} 4542 4543static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 4544{ 4545 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 4546 struct bpf_prog *new = xdp->prog; 4547 int ret = 0; 4548 4549 switch (xdp->command) { 4550 case XDP_SETUP_PROG: 4551 rcu_assign_pointer(dev->xdp_prog, new); 4552 if (old) 4553 bpf_prog_put(old); 4554 4555 if (old && !new) { 4556 static_key_slow_dec(&generic_xdp_needed); 4557 } else if (new && !old) { 4558 static_key_slow_inc(&generic_xdp_needed); 4559 dev_disable_lro(dev); 4560 } 4561 break; 4562 4563 case XDP_QUERY_PROG: 4564 xdp->prog_attached = !!old; 4565 xdp->prog_id = old ? old->aux->id : 0; 4566 break; 4567 4568 default: 4569 ret = -EINVAL; 4570 break; 4571 } 4572 4573 return ret; 4574} 4575 4576static int netif_receive_skb_internal(struct sk_buff *skb) 4577{ 4578 int ret; 4579 4580 net_timestamp_check(netdev_tstamp_prequeue, skb); 4581 4582 if (skb_defer_rx_timestamp(skb)) 4583 return NET_RX_SUCCESS; 4584 4585 if (static_key_false(&generic_xdp_needed)) { 4586 int ret; 4587 4588 preempt_disable(); 4589 rcu_read_lock(); 4590 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4591 rcu_read_unlock(); 4592 preempt_enable(); 4593 4594 if (ret != XDP_PASS) 4595 return NET_RX_DROP; 4596 } 4597 4598 rcu_read_lock(); 4599#ifdef CONFIG_RPS 4600 if (static_key_false(&rps_needed)) { 4601 struct rps_dev_flow voidflow, *rflow = &voidflow; 4602 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4603 4604 if (cpu >= 0) { 4605 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4606 rcu_read_unlock(); 4607 return ret; 4608 } 4609 } 4610#endif 4611 ret = __netif_receive_skb(skb); 4612 rcu_read_unlock(); 4613 return ret; 4614} 4615 4616/** 4617 * netif_receive_skb - process receive buffer from network 4618 * @skb: buffer to process 4619 * 4620 * netif_receive_skb() is the main receive data processing function. 4621 * It always succeeds. The buffer may be dropped during processing 4622 * for congestion control or by the protocol layers. 4623 * 4624 * This function may only be called from softirq context and interrupts 4625 * should be enabled. 4626 * 4627 * Return values (usually ignored): 4628 * NET_RX_SUCCESS: no congestion 4629 * NET_RX_DROP: packet was dropped 4630 */ 4631int netif_receive_skb(struct sk_buff *skb) 4632{ 4633 trace_netif_receive_skb_entry(skb); 4634 4635 return netif_receive_skb_internal(skb); 4636} 4637EXPORT_SYMBOL(netif_receive_skb); 4638 4639DEFINE_PER_CPU(struct work_struct, flush_works); 4640 4641/* Network device is going away, flush any packets still pending */ 4642static void flush_backlog(struct work_struct *work) 4643{ 4644 struct sk_buff *skb, *tmp; 4645 struct softnet_data *sd; 4646 4647 local_bh_disable(); 4648 sd = this_cpu_ptr(&softnet_data); 4649 4650 local_irq_disable(); 4651 rps_lock(sd); 4652 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4653 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4654 __skb_unlink(skb, &sd->input_pkt_queue); 4655 kfree_skb(skb); 4656 input_queue_head_incr(sd); 4657 } 4658 } 4659 rps_unlock(sd); 4660 local_irq_enable(); 4661 4662 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4663 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4664 __skb_unlink(skb, &sd->process_queue); 4665 kfree_skb(skb); 4666 input_queue_head_incr(sd); 4667 } 4668 } 4669 local_bh_enable(); 4670} 4671 4672static void flush_all_backlogs(void) 4673{ 4674 unsigned int cpu; 4675 4676 get_online_cpus(); 4677 4678 for_each_online_cpu(cpu) 4679 queue_work_on(cpu, system_highpri_wq, 4680 per_cpu_ptr(&flush_works, cpu)); 4681 4682 for_each_online_cpu(cpu) 4683 flush_work(per_cpu_ptr(&flush_works, cpu)); 4684 4685 put_online_cpus(); 4686} 4687 4688static int napi_gro_complete(struct sk_buff *skb) 4689{ 4690 struct packet_offload *ptype; 4691 __be16 type = skb->protocol; 4692 struct list_head *head = &offload_base; 4693 int err = -ENOENT; 4694 4695 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4696 4697 if (NAPI_GRO_CB(skb)->count == 1) { 4698 skb_shinfo(skb)->gso_size = 0; 4699 goto out; 4700 } 4701 4702 rcu_read_lock(); 4703 list_for_each_entry_rcu(ptype, head, list) { 4704 if (ptype->type != type || !ptype->callbacks.gro_complete) 4705 continue; 4706 4707 err = ptype->callbacks.gro_complete(skb, 0); 4708 break; 4709 } 4710 rcu_read_unlock(); 4711 4712 if (err) { 4713 WARN_ON(&ptype->list == head); 4714 kfree_skb(skb); 4715 return NET_RX_SUCCESS; 4716 } 4717 4718out: 4719 return netif_receive_skb_internal(skb); 4720} 4721 4722/* napi->gro_list contains packets ordered by age. 4723 * youngest packets at the head of it. 4724 * Complete skbs in reverse order to reduce latencies. 4725 */ 4726void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4727{ 4728 struct sk_buff *skb, *prev = NULL; 4729 4730 /* scan list and build reverse chain */ 4731 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4732 skb->prev = prev; 4733 prev = skb; 4734 } 4735 4736 for (skb = prev; skb; skb = prev) { 4737 skb->next = NULL; 4738 4739 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4740 return; 4741 4742 prev = skb->prev; 4743 napi_gro_complete(skb); 4744 napi->gro_count--; 4745 } 4746 4747 napi->gro_list = NULL; 4748} 4749EXPORT_SYMBOL(napi_gro_flush); 4750 4751static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4752{ 4753 struct sk_buff *p; 4754 unsigned int maclen = skb->dev->hard_header_len; 4755 u32 hash = skb_get_hash_raw(skb); 4756 4757 for (p = napi->gro_list; p; p = p->next) { 4758 unsigned long diffs; 4759 4760 NAPI_GRO_CB(p)->flush = 0; 4761 4762 if (hash != skb_get_hash_raw(p)) { 4763 NAPI_GRO_CB(p)->same_flow = 0; 4764 continue; 4765 } 4766 4767 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4768 diffs |= p->vlan_tci ^ skb->vlan_tci; 4769 diffs |= skb_metadata_dst_cmp(p, skb); 4770 diffs |= skb_metadata_differs(p, skb); 4771 if (maclen == ETH_HLEN) 4772 diffs |= compare_ether_header(skb_mac_header(p), 4773 skb_mac_header(skb)); 4774 else if (!diffs) 4775 diffs = memcmp(skb_mac_header(p), 4776 skb_mac_header(skb), 4777 maclen); 4778 NAPI_GRO_CB(p)->same_flow = !diffs; 4779 } 4780} 4781 4782static void skb_gro_reset_offset(struct sk_buff *skb) 4783{ 4784 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4785 const skb_frag_t *frag0 = &pinfo->frags[0]; 4786 4787 NAPI_GRO_CB(skb)->data_offset = 0; 4788 NAPI_GRO_CB(skb)->frag0 = NULL; 4789 NAPI_GRO_CB(skb)->frag0_len = 0; 4790 4791 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4792 pinfo->nr_frags && 4793 !PageHighMem(skb_frag_page(frag0))) { 4794 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4795 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4796 skb_frag_size(frag0), 4797 skb->end - skb->tail); 4798 } 4799} 4800 4801static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4802{ 4803 struct skb_shared_info *pinfo = skb_shinfo(skb); 4804 4805 BUG_ON(skb->end - skb->tail < grow); 4806 4807 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4808 4809 skb->data_len -= grow; 4810 skb->tail += grow; 4811 4812 pinfo->frags[0].page_offset += grow; 4813 skb_frag_size_sub(&pinfo->frags[0], grow); 4814 4815 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4816 skb_frag_unref(skb, 0); 4817 memmove(pinfo->frags, pinfo->frags + 1, 4818 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4819 } 4820} 4821 4822static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4823{ 4824 struct sk_buff **pp = NULL; 4825 struct packet_offload *ptype; 4826 __be16 type = skb->protocol; 4827 struct list_head *head = &offload_base; 4828 int same_flow; 4829 enum gro_result ret; 4830 int grow; 4831 4832 if (netif_elide_gro(skb->dev)) 4833 goto normal; 4834 4835 gro_list_prepare(napi, skb); 4836 4837 rcu_read_lock(); 4838 list_for_each_entry_rcu(ptype, head, list) { 4839 if (ptype->type != type || !ptype->callbacks.gro_receive) 4840 continue; 4841 4842 skb_set_network_header(skb, skb_gro_offset(skb)); 4843 skb_reset_mac_len(skb); 4844 NAPI_GRO_CB(skb)->same_flow = 0; 4845 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4846 NAPI_GRO_CB(skb)->free = 0; 4847 NAPI_GRO_CB(skb)->encap_mark = 0; 4848 NAPI_GRO_CB(skb)->recursion_counter = 0; 4849 NAPI_GRO_CB(skb)->is_fou = 0; 4850 NAPI_GRO_CB(skb)->is_atomic = 1; 4851 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4852 4853 /* Setup for GRO checksum validation */ 4854 switch (skb->ip_summed) { 4855 case CHECKSUM_COMPLETE: 4856 NAPI_GRO_CB(skb)->csum = skb->csum; 4857 NAPI_GRO_CB(skb)->csum_valid = 1; 4858 NAPI_GRO_CB(skb)->csum_cnt = 0; 4859 break; 4860 case CHECKSUM_UNNECESSARY: 4861 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4862 NAPI_GRO_CB(skb)->csum_valid = 0; 4863 break; 4864 default: 4865 NAPI_GRO_CB(skb)->csum_cnt = 0; 4866 NAPI_GRO_CB(skb)->csum_valid = 0; 4867 } 4868 4869 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4870 break; 4871 } 4872 rcu_read_unlock(); 4873 4874 if (&ptype->list == head) 4875 goto normal; 4876 4877 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 4878 ret = GRO_CONSUMED; 4879 goto ok; 4880 } 4881 4882 same_flow = NAPI_GRO_CB(skb)->same_flow; 4883 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4884 4885 if (pp) { 4886 struct sk_buff *nskb = *pp; 4887 4888 *pp = nskb->next; 4889 nskb->next = NULL; 4890 napi_gro_complete(nskb); 4891 napi->gro_count--; 4892 } 4893 4894 if (same_flow) 4895 goto ok; 4896 4897 if (NAPI_GRO_CB(skb)->flush) 4898 goto normal; 4899 4900 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4901 struct sk_buff *nskb = napi->gro_list; 4902 4903 /* locate the end of the list to select the 'oldest' flow */ 4904 while (nskb->next) { 4905 pp = &nskb->next; 4906 nskb = *pp; 4907 } 4908 *pp = NULL; 4909 nskb->next = NULL; 4910 napi_gro_complete(nskb); 4911 } else { 4912 napi->gro_count++; 4913 } 4914 NAPI_GRO_CB(skb)->count = 1; 4915 NAPI_GRO_CB(skb)->age = jiffies; 4916 NAPI_GRO_CB(skb)->last = skb; 4917 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4918 skb->next = napi->gro_list; 4919 napi->gro_list = skb; 4920 ret = GRO_HELD; 4921 4922pull: 4923 grow = skb_gro_offset(skb) - skb_headlen(skb); 4924 if (grow > 0) 4925 gro_pull_from_frag0(skb, grow); 4926ok: 4927 return ret; 4928 4929normal: 4930 ret = GRO_NORMAL; 4931 goto pull; 4932} 4933 4934struct packet_offload *gro_find_receive_by_type(__be16 type) 4935{ 4936 struct list_head *offload_head = &offload_base; 4937 struct packet_offload *ptype; 4938 4939 list_for_each_entry_rcu(ptype, offload_head, list) { 4940 if (ptype->type != type || !ptype->callbacks.gro_receive) 4941 continue; 4942 return ptype; 4943 } 4944 return NULL; 4945} 4946EXPORT_SYMBOL(gro_find_receive_by_type); 4947 4948struct packet_offload *gro_find_complete_by_type(__be16 type) 4949{ 4950 struct list_head *offload_head = &offload_base; 4951 struct packet_offload *ptype; 4952 4953 list_for_each_entry_rcu(ptype, offload_head, list) { 4954 if (ptype->type != type || !ptype->callbacks.gro_complete) 4955 continue; 4956 return ptype; 4957 } 4958 return NULL; 4959} 4960EXPORT_SYMBOL(gro_find_complete_by_type); 4961 4962static void napi_skb_free_stolen_head(struct sk_buff *skb) 4963{ 4964 skb_dst_drop(skb); 4965 secpath_reset(skb); 4966 kmem_cache_free(skbuff_head_cache, skb); 4967} 4968 4969static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4970{ 4971 switch (ret) { 4972 case GRO_NORMAL: 4973 if (netif_receive_skb_internal(skb)) 4974 ret = GRO_DROP; 4975 break; 4976 4977 case GRO_DROP: 4978 kfree_skb(skb); 4979 break; 4980 4981 case GRO_MERGED_FREE: 4982 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4983 napi_skb_free_stolen_head(skb); 4984 else 4985 __kfree_skb(skb); 4986 break; 4987 4988 case GRO_HELD: 4989 case GRO_MERGED: 4990 case GRO_CONSUMED: 4991 break; 4992 } 4993 4994 return ret; 4995} 4996 4997gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4998{ 4999 skb_mark_napi_id(skb, napi); 5000 trace_napi_gro_receive_entry(skb); 5001 5002 skb_gro_reset_offset(skb); 5003 5004 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 5005} 5006EXPORT_SYMBOL(napi_gro_receive); 5007 5008static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5009{ 5010 if (unlikely(skb->pfmemalloc)) { 5011 consume_skb(skb); 5012 return; 5013 } 5014 __skb_pull(skb, skb_headlen(skb)); 5015 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5016 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5017 skb->vlan_tci = 0; 5018 skb->dev = napi->dev; 5019 skb->skb_iif = 0; 5020 skb->encapsulation = 0; 5021 skb_shinfo(skb)->gso_type = 0; 5022 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5023 secpath_reset(skb); 5024 5025 napi->skb = skb; 5026} 5027 5028struct sk_buff *napi_get_frags(struct napi_struct *napi) 5029{ 5030 struct sk_buff *skb = napi->skb; 5031 5032 if (!skb) { 5033 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5034 if (skb) { 5035 napi->skb = skb; 5036 skb_mark_napi_id(skb, napi); 5037 } 5038 } 5039 return skb; 5040} 5041EXPORT_SYMBOL(napi_get_frags); 5042 5043static gro_result_t napi_frags_finish(struct napi_struct *napi, 5044 struct sk_buff *skb, 5045 gro_result_t ret) 5046{ 5047 switch (ret) { 5048 case GRO_NORMAL: 5049 case GRO_HELD: 5050 __skb_push(skb, ETH_HLEN); 5051 skb->protocol = eth_type_trans(skb, skb->dev); 5052 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5053 ret = GRO_DROP; 5054 break; 5055 5056 case GRO_DROP: 5057 napi_reuse_skb(napi, skb); 5058 break; 5059 5060 case GRO_MERGED_FREE: 5061 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5062 napi_skb_free_stolen_head(skb); 5063 else 5064 napi_reuse_skb(napi, skb); 5065 break; 5066 5067 case GRO_MERGED: 5068 case GRO_CONSUMED: 5069 break; 5070 } 5071 5072 return ret; 5073} 5074 5075/* Upper GRO stack assumes network header starts at gro_offset=0 5076 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5077 * We copy ethernet header into skb->data to have a common layout. 5078 */ 5079static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5080{ 5081 struct sk_buff *skb = napi->skb; 5082 const struct ethhdr *eth; 5083 unsigned int hlen = sizeof(*eth); 5084 5085 napi->skb = NULL; 5086 5087 skb_reset_mac_header(skb); 5088 skb_gro_reset_offset(skb); 5089 5090 eth = skb_gro_header_fast(skb, 0); 5091 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5092 eth = skb_gro_header_slow(skb, hlen, 0); 5093 if (unlikely(!eth)) { 5094 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5095 __func__, napi->dev->name); 5096 napi_reuse_skb(napi, skb); 5097 return NULL; 5098 } 5099 } else { 5100 gro_pull_from_frag0(skb, hlen); 5101 NAPI_GRO_CB(skb)->frag0 += hlen; 5102 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5103 } 5104 __skb_pull(skb, hlen); 5105 5106 /* 5107 * This works because the only protocols we care about don't require 5108 * special handling. 5109 * We'll fix it up properly in napi_frags_finish() 5110 */ 5111 skb->protocol = eth->h_proto; 5112 5113 return skb; 5114} 5115 5116gro_result_t napi_gro_frags(struct napi_struct *napi) 5117{ 5118 struct sk_buff *skb = napi_frags_skb(napi); 5119 5120 if (!skb) 5121 return GRO_DROP; 5122 5123 trace_napi_gro_frags_entry(skb); 5124 5125 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5126} 5127EXPORT_SYMBOL(napi_gro_frags); 5128 5129/* Compute the checksum from gro_offset and return the folded value 5130 * after adding in any pseudo checksum. 5131 */ 5132__sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5133{ 5134 __wsum wsum; 5135 __sum16 sum; 5136 5137 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5138 5139 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5140 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5141 if (likely(!sum)) { 5142 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5143 !skb->csum_complete_sw) 5144 netdev_rx_csum_fault(skb->dev); 5145 } 5146 5147 NAPI_GRO_CB(skb)->csum = wsum; 5148 NAPI_GRO_CB(skb)->csum_valid = 1; 5149 5150 return sum; 5151} 5152EXPORT_SYMBOL(__skb_gro_checksum_complete); 5153 5154static void net_rps_send_ipi(struct softnet_data *remsd) 5155{ 5156#ifdef CONFIG_RPS 5157 while (remsd) { 5158 struct softnet_data *next = remsd->rps_ipi_next; 5159 5160 if (cpu_online(remsd->cpu)) 5161 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5162 remsd = next; 5163 } 5164#endif 5165} 5166 5167/* 5168 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5169 * Note: called with local irq disabled, but exits with local irq enabled. 5170 */ 5171static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5172{ 5173#ifdef CONFIG_RPS 5174 struct softnet_data *remsd = sd->rps_ipi_list; 5175 5176 if (remsd) { 5177 sd->rps_ipi_list = NULL; 5178 5179 local_irq_enable(); 5180 5181 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5182 net_rps_send_ipi(remsd); 5183 } else 5184#endif 5185 local_irq_enable(); 5186} 5187 5188static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5189{ 5190#ifdef CONFIG_RPS 5191 return sd->rps_ipi_list != NULL; 5192#else 5193 return false; 5194#endif 5195} 5196 5197static int process_backlog(struct napi_struct *napi, int quota) 5198{ 5199 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5200 bool again = true; 5201 int work = 0; 5202 5203 /* Check if we have pending ipi, its better to send them now, 5204 * not waiting net_rx_action() end. 5205 */ 5206 if (sd_has_rps_ipi_waiting(sd)) { 5207 local_irq_disable(); 5208 net_rps_action_and_irq_enable(sd); 5209 } 5210 5211 napi->weight = dev_rx_weight; 5212 while (again) { 5213 struct sk_buff *skb; 5214 5215 while ((skb = __skb_dequeue(&sd->process_queue))) { 5216 rcu_read_lock(); 5217 __netif_receive_skb(skb); 5218 rcu_read_unlock(); 5219 input_queue_head_incr(sd); 5220 if (++work >= quota) 5221 return work; 5222 5223 } 5224 5225 local_irq_disable(); 5226 rps_lock(sd); 5227 if (skb_queue_empty(&sd->input_pkt_queue)) { 5228 /* 5229 * Inline a custom version of __napi_complete(). 5230 * only current cpu owns and manipulates this napi, 5231 * and NAPI_STATE_SCHED is the only possible flag set 5232 * on backlog. 5233 * We can use a plain write instead of clear_bit(), 5234 * and we dont need an smp_mb() memory barrier. 5235 */ 5236 napi->state = 0; 5237 again = false; 5238 } else { 5239 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5240 &sd->process_queue); 5241 } 5242 rps_unlock(sd); 5243 local_irq_enable(); 5244 } 5245 5246 return work; 5247} 5248 5249/** 5250 * __napi_schedule - schedule for receive 5251 * @n: entry to schedule 5252 * 5253 * The entry's receive function will be scheduled to run. 5254 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5255 */ 5256void __napi_schedule(struct napi_struct *n) 5257{ 5258 unsigned long flags; 5259 5260 local_irq_save(flags); 5261 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5262 local_irq_restore(flags); 5263} 5264EXPORT_SYMBOL(__napi_schedule); 5265 5266/** 5267 * napi_schedule_prep - check if napi can be scheduled 5268 * @n: napi context 5269 * 5270 * Test if NAPI routine is already running, and if not mark 5271 * it as running. This is used as a condition variable 5272 * insure only one NAPI poll instance runs. We also make 5273 * sure there is no pending NAPI disable. 5274 */ 5275bool napi_schedule_prep(struct napi_struct *n) 5276{ 5277 unsigned long val, new; 5278 5279 do { 5280 val = READ_ONCE(n->state); 5281 if (unlikely(val & NAPIF_STATE_DISABLE)) 5282 return false; 5283 new = val | NAPIF_STATE_SCHED; 5284 5285 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5286 * This was suggested by Alexander Duyck, as compiler 5287 * emits better code than : 5288 * if (val & NAPIF_STATE_SCHED) 5289 * new |= NAPIF_STATE_MISSED; 5290 */ 5291 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5292 NAPIF_STATE_MISSED; 5293 } while (cmpxchg(&n->state, val, new) != val); 5294 5295 return !(val & NAPIF_STATE_SCHED); 5296} 5297EXPORT_SYMBOL(napi_schedule_prep); 5298 5299/** 5300 * __napi_schedule_irqoff - schedule for receive 5301 * @n: entry to schedule 5302 * 5303 * Variant of __napi_schedule() assuming hard irqs are masked 5304 */ 5305void __napi_schedule_irqoff(struct napi_struct *n) 5306{ 5307 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5308} 5309EXPORT_SYMBOL(__napi_schedule_irqoff); 5310 5311bool napi_complete_done(struct napi_struct *n, int work_done) 5312{ 5313 unsigned long flags, val, new; 5314 5315 /* 5316 * 1) Don't let napi dequeue from the cpu poll list 5317 * just in case its running on a different cpu. 5318 * 2) If we are busy polling, do nothing here, we have 5319 * the guarantee we will be called later. 5320 */ 5321 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5322 NAPIF_STATE_IN_BUSY_POLL))) 5323 return false; 5324 5325 if (n->gro_list) { 5326 unsigned long timeout = 0; 5327 5328 if (work_done) 5329 timeout = n->dev->gro_flush_timeout; 5330 5331 if (timeout) 5332 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5333 HRTIMER_MODE_REL_PINNED); 5334 else 5335 napi_gro_flush(n, false); 5336 } 5337 if (unlikely(!list_empty(&n->poll_list))) { 5338 /* If n->poll_list is not empty, we need to mask irqs */ 5339 local_irq_save(flags); 5340 list_del_init(&n->poll_list); 5341 local_irq_restore(flags); 5342 } 5343 5344 do { 5345 val = READ_ONCE(n->state); 5346 5347 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5348 5349 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5350 5351 /* If STATE_MISSED was set, leave STATE_SCHED set, 5352 * because we will call napi->poll() one more time. 5353 * This C code was suggested by Alexander Duyck to help gcc. 5354 */ 5355 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5356 NAPIF_STATE_SCHED; 5357 } while (cmpxchg(&n->state, val, new) != val); 5358 5359 if (unlikely(val & NAPIF_STATE_MISSED)) { 5360 __napi_schedule(n); 5361 return false; 5362 } 5363 5364 return true; 5365} 5366EXPORT_SYMBOL(napi_complete_done); 5367 5368/* must be called under rcu_read_lock(), as we dont take a reference */ 5369static struct napi_struct *napi_by_id(unsigned int napi_id) 5370{ 5371 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5372 struct napi_struct *napi; 5373 5374 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5375 if (napi->napi_id == napi_id) 5376 return napi; 5377 5378 return NULL; 5379} 5380 5381#if defined(CONFIG_NET_RX_BUSY_POLL) 5382 5383#define BUSY_POLL_BUDGET 8 5384 5385static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5386{ 5387 int rc; 5388 5389 /* Busy polling means there is a high chance device driver hard irq 5390 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5391 * set in napi_schedule_prep(). 5392 * Since we are about to call napi->poll() once more, we can safely 5393 * clear NAPI_STATE_MISSED. 5394 * 5395 * Note: x86 could use a single "lock and ..." instruction 5396 * to perform these two clear_bit() 5397 */ 5398 clear_bit(NAPI_STATE_MISSED, &napi->state); 5399 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5400 5401 local_bh_disable(); 5402 5403 /* All we really want here is to re-enable device interrupts. 5404 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5405 */ 5406 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5407 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 5408 netpoll_poll_unlock(have_poll_lock); 5409 if (rc == BUSY_POLL_BUDGET) 5410 __napi_schedule(napi); 5411 local_bh_enable(); 5412} 5413 5414void napi_busy_loop(unsigned int napi_id, 5415 bool (*loop_end)(void *, unsigned long), 5416 void *loop_end_arg) 5417{ 5418 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 5419 int (*napi_poll)(struct napi_struct *napi, int budget); 5420 void *have_poll_lock = NULL; 5421 struct napi_struct *napi; 5422 5423restart: 5424 napi_poll = NULL; 5425 5426 rcu_read_lock(); 5427 5428 napi = napi_by_id(napi_id); 5429 if (!napi) 5430 goto out; 5431 5432 preempt_disable(); 5433 for (;;) { 5434 int work = 0; 5435 5436 local_bh_disable(); 5437 if (!napi_poll) { 5438 unsigned long val = READ_ONCE(napi->state); 5439 5440 /* If multiple threads are competing for this napi, 5441 * we avoid dirtying napi->state as much as we can. 5442 */ 5443 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5444 NAPIF_STATE_IN_BUSY_POLL)) 5445 goto count; 5446 if (cmpxchg(&napi->state, val, 5447 val | NAPIF_STATE_IN_BUSY_POLL | 5448 NAPIF_STATE_SCHED) != val) 5449 goto count; 5450 have_poll_lock = netpoll_poll_lock(napi); 5451 napi_poll = napi->poll; 5452 } 5453 work = napi_poll(napi, BUSY_POLL_BUDGET); 5454 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 5455count: 5456 if (work > 0) 5457 __NET_ADD_STATS(dev_net(napi->dev), 5458 LINUX_MIB_BUSYPOLLRXPACKETS, work); 5459 local_bh_enable(); 5460 5461 if (!loop_end || loop_end(loop_end_arg, start_time)) 5462 break; 5463 5464 if (unlikely(need_resched())) { 5465 if (napi_poll) 5466 busy_poll_stop(napi, have_poll_lock); 5467 preempt_enable(); 5468 rcu_read_unlock(); 5469 cond_resched(); 5470 if (loop_end(loop_end_arg, start_time)) 5471 return; 5472 goto restart; 5473 } 5474 cpu_relax(); 5475 } 5476 if (napi_poll) 5477 busy_poll_stop(napi, have_poll_lock); 5478 preempt_enable(); 5479out: 5480 rcu_read_unlock(); 5481} 5482EXPORT_SYMBOL(napi_busy_loop); 5483 5484#endif /* CONFIG_NET_RX_BUSY_POLL */ 5485 5486static void napi_hash_add(struct napi_struct *napi) 5487{ 5488 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5489 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5490 return; 5491 5492 spin_lock(&napi_hash_lock); 5493 5494 /* 0..NR_CPUS range is reserved for sender_cpu use */ 5495 do { 5496 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 5497 napi_gen_id = MIN_NAPI_ID; 5498 } while (napi_by_id(napi_gen_id)); 5499 napi->napi_id = napi_gen_id; 5500 5501 hlist_add_head_rcu(&napi->napi_hash_node, 5502 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5503 5504 spin_unlock(&napi_hash_lock); 5505} 5506 5507/* Warning : caller is responsible to make sure rcu grace period 5508 * is respected before freeing memory containing @napi 5509 */ 5510bool napi_hash_del(struct napi_struct *napi) 5511{ 5512 bool rcu_sync_needed = false; 5513 5514 spin_lock(&napi_hash_lock); 5515 5516 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5517 rcu_sync_needed = true; 5518 hlist_del_rcu(&napi->napi_hash_node); 5519 } 5520 spin_unlock(&napi_hash_lock); 5521 return rcu_sync_needed; 5522} 5523EXPORT_SYMBOL_GPL(napi_hash_del); 5524 5525static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5526{ 5527 struct napi_struct *napi; 5528 5529 napi = container_of(timer, struct napi_struct, timer); 5530 5531 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 5532 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 5533 */ 5534 if (napi->gro_list && !napi_disable_pending(napi) && 5535 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 5536 __napi_schedule_irqoff(napi); 5537 5538 return HRTIMER_NORESTART; 5539} 5540 5541void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5542 int (*poll)(struct napi_struct *, int), int weight) 5543{ 5544 INIT_LIST_HEAD(&napi->poll_list); 5545 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5546 napi->timer.function = napi_watchdog; 5547 napi->gro_count = 0; 5548 napi->gro_list = NULL; 5549 napi->skb = NULL; 5550 napi->poll = poll; 5551 if (weight > NAPI_POLL_WEIGHT) 5552 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5553 weight, dev->name); 5554 napi->weight = weight; 5555 list_add(&napi->dev_list, &dev->napi_list); 5556 napi->dev = dev; 5557#ifdef CONFIG_NETPOLL 5558 napi->poll_owner = -1; 5559#endif 5560 set_bit(NAPI_STATE_SCHED, &napi->state); 5561 napi_hash_add(napi); 5562} 5563EXPORT_SYMBOL(netif_napi_add); 5564 5565void napi_disable(struct napi_struct *n) 5566{ 5567 might_sleep(); 5568 set_bit(NAPI_STATE_DISABLE, &n->state); 5569 5570 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5571 msleep(1); 5572 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5573 msleep(1); 5574 5575 hrtimer_cancel(&n->timer); 5576 5577 clear_bit(NAPI_STATE_DISABLE, &n->state); 5578} 5579EXPORT_SYMBOL(napi_disable); 5580 5581/* Must be called in process context */ 5582void netif_napi_del(struct napi_struct *napi) 5583{ 5584 might_sleep(); 5585 if (napi_hash_del(napi)) 5586 synchronize_net(); 5587 list_del_init(&napi->dev_list); 5588 napi_free_frags(napi); 5589 5590 kfree_skb_list(napi->gro_list); 5591 napi->gro_list = NULL; 5592 napi->gro_count = 0; 5593} 5594EXPORT_SYMBOL(netif_napi_del); 5595 5596static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5597{ 5598 void *have; 5599 int work, weight; 5600 5601 list_del_init(&n->poll_list); 5602 5603 have = netpoll_poll_lock(n); 5604 5605 weight = n->weight; 5606 5607 /* This NAPI_STATE_SCHED test is for avoiding a race 5608 * with netpoll's poll_napi(). Only the entity which 5609 * obtains the lock and sees NAPI_STATE_SCHED set will 5610 * actually make the ->poll() call. Therefore we avoid 5611 * accidentally calling ->poll() when NAPI is not scheduled. 5612 */ 5613 work = 0; 5614 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5615 work = n->poll(n, weight); 5616 trace_napi_poll(n, work, weight); 5617 } 5618 5619 WARN_ON_ONCE(work > weight); 5620 5621 if (likely(work < weight)) 5622 goto out_unlock; 5623 5624 /* Drivers must not modify the NAPI state if they 5625 * consume the entire weight. In such cases this code 5626 * still "owns" the NAPI instance and therefore can 5627 * move the instance around on the list at-will. 5628 */ 5629 if (unlikely(napi_disable_pending(n))) { 5630 napi_complete(n); 5631 goto out_unlock; 5632 } 5633 5634 if (n->gro_list) { 5635 /* flush too old packets 5636 * If HZ < 1000, flush all packets. 5637 */ 5638 napi_gro_flush(n, HZ >= 1000); 5639 } 5640 5641 /* Some drivers may have called napi_schedule 5642 * prior to exhausting their budget. 5643 */ 5644 if (unlikely(!list_empty(&n->poll_list))) { 5645 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5646 n->dev ? n->dev->name : "backlog"); 5647 goto out_unlock; 5648 } 5649 5650 list_add_tail(&n->poll_list, repoll); 5651 5652out_unlock: 5653 netpoll_poll_unlock(have); 5654 5655 return work; 5656} 5657 5658static __latent_entropy void net_rx_action(struct softirq_action *h) 5659{ 5660 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5661 unsigned long time_limit = jiffies + 5662 usecs_to_jiffies(netdev_budget_usecs); 5663 int budget = netdev_budget; 5664 LIST_HEAD(list); 5665 LIST_HEAD(repoll); 5666 5667 local_irq_disable(); 5668 list_splice_init(&sd->poll_list, &list); 5669 local_irq_enable(); 5670 5671 for (;;) { 5672 struct napi_struct *n; 5673 5674 if (list_empty(&list)) { 5675 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5676 goto out; 5677 break; 5678 } 5679 5680 n = list_first_entry(&list, struct napi_struct, poll_list); 5681 budget -= napi_poll(n, &repoll); 5682 5683 /* If softirq window is exhausted then punt. 5684 * Allow this to run for 2 jiffies since which will allow 5685 * an average latency of 1.5/HZ. 5686 */ 5687 if (unlikely(budget <= 0 || 5688 time_after_eq(jiffies, time_limit))) { 5689 sd->time_squeeze++; 5690 break; 5691 } 5692 } 5693 5694 local_irq_disable(); 5695 5696 list_splice_tail_init(&sd->poll_list, &list); 5697 list_splice_tail(&repoll, &list); 5698 list_splice(&list, &sd->poll_list); 5699 if (!list_empty(&sd->poll_list)) 5700 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5701 5702 net_rps_action_and_irq_enable(sd); 5703out: 5704 __kfree_skb_flush(); 5705} 5706 5707struct netdev_adjacent { 5708 struct net_device *dev; 5709 5710 /* upper master flag, there can only be one master device per list */ 5711 bool master; 5712 5713 /* counter for the number of times this device was added to us */ 5714 u16 ref_nr; 5715 5716 /* private field for the users */ 5717 void *private; 5718 5719 struct list_head list; 5720 struct rcu_head rcu; 5721}; 5722 5723static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5724 struct list_head *adj_list) 5725{ 5726 struct netdev_adjacent *adj; 5727 5728 list_for_each_entry(adj, adj_list, list) { 5729 if (adj->dev == adj_dev) 5730 return adj; 5731 } 5732 return NULL; 5733} 5734 5735static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5736{ 5737 struct net_device *dev = data; 5738 5739 return upper_dev == dev; 5740} 5741 5742/** 5743 * netdev_has_upper_dev - Check if device is linked to an upper device 5744 * @dev: device 5745 * @upper_dev: upper device to check 5746 * 5747 * Find out if a device is linked to specified upper device and return true 5748 * in case it is. Note that this checks only immediate upper device, 5749 * not through a complete stack of devices. The caller must hold the RTNL lock. 5750 */ 5751bool netdev_has_upper_dev(struct net_device *dev, 5752 struct net_device *upper_dev) 5753{ 5754 ASSERT_RTNL(); 5755 5756 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5757 upper_dev); 5758} 5759EXPORT_SYMBOL(netdev_has_upper_dev); 5760 5761/** 5762 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5763 * @dev: device 5764 * @upper_dev: upper device to check 5765 * 5766 * Find out if a device is linked to specified upper device and return true 5767 * in case it is. Note that this checks the entire upper device chain. 5768 * The caller must hold rcu lock. 5769 */ 5770 5771bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5772 struct net_device *upper_dev) 5773{ 5774 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5775 upper_dev); 5776} 5777EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5778 5779/** 5780 * netdev_has_any_upper_dev - Check if device is linked to some device 5781 * @dev: device 5782 * 5783 * Find out if a device is linked to an upper device and return true in case 5784 * it is. The caller must hold the RTNL lock. 5785 */ 5786bool netdev_has_any_upper_dev(struct net_device *dev) 5787{ 5788 ASSERT_RTNL(); 5789 5790 return !list_empty(&dev->adj_list.upper); 5791} 5792EXPORT_SYMBOL(netdev_has_any_upper_dev); 5793 5794/** 5795 * netdev_master_upper_dev_get - Get master upper device 5796 * @dev: device 5797 * 5798 * Find a master upper device and return pointer to it or NULL in case 5799 * it's not there. The caller must hold the RTNL lock. 5800 */ 5801struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5802{ 5803 struct netdev_adjacent *upper; 5804 5805 ASSERT_RTNL(); 5806 5807 if (list_empty(&dev->adj_list.upper)) 5808 return NULL; 5809 5810 upper = list_first_entry(&dev->adj_list.upper, 5811 struct netdev_adjacent, list); 5812 if (likely(upper->master)) 5813 return upper->dev; 5814 return NULL; 5815} 5816EXPORT_SYMBOL(netdev_master_upper_dev_get); 5817 5818/** 5819 * netdev_has_any_lower_dev - Check if device is linked to some device 5820 * @dev: device 5821 * 5822 * Find out if a device is linked to a lower device and return true in case 5823 * it is. The caller must hold the RTNL lock. 5824 */ 5825static bool netdev_has_any_lower_dev(struct net_device *dev) 5826{ 5827 ASSERT_RTNL(); 5828 5829 return !list_empty(&dev->adj_list.lower); 5830} 5831 5832void *netdev_adjacent_get_private(struct list_head *adj_list) 5833{ 5834 struct netdev_adjacent *adj; 5835 5836 adj = list_entry(adj_list, struct netdev_adjacent, list); 5837 5838 return adj->private; 5839} 5840EXPORT_SYMBOL(netdev_adjacent_get_private); 5841 5842/** 5843 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5844 * @dev: device 5845 * @iter: list_head ** of the current position 5846 * 5847 * Gets the next device from the dev's upper list, starting from iter 5848 * position. The caller must hold RCU read lock. 5849 */ 5850struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5851 struct list_head **iter) 5852{ 5853 struct netdev_adjacent *upper; 5854 5855 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5856 5857 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5858 5859 if (&upper->list == &dev->adj_list.upper) 5860 return NULL; 5861 5862 *iter = &upper->list; 5863 5864 return upper->dev; 5865} 5866EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5867 5868static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5869 struct list_head **iter) 5870{ 5871 struct netdev_adjacent *upper; 5872 5873 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5874 5875 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5876 5877 if (&upper->list == &dev->adj_list.upper) 5878 return NULL; 5879 5880 *iter = &upper->list; 5881 5882 return upper->dev; 5883} 5884 5885int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5886 int (*fn)(struct net_device *dev, 5887 void *data), 5888 void *data) 5889{ 5890 struct net_device *udev; 5891 struct list_head *iter; 5892 int ret; 5893 5894 for (iter = &dev->adj_list.upper, 5895 udev = netdev_next_upper_dev_rcu(dev, &iter); 5896 udev; 5897 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 5898 /* first is the upper device itself */ 5899 ret = fn(udev, data); 5900 if (ret) 5901 return ret; 5902 5903 /* then look at all of its upper devices */ 5904 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 5905 if (ret) 5906 return ret; 5907 } 5908 5909 return 0; 5910} 5911EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 5912 5913/** 5914 * netdev_lower_get_next_private - Get the next ->private from the 5915 * lower neighbour list 5916 * @dev: device 5917 * @iter: list_head ** of the current position 5918 * 5919 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5920 * list, starting from iter position. The caller must hold either hold the 5921 * RTNL lock or its own locking that guarantees that the neighbour lower 5922 * list will remain unchanged. 5923 */ 5924void *netdev_lower_get_next_private(struct net_device *dev, 5925 struct list_head **iter) 5926{ 5927 struct netdev_adjacent *lower; 5928 5929 lower = list_entry(*iter, struct netdev_adjacent, list); 5930 5931 if (&lower->list == &dev->adj_list.lower) 5932 return NULL; 5933 5934 *iter = lower->list.next; 5935 5936 return lower->private; 5937} 5938EXPORT_SYMBOL(netdev_lower_get_next_private); 5939 5940/** 5941 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5942 * lower neighbour list, RCU 5943 * variant 5944 * @dev: device 5945 * @iter: list_head ** of the current position 5946 * 5947 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5948 * list, starting from iter position. The caller must hold RCU read lock. 5949 */ 5950void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5951 struct list_head **iter) 5952{ 5953 struct netdev_adjacent *lower; 5954 5955 WARN_ON_ONCE(!rcu_read_lock_held()); 5956 5957 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5958 5959 if (&lower->list == &dev->adj_list.lower) 5960 return NULL; 5961 5962 *iter = &lower->list; 5963 5964 return lower->private; 5965} 5966EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5967 5968/** 5969 * netdev_lower_get_next - Get the next device from the lower neighbour 5970 * list 5971 * @dev: device 5972 * @iter: list_head ** of the current position 5973 * 5974 * Gets the next netdev_adjacent from the dev's lower neighbour 5975 * list, starting from iter position. The caller must hold RTNL lock or 5976 * its own locking that guarantees that the neighbour lower 5977 * list will remain unchanged. 5978 */ 5979void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5980{ 5981 struct netdev_adjacent *lower; 5982 5983 lower = list_entry(*iter, struct netdev_adjacent, list); 5984 5985 if (&lower->list == &dev->adj_list.lower) 5986 return NULL; 5987 5988 *iter = lower->list.next; 5989 5990 return lower->dev; 5991} 5992EXPORT_SYMBOL(netdev_lower_get_next); 5993 5994static struct net_device *netdev_next_lower_dev(struct net_device *dev, 5995 struct list_head **iter) 5996{ 5997 struct netdev_adjacent *lower; 5998 5999 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6000 6001 if (&lower->list == &dev->adj_list.lower) 6002 return NULL; 6003 6004 *iter = &lower->list; 6005 6006 return lower->dev; 6007} 6008 6009int netdev_walk_all_lower_dev(struct net_device *dev, 6010 int (*fn)(struct net_device *dev, 6011 void *data), 6012 void *data) 6013{ 6014 struct net_device *ldev; 6015 struct list_head *iter; 6016 int ret; 6017 6018 for (iter = &dev->adj_list.lower, 6019 ldev = netdev_next_lower_dev(dev, &iter); 6020 ldev; 6021 ldev = netdev_next_lower_dev(dev, &iter)) { 6022 /* first is the lower device itself */ 6023 ret = fn(ldev, data); 6024 if (ret) 6025 return ret; 6026 6027 /* then look at all of its lower devices */ 6028 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6029 if (ret) 6030 return ret; 6031 } 6032 6033 return 0; 6034} 6035EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6036 6037static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6038 struct list_head **iter) 6039{ 6040 struct netdev_adjacent *lower; 6041 6042 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6043 if (&lower->list == &dev->adj_list.lower) 6044 return NULL; 6045 6046 *iter = &lower->list; 6047 6048 return lower->dev; 6049} 6050 6051int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6052 int (*fn)(struct net_device *dev, 6053 void *data), 6054 void *data) 6055{ 6056 struct net_device *ldev; 6057 struct list_head *iter; 6058 int ret; 6059 6060 for (iter = &dev->adj_list.lower, 6061 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6062 ldev; 6063 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6064 /* first is the lower device itself */ 6065 ret = fn(ldev, data); 6066 if (ret) 6067 return ret; 6068 6069 /* then look at all of its lower devices */ 6070 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6071 if (ret) 6072 return ret; 6073 } 6074 6075 return 0; 6076} 6077EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6078 6079/** 6080 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6081 * lower neighbour list, RCU 6082 * variant 6083 * @dev: device 6084 * 6085 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6086 * list. The caller must hold RCU read lock. 6087 */ 6088void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6089{ 6090 struct netdev_adjacent *lower; 6091 6092 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6093 struct netdev_adjacent, list); 6094 if (lower) 6095 return lower->private; 6096 return NULL; 6097} 6098EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6099 6100/** 6101 * netdev_master_upper_dev_get_rcu - Get master upper device 6102 * @dev: device 6103 * 6104 * Find a master upper device and return pointer to it or NULL in case 6105 * it's not there. The caller must hold the RCU read lock. 6106 */ 6107struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6108{ 6109 struct netdev_adjacent *upper; 6110 6111 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6112 struct netdev_adjacent, list); 6113 if (upper && likely(upper->master)) 6114 return upper->dev; 6115 return NULL; 6116} 6117EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6118 6119static int netdev_adjacent_sysfs_add(struct net_device *dev, 6120 struct net_device *adj_dev, 6121 struct list_head *dev_list) 6122{ 6123 char linkname[IFNAMSIZ+7]; 6124 6125 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6126 "upper_%s" : "lower_%s", adj_dev->name); 6127 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6128 linkname); 6129} 6130static void netdev_adjacent_sysfs_del(struct net_device *dev, 6131 char *name, 6132 struct list_head *dev_list) 6133{ 6134 char linkname[IFNAMSIZ+7]; 6135 6136 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6137 "upper_%s" : "lower_%s", name); 6138 sysfs_remove_link(&(dev->dev.kobj), linkname); 6139} 6140 6141static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6142 struct net_device *adj_dev, 6143 struct list_head *dev_list) 6144{ 6145 return (dev_list == &dev->adj_list.upper || 6146 dev_list == &dev->adj_list.lower) && 6147 net_eq(dev_net(dev), dev_net(adj_dev)); 6148} 6149 6150static int __netdev_adjacent_dev_insert(struct net_device *dev, 6151 struct net_device *adj_dev, 6152 struct list_head *dev_list, 6153 void *private, bool master) 6154{ 6155 struct netdev_adjacent *adj; 6156 int ret; 6157 6158 adj = __netdev_find_adj(adj_dev, dev_list); 6159 6160 if (adj) { 6161 adj->ref_nr += 1; 6162 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6163 dev->name, adj_dev->name, adj->ref_nr); 6164 6165 return 0; 6166 } 6167 6168 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6169 if (!adj) 6170 return -ENOMEM; 6171 6172 adj->dev = adj_dev; 6173 adj->master = master; 6174 adj->ref_nr = 1; 6175 adj->private = private; 6176 dev_hold(adj_dev); 6177 6178 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6179 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6180 6181 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6182 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6183 if (ret) 6184 goto free_adj; 6185 } 6186 6187 /* Ensure that master link is always the first item in list. */ 6188 if (master) { 6189 ret = sysfs_create_link(&(dev->dev.kobj), 6190 &(adj_dev->dev.kobj), "master"); 6191 if (ret) 6192 goto remove_symlinks; 6193 6194 list_add_rcu(&adj->list, dev_list); 6195 } else { 6196 list_add_tail_rcu(&adj->list, dev_list); 6197 } 6198 6199 return 0; 6200 6201remove_symlinks: 6202 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6203 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6204free_adj: 6205 kfree(adj); 6206 dev_put(adj_dev); 6207 6208 return ret; 6209} 6210 6211static void __netdev_adjacent_dev_remove(struct net_device *dev, 6212 struct net_device *adj_dev, 6213 u16 ref_nr, 6214 struct list_head *dev_list) 6215{ 6216 struct netdev_adjacent *adj; 6217 6218 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6219 dev->name, adj_dev->name, ref_nr); 6220 6221 adj = __netdev_find_adj(adj_dev, dev_list); 6222 6223 if (!adj) { 6224 pr_err("Adjacency does not exist for device %s from %s\n", 6225 dev->name, adj_dev->name); 6226 WARN_ON(1); 6227 return; 6228 } 6229 6230 if (adj->ref_nr > ref_nr) { 6231 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6232 dev->name, adj_dev->name, ref_nr, 6233 adj->ref_nr - ref_nr); 6234 adj->ref_nr -= ref_nr; 6235 return; 6236 } 6237 6238 if (adj->master) 6239 sysfs_remove_link(&(dev->dev.kobj), "master"); 6240 6241 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6242 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6243 6244 list_del_rcu(&adj->list); 6245 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6246 adj_dev->name, dev->name, adj_dev->name); 6247 dev_put(adj_dev); 6248 kfree_rcu(adj, rcu); 6249} 6250 6251static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6252 struct net_device *upper_dev, 6253 struct list_head *up_list, 6254 struct list_head *down_list, 6255 void *private, bool master) 6256{ 6257 int ret; 6258 6259 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6260 private, master); 6261 if (ret) 6262 return ret; 6263 6264 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6265 private, false); 6266 if (ret) { 6267 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6268 return ret; 6269 } 6270 6271 return 0; 6272} 6273 6274static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6275 struct net_device *upper_dev, 6276 u16 ref_nr, 6277 struct list_head *up_list, 6278 struct list_head *down_list) 6279{ 6280 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6281 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6282} 6283 6284static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6285 struct net_device *upper_dev, 6286 void *private, bool master) 6287{ 6288 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6289 &dev->adj_list.upper, 6290 &upper_dev->adj_list.lower, 6291 private, master); 6292} 6293 6294static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6295 struct net_device *upper_dev) 6296{ 6297 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6298 &dev->adj_list.upper, 6299 &upper_dev->adj_list.lower); 6300} 6301 6302static int __netdev_upper_dev_link(struct net_device *dev, 6303 struct net_device *upper_dev, bool master, 6304 void *upper_priv, void *upper_info, 6305 struct netlink_ext_ack *extack) 6306{ 6307 struct netdev_notifier_changeupper_info changeupper_info = { 6308 .info = { 6309 .dev = dev, 6310 .extack = extack, 6311 }, 6312 .upper_dev = upper_dev, 6313 .master = master, 6314 .linking = true, 6315 .upper_info = upper_info, 6316 }; 6317 int ret = 0; 6318 6319 ASSERT_RTNL(); 6320 6321 if (dev == upper_dev) 6322 return -EBUSY; 6323 6324 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6325 if (netdev_has_upper_dev(upper_dev, dev)) 6326 return -EBUSY; 6327 6328 if (netdev_has_upper_dev(dev, upper_dev)) 6329 return -EEXIST; 6330 6331 if (master && netdev_master_upper_dev_get(dev)) 6332 return -EBUSY; 6333 6334 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6335 &changeupper_info.info); 6336 ret = notifier_to_errno(ret); 6337 if (ret) 6338 return ret; 6339 6340 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 6341 master); 6342 if (ret) 6343 return ret; 6344 6345 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6346 &changeupper_info.info); 6347 ret = notifier_to_errno(ret); 6348 if (ret) 6349 goto rollback; 6350 6351 return 0; 6352 6353rollback: 6354 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6355 6356 return ret; 6357} 6358 6359/** 6360 * netdev_upper_dev_link - Add a link to the upper device 6361 * @dev: device 6362 * @upper_dev: new upper device 6363 * 6364 * Adds a link to device which is upper to this one. The caller must hold 6365 * the RTNL lock. On a failure a negative errno code is returned. 6366 * On success the reference counts are adjusted and the function 6367 * returns zero. 6368 */ 6369int netdev_upper_dev_link(struct net_device *dev, 6370 struct net_device *upper_dev, 6371 struct netlink_ext_ack *extack) 6372{ 6373 return __netdev_upper_dev_link(dev, upper_dev, false, 6374 NULL, NULL, extack); 6375} 6376EXPORT_SYMBOL(netdev_upper_dev_link); 6377 6378/** 6379 * netdev_master_upper_dev_link - Add a master link to the upper device 6380 * @dev: device 6381 * @upper_dev: new upper device 6382 * @upper_priv: upper device private 6383 * @upper_info: upper info to be passed down via notifier 6384 * 6385 * Adds a link to device which is upper to this one. In this case, only 6386 * one master upper device can be linked, although other non-master devices 6387 * might be linked as well. The caller must hold the RTNL lock. 6388 * On a failure a negative errno code is returned. On success the reference 6389 * counts are adjusted and the function returns zero. 6390 */ 6391int netdev_master_upper_dev_link(struct net_device *dev, 6392 struct net_device *upper_dev, 6393 void *upper_priv, void *upper_info, 6394 struct netlink_ext_ack *extack) 6395{ 6396 return __netdev_upper_dev_link(dev, upper_dev, true, 6397 upper_priv, upper_info, extack); 6398} 6399EXPORT_SYMBOL(netdev_master_upper_dev_link); 6400 6401/** 6402 * netdev_upper_dev_unlink - Removes a link to upper device 6403 * @dev: device 6404 * @upper_dev: new upper device 6405 * 6406 * Removes a link to device which is upper to this one. The caller must hold 6407 * the RTNL lock. 6408 */ 6409void netdev_upper_dev_unlink(struct net_device *dev, 6410 struct net_device *upper_dev) 6411{ 6412 struct netdev_notifier_changeupper_info changeupper_info = { 6413 .info = { 6414 .dev = dev, 6415 }, 6416 .upper_dev = upper_dev, 6417 .linking = false, 6418 }; 6419 6420 ASSERT_RTNL(); 6421 6422 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 6423 6424 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6425 &changeupper_info.info); 6426 6427 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6428 6429 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6430 &changeupper_info.info); 6431} 6432EXPORT_SYMBOL(netdev_upper_dev_unlink); 6433 6434/** 6435 * netdev_bonding_info_change - Dispatch event about slave change 6436 * @dev: device 6437 * @bonding_info: info to dispatch 6438 * 6439 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6440 * The caller must hold the RTNL lock. 6441 */ 6442void netdev_bonding_info_change(struct net_device *dev, 6443 struct netdev_bonding_info *bonding_info) 6444{ 6445 struct netdev_notifier_bonding_info info = { 6446 .info.dev = dev, 6447 }; 6448 6449 memcpy(&info.bonding_info, bonding_info, 6450 sizeof(struct netdev_bonding_info)); 6451 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 6452 &info.info); 6453} 6454EXPORT_SYMBOL(netdev_bonding_info_change); 6455 6456static void netdev_adjacent_add_links(struct net_device *dev) 6457{ 6458 struct netdev_adjacent *iter; 6459 6460 struct net *net = dev_net(dev); 6461 6462 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6463 if (!net_eq(net, dev_net(iter->dev))) 6464 continue; 6465 netdev_adjacent_sysfs_add(iter->dev, dev, 6466 &iter->dev->adj_list.lower); 6467 netdev_adjacent_sysfs_add(dev, iter->dev, 6468 &dev->adj_list.upper); 6469 } 6470 6471 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6472 if (!net_eq(net, dev_net(iter->dev))) 6473 continue; 6474 netdev_adjacent_sysfs_add(iter->dev, dev, 6475 &iter->dev->adj_list.upper); 6476 netdev_adjacent_sysfs_add(dev, iter->dev, 6477 &dev->adj_list.lower); 6478 } 6479} 6480 6481static void netdev_adjacent_del_links(struct net_device *dev) 6482{ 6483 struct netdev_adjacent *iter; 6484 6485 struct net *net = dev_net(dev); 6486 6487 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6488 if (!net_eq(net, dev_net(iter->dev))) 6489 continue; 6490 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6491 &iter->dev->adj_list.lower); 6492 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6493 &dev->adj_list.upper); 6494 } 6495 6496 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6497 if (!net_eq(net, dev_net(iter->dev))) 6498 continue; 6499 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6500 &iter->dev->adj_list.upper); 6501 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6502 &dev->adj_list.lower); 6503 } 6504} 6505 6506void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6507{ 6508 struct netdev_adjacent *iter; 6509 6510 struct net *net = dev_net(dev); 6511 6512 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6513 if (!net_eq(net, dev_net(iter->dev))) 6514 continue; 6515 netdev_adjacent_sysfs_del(iter->dev, oldname, 6516 &iter->dev->adj_list.lower); 6517 netdev_adjacent_sysfs_add(iter->dev, dev, 6518 &iter->dev->adj_list.lower); 6519 } 6520 6521 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6522 if (!net_eq(net, dev_net(iter->dev))) 6523 continue; 6524 netdev_adjacent_sysfs_del(iter->dev, oldname, 6525 &iter->dev->adj_list.upper); 6526 netdev_adjacent_sysfs_add(iter->dev, dev, 6527 &iter->dev->adj_list.upper); 6528 } 6529} 6530 6531void *netdev_lower_dev_get_private(struct net_device *dev, 6532 struct net_device *lower_dev) 6533{ 6534 struct netdev_adjacent *lower; 6535 6536 if (!lower_dev) 6537 return NULL; 6538 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6539 if (!lower) 6540 return NULL; 6541 6542 return lower->private; 6543} 6544EXPORT_SYMBOL(netdev_lower_dev_get_private); 6545 6546 6547int dev_get_nest_level(struct net_device *dev) 6548{ 6549 struct net_device *lower = NULL; 6550 struct list_head *iter; 6551 int max_nest = -1; 6552 int nest; 6553 6554 ASSERT_RTNL(); 6555 6556 netdev_for_each_lower_dev(dev, lower, iter) { 6557 nest = dev_get_nest_level(lower); 6558 if (max_nest < nest) 6559 max_nest = nest; 6560 } 6561 6562 return max_nest + 1; 6563} 6564EXPORT_SYMBOL(dev_get_nest_level); 6565 6566/** 6567 * netdev_lower_change - Dispatch event about lower device state change 6568 * @lower_dev: device 6569 * @lower_state_info: state to dispatch 6570 * 6571 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6572 * The caller must hold the RTNL lock. 6573 */ 6574void netdev_lower_state_changed(struct net_device *lower_dev, 6575 void *lower_state_info) 6576{ 6577 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 6578 .info.dev = lower_dev, 6579 }; 6580 6581 ASSERT_RTNL(); 6582 changelowerstate_info.lower_state_info = lower_state_info; 6583 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 6584 &changelowerstate_info.info); 6585} 6586EXPORT_SYMBOL(netdev_lower_state_changed); 6587 6588static void dev_change_rx_flags(struct net_device *dev, int flags) 6589{ 6590 const struct net_device_ops *ops = dev->netdev_ops; 6591 6592 if (ops->ndo_change_rx_flags) 6593 ops->ndo_change_rx_flags(dev, flags); 6594} 6595 6596static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6597{ 6598 unsigned int old_flags = dev->flags; 6599 kuid_t uid; 6600 kgid_t gid; 6601 6602 ASSERT_RTNL(); 6603 6604 dev->flags |= IFF_PROMISC; 6605 dev->promiscuity += inc; 6606 if (dev->promiscuity == 0) { 6607 /* 6608 * Avoid overflow. 6609 * If inc causes overflow, untouch promisc and return error. 6610 */ 6611 if (inc < 0) 6612 dev->flags &= ~IFF_PROMISC; 6613 else { 6614 dev->promiscuity -= inc; 6615 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6616 dev->name); 6617 return -EOVERFLOW; 6618 } 6619 } 6620 if (dev->flags != old_flags) { 6621 pr_info("device %s %s promiscuous mode\n", 6622 dev->name, 6623 dev->flags & IFF_PROMISC ? "entered" : "left"); 6624 if (audit_enabled) { 6625 current_uid_gid(&uid, &gid); 6626 audit_log(current->audit_context, GFP_ATOMIC, 6627 AUDIT_ANOM_PROMISCUOUS, 6628 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6629 dev->name, (dev->flags & IFF_PROMISC), 6630 (old_flags & IFF_PROMISC), 6631 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6632 from_kuid(&init_user_ns, uid), 6633 from_kgid(&init_user_ns, gid), 6634 audit_get_sessionid(current)); 6635 } 6636 6637 dev_change_rx_flags(dev, IFF_PROMISC); 6638 } 6639 if (notify) 6640 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6641 return 0; 6642} 6643 6644/** 6645 * dev_set_promiscuity - update promiscuity count on a device 6646 * @dev: device 6647 * @inc: modifier 6648 * 6649 * Add or remove promiscuity from a device. While the count in the device 6650 * remains above zero the interface remains promiscuous. Once it hits zero 6651 * the device reverts back to normal filtering operation. A negative inc 6652 * value is used to drop promiscuity on the device. 6653 * Return 0 if successful or a negative errno code on error. 6654 */ 6655int dev_set_promiscuity(struct net_device *dev, int inc) 6656{ 6657 unsigned int old_flags = dev->flags; 6658 int err; 6659 6660 err = __dev_set_promiscuity(dev, inc, true); 6661 if (err < 0) 6662 return err; 6663 if (dev->flags != old_flags) 6664 dev_set_rx_mode(dev); 6665 return err; 6666} 6667EXPORT_SYMBOL(dev_set_promiscuity); 6668 6669static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6670{ 6671 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6672 6673 ASSERT_RTNL(); 6674 6675 dev->flags |= IFF_ALLMULTI; 6676 dev->allmulti += inc; 6677 if (dev->allmulti == 0) { 6678 /* 6679 * Avoid overflow. 6680 * If inc causes overflow, untouch allmulti and return error. 6681 */ 6682 if (inc < 0) 6683 dev->flags &= ~IFF_ALLMULTI; 6684 else { 6685 dev->allmulti -= inc; 6686 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6687 dev->name); 6688 return -EOVERFLOW; 6689 } 6690 } 6691 if (dev->flags ^ old_flags) { 6692 dev_change_rx_flags(dev, IFF_ALLMULTI); 6693 dev_set_rx_mode(dev); 6694 if (notify) 6695 __dev_notify_flags(dev, old_flags, 6696 dev->gflags ^ old_gflags); 6697 } 6698 return 0; 6699} 6700 6701/** 6702 * dev_set_allmulti - update allmulti count on a device 6703 * @dev: device 6704 * @inc: modifier 6705 * 6706 * Add or remove reception of all multicast frames to a device. While the 6707 * count in the device remains above zero the interface remains listening 6708 * to all interfaces. Once it hits zero the device reverts back to normal 6709 * filtering operation. A negative @inc value is used to drop the counter 6710 * when releasing a resource needing all multicasts. 6711 * Return 0 if successful or a negative errno code on error. 6712 */ 6713 6714int dev_set_allmulti(struct net_device *dev, int inc) 6715{ 6716 return __dev_set_allmulti(dev, inc, true); 6717} 6718EXPORT_SYMBOL(dev_set_allmulti); 6719 6720/* 6721 * Upload unicast and multicast address lists to device and 6722 * configure RX filtering. When the device doesn't support unicast 6723 * filtering it is put in promiscuous mode while unicast addresses 6724 * are present. 6725 */ 6726void __dev_set_rx_mode(struct net_device *dev) 6727{ 6728 const struct net_device_ops *ops = dev->netdev_ops; 6729 6730 /* dev_open will call this function so the list will stay sane. */ 6731 if (!(dev->flags&IFF_UP)) 6732 return; 6733 6734 if (!netif_device_present(dev)) 6735 return; 6736 6737 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6738 /* Unicast addresses changes may only happen under the rtnl, 6739 * therefore calling __dev_set_promiscuity here is safe. 6740 */ 6741 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6742 __dev_set_promiscuity(dev, 1, false); 6743 dev->uc_promisc = true; 6744 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6745 __dev_set_promiscuity(dev, -1, false); 6746 dev->uc_promisc = false; 6747 } 6748 } 6749 6750 if (ops->ndo_set_rx_mode) 6751 ops->ndo_set_rx_mode(dev); 6752} 6753 6754void dev_set_rx_mode(struct net_device *dev) 6755{ 6756 netif_addr_lock_bh(dev); 6757 __dev_set_rx_mode(dev); 6758 netif_addr_unlock_bh(dev); 6759} 6760 6761/** 6762 * dev_get_flags - get flags reported to userspace 6763 * @dev: device 6764 * 6765 * Get the combination of flag bits exported through APIs to userspace. 6766 */ 6767unsigned int dev_get_flags(const struct net_device *dev) 6768{ 6769 unsigned int flags; 6770 6771 flags = (dev->flags & ~(IFF_PROMISC | 6772 IFF_ALLMULTI | 6773 IFF_RUNNING | 6774 IFF_LOWER_UP | 6775 IFF_DORMANT)) | 6776 (dev->gflags & (IFF_PROMISC | 6777 IFF_ALLMULTI)); 6778 6779 if (netif_running(dev)) { 6780 if (netif_oper_up(dev)) 6781 flags |= IFF_RUNNING; 6782 if (netif_carrier_ok(dev)) 6783 flags |= IFF_LOWER_UP; 6784 if (netif_dormant(dev)) 6785 flags |= IFF_DORMANT; 6786 } 6787 6788 return flags; 6789} 6790EXPORT_SYMBOL(dev_get_flags); 6791 6792int __dev_change_flags(struct net_device *dev, unsigned int flags) 6793{ 6794 unsigned int old_flags = dev->flags; 6795 int ret; 6796 6797 ASSERT_RTNL(); 6798 6799 /* 6800 * Set the flags on our device. 6801 */ 6802 6803 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6804 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6805 IFF_AUTOMEDIA)) | 6806 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6807 IFF_ALLMULTI)); 6808 6809 /* 6810 * Load in the correct multicast list now the flags have changed. 6811 */ 6812 6813 if ((old_flags ^ flags) & IFF_MULTICAST) 6814 dev_change_rx_flags(dev, IFF_MULTICAST); 6815 6816 dev_set_rx_mode(dev); 6817 6818 /* 6819 * Have we downed the interface. We handle IFF_UP ourselves 6820 * according to user attempts to set it, rather than blindly 6821 * setting it. 6822 */ 6823 6824 ret = 0; 6825 if ((old_flags ^ flags) & IFF_UP) { 6826 if (old_flags & IFF_UP) 6827 __dev_close(dev); 6828 else 6829 ret = __dev_open(dev); 6830 } 6831 6832 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6833 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6834 unsigned int old_flags = dev->flags; 6835 6836 dev->gflags ^= IFF_PROMISC; 6837 6838 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6839 if (dev->flags != old_flags) 6840 dev_set_rx_mode(dev); 6841 } 6842 6843 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6844 * is important. Some (broken) drivers set IFF_PROMISC, when 6845 * IFF_ALLMULTI is requested not asking us and not reporting. 6846 */ 6847 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6848 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6849 6850 dev->gflags ^= IFF_ALLMULTI; 6851 __dev_set_allmulti(dev, inc, false); 6852 } 6853 6854 return ret; 6855} 6856 6857void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6858 unsigned int gchanges) 6859{ 6860 unsigned int changes = dev->flags ^ old_flags; 6861 6862 if (gchanges) 6863 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6864 6865 if (changes & IFF_UP) { 6866 if (dev->flags & IFF_UP) 6867 call_netdevice_notifiers(NETDEV_UP, dev); 6868 else 6869 call_netdevice_notifiers(NETDEV_DOWN, dev); 6870 } 6871 6872 if (dev->flags & IFF_UP && 6873 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6874 struct netdev_notifier_change_info change_info = { 6875 .info = { 6876 .dev = dev, 6877 }, 6878 .flags_changed = changes, 6879 }; 6880 6881 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 6882 } 6883} 6884 6885/** 6886 * dev_change_flags - change device settings 6887 * @dev: device 6888 * @flags: device state flags 6889 * 6890 * Change settings on device based state flags. The flags are 6891 * in the userspace exported format. 6892 */ 6893int dev_change_flags(struct net_device *dev, unsigned int flags) 6894{ 6895 int ret; 6896 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6897 6898 ret = __dev_change_flags(dev, flags); 6899 if (ret < 0) 6900 return ret; 6901 6902 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6903 __dev_notify_flags(dev, old_flags, changes); 6904 return ret; 6905} 6906EXPORT_SYMBOL(dev_change_flags); 6907 6908int __dev_set_mtu(struct net_device *dev, int new_mtu) 6909{ 6910 const struct net_device_ops *ops = dev->netdev_ops; 6911 6912 if (ops->ndo_change_mtu) 6913 return ops->ndo_change_mtu(dev, new_mtu); 6914 6915 dev->mtu = new_mtu; 6916 return 0; 6917} 6918EXPORT_SYMBOL(__dev_set_mtu); 6919 6920/** 6921 * dev_set_mtu - Change maximum transfer unit 6922 * @dev: device 6923 * @new_mtu: new transfer unit 6924 * 6925 * Change the maximum transfer size of the network device. 6926 */ 6927int dev_set_mtu(struct net_device *dev, int new_mtu) 6928{ 6929 int err, orig_mtu; 6930 6931 if (new_mtu == dev->mtu) 6932 return 0; 6933 6934 /* MTU must be positive, and in range */ 6935 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 6936 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 6937 dev->name, new_mtu, dev->min_mtu); 6938 return -EINVAL; 6939 } 6940 6941 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 6942 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 6943 dev->name, new_mtu, dev->max_mtu); 6944 return -EINVAL; 6945 } 6946 6947 if (!netif_device_present(dev)) 6948 return -ENODEV; 6949 6950 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6951 err = notifier_to_errno(err); 6952 if (err) 6953 return err; 6954 6955 orig_mtu = dev->mtu; 6956 err = __dev_set_mtu(dev, new_mtu); 6957 6958 if (!err) { 6959 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6960 err = notifier_to_errno(err); 6961 if (err) { 6962 /* setting mtu back and notifying everyone again, 6963 * so that they have a chance to revert changes. 6964 */ 6965 __dev_set_mtu(dev, orig_mtu); 6966 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6967 } 6968 } 6969 return err; 6970} 6971EXPORT_SYMBOL(dev_set_mtu); 6972 6973/** 6974 * dev_set_group - Change group this device belongs to 6975 * @dev: device 6976 * @new_group: group this device should belong to 6977 */ 6978void dev_set_group(struct net_device *dev, int new_group) 6979{ 6980 dev->group = new_group; 6981} 6982EXPORT_SYMBOL(dev_set_group); 6983 6984/** 6985 * dev_set_mac_address - Change Media Access Control Address 6986 * @dev: device 6987 * @sa: new address 6988 * 6989 * Change the hardware (MAC) address of the device 6990 */ 6991int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6992{ 6993 const struct net_device_ops *ops = dev->netdev_ops; 6994 int err; 6995 6996 if (!ops->ndo_set_mac_address) 6997 return -EOPNOTSUPP; 6998 if (sa->sa_family != dev->type) 6999 return -EINVAL; 7000 if (!netif_device_present(dev)) 7001 return -ENODEV; 7002 err = ops->ndo_set_mac_address(dev, sa); 7003 if (err) 7004 return err; 7005 dev->addr_assign_type = NET_ADDR_SET; 7006 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7007 add_device_randomness(dev->dev_addr, dev->addr_len); 7008 return 0; 7009} 7010EXPORT_SYMBOL(dev_set_mac_address); 7011 7012/** 7013 * dev_change_carrier - Change device carrier 7014 * @dev: device 7015 * @new_carrier: new value 7016 * 7017 * Change device carrier 7018 */ 7019int dev_change_carrier(struct net_device *dev, bool new_carrier) 7020{ 7021 const struct net_device_ops *ops = dev->netdev_ops; 7022 7023 if (!ops->ndo_change_carrier) 7024 return -EOPNOTSUPP; 7025 if (!netif_device_present(dev)) 7026 return -ENODEV; 7027 return ops->ndo_change_carrier(dev, new_carrier); 7028} 7029EXPORT_SYMBOL(dev_change_carrier); 7030 7031/** 7032 * dev_get_phys_port_id - Get device physical port ID 7033 * @dev: device 7034 * @ppid: port ID 7035 * 7036 * Get device physical port ID 7037 */ 7038int dev_get_phys_port_id(struct net_device *dev, 7039 struct netdev_phys_item_id *ppid) 7040{ 7041 const struct net_device_ops *ops = dev->netdev_ops; 7042 7043 if (!ops->ndo_get_phys_port_id) 7044 return -EOPNOTSUPP; 7045 return ops->ndo_get_phys_port_id(dev, ppid); 7046} 7047EXPORT_SYMBOL(dev_get_phys_port_id); 7048 7049/** 7050 * dev_get_phys_port_name - Get device physical port name 7051 * @dev: device 7052 * @name: port name 7053 * @len: limit of bytes to copy to name 7054 * 7055 * Get device physical port name 7056 */ 7057int dev_get_phys_port_name(struct net_device *dev, 7058 char *name, size_t len) 7059{ 7060 const struct net_device_ops *ops = dev->netdev_ops; 7061 7062 if (!ops->ndo_get_phys_port_name) 7063 return -EOPNOTSUPP; 7064 return ops->ndo_get_phys_port_name(dev, name, len); 7065} 7066EXPORT_SYMBOL(dev_get_phys_port_name); 7067 7068/** 7069 * dev_change_proto_down - update protocol port state information 7070 * @dev: device 7071 * @proto_down: new value 7072 * 7073 * This info can be used by switch drivers to set the phys state of the 7074 * port. 7075 */ 7076int dev_change_proto_down(struct net_device *dev, bool proto_down) 7077{ 7078 const struct net_device_ops *ops = dev->netdev_ops; 7079 7080 if (!ops->ndo_change_proto_down) 7081 return -EOPNOTSUPP; 7082 if (!netif_device_present(dev)) 7083 return -ENODEV; 7084 return ops->ndo_change_proto_down(dev, proto_down); 7085} 7086EXPORT_SYMBOL(dev_change_proto_down); 7087 7088u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op, u32 *prog_id) 7089{ 7090 struct netdev_bpf xdp; 7091 7092 memset(&xdp, 0, sizeof(xdp)); 7093 xdp.command = XDP_QUERY_PROG; 7094 7095 /* Query must always succeed. */ 7096 WARN_ON(bpf_op(dev, &xdp) < 0); 7097 if (prog_id) 7098 *prog_id = xdp.prog_id; 7099 7100 return xdp.prog_attached; 7101} 7102 7103static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 7104 struct netlink_ext_ack *extack, u32 flags, 7105 struct bpf_prog *prog) 7106{ 7107 struct netdev_bpf xdp; 7108 7109 memset(&xdp, 0, sizeof(xdp)); 7110 if (flags & XDP_FLAGS_HW_MODE) 7111 xdp.command = XDP_SETUP_PROG_HW; 7112 else 7113 xdp.command = XDP_SETUP_PROG; 7114 xdp.extack = extack; 7115 xdp.flags = flags; 7116 xdp.prog = prog; 7117 7118 return bpf_op(dev, &xdp); 7119} 7120 7121/** 7122 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7123 * @dev: device 7124 * @extack: netlink extended ack 7125 * @fd: new program fd or negative value to clear 7126 * @flags: xdp-related flags 7127 * 7128 * Set or clear a bpf program for a device 7129 */ 7130int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7131 int fd, u32 flags) 7132{ 7133 const struct net_device_ops *ops = dev->netdev_ops; 7134 struct bpf_prog *prog = NULL; 7135 bpf_op_t bpf_op, bpf_chk; 7136 int err; 7137 7138 ASSERT_RTNL(); 7139 7140 bpf_op = bpf_chk = ops->ndo_bpf; 7141 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7142 return -EOPNOTSUPP; 7143 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 7144 bpf_op = generic_xdp_install; 7145 if (bpf_op == bpf_chk) 7146 bpf_chk = generic_xdp_install; 7147 7148 if (fd >= 0) { 7149 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk, NULL)) 7150 return -EEXIST; 7151 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7152 __dev_xdp_attached(dev, bpf_op, NULL)) 7153 return -EBUSY; 7154 7155 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 7156 bpf_op == ops->ndo_bpf); 7157 if (IS_ERR(prog)) 7158 return PTR_ERR(prog); 7159 7160 if (!(flags & XDP_FLAGS_HW_MODE) && 7161 bpf_prog_is_dev_bound(prog->aux)) { 7162 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 7163 bpf_prog_put(prog); 7164 return -EINVAL; 7165 } 7166 } 7167 7168 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 7169 if (err < 0 && prog) 7170 bpf_prog_put(prog); 7171 7172 return err; 7173} 7174 7175/** 7176 * dev_new_index - allocate an ifindex 7177 * @net: the applicable net namespace 7178 * 7179 * Returns a suitable unique value for a new device interface 7180 * number. The caller must hold the rtnl semaphore or the 7181 * dev_base_lock to be sure it remains unique. 7182 */ 7183static int dev_new_index(struct net *net) 7184{ 7185 int ifindex = net->ifindex; 7186 7187 for (;;) { 7188 if (++ifindex <= 0) 7189 ifindex = 1; 7190 if (!__dev_get_by_index(net, ifindex)) 7191 return net->ifindex = ifindex; 7192 } 7193} 7194 7195/* Delayed registration/unregisteration */ 7196static LIST_HEAD(net_todo_list); 7197DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7198 7199static void net_set_todo(struct net_device *dev) 7200{ 7201 list_add_tail(&dev->todo_list, &net_todo_list); 7202 dev_net(dev)->dev_unreg_count++; 7203} 7204 7205static void rollback_registered_many(struct list_head *head) 7206{ 7207 struct net_device *dev, *tmp; 7208 LIST_HEAD(close_head); 7209 7210 BUG_ON(dev_boot_phase); 7211 ASSERT_RTNL(); 7212 7213 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7214 /* Some devices call without registering 7215 * for initialization unwind. Remove those 7216 * devices and proceed with the remaining. 7217 */ 7218 if (dev->reg_state == NETREG_UNINITIALIZED) { 7219 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7220 dev->name, dev); 7221 7222 WARN_ON(1); 7223 list_del(&dev->unreg_list); 7224 continue; 7225 } 7226 dev->dismantle = true; 7227 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7228 } 7229 7230 /* If device is running, close it first. */ 7231 list_for_each_entry(dev, head, unreg_list) 7232 list_add_tail(&dev->close_list, &close_head); 7233 dev_close_many(&close_head, true); 7234 7235 list_for_each_entry(dev, head, unreg_list) { 7236 /* And unlink it from device chain. */ 7237 unlist_netdevice(dev); 7238 7239 dev->reg_state = NETREG_UNREGISTERING; 7240 } 7241 flush_all_backlogs(); 7242 7243 synchronize_net(); 7244 7245 list_for_each_entry(dev, head, unreg_list) { 7246 struct sk_buff *skb = NULL; 7247 7248 /* Shutdown queueing discipline. */ 7249 dev_shutdown(dev); 7250 7251 7252 /* Notify protocols, that we are about to destroy 7253 * this device. They should clean all the things. 7254 */ 7255 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7256 7257 if (!dev->rtnl_link_ops || 7258 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7259 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 7260 GFP_KERNEL, NULL); 7261 7262 /* 7263 * Flush the unicast and multicast chains 7264 */ 7265 dev_uc_flush(dev); 7266 dev_mc_flush(dev); 7267 7268 if (dev->netdev_ops->ndo_uninit) 7269 dev->netdev_ops->ndo_uninit(dev); 7270 7271 if (skb) 7272 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 7273 7274 /* Notifier chain MUST detach us all upper devices. */ 7275 WARN_ON(netdev_has_any_upper_dev(dev)); 7276 WARN_ON(netdev_has_any_lower_dev(dev)); 7277 7278 /* Remove entries from kobject tree */ 7279 netdev_unregister_kobject(dev); 7280#ifdef CONFIG_XPS 7281 /* Remove XPS queueing entries */ 7282 netif_reset_xps_queues_gt(dev, 0); 7283#endif 7284 } 7285 7286 synchronize_net(); 7287 7288 list_for_each_entry(dev, head, unreg_list) 7289 dev_put(dev); 7290} 7291 7292static void rollback_registered(struct net_device *dev) 7293{ 7294 LIST_HEAD(single); 7295 7296 list_add(&dev->unreg_list, &single); 7297 rollback_registered_many(&single); 7298 list_del(&single); 7299} 7300 7301static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 7302 struct net_device *upper, netdev_features_t features) 7303{ 7304 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7305 netdev_features_t feature; 7306 int feature_bit; 7307 7308 for_each_netdev_feature(&upper_disables, feature_bit) { 7309 feature = __NETIF_F_BIT(feature_bit); 7310 if (!(upper->wanted_features & feature) 7311 && (features & feature)) { 7312 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 7313 &feature, upper->name); 7314 features &= ~feature; 7315 } 7316 } 7317 7318 return features; 7319} 7320 7321static void netdev_sync_lower_features(struct net_device *upper, 7322 struct net_device *lower, netdev_features_t features) 7323{ 7324 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7325 netdev_features_t feature; 7326 int feature_bit; 7327 7328 for_each_netdev_feature(&upper_disables, feature_bit) { 7329 feature = __NETIF_F_BIT(feature_bit); 7330 if (!(features & feature) && (lower->features & feature)) { 7331 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 7332 &feature, lower->name); 7333 lower->wanted_features &= ~feature; 7334 netdev_update_features(lower); 7335 7336 if (unlikely(lower->features & feature)) 7337 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 7338 &feature, lower->name); 7339 } 7340 } 7341} 7342 7343static netdev_features_t netdev_fix_features(struct net_device *dev, 7344 netdev_features_t features) 7345{ 7346 /* Fix illegal checksum combinations */ 7347 if ((features & NETIF_F_HW_CSUM) && 7348 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 7349 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 7350 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 7351 } 7352 7353 /* TSO requires that SG is present as well. */ 7354 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 7355 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 7356 features &= ~NETIF_F_ALL_TSO; 7357 } 7358 7359 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 7360 !(features & NETIF_F_IP_CSUM)) { 7361 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 7362 features &= ~NETIF_F_TSO; 7363 features &= ~NETIF_F_TSO_ECN; 7364 } 7365 7366 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 7367 !(features & NETIF_F_IPV6_CSUM)) { 7368 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 7369 features &= ~NETIF_F_TSO6; 7370 } 7371 7372 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 7373 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 7374 features &= ~NETIF_F_TSO_MANGLEID; 7375 7376 /* TSO ECN requires that TSO is present as well. */ 7377 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 7378 features &= ~NETIF_F_TSO_ECN; 7379 7380 /* Software GSO depends on SG. */ 7381 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 7382 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 7383 features &= ~NETIF_F_GSO; 7384 } 7385 7386 /* GSO partial features require GSO partial be set */ 7387 if ((features & dev->gso_partial_features) && 7388 !(features & NETIF_F_GSO_PARTIAL)) { 7389 netdev_dbg(dev, 7390 "Dropping partially supported GSO features since no GSO partial.\n"); 7391 features &= ~dev->gso_partial_features; 7392 } 7393 7394 return features; 7395} 7396 7397int __netdev_update_features(struct net_device *dev) 7398{ 7399 struct net_device *upper, *lower; 7400 netdev_features_t features; 7401 struct list_head *iter; 7402 int err = -1; 7403 7404 ASSERT_RTNL(); 7405 7406 features = netdev_get_wanted_features(dev); 7407 7408 if (dev->netdev_ops->ndo_fix_features) 7409 features = dev->netdev_ops->ndo_fix_features(dev, features); 7410 7411 /* driver might be less strict about feature dependencies */ 7412 features = netdev_fix_features(dev, features); 7413 7414 /* some features can't be enabled if they're off an an upper device */ 7415 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7416 features = netdev_sync_upper_features(dev, upper, features); 7417 7418 if (dev->features == features) 7419 goto sync_lower; 7420 7421 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7422 &dev->features, &features); 7423 7424 if (dev->netdev_ops->ndo_set_features) 7425 err = dev->netdev_ops->ndo_set_features(dev, features); 7426 else 7427 err = 0; 7428 7429 if (unlikely(err < 0)) { 7430 netdev_err(dev, 7431 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7432 err, &features, &dev->features); 7433 /* return non-0 since some features might have changed and 7434 * it's better to fire a spurious notification than miss it 7435 */ 7436 return -1; 7437 } 7438 7439sync_lower: 7440 /* some features must be disabled on lower devices when disabled 7441 * on an upper device (think: bonding master or bridge) 7442 */ 7443 netdev_for_each_lower_dev(dev, lower, iter) 7444 netdev_sync_lower_features(dev, lower, features); 7445 7446 if (!err) { 7447 netdev_features_t diff = features ^ dev->features; 7448 7449 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 7450 /* udp_tunnel_{get,drop}_rx_info both need 7451 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 7452 * device, or they won't do anything. 7453 * Thus we need to update dev->features 7454 * *before* calling udp_tunnel_get_rx_info, 7455 * but *after* calling udp_tunnel_drop_rx_info. 7456 */ 7457 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 7458 dev->features = features; 7459 udp_tunnel_get_rx_info(dev); 7460 } else { 7461 udp_tunnel_drop_rx_info(dev); 7462 } 7463 } 7464 7465 dev->features = features; 7466 } 7467 7468 return err < 0 ? 0 : 1; 7469} 7470 7471/** 7472 * netdev_update_features - recalculate device features 7473 * @dev: the device to check 7474 * 7475 * Recalculate dev->features set and send notifications if it 7476 * has changed. Should be called after driver or hardware dependent 7477 * conditions might have changed that influence the features. 7478 */ 7479void netdev_update_features(struct net_device *dev) 7480{ 7481 if (__netdev_update_features(dev)) 7482 netdev_features_change(dev); 7483} 7484EXPORT_SYMBOL(netdev_update_features); 7485 7486/** 7487 * netdev_change_features - recalculate device features 7488 * @dev: the device to check 7489 * 7490 * Recalculate dev->features set and send notifications even 7491 * if they have not changed. Should be called instead of 7492 * netdev_update_features() if also dev->vlan_features might 7493 * have changed to allow the changes to be propagated to stacked 7494 * VLAN devices. 7495 */ 7496void netdev_change_features(struct net_device *dev) 7497{ 7498 __netdev_update_features(dev); 7499 netdev_features_change(dev); 7500} 7501EXPORT_SYMBOL(netdev_change_features); 7502 7503/** 7504 * netif_stacked_transfer_operstate - transfer operstate 7505 * @rootdev: the root or lower level device to transfer state from 7506 * @dev: the device to transfer operstate to 7507 * 7508 * Transfer operational state from root to device. This is normally 7509 * called when a stacking relationship exists between the root 7510 * device and the device(a leaf device). 7511 */ 7512void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7513 struct net_device *dev) 7514{ 7515 if (rootdev->operstate == IF_OPER_DORMANT) 7516 netif_dormant_on(dev); 7517 else 7518 netif_dormant_off(dev); 7519 7520 if (netif_carrier_ok(rootdev)) 7521 netif_carrier_on(dev); 7522 else 7523 netif_carrier_off(dev); 7524} 7525EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7526 7527#ifdef CONFIG_SYSFS 7528static int netif_alloc_rx_queues(struct net_device *dev) 7529{ 7530 unsigned int i, count = dev->num_rx_queues; 7531 struct netdev_rx_queue *rx; 7532 size_t sz = count * sizeof(*rx); 7533 7534 BUG_ON(count < 1); 7535 7536 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7537 if (!rx) 7538 return -ENOMEM; 7539 7540 dev->_rx = rx; 7541 7542 for (i = 0; i < count; i++) 7543 rx[i].dev = dev; 7544 return 0; 7545} 7546#endif 7547 7548static void netdev_init_one_queue(struct net_device *dev, 7549 struct netdev_queue *queue, void *_unused) 7550{ 7551 /* Initialize queue lock */ 7552 spin_lock_init(&queue->_xmit_lock); 7553 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7554 queue->xmit_lock_owner = -1; 7555 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7556 queue->dev = dev; 7557#ifdef CONFIG_BQL 7558 dql_init(&queue->dql, HZ); 7559#endif 7560} 7561 7562static void netif_free_tx_queues(struct net_device *dev) 7563{ 7564 kvfree(dev->_tx); 7565} 7566 7567static int netif_alloc_netdev_queues(struct net_device *dev) 7568{ 7569 unsigned int count = dev->num_tx_queues; 7570 struct netdev_queue *tx; 7571 size_t sz = count * sizeof(*tx); 7572 7573 if (count < 1 || count > 0xffff) 7574 return -EINVAL; 7575 7576 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7577 if (!tx) 7578 return -ENOMEM; 7579 7580 dev->_tx = tx; 7581 7582 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7583 spin_lock_init(&dev->tx_global_lock); 7584 7585 return 0; 7586} 7587 7588void netif_tx_stop_all_queues(struct net_device *dev) 7589{ 7590 unsigned int i; 7591 7592 for (i = 0; i < dev->num_tx_queues; i++) { 7593 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7594 7595 netif_tx_stop_queue(txq); 7596 } 7597} 7598EXPORT_SYMBOL(netif_tx_stop_all_queues); 7599 7600/** 7601 * register_netdevice - register a network device 7602 * @dev: device to register 7603 * 7604 * Take a completed network device structure and add it to the kernel 7605 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7606 * chain. 0 is returned on success. A negative errno code is returned 7607 * on a failure to set up the device, or if the name is a duplicate. 7608 * 7609 * Callers must hold the rtnl semaphore. You may want 7610 * register_netdev() instead of this. 7611 * 7612 * BUGS: 7613 * The locking appears insufficient to guarantee two parallel registers 7614 * will not get the same name. 7615 */ 7616 7617int register_netdevice(struct net_device *dev) 7618{ 7619 int ret; 7620 struct net *net = dev_net(dev); 7621 7622 BUG_ON(dev_boot_phase); 7623 ASSERT_RTNL(); 7624 7625 might_sleep(); 7626 7627 /* When net_device's are persistent, this will be fatal. */ 7628 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7629 BUG_ON(!net); 7630 7631 spin_lock_init(&dev->addr_list_lock); 7632 netdev_set_addr_lockdep_class(dev); 7633 7634 ret = dev_get_valid_name(net, dev, dev->name); 7635 if (ret < 0) 7636 goto out; 7637 7638 /* Init, if this function is available */ 7639 if (dev->netdev_ops->ndo_init) { 7640 ret = dev->netdev_ops->ndo_init(dev); 7641 if (ret) { 7642 if (ret > 0) 7643 ret = -EIO; 7644 goto out; 7645 } 7646 } 7647 7648 if (((dev->hw_features | dev->features) & 7649 NETIF_F_HW_VLAN_CTAG_FILTER) && 7650 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7651 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7652 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7653 ret = -EINVAL; 7654 goto err_uninit; 7655 } 7656 7657 ret = -EBUSY; 7658 if (!dev->ifindex) 7659 dev->ifindex = dev_new_index(net); 7660 else if (__dev_get_by_index(net, dev->ifindex)) 7661 goto err_uninit; 7662 7663 /* Transfer changeable features to wanted_features and enable 7664 * software offloads (GSO and GRO). 7665 */ 7666 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7667 dev->features |= NETIF_F_SOFT_FEATURES; 7668 7669 if (dev->netdev_ops->ndo_udp_tunnel_add) { 7670 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7671 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7672 } 7673 7674 dev->wanted_features = dev->features & dev->hw_features; 7675 7676 if (!(dev->flags & IFF_LOOPBACK)) 7677 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7678 7679 /* If IPv4 TCP segmentation offload is supported we should also 7680 * allow the device to enable segmenting the frame with the option 7681 * of ignoring a static IP ID value. This doesn't enable the 7682 * feature itself but allows the user to enable it later. 7683 */ 7684 if (dev->hw_features & NETIF_F_TSO) 7685 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7686 if (dev->vlan_features & NETIF_F_TSO) 7687 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7688 if (dev->mpls_features & NETIF_F_TSO) 7689 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7690 if (dev->hw_enc_features & NETIF_F_TSO) 7691 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7692 7693 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7694 */ 7695 dev->vlan_features |= NETIF_F_HIGHDMA; 7696 7697 /* Make NETIF_F_SG inheritable to tunnel devices. 7698 */ 7699 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7700 7701 /* Make NETIF_F_SG inheritable to MPLS. 7702 */ 7703 dev->mpls_features |= NETIF_F_SG; 7704 7705 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7706 ret = notifier_to_errno(ret); 7707 if (ret) 7708 goto err_uninit; 7709 7710 ret = netdev_register_kobject(dev); 7711 if (ret) 7712 goto err_uninit; 7713 dev->reg_state = NETREG_REGISTERED; 7714 7715 __netdev_update_features(dev); 7716 7717 /* 7718 * Default initial state at registry is that the 7719 * device is present. 7720 */ 7721 7722 set_bit(__LINK_STATE_PRESENT, &dev->state); 7723 7724 linkwatch_init_dev(dev); 7725 7726 dev_init_scheduler(dev); 7727 dev_hold(dev); 7728 list_netdevice(dev); 7729 add_device_randomness(dev->dev_addr, dev->addr_len); 7730 7731 /* If the device has permanent device address, driver should 7732 * set dev_addr and also addr_assign_type should be set to 7733 * NET_ADDR_PERM (default value). 7734 */ 7735 if (dev->addr_assign_type == NET_ADDR_PERM) 7736 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7737 7738 /* Notify protocols, that a new device appeared. */ 7739 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7740 ret = notifier_to_errno(ret); 7741 if (ret) { 7742 rollback_registered(dev); 7743 dev->reg_state = NETREG_UNREGISTERED; 7744 } 7745 /* 7746 * Prevent userspace races by waiting until the network 7747 * device is fully setup before sending notifications. 7748 */ 7749 if (!dev->rtnl_link_ops || 7750 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7751 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7752 7753out: 7754 return ret; 7755 7756err_uninit: 7757 if (dev->netdev_ops->ndo_uninit) 7758 dev->netdev_ops->ndo_uninit(dev); 7759 if (dev->priv_destructor) 7760 dev->priv_destructor(dev); 7761 goto out; 7762} 7763EXPORT_SYMBOL(register_netdevice); 7764 7765/** 7766 * init_dummy_netdev - init a dummy network device for NAPI 7767 * @dev: device to init 7768 * 7769 * This takes a network device structure and initialize the minimum 7770 * amount of fields so it can be used to schedule NAPI polls without 7771 * registering a full blown interface. This is to be used by drivers 7772 * that need to tie several hardware interfaces to a single NAPI 7773 * poll scheduler due to HW limitations. 7774 */ 7775int init_dummy_netdev(struct net_device *dev) 7776{ 7777 /* Clear everything. Note we don't initialize spinlocks 7778 * are they aren't supposed to be taken by any of the 7779 * NAPI code and this dummy netdev is supposed to be 7780 * only ever used for NAPI polls 7781 */ 7782 memset(dev, 0, sizeof(struct net_device)); 7783 7784 /* make sure we BUG if trying to hit standard 7785 * register/unregister code path 7786 */ 7787 dev->reg_state = NETREG_DUMMY; 7788 7789 /* NAPI wants this */ 7790 INIT_LIST_HEAD(&dev->napi_list); 7791 7792 /* a dummy interface is started by default */ 7793 set_bit(__LINK_STATE_PRESENT, &dev->state); 7794 set_bit(__LINK_STATE_START, &dev->state); 7795 7796 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7797 * because users of this 'device' dont need to change 7798 * its refcount. 7799 */ 7800 7801 return 0; 7802} 7803EXPORT_SYMBOL_GPL(init_dummy_netdev); 7804 7805 7806/** 7807 * register_netdev - register a network device 7808 * @dev: device to register 7809 * 7810 * Take a completed network device structure and add it to the kernel 7811 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7812 * chain. 0 is returned on success. A negative errno code is returned 7813 * on a failure to set up the device, or if the name is a duplicate. 7814 * 7815 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7816 * and expands the device name if you passed a format string to 7817 * alloc_netdev. 7818 */ 7819int register_netdev(struct net_device *dev) 7820{ 7821 int err; 7822 7823 rtnl_lock(); 7824 err = register_netdevice(dev); 7825 rtnl_unlock(); 7826 return err; 7827} 7828EXPORT_SYMBOL(register_netdev); 7829 7830int netdev_refcnt_read(const struct net_device *dev) 7831{ 7832 int i, refcnt = 0; 7833 7834 for_each_possible_cpu(i) 7835 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7836 return refcnt; 7837} 7838EXPORT_SYMBOL(netdev_refcnt_read); 7839 7840/** 7841 * netdev_wait_allrefs - wait until all references are gone. 7842 * @dev: target net_device 7843 * 7844 * This is called when unregistering network devices. 7845 * 7846 * Any protocol or device that holds a reference should register 7847 * for netdevice notification, and cleanup and put back the 7848 * reference if they receive an UNREGISTER event. 7849 * We can get stuck here if buggy protocols don't correctly 7850 * call dev_put. 7851 */ 7852static void netdev_wait_allrefs(struct net_device *dev) 7853{ 7854 unsigned long rebroadcast_time, warning_time; 7855 int refcnt; 7856 7857 linkwatch_forget_dev(dev); 7858 7859 rebroadcast_time = warning_time = jiffies; 7860 refcnt = netdev_refcnt_read(dev); 7861 7862 while (refcnt != 0) { 7863 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7864 rtnl_lock(); 7865 7866 /* Rebroadcast unregister notification */ 7867 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7868 7869 __rtnl_unlock(); 7870 rcu_barrier(); 7871 rtnl_lock(); 7872 7873 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7874 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7875 &dev->state)) { 7876 /* We must not have linkwatch events 7877 * pending on unregister. If this 7878 * happens, we simply run the queue 7879 * unscheduled, resulting in a noop 7880 * for this device. 7881 */ 7882 linkwatch_run_queue(); 7883 } 7884 7885 __rtnl_unlock(); 7886 7887 rebroadcast_time = jiffies; 7888 } 7889 7890 msleep(250); 7891 7892 refcnt = netdev_refcnt_read(dev); 7893 7894 if (time_after(jiffies, warning_time + 10 * HZ)) { 7895 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7896 dev->name, refcnt); 7897 warning_time = jiffies; 7898 } 7899 } 7900} 7901 7902/* The sequence is: 7903 * 7904 * rtnl_lock(); 7905 * ... 7906 * register_netdevice(x1); 7907 * register_netdevice(x2); 7908 * ... 7909 * unregister_netdevice(y1); 7910 * unregister_netdevice(y2); 7911 * ... 7912 * rtnl_unlock(); 7913 * free_netdev(y1); 7914 * free_netdev(y2); 7915 * 7916 * We are invoked by rtnl_unlock(). 7917 * This allows us to deal with problems: 7918 * 1) We can delete sysfs objects which invoke hotplug 7919 * without deadlocking with linkwatch via keventd. 7920 * 2) Since we run with the RTNL semaphore not held, we can sleep 7921 * safely in order to wait for the netdev refcnt to drop to zero. 7922 * 7923 * We must not return until all unregister events added during 7924 * the interval the lock was held have been completed. 7925 */ 7926void netdev_run_todo(void) 7927{ 7928 struct list_head list; 7929 7930 /* Snapshot list, allow later requests */ 7931 list_replace_init(&net_todo_list, &list); 7932 7933 __rtnl_unlock(); 7934 7935 7936 /* Wait for rcu callbacks to finish before next phase */ 7937 if (!list_empty(&list)) 7938 rcu_barrier(); 7939 7940 while (!list_empty(&list)) { 7941 struct net_device *dev 7942 = list_first_entry(&list, struct net_device, todo_list); 7943 list_del(&dev->todo_list); 7944 7945 rtnl_lock(); 7946 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7947 __rtnl_unlock(); 7948 7949 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 7950 pr_err("network todo '%s' but state %d\n", 7951 dev->name, dev->reg_state); 7952 dump_stack(); 7953 continue; 7954 } 7955 7956 dev->reg_state = NETREG_UNREGISTERED; 7957 7958 netdev_wait_allrefs(dev); 7959 7960 /* paranoia */ 7961 BUG_ON(netdev_refcnt_read(dev)); 7962 BUG_ON(!list_empty(&dev->ptype_all)); 7963 BUG_ON(!list_empty(&dev->ptype_specific)); 7964 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 7965 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 7966 WARN_ON(dev->dn_ptr); 7967 7968 if (dev->priv_destructor) 7969 dev->priv_destructor(dev); 7970 if (dev->needs_free_netdev) 7971 free_netdev(dev); 7972 7973 /* Report a network device has been unregistered */ 7974 rtnl_lock(); 7975 dev_net(dev)->dev_unreg_count--; 7976 __rtnl_unlock(); 7977 wake_up(&netdev_unregistering_wq); 7978 7979 /* Free network device */ 7980 kobject_put(&dev->dev.kobj); 7981 } 7982} 7983 7984/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 7985 * all the same fields in the same order as net_device_stats, with only 7986 * the type differing, but rtnl_link_stats64 may have additional fields 7987 * at the end for newer counters. 7988 */ 7989void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 7990 const struct net_device_stats *netdev_stats) 7991{ 7992#if BITS_PER_LONG == 64 7993 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 7994 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 7995 /* zero out counters that only exist in rtnl_link_stats64 */ 7996 memset((char *)stats64 + sizeof(*netdev_stats), 0, 7997 sizeof(*stats64) - sizeof(*netdev_stats)); 7998#else 7999 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 8000 const unsigned long *src = (const unsigned long *)netdev_stats; 8001 u64 *dst = (u64 *)stats64; 8002 8003 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 8004 for (i = 0; i < n; i++) 8005 dst[i] = src[i]; 8006 /* zero out counters that only exist in rtnl_link_stats64 */ 8007 memset((char *)stats64 + n * sizeof(u64), 0, 8008 sizeof(*stats64) - n * sizeof(u64)); 8009#endif 8010} 8011EXPORT_SYMBOL(netdev_stats_to_stats64); 8012 8013/** 8014 * dev_get_stats - get network device statistics 8015 * @dev: device to get statistics from 8016 * @storage: place to store stats 8017 * 8018 * Get network statistics from device. Return @storage. 8019 * The device driver may provide its own method by setting 8020 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 8021 * otherwise the internal statistics structure is used. 8022 */ 8023struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 8024 struct rtnl_link_stats64 *storage) 8025{ 8026 const struct net_device_ops *ops = dev->netdev_ops; 8027 8028 if (ops->ndo_get_stats64) { 8029 memset(storage, 0, sizeof(*storage)); 8030 ops->ndo_get_stats64(dev, storage); 8031 } else if (ops->ndo_get_stats) { 8032 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 8033 } else { 8034 netdev_stats_to_stats64(storage, &dev->stats); 8035 } 8036 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 8037 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 8038 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 8039 return storage; 8040} 8041EXPORT_SYMBOL(dev_get_stats); 8042 8043struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 8044{ 8045 struct netdev_queue *queue = dev_ingress_queue(dev); 8046 8047#ifdef CONFIG_NET_CLS_ACT 8048 if (queue) 8049 return queue; 8050 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 8051 if (!queue) 8052 return NULL; 8053 netdev_init_one_queue(dev, queue, NULL); 8054 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 8055 queue->qdisc_sleeping = &noop_qdisc; 8056 rcu_assign_pointer(dev->ingress_queue, queue); 8057#endif 8058 return queue; 8059} 8060 8061static const struct ethtool_ops default_ethtool_ops; 8062 8063void netdev_set_default_ethtool_ops(struct net_device *dev, 8064 const struct ethtool_ops *ops) 8065{ 8066 if (dev->ethtool_ops == &default_ethtool_ops) 8067 dev->ethtool_ops = ops; 8068} 8069EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 8070 8071void netdev_freemem(struct net_device *dev) 8072{ 8073 char *addr = (char *)dev - dev->padded; 8074 8075 kvfree(addr); 8076} 8077 8078/** 8079 * alloc_netdev_mqs - allocate network device 8080 * @sizeof_priv: size of private data to allocate space for 8081 * @name: device name format string 8082 * @name_assign_type: origin of device name 8083 * @setup: callback to initialize device 8084 * @txqs: the number of TX subqueues to allocate 8085 * @rxqs: the number of RX subqueues to allocate 8086 * 8087 * Allocates a struct net_device with private data area for driver use 8088 * and performs basic initialization. Also allocates subqueue structs 8089 * for each queue on the device. 8090 */ 8091struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 8092 unsigned char name_assign_type, 8093 void (*setup)(struct net_device *), 8094 unsigned int txqs, unsigned int rxqs) 8095{ 8096 struct net_device *dev; 8097 unsigned int alloc_size; 8098 struct net_device *p; 8099 8100 BUG_ON(strlen(name) >= sizeof(dev->name)); 8101 8102 if (txqs < 1) { 8103 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 8104 return NULL; 8105 } 8106 8107#ifdef CONFIG_SYSFS 8108 if (rxqs < 1) { 8109 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 8110 return NULL; 8111 } 8112#endif 8113 8114 alloc_size = sizeof(struct net_device); 8115 if (sizeof_priv) { 8116 /* ensure 32-byte alignment of private area */ 8117 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8118 alloc_size += sizeof_priv; 8119 } 8120 /* ensure 32-byte alignment of whole construct */ 8121 alloc_size += NETDEV_ALIGN - 1; 8122 8123 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8124 if (!p) 8125 return NULL; 8126 8127 dev = PTR_ALIGN(p, NETDEV_ALIGN); 8128 dev->padded = (char *)dev - (char *)p; 8129 8130 dev->pcpu_refcnt = alloc_percpu(int); 8131 if (!dev->pcpu_refcnt) 8132 goto free_dev; 8133 8134 if (dev_addr_init(dev)) 8135 goto free_pcpu; 8136 8137 dev_mc_init(dev); 8138 dev_uc_init(dev); 8139 8140 dev_net_set(dev, &init_net); 8141 8142 dev->gso_max_size = GSO_MAX_SIZE; 8143 dev->gso_max_segs = GSO_MAX_SEGS; 8144 8145 INIT_LIST_HEAD(&dev->napi_list); 8146 INIT_LIST_HEAD(&dev->unreg_list); 8147 INIT_LIST_HEAD(&dev->close_list); 8148 INIT_LIST_HEAD(&dev->link_watch_list); 8149 INIT_LIST_HEAD(&dev->adj_list.upper); 8150 INIT_LIST_HEAD(&dev->adj_list.lower); 8151 INIT_LIST_HEAD(&dev->ptype_all); 8152 INIT_LIST_HEAD(&dev->ptype_specific); 8153#ifdef CONFIG_NET_SCHED 8154 hash_init(dev->qdisc_hash); 8155#endif 8156 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 8157 setup(dev); 8158 8159 if (!dev->tx_queue_len) { 8160 dev->priv_flags |= IFF_NO_QUEUE; 8161 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 8162 } 8163 8164 dev->num_tx_queues = txqs; 8165 dev->real_num_tx_queues = txqs; 8166 if (netif_alloc_netdev_queues(dev)) 8167 goto free_all; 8168 8169#ifdef CONFIG_SYSFS 8170 dev->num_rx_queues = rxqs; 8171 dev->real_num_rx_queues = rxqs; 8172 if (netif_alloc_rx_queues(dev)) 8173 goto free_all; 8174#endif 8175 8176 strcpy(dev->name, name); 8177 dev->name_assign_type = name_assign_type; 8178 dev->group = INIT_NETDEV_GROUP; 8179 if (!dev->ethtool_ops) 8180 dev->ethtool_ops = &default_ethtool_ops; 8181 8182 nf_hook_ingress_init(dev); 8183 8184 return dev; 8185 8186free_all: 8187 free_netdev(dev); 8188 return NULL; 8189 8190free_pcpu: 8191 free_percpu(dev->pcpu_refcnt); 8192free_dev: 8193 netdev_freemem(dev); 8194 return NULL; 8195} 8196EXPORT_SYMBOL(alloc_netdev_mqs); 8197 8198/** 8199 * free_netdev - free network device 8200 * @dev: device 8201 * 8202 * This function does the last stage of destroying an allocated device 8203 * interface. The reference to the device object is released. If this 8204 * is the last reference then it will be freed.Must be called in process 8205 * context. 8206 */ 8207void free_netdev(struct net_device *dev) 8208{ 8209 struct napi_struct *p, *n; 8210 struct bpf_prog *prog; 8211 8212 might_sleep(); 8213 netif_free_tx_queues(dev); 8214#ifdef CONFIG_SYSFS 8215 kvfree(dev->_rx); 8216#endif 8217 8218 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 8219 8220 /* Flush device addresses */ 8221 dev_addr_flush(dev); 8222 8223 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 8224 netif_napi_del(p); 8225 8226 free_percpu(dev->pcpu_refcnt); 8227 dev->pcpu_refcnt = NULL; 8228 8229 prog = rcu_dereference_protected(dev->xdp_prog, 1); 8230 if (prog) { 8231 bpf_prog_put(prog); 8232 static_key_slow_dec(&generic_xdp_needed); 8233 } 8234 8235 /* Compatibility with error handling in drivers */ 8236 if (dev->reg_state == NETREG_UNINITIALIZED) { 8237 netdev_freemem(dev); 8238 return; 8239 } 8240 8241 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 8242 dev->reg_state = NETREG_RELEASED; 8243 8244 /* will free via device release */ 8245 put_device(&dev->dev); 8246} 8247EXPORT_SYMBOL(free_netdev); 8248 8249/** 8250 * synchronize_net - Synchronize with packet receive processing 8251 * 8252 * Wait for packets currently being received to be done. 8253 * Does not block later packets from starting. 8254 */ 8255void synchronize_net(void) 8256{ 8257 might_sleep(); 8258 if (rtnl_is_locked()) 8259 synchronize_rcu_expedited(); 8260 else 8261 synchronize_rcu(); 8262} 8263EXPORT_SYMBOL(synchronize_net); 8264 8265/** 8266 * unregister_netdevice_queue - remove device from the kernel 8267 * @dev: device 8268 * @head: list 8269 * 8270 * This function shuts down a device interface and removes it 8271 * from the kernel tables. 8272 * If head not NULL, device is queued to be unregistered later. 8273 * 8274 * Callers must hold the rtnl semaphore. You may want 8275 * unregister_netdev() instead of this. 8276 */ 8277 8278void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 8279{ 8280 ASSERT_RTNL(); 8281 8282 if (head) { 8283 list_move_tail(&dev->unreg_list, head); 8284 } else { 8285 rollback_registered(dev); 8286 /* Finish processing unregister after unlock */ 8287 net_set_todo(dev); 8288 } 8289} 8290EXPORT_SYMBOL(unregister_netdevice_queue); 8291 8292/** 8293 * unregister_netdevice_many - unregister many devices 8294 * @head: list of devices 8295 * 8296 * Note: As most callers use a stack allocated list_head, 8297 * we force a list_del() to make sure stack wont be corrupted later. 8298 */ 8299void unregister_netdevice_many(struct list_head *head) 8300{ 8301 struct net_device *dev; 8302 8303 if (!list_empty(head)) { 8304 rollback_registered_many(head); 8305 list_for_each_entry(dev, head, unreg_list) 8306 net_set_todo(dev); 8307 list_del(head); 8308 } 8309} 8310EXPORT_SYMBOL(unregister_netdevice_many); 8311 8312/** 8313 * unregister_netdev - remove device from the kernel 8314 * @dev: device 8315 * 8316 * This function shuts down a device interface and removes it 8317 * from the kernel tables. 8318 * 8319 * This is just a wrapper for unregister_netdevice that takes 8320 * the rtnl semaphore. In general you want to use this and not 8321 * unregister_netdevice. 8322 */ 8323void unregister_netdev(struct net_device *dev) 8324{ 8325 rtnl_lock(); 8326 unregister_netdevice(dev); 8327 rtnl_unlock(); 8328} 8329EXPORT_SYMBOL(unregister_netdev); 8330 8331/** 8332 * dev_change_net_namespace - move device to different nethost namespace 8333 * @dev: device 8334 * @net: network namespace 8335 * @pat: If not NULL name pattern to try if the current device name 8336 * is already taken in the destination network namespace. 8337 * 8338 * This function shuts down a device interface and moves it 8339 * to a new network namespace. On success 0 is returned, on 8340 * a failure a netagive errno code is returned. 8341 * 8342 * Callers must hold the rtnl semaphore. 8343 */ 8344 8345int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 8346{ 8347 int err, new_nsid; 8348 8349 ASSERT_RTNL(); 8350 8351 /* Don't allow namespace local devices to be moved. */ 8352 err = -EINVAL; 8353 if (dev->features & NETIF_F_NETNS_LOCAL) 8354 goto out; 8355 8356 /* Ensure the device has been registrered */ 8357 if (dev->reg_state != NETREG_REGISTERED) 8358 goto out; 8359 8360 /* Get out if there is nothing todo */ 8361 err = 0; 8362 if (net_eq(dev_net(dev), net)) 8363 goto out; 8364 8365 /* Pick the destination device name, and ensure 8366 * we can use it in the destination network namespace. 8367 */ 8368 err = -EEXIST; 8369 if (__dev_get_by_name(net, dev->name)) { 8370 /* We get here if we can't use the current device name */ 8371 if (!pat) 8372 goto out; 8373 if (dev_get_valid_name(net, dev, pat) < 0) 8374 goto out; 8375 } 8376 8377 /* 8378 * And now a mini version of register_netdevice unregister_netdevice. 8379 */ 8380 8381 /* If device is running close it first. */ 8382 dev_close(dev); 8383 8384 /* And unlink it from device chain */ 8385 err = -ENODEV; 8386 unlist_netdevice(dev); 8387 8388 synchronize_net(); 8389 8390 /* Shutdown queueing discipline. */ 8391 dev_shutdown(dev); 8392 8393 /* Notify protocols, that we are about to destroy 8394 * this device. They should clean all the things. 8395 * 8396 * Note that dev->reg_state stays at NETREG_REGISTERED. 8397 * This is wanted because this way 8021q and macvlan know 8398 * the device is just moving and can keep their slaves up. 8399 */ 8400 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8401 rcu_barrier(); 8402 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 8403 if (dev->rtnl_link_ops && dev->rtnl_link_ops->get_link_net) 8404 new_nsid = peernet2id_alloc(dev_net(dev), net); 8405 else 8406 new_nsid = peernet2id(dev_net(dev), net); 8407 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid); 8408 8409 /* 8410 * Flush the unicast and multicast chains 8411 */ 8412 dev_uc_flush(dev); 8413 dev_mc_flush(dev); 8414 8415 /* Send a netdev-removed uevent to the old namespace */ 8416 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 8417 netdev_adjacent_del_links(dev); 8418 8419 /* Actually switch the network namespace */ 8420 dev_net_set(dev, net); 8421 8422 /* If there is an ifindex conflict assign a new one */ 8423 if (__dev_get_by_index(net, dev->ifindex)) 8424 dev->ifindex = dev_new_index(net); 8425 8426 /* Send a netdev-add uevent to the new namespace */ 8427 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 8428 netdev_adjacent_add_links(dev); 8429 8430 /* Fixup kobjects */ 8431 err = device_rename(&dev->dev, dev->name); 8432 WARN_ON(err); 8433 8434 /* Add the device back in the hashes */ 8435 list_netdevice(dev); 8436 8437 /* Notify protocols, that a new device appeared. */ 8438 call_netdevice_notifiers(NETDEV_REGISTER, dev); 8439 8440 /* 8441 * Prevent userspace races by waiting until the network 8442 * device is fully setup before sending notifications. 8443 */ 8444 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8445 8446 synchronize_net(); 8447 err = 0; 8448out: 8449 return err; 8450} 8451EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8452 8453static int dev_cpu_dead(unsigned int oldcpu) 8454{ 8455 struct sk_buff **list_skb; 8456 struct sk_buff *skb; 8457 unsigned int cpu; 8458 struct softnet_data *sd, *oldsd, *remsd = NULL; 8459 8460 local_irq_disable(); 8461 cpu = smp_processor_id(); 8462 sd = &per_cpu(softnet_data, cpu); 8463 oldsd = &per_cpu(softnet_data, oldcpu); 8464 8465 /* Find end of our completion_queue. */ 8466 list_skb = &sd->completion_queue; 8467 while (*list_skb) 8468 list_skb = &(*list_skb)->next; 8469 /* Append completion queue from offline CPU. */ 8470 *list_skb = oldsd->completion_queue; 8471 oldsd->completion_queue = NULL; 8472 8473 /* Append output queue from offline CPU. */ 8474 if (oldsd->output_queue) { 8475 *sd->output_queue_tailp = oldsd->output_queue; 8476 sd->output_queue_tailp = oldsd->output_queue_tailp; 8477 oldsd->output_queue = NULL; 8478 oldsd->output_queue_tailp = &oldsd->output_queue; 8479 } 8480 /* Append NAPI poll list from offline CPU, with one exception : 8481 * process_backlog() must be called by cpu owning percpu backlog. 8482 * We properly handle process_queue & input_pkt_queue later. 8483 */ 8484 while (!list_empty(&oldsd->poll_list)) { 8485 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8486 struct napi_struct, 8487 poll_list); 8488 8489 list_del_init(&napi->poll_list); 8490 if (napi->poll == process_backlog) 8491 napi->state = 0; 8492 else 8493 ____napi_schedule(sd, napi); 8494 } 8495 8496 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8497 local_irq_enable(); 8498 8499#ifdef CONFIG_RPS 8500 remsd = oldsd->rps_ipi_list; 8501 oldsd->rps_ipi_list = NULL; 8502#endif 8503 /* send out pending IPI's on offline CPU */ 8504 net_rps_send_ipi(remsd); 8505 8506 /* Process offline CPU's input_pkt_queue */ 8507 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8508 netif_rx_ni(skb); 8509 input_queue_head_incr(oldsd); 8510 } 8511 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8512 netif_rx_ni(skb); 8513 input_queue_head_incr(oldsd); 8514 } 8515 8516 return 0; 8517} 8518 8519/** 8520 * netdev_increment_features - increment feature set by one 8521 * @all: current feature set 8522 * @one: new feature set 8523 * @mask: mask feature set 8524 * 8525 * Computes a new feature set after adding a device with feature set 8526 * @one to the master device with current feature set @all. Will not 8527 * enable anything that is off in @mask. Returns the new feature set. 8528 */ 8529netdev_features_t netdev_increment_features(netdev_features_t all, 8530 netdev_features_t one, netdev_features_t mask) 8531{ 8532 if (mask & NETIF_F_HW_CSUM) 8533 mask |= NETIF_F_CSUM_MASK; 8534 mask |= NETIF_F_VLAN_CHALLENGED; 8535 8536 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8537 all &= one | ~NETIF_F_ALL_FOR_ALL; 8538 8539 /* If one device supports hw checksumming, set for all. */ 8540 if (all & NETIF_F_HW_CSUM) 8541 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8542 8543 return all; 8544} 8545EXPORT_SYMBOL(netdev_increment_features); 8546 8547static struct hlist_head * __net_init netdev_create_hash(void) 8548{ 8549 int i; 8550 struct hlist_head *hash; 8551 8552 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8553 if (hash != NULL) 8554 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8555 INIT_HLIST_HEAD(&hash[i]); 8556 8557 return hash; 8558} 8559 8560/* Initialize per network namespace state */ 8561static int __net_init netdev_init(struct net *net) 8562{ 8563 if (net != &init_net) 8564 INIT_LIST_HEAD(&net->dev_base_head); 8565 8566 net->dev_name_head = netdev_create_hash(); 8567 if (net->dev_name_head == NULL) 8568 goto err_name; 8569 8570 net->dev_index_head = netdev_create_hash(); 8571 if (net->dev_index_head == NULL) 8572 goto err_idx; 8573 8574 return 0; 8575 8576err_idx: 8577 kfree(net->dev_name_head); 8578err_name: 8579 return -ENOMEM; 8580} 8581 8582/** 8583 * netdev_drivername - network driver for the device 8584 * @dev: network device 8585 * 8586 * Determine network driver for device. 8587 */ 8588const char *netdev_drivername(const struct net_device *dev) 8589{ 8590 const struct device_driver *driver; 8591 const struct device *parent; 8592 const char *empty = ""; 8593 8594 parent = dev->dev.parent; 8595 if (!parent) 8596 return empty; 8597 8598 driver = parent->driver; 8599 if (driver && driver->name) 8600 return driver->name; 8601 return empty; 8602} 8603 8604static void __netdev_printk(const char *level, const struct net_device *dev, 8605 struct va_format *vaf) 8606{ 8607 if (dev && dev->dev.parent) { 8608 dev_printk_emit(level[1] - '0', 8609 dev->dev.parent, 8610 "%s %s %s%s: %pV", 8611 dev_driver_string(dev->dev.parent), 8612 dev_name(dev->dev.parent), 8613 netdev_name(dev), netdev_reg_state(dev), 8614 vaf); 8615 } else if (dev) { 8616 printk("%s%s%s: %pV", 8617 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8618 } else { 8619 printk("%s(NULL net_device): %pV", level, vaf); 8620 } 8621} 8622 8623void netdev_printk(const char *level, const struct net_device *dev, 8624 const char *format, ...) 8625{ 8626 struct va_format vaf; 8627 va_list args; 8628 8629 va_start(args, format); 8630 8631 vaf.fmt = format; 8632 vaf.va = &args; 8633 8634 __netdev_printk(level, dev, &vaf); 8635 8636 va_end(args); 8637} 8638EXPORT_SYMBOL(netdev_printk); 8639 8640#define define_netdev_printk_level(func, level) \ 8641void func(const struct net_device *dev, const char *fmt, ...) \ 8642{ \ 8643 struct va_format vaf; \ 8644 va_list args; \ 8645 \ 8646 va_start(args, fmt); \ 8647 \ 8648 vaf.fmt = fmt; \ 8649 vaf.va = &args; \ 8650 \ 8651 __netdev_printk(level, dev, &vaf); \ 8652 \ 8653 va_end(args); \ 8654} \ 8655EXPORT_SYMBOL(func); 8656 8657define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8658define_netdev_printk_level(netdev_alert, KERN_ALERT); 8659define_netdev_printk_level(netdev_crit, KERN_CRIT); 8660define_netdev_printk_level(netdev_err, KERN_ERR); 8661define_netdev_printk_level(netdev_warn, KERN_WARNING); 8662define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8663define_netdev_printk_level(netdev_info, KERN_INFO); 8664 8665static void __net_exit netdev_exit(struct net *net) 8666{ 8667 kfree(net->dev_name_head); 8668 kfree(net->dev_index_head); 8669 if (net != &init_net) 8670 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 8671} 8672 8673static struct pernet_operations __net_initdata netdev_net_ops = { 8674 .init = netdev_init, 8675 .exit = netdev_exit, 8676}; 8677 8678static void __net_exit default_device_exit(struct net *net) 8679{ 8680 struct net_device *dev, *aux; 8681 /* 8682 * Push all migratable network devices back to the 8683 * initial network namespace 8684 */ 8685 rtnl_lock(); 8686 for_each_netdev_safe(net, dev, aux) { 8687 int err; 8688 char fb_name[IFNAMSIZ]; 8689 8690 /* Ignore unmoveable devices (i.e. loopback) */ 8691 if (dev->features & NETIF_F_NETNS_LOCAL) 8692 continue; 8693 8694 /* Leave virtual devices for the generic cleanup */ 8695 if (dev->rtnl_link_ops) 8696 continue; 8697 8698 /* Push remaining network devices to init_net */ 8699 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8700 err = dev_change_net_namespace(dev, &init_net, fb_name); 8701 if (err) { 8702 pr_emerg("%s: failed to move %s to init_net: %d\n", 8703 __func__, dev->name, err); 8704 BUG(); 8705 } 8706 } 8707 rtnl_unlock(); 8708} 8709 8710static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8711{ 8712 /* Return with the rtnl_lock held when there are no network 8713 * devices unregistering in any network namespace in net_list. 8714 */ 8715 struct net *net; 8716 bool unregistering; 8717 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8718 8719 add_wait_queue(&netdev_unregistering_wq, &wait); 8720 for (;;) { 8721 unregistering = false; 8722 rtnl_lock(); 8723 list_for_each_entry(net, net_list, exit_list) { 8724 if (net->dev_unreg_count > 0) { 8725 unregistering = true; 8726 break; 8727 } 8728 } 8729 if (!unregistering) 8730 break; 8731 __rtnl_unlock(); 8732 8733 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8734 } 8735 remove_wait_queue(&netdev_unregistering_wq, &wait); 8736} 8737 8738static void __net_exit default_device_exit_batch(struct list_head *net_list) 8739{ 8740 /* At exit all network devices most be removed from a network 8741 * namespace. Do this in the reverse order of registration. 8742 * Do this across as many network namespaces as possible to 8743 * improve batching efficiency. 8744 */ 8745 struct net_device *dev; 8746 struct net *net; 8747 LIST_HEAD(dev_kill_list); 8748 8749 /* To prevent network device cleanup code from dereferencing 8750 * loopback devices or network devices that have been freed 8751 * wait here for all pending unregistrations to complete, 8752 * before unregistring the loopback device and allowing the 8753 * network namespace be freed. 8754 * 8755 * The netdev todo list containing all network devices 8756 * unregistrations that happen in default_device_exit_batch 8757 * will run in the rtnl_unlock() at the end of 8758 * default_device_exit_batch. 8759 */ 8760 rtnl_lock_unregistering(net_list); 8761 list_for_each_entry(net, net_list, exit_list) { 8762 for_each_netdev_reverse(net, dev) { 8763 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8764 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8765 else 8766 unregister_netdevice_queue(dev, &dev_kill_list); 8767 } 8768 } 8769 unregister_netdevice_many(&dev_kill_list); 8770 rtnl_unlock(); 8771} 8772 8773static struct pernet_operations __net_initdata default_device_ops = { 8774 .exit = default_device_exit, 8775 .exit_batch = default_device_exit_batch, 8776}; 8777 8778/* 8779 * Initialize the DEV module. At boot time this walks the device list and 8780 * unhooks any devices that fail to initialise (normally hardware not 8781 * present) and leaves us with a valid list of present and active devices. 8782 * 8783 */ 8784 8785/* 8786 * This is called single threaded during boot, so no need 8787 * to take the rtnl semaphore. 8788 */ 8789static int __init net_dev_init(void) 8790{ 8791 int i, rc = -ENOMEM; 8792 8793 BUG_ON(!dev_boot_phase); 8794 8795 if (dev_proc_init()) 8796 goto out; 8797 8798 if (netdev_kobject_init()) 8799 goto out; 8800 8801 INIT_LIST_HEAD(&ptype_all); 8802 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8803 INIT_LIST_HEAD(&ptype_base[i]); 8804 8805 INIT_LIST_HEAD(&offload_base); 8806 8807 if (register_pernet_subsys(&netdev_net_ops)) 8808 goto out; 8809 8810 /* 8811 * Initialise the packet receive queues. 8812 */ 8813 8814 for_each_possible_cpu(i) { 8815 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8816 struct softnet_data *sd = &per_cpu(softnet_data, i); 8817 8818 INIT_WORK(flush, flush_backlog); 8819 8820 skb_queue_head_init(&sd->input_pkt_queue); 8821 skb_queue_head_init(&sd->process_queue); 8822 INIT_LIST_HEAD(&sd->poll_list); 8823 sd->output_queue_tailp = &sd->output_queue; 8824#ifdef CONFIG_RPS 8825 sd->csd.func = rps_trigger_softirq; 8826 sd->csd.info = sd; 8827 sd->cpu = i; 8828#endif 8829 8830 sd->backlog.poll = process_backlog; 8831 sd->backlog.weight = weight_p; 8832 } 8833 8834 dev_boot_phase = 0; 8835 8836 /* The loopback device is special if any other network devices 8837 * is present in a network namespace the loopback device must 8838 * be present. Since we now dynamically allocate and free the 8839 * loopback device ensure this invariant is maintained by 8840 * keeping the loopback device as the first device on the 8841 * list of network devices. Ensuring the loopback devices 8842 * is the first device that appears and the last network device 8843 * that disappears. 8844 */ 8845 if (register_pernet_device(&loopback_net_ops)) 8846 goto out; 8847 8848 if (register_pernet_device(&default_device_ops)) 8849 goto out; 8850 8851 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8852 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8853 8854 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 8855 NULL, dev_cpu_dead); 8856 WARN_ON(rc < 0); 8857 rc = 0; 8858out: 8859 return rc; 8860} 8861 8862subsys_initcall(net_dev_init);