at v4.15-rc3 59 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_BLKDEV_H 3#define _LINUX_BLKDEV_H 4 5#include <linux/sched.h> 6#include <linux/sched/clock.h> 7 8#ifdef CONFIG_BLOCK 9 10#include <linux/major.h> 11#include <linux/genhd.h> 12#include <linux/list.h> 13#include <linux/llist.h> 14#include <linux/timer.h> 15#include <linux/workqueue.h> 16#include <linux/pagemap.h> 17#include <linux/backing-dev-defs.h> 18#include <linux/wait.h> 19#include <linux/mempool.h> 20#include <linux/pfn.h> 21#include <linux/bio.h> 22#include <linux/stringify.h> 23#include <linux/gfp.h> 24#include <linux/bsg.h> 25#include <linux/smp.h> 26#include <linux/rcupdate.h> 27#include <linux/percpu-refcount.h> 28#include <linux/scatterlist.h> 29#include <linux/blkzoned.h> 30 31struct module; 32struct scsi_ioctl_command; 33 34struct request_queue; 35struct elevator_queue; 36struct blk_trace; 37struct request; 38struct sg_io_hdr; 39struct bsg_job; 40struct blkcg_gq; 41struct blk_flush_queue; 42struct pr_ops; 43struct rq_wb; 44struct blk_queue_stats; 45struct blk_stat_callback; 46 47#define BLKDEV_MIN_RQ 4 48#define BLKDEV_MAX_RQ 128 /* Default maximum */ 49 50/* Must be consisitent with blk_mq_poll_stats_bkt() */ 51#define BLK_MQ_POLL_STATS_BKTS 16 52 53/* 54 * Maximum number of blkcg policies allowed to be registered concurrently. 55 * Defined here to simplify include dependency. 56 */ 57#define BLKCG_MAX_POLS 3 58 59typedef void (rq_end_io_fn)(struct request *, blk_status_t); 60 61#define BLK_RL_SYNCFULL (1U << 0) 62#define BLK_RL_ASYNCFULL (1U << 1) 63 64struct request_list { 65 struct request_queue *q; /* the queue this rl belongs to */ 66#ifdef CONFIG_BLK_CGROUP 67 struct blkcg_gq *blkg; /* blkg this request pool belongs to */ 68#endif 69 /* 70 * count[], starved[], and wait[] are indexed by 71 * BLK_RW_SYNC/BLK_RW_ASYNC 72 */ 73 int count[2]; 74 int starved[2]; 75 mempool_t *rq_pool; 76 wait_queue_head_t wait[2]; 77 unsigned int flags; 78}; 79 80/* 81 * request flags */ 82typedef __u32 __bitwise req_flags_t; 83 84/* elevator knows about this request */ 85#define RQF_SORTED ((__force req_flags_t)(1 << 0)) 86/* drive already may have started this one */ 87#define RQF_STARTED ((__force req_flags_t)(1 << 1)) 88/* uses tagged queueing */ 89#define RQF_QUEUED ((__force req_flags_t)(1 << 2)) 90/* may not be passed by ioscheduler */ 91#define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 92/* request for flush sequence */ 93#define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 94/* merge of different types, fail separately */ 95#define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 96/* track inflight for MQ */ 97#define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 98/* don't call prep for this one */ 99#define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 100/* set for "ide_preempt" requests and also for requests for which the SCSI 101 "quiesce" state must be ignored. */ 102#define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 103/* contains copies of user pages */ 104#define RQF_COPY_USER ((__force req_flags_t)(1 << 9)) 105/* vaguely specified driver internal error. Ignored by the block layer */ 106#define RQF_FAILED ((__force req_flags_t)(1 << 10)) 107/* don't warn about errors */ 108#define RQF_QUIET ((__force req_flags_t)(1 << 11)) 109/* elevator private data attached */ 110#define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 111/* account I/O stat */ 112#define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 113/* request came from our alloc pool */ 114#define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 115/* runtime pm request */ 116#define RQF_PM ((__force req_flags_t)(1 << 15)) 117/* on IO scheduler merge hash */ 118#define RQF_HASHED ((__force req_flags_t)(1 << 16)) 119/* IO stats tracking on */ 120#define RQF_STATS ((__force req_flags_t)(1 << 17)) 121/* Look at ->special_vec for the actual data payload instead of the 122 bio chain. */ 123#define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 124 125/* flags that prevent us from merging requests: */ 126#define RQF_NOMERGE_FLAGS \ 127 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 128 129/* 130 * Try to put the fields that are referenced together in the same cacheline. 131 * 132 * If you modify this structure, make sure to update blk_rq_init() and 133 * especially blk_mq_rq_ctx_init() to take care of the added fields. 134 */ 135struct request { 136 struct list_head queuelist; 137 union { 138 call_single_data_t csd; 139 u64 fifo_time; 140 }; 141 142 struct request_queue *q; 143 struct blk_mq_ctx *mq_ctx; 144 145 int cpu; 146 unsigned int cmd_flags; /* op and common flags */ 147 req_flags_t rq_flags; 148 149 int internal_tag; 150 151 unsigned long atomic_flags; 152 153 /* the following two fields are internal, NEVER access directly */ 154 unsigned int __data_len; /* total data len */ 155 int tag; 156 sector_t __sector; /* sector cursor */ 157 158 struct bio *bio; 159 struct bio *biotail; 160 161 /* 162 * The hash is used inside the scheduler, and killed once the 163 * request reaches the dispatch list. The ipi_list is only used 164 * to queue the request for softirq completion, which is long 165 * after the request has been unhashed (and even removed from 166 * the dispatch list). 167 */ 168 union { 169 struct hlist_node hash; /* merge hash */ 170 struct list_head ipi_list; 171 }; 172 173 /* 174 * The rb_node is only used inside the io scheduler, requests 175 * are pruned when moved to the dispatch queue. So let the 176 * completion_data share space with the rb_node. 177 */ 178 union { 179 struct rb_node rb_node; /* sort/lookup */ 180 struct bio_vec special_vec; 181 void *completion_data; 182 int error_count; /* for legacy drivers, don't use */ 183 }; 184 185 /* 186 * Three pointers are available for the IO schedulers, if they need 187 * more they have to dynamically allocate it. Flush requests are 188 * never put on the IO scheduler. So let the flush fields share 189 * space with the elevator data. 190 */ 191 union { 192 struct { 193 struct io_cq *icq; 194 void *priv[2]; 195 } elv; 196 197 struct { 198 unsigned int seq; 199 struct list_head list; 200 rq_end_io_fn *saved_end_io; 201 } flush; 202 }; 203 204 struct gendisk *rq_disk; 205 struct hd_struct *part; 206 unsigned long start_time; 207 struct blk_issue_stat issue_stat; 208#ifdef CONFIG_BLK_CGROUP 209 struct request_list *rl; /* rl this rq is alloced from */ 210 unsigned long long start_time_ns; 211 unsigned long long io_start_time_ns; /* when passed to hardware */ 212#endif 213 /* Number of scatter-gather DMA addr+len pairs after 214 * physical address coalescing is performed. 215 */ 216 unsigned short nr_phys_segments; 217#if defined(CONFIG_BLK_DEV_INTEGRITY) 218 unsigned short nr_integrity_segments; 219#endif 220 221 unsigned short ioprio; 222 223 unsigned int timeout; 224 225 void *special; /* opaque pointer available for LLD use */ 226 227 unsigned int extra_len; /* length of alignment and padding */ 228 229 unsigned short write_hint; 230 231 unsigned long deadline; 232 struct list_head timeout_list; 233 234 /* 235 * completion callback. 236 */ 237 rq_end_io_fn *end_io; 238 void *end_io_data; 239 240 /* for bidi */ 241 struct request *next_rq; 242}; 243 244static inline bool blk_rq_is_scsi(struct request *rq) 245{ 246 return req_op(rq) == REQ_OP_SCSI_IN || req_op(rq) == REQ_OP_SCSI_OUT; 247} 248 249static inline bool blk_rq_is_private(struct request *rq) 250{ 251 return req_op(rq) == REQ_OP_DRV_IN || req_op(rq) == REQ_OP_DRV_OUT; 252} 253 254static inline bool blk_rq_is_passthrough(struct request *rq) 255{ 256 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 257} 258 259static inline unsigned short req_get_ioprio(struct request *req) 260{ 261 return req->ioprio; 262} 263 264#include <linux/elevator.h> 265 266struct blk_queue_ctx; 267 268typedef void (request_fn_proc) (struct request_queue *q); 269typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio); 270typedef bool (poll_q_fn) (struct request_queue *q, blk_qc_t); 271typedef int (prep_rq_fn) (struct request_queue *, struct request *); 272typedef void (unprep_rq_fn) (struct request_queue *, struct request *); 273 274struct bio_vec; 275typedef void (softirq_done_fn)(struct request *); 276typedef int (dma_drain_needed_fn)(struct request *); 277typedef int (lld_busy_fn) (struct request_queue *q); 278typedef int (bsg_job_fn) (struct bsg_job *); 279typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t); 280typedef void (exit_rq_fn)(struct request_queue *, struct request *); 281 282enum blk_eh_timer_return { 283 BLK_EH_NOT_HANDLED, 284 BLK_EH_HANDLED, 285 BLK_EH_RESET_TIMER, 286}; 287 288typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *); 289 290enum blk_queue_state { 291 Queue_down, 292 Queue_up, 293}; 294 295struct blk_queue_tag { 296 struct request **tag_index; /* map of busy tags */ 297 unsigned long *tag_map; /* bit map of free/busy tags */ 298 int max_depth; /* what we will send to device */ 299 int real_max_depth; /* what the array can hold */ 300 atomic_t refcnt; /* map can be shared */ 301 int alloc_policy; /* tag allocation policy */ 302 int next_tag; /* next tag */ 303}; 304#define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 305#define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 306 307#define BLK_SCSI_MAX_CMDS (256) 308#define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 309 310/* 311 * Zoned block device models (zoned limit). 312 */ 313enum blk_zoned_model { 314 BLK_ZONED_NONE, /* Regular block device */ 315 BLK_ZONED_HA, /* Host-aware zoned block device */ 316 BLK_ZONED_HM, /* Host-managed zoned block device */ 317}; 318 319struct queue_limits { 320 unsigned long bounce_pfn; 321 unsigned long seg_boundary_mask; 322 unsigned long virt_boundary_mask; 323 324 unsigned int max_hw_sectors; 325 unsigned int max_dev_sectors; 326 unsigned int chunk_sectors; 327 unsigned int max_sectors; 328 unsigned int max_segment_size; 329 unsigned int physical_block_size; 330 unsigned int alignment_offset; 331 unsigned int io_min; 332 unsigned int io_opt; 333 unsigned int max_discard_sectors; 334 unsigned int max_hw_discard_sectors; 335 unsigned int max_write_same_sectors; 336 unsigned int max_write_zeroes_sectors; 337 unsigned int discard_granularity; 338 unsigned int discard_alignment; 339 340 unsigned short logical_block_size; 341 unsigned short max_segments; 342 unsigned short max_integrity_segments; 343 unsigned short max_discard_segments; 344 345 unsigned char misaligned; 346 unsigned char discard_misaligned; 347 unsigned char cluster; 348 unsigned char raid_partial_stripes_expensive; 349 enum blk_zoned_model zoned; 350}; 351 352#ifdef CONFIG_BLK_DEV_ZONED 353 354struct blk_zone_report_hdr { 355 unsigned int nr_zones; 356 u8 padding[60]; 357}; 358 359extern int blkdev_report_zones(struct block_device *bdev, 360 sector_t sector, struct blk_zone *zones, 361 unsigned int *nr_zones, gfp_t gfp_mask); 362extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors, 363 sector_t nr_sectors, gfp_t gfp_mask); 364 365extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 366 unsigned int cmd, unsigned long arg); 367extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode, 368 unsigned int cmd, unsigned long arg); 369 370#else /* CONFIG_BLK_DEV_ZONED */ 371 372static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 373 fmode_t mode, unsigned int cmd, 374 unsigned long arg) 375{ 376 return -ENOTTY; 377} 378 379static inline int blkdev_reset_zones_ioctl(struct block_device *bdev, 380 fmode_t mode, unsigned int cmd, 381 unsigned long arg) 382{ 383 return -ENOTTY; 384} 385 386#endif /* CONFIG_BLK_DEV_ZONED */ 387 388struct request_queue { 389 /* 390 * Together with queue_head for cacheline sharing 391 */ 392 struct list_head queue_head; 393 struct request *last_merge; 394 struct elevator_queue *elevator; 395 int nr_rqs[2]; /* # allocated [a]sync rqs */ 396 int nr_rqs_elvpriv; /* # allocated rqs w/ elvpriv */ 397 398 atomic_t shared_hctx_restart; 399 400 struct blk_queue_stats *stats; 401 struct rq_wb *rq_wb; 402 403 /* 404 * If blkcg is not used, @q->root_rl serves all requests. If blkcg 405 * is used, root blkg allocates from @q->root_rl and all other 406 * blkgs from their own blkg->rl. Which one to use should be 407 * determined using bio_request_list(). 408 */ 409 struct request_list root_rl; 410 411 request_fn_proc *request_fn; 412 make_request_fn *make_request_fn; 413 poll_q_fn *poll_fn; 414 prep_rq_fn *prep_rq_fn; 415 unprep_rq_fn *unprep_rq_fn; 416 softirq_done_fn *softirq_done_fn; 417 rq_timed_out_fn *rq_timed_out_fn; 418 dma_drain_needed_fn *dma_drain_needed; 419 lld_busy_fn *lld_busy_fn; 420 /* Called just after a request is allocated */ 421 init_rq_fn *init_rq_fn; 422 /* Called just before a request is freed */ 423 exit_rq_fn *exit_rq_fn; 424 /* Called from inside blk_get_request() */ 425 void (*initialize_rq_fn)(struct request *rq); 426 427 const struct blk_mq_ops *mq_ops; 428 429 unsigned int *mq_map; 430 431 /* sw queues */ 432 struct blk_mq_ctx __percpu *queue_ctx; 433 unsigned int nr_queues; 434 435 unsigned int queue_depth; 436 437 /* hw dispatch queues */ 438 struct blk_mq_hw_ctx **queue_hw_ctx; 439 unsigned int nr_hw_queues; 440 441 /* 442 * Dispatch queue sorting 443 */ 444 sector_t end_sector; 445 struct request *boundary_rq; 446 447 /* 448 * Delayed queue handling 449 */ 450 struct delayed_work delay_work; 451 452 struct backing_dev_info *backing_dev_info; 453 454 /* 455 * The queue owner gets to use this for whatever they like. 456 * ll_rw_blk doesn't touch it. 457 */ 458 void *queuedata; 459 460 /* 461 * various queue flags, see QUEUE_* below 462 */ 463 unsigned long queue_flags; 464 465 /* 466 * ida allocated id for this queue. Used to index queues from 467 * ioctx. 468 */ 469 int id; 470 471 /* 472 * queue needs bounce pages for pages above this limit 473 */ 474 gfp_t bounce_gfp; 475 476 /* 477 * protects queue structures from reentrancy. ->__queue_lock should 478 * _never_ be used directly, it is queue private. always use 479 * ->queue_lock. 480 */ 481 spinlock_t __queue_lock; 482 spinlock_t *queue_lock; 483 484 /* 485 * queue kobject 486 */ 487 struct kobject kobj; 488 489 /* 490 * mq queue kobject 491 */ 492 struct kobject mq_kobj; 493 494#ifdef CONFIG_BLK_DEV_INTEGRITY 495 struct blk_integrity integrity; 496#endif /* CONFIG_BLK_DEV_INTEGRITY */ 497 498#ifdef CONFIG_PM 499 struct device *dev; 500 int rpm_status; 501 unsigned int nr_pending; 502#endif 503 504 /* 505 * queue settings 506 */ 507 unsigned long nr_requests; /* Max # of requests */ 508 unsigned int nr_congestion_on; 509 unsigned int nr_congestion_off; 510 unsigned int nr_batching; 511 512 unsigned int dma_drain_size; 513 void *dma_drain_buffer; 514 unsigned int dma_pad_mask; 515 unsigned int dma_alignment; 516 517 struct blk_queue_tag *queue_tags; 518 struct list_head tag_busy_list; 519 520 unsigned int nr_sorted; 521 unsigned int in_flight[2]; 522 523 /* 524 * Number of active block driver functions for which blk_drain_queue() 525 * must wait. Must be incremented around functions that unlock the 526 * queue_lock internally, e.g. scsi_request_fn(). 527 */ 528 unsigned int request_fn_active; 529 530 unsigned int rq_timeout; 531 int poll_nsec; 532 533 struct blk_stat_callback *poll_cb; 534 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 535 536 struct timer_list timeout; 537 struct work_struct timeout_work; 538 struct list_head timeout_list; 539 540 struct list_head icq_list; 541#ifdef CONFIG_BLK_CGROUP 542 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 543 struct blkcg_gq *root_blkg; 544 struct list_head blkg_list; 545#endif 546 547 struct queue_limits limits; 548 549 /* 550 * sg stuff 551 */ 552 unsigned int sg_timeout; 553 unsigned int sg_reserved_size; 554 int node; 555#ifdef CONFIG_BLK_DEV_IO_TRACE 556 struct blk_trace *blk_trace; 557 struct mutex blk_trace_mutex; 558#endif 559 /* 560 * for flush operations 561 */ 562 struct blk_flush_queue *fq; 563 564 struct list_head requeue_list; 565 spinlock_t requeue_lock; 566 struct delayed_work requeue_work; 567 568 struct mutex sysfs_lock; 569 570 int bypass_depth; 571 atomic_t mq_freeze_depth; 572 573#if defined(CONFIG_BLK_DEV_BSG) 574 bsg_job_fn *bsg_job_fn; 575 struct bsg_class_device bsg_dev; 576#endif 577 578#ifdef CONFIG_BLK_DEV_THROTTLING 579 /* Throttle data */ 580 struct throtl_data *td; 581#endif 582 struct rcu_head rcu_head; 583 wait_queue_head_t mq_freeze_wq; 584 struct percpu_ref q_usage_counter; 585 struct list_head all_q_node; 586 587 struct blk_mq_tag_set *tag_set; 588 struct list_head tag_set_list; 589 struct bio_set *bio_split; 590 591#ifdef CONFIG_BLK_DEBUG_FS 592 struct dentry *debugfs_dir; 593 struct dentry *sched_debugfs_dir; 594#endif 595 596 bool mq_sysfs_init_done; 597 598 size_t cmd_size; 599 void *rq_alloc_data; 600 601 struct work_struct release_work; 602 603#define BLK_MAX_WRITE_HINTS 5 604 u64 write_hints[BLK_MAX_WRITE_HINTS]; 605}; 606 607#define QUEUE_FLAG_QUEUED 0 /* uses generic tag queueing */ 608#define QUEUE_FLAG_STOPPED 1 /* queue is stopped */ 609#define QUEUE_FLAG_DYING 2 /* queue being torn down */ 610#define QUEUE_FLAG_BYPASS 3 /* act as dumb FIFO queue */ 611#define QUEUE_FLAG_BIDI 4 /* queue supports bidi requests */ 612#define QUEUE_FLAG_NOMERGES 5 /* disable merge attempts */ 613#define QUEUE_FLAG_SAME_COMP 6 /* complete on same CPU-group */ 614#define QUEUE_FLAG_FAIL_IO 7 /* fake timeout */ 615#define QUEUE_FLAG_NONROT 9 /* non-rotational device (SSD) */ 616#define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 617#define QUEUE_FLAG_IO_STAT 10 /* do IO stats */ 618#define QUEUE_FLAG_DISCARD 11 /* supports DISCARD */ 619#define QUEUE_FLAG_NOXMERGES 12 /* No extended merges */ 620#define QUEUE_FLAG_ADD_RANDOM 13 /* Contributes to random pool */ 621#define QUEUE_FLAG_SECERASE 14 /* supports secure erase */ 622#define QUEUE_FLAG_SAME_FORCE 15 /* force complete on same CPU */ 623#define QUEUE_FLAG_DEAD 16 /* queue tear-down finished */ 624#define QUEUE_FLAG_INIT_DONE 17 /* queue is initialized */ 625#define QUEUE_FLAG_NO_SG_MERGE 18 /* don't attempt to merge SG segments*/ 626#define QUEUE_FLAG_POLL 19 /* IO polling enabled if set */ 627#define QUEUE_FLAG_WC 20 /* Write back caching */ 628#define QUEUE_FLAG_FUA 21 /* device supports FUA writes */ 629#define QUEUE_FLAG_FLUSH_NQ 22 /* flush not queueuable */ 630#define QUEUE_FLAG_DAX 23 /* device supports DAX */ 631#define QUEUE_FLAG_STATS 24 /* track rq completion times */ 632#define QUEUE_FLAG_POLL_STATS 25 /* collecting stats for hybrid polling */ 633#define QUEUE_FLAG_REGISTERED 26 /* queue has been registered to a disk */ 634#define QUEUE_FLAG_SCSI_PASSTHROUGH 27 /* queue supports SCSI commands */ 635#define QUEUE_FLAG_QUIESCED 28 /* queue has been quiesced */ 636#define QUEUE_FLAG_PREEMPT_ONLY 29 /* only process REQ_PREEMPT requests */ 637 638#define QUEUE_FLAG_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 639 (1 << QUEUE_FLAG_SAME_COMP) | \ 640 (1 << QUEUE_FLAG_ADD_RANDOM)) 641 642#define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 643 (1 << QUEUE_FLAG_SAME_COMP) | \ 644 (1 << QUEUE_FLAG_POLL)) 645 646/* 647 * @q->queue_lock is set while a queue is being initialized. Since we know 648 * that no other threads access the queue object before @q->queue_lock has 649 * been set, it is safe to manipulate queue flags without holding the 650 * queue_lock if @q->queue_lock == NULL. See also blk_alloc_queue_node() and 651 * blk_init_allocated_queue(). 652 */ 653static inline void queue_lockdep_assert_held(struct request_queue *q) 654{ 655 if (q->queue_lock) 656 lockdep_assert_held(q->queue_lock); 657} 658 659static inline void queue_flag_set_unlocked(unsigned int flag, 660 struct request_queue *q) 661{ 662 __set_bit(flag, &q->queue_flags); 663} 664 665static inline int queue_flag_test_and_clear(unsigned int flag, 666 struct request_queue *q) 667{ 668 queue_lockdep_assert_held(q); 669 670 if (test_bit(flag, &q->queue_flags)) { 671 __clear_bit(flag, &q->queue_flags); 672 return 1; 673 } 674 675 return 0; 676} 677 678static inline int queue_flag_test_and_set(unsigned int flag, 679 struct request_queue *q) 680{ 681 queue_lockdep_assert_held(q); 682 683 if (!test_bit(flag, &q->queue_flags)) { 684 __set_bit(flag, &q->queue_flags); 685 return 0; 686 } 687 688 return 1; 689} 690 691static inline void queue_flag_set(unsigned int flag, struct request_queue *q) 692{ 693 queue_lockdep_assert_held(q); 694 __set_bit(flag, &q->queue_flags); 695} 696 697static inline void queue_flag_clear_unlocked(unsigned int flag, 698 struct request_queue *q) 699{ 700 __clear_bit(flag, &q->queue_flags); 701} 702 703static inline int queue_in_flight(struct request_queue *q) 704{ 705 return q->in_flight[0] + q->in_flight[1]; 706} 707 708static inline void queue_flag_clear(unsigned int flag, struct request_queue *q) 709{ 710 queue_lockdep_assert_held(q); 711 __clear_bit(flag, &q->queue_flags); 712} 713 714#define blk_queue_tagged(q) test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags) 715#define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 716#define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 717#define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 718#define blk_queue_bypass(q) test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags) 719#define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 720#define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 721#define blk_queue_noxmerges(q) \ 722 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 723#define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 724#define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 725#define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 726#define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 727#define blk_queue_secure_erase(q) \ 728 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 729#define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 730#define blk_queue_scsi_passthrough(q) \ 731 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 732 733#define blk_noretry_request(rq) \ 734 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 735 REQ_FAILFAST_DRIVER)) 736#define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 737#define blk_queue_preempt_only(q) \ 738 test_bit(QUEUE_FLAG_PREEMPT_ONLY, &(q)->queue_flags) 739 740extern int blk_set_preempt_only(struct request_queue *q); 741extern void blk_clear_preempt_only(struct request_queue *q); 742 743static inline bool blk_account_rq(struct request *rq) 744{ 745 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 746} 747 748#define blk_rq_cpu_valid(rq) ((rq)->cpu != -1) 749#define blk_bidi_rq(rq) ((rq)->next_rq != NULL) 750/* rq->queuelist of dequeued request must be list_empty() */ 751#define blk_queued_rq(rq) (!list_empty(&(rq)->queuelist)) 752 753#define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 754 755#define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 756 757/* 758 * Driver can handle struct request, if it either has an old style 759 * request_fn defined, or is blk-mq based. 760 */ 761static inline bool queue_is_rq_based(struct request_queue *q) 762{ 763 return q->request_fn || q->mq_ops; 764} 765 766static inline unsigned int blk_queue_cluster(struct request_queue *q) 767{ 768 return q->limits.cluster; 769} 770 771static inline enum blk_zoned_model 772blk_queue_zoned_model(struct request_queue *q) 773{ 774 return q->limits.zoned; 775} 776 777static inline bool blk_queue_is_zoned(struct request_queue *q) 778{ 779 switch (blk_queue_zoned_model(q)) { 780 case BLK_ZONED_HA: 781 case BLK_ZONED_HM: 782 return true; 783 default: 784 return false; 785 } 786} 787 788static inline unsigned int blk_queue_zone_sectors(struct request_queue *q) 789{ 790 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 791} 792 793static inline bool rq_is_sync(struct request *rq) 794{ 795 return op_is_sync(rq->cmd_flags); 796} 797 798static inline bool blk_rl_full(struct request_list *rl, bool sync) 799{ 800 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 801 802 return rl->flags & flag; 803} 804 805static inline void blk_set_rl_full(struct request_list *rl, bool sync) 806{ 807 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 808 809 rl->flags |= flag; 810} 811 812static inline void blk_clear_rl_full(struct request_list *rl, bool sync) 813{ 814 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 815 816 rl->flags &= ~flag; 817} 818 819static inline bool rq_mergeable(struct request *rq) 820{ 821 if (blk_rq_is_passthrough(rq)) 822 return false; 823 824 if (req_op(rq) == REQ_OP_FLUSH) 825 return false; 826 827 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 828 return false; 829 830 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 831 return false; 832 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 833 return false; 834 835 return true; 836} 837 838static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 839{ 840 if (bio_page(a) == bio_page(b) && 841 bio_offset(a) == bio_offset(b)) 842 return true; 843 844 return false; 845} 846 847static inline unsigned int blk_queue_depth(struct request_queue *q) 848{ 849 if (q->queue_depth) 850 return q->queue_depth; 851 852 return q->nr_requests; 853} 854 855/* 856 * q->prep_rq_fn return values 857 */ 858enum { 859 BLKPREP_OK, /* serve it */ 860 BLKPREP_KILL, /* fatal error, kill, return -EIO */ 861 BLKPREP_DEFER, /* leave on queue */ 862 BLKPREP_INVALID, /* invalid command, kill, return -EREMOTEIO */ 863}; 864 865extern unsigned long blk_max_low_pfn, blk_max_pfn; 866 867/* 868 * standard bounce addresses: 869 * 870 * BLK_BOUNCE_HIGH : bounce all highmem pages 871 * BLK_BOUNCE_ANY : don't bounce anything 872 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 873 */ 874 875#if BITS_PER_LONG == 32 876#define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 877#else 878#define BLK_BOUNCE_HIGH -1ULL 879#endif 880#define BLK_BOUNCE_ANY (-1ULL) 881#define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 882 883/* 884 * default timeout for SG_IO if none specified 885 */ 886#define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 887#define BLK_MIN_SG_TIMEOUT (7 * HZ) 888 889struct rq_map_data { 890 struct page **pages; 891 int page_order; 892 int nr_entries; 893 unsigned long offset; 894 int null_mapped; 895 int from_user; 896}; 897 898struct req_iterator { 899 struct bvec_iter iter; 900 struct bio *bio; 901}; 902 903/* This should not be used directly - use rq_for_each_segment */ 904#define for_each_bio(_bio) \ 905 for (; _bio; _bio = _bio->bi_next) 906#define __rq_for_each_bio(_bio, rq) \ 907 if ((rq->bio)) \ 908 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 909 910#define rq_for_each_segment(bvl, _rq, _iter) \ 911 __rq_for_each_bio(_iter.bio, _rq) \ 912 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 913 914#define rq_iter_last(bvec, _iter) \ 915 (_iter.bio->bi_next == NULL && \ 916 bio_iter_last(bvec, _iter.iter)) 917 918#ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 919# error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 920#endif 921#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 922extern void rq_flush_dcache_pages(struct request *rq); 923#else 924static inline void rq_flush_dcache_pages(struct request *rq) 925{ 926} 927#endif 928 929extern int blk_register_queue(struct gendisk *disk); 930extern void blk_unregister_queue(struct gendisk *disk); 931extern blk_qc_t generic_make_request(struct bio *bio); 932extern blk_qc_t direct_make_request(struct bio *bio); 933extern void blk_rq_init(struct request_queue *q, struct request *rq); 934extern void blk_init_request_from_bio(struct request *req, struct bio *bio); 935extern void blk_put_request(struct request *); 936extern void __blk_put_request(struct request_queue *, struct request *); 937extern struct request *blk_get_request_flags(struct request_queue *, 938 unsigned int op, 939 blk_mq_req_flags_t flags); 940extern struct request *blk_get_request(struct request_queue *, unsigned int op, 941 gfp_t gfp_mask); 942extern void blk_requeue_request(struct request_queue *, struct request *); 943extern int blk_lld_busy(struct request_queue *q); 944extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 945 struct bio_set *bs, gfp_t gfp_mask, 946 int (*bio_ctr)(struct bio *, struct bio *, void *), 947 void *data); 948extern void blk_rq_unprep_clone(struct request *rq); 949extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 950 struct request *rq); 951extern int blk_rq_append_bio(struct request *rq, struct bio *bio); 952extern void blk_delay_queue(struct request_queue *, unsigned long); 953extern void blk_queue_split(struct request_queue *, struct bio **); 954extern void blk_recount_segments(struct request_queue *, struct bio *); 955extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 956extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 957 unsigned int, void __user *); 958extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 959 unsigned int, void __user *); 960extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 961 struct scsi_ioctl_command __user *); 962 963extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 964extern void blk_queue_exit(struct request_queue *q); 965extern void blk_start_queue(struct request_queue *q); 966extern void blk_start_queue_async(struct request_queue *q); 967extern void blk_stop_queue(struct request_queue *q); 968extern void blk_sync_queue(struct request_queue *q); 969extern void __blk_stop_queue(struct request_queue *q); 970extern void __blk_run_queue(struct request_queue *q); 971extern void __blk_run_queue_uncond(struct request_queue *q); 972extern void blk_run_queue(struct request_queue *); 973extern void blk_run_queue_async(struct request_queue *q); 974extern int blk_rq_map_user(struct request_queue *, struct request *, 975 struct rq_map_data *, void __user *, unsigned long, 976 gfp_t); 977extern int blk_rq_unmap_user(struct bio *); 978extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 979extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 980 struct rq_map_data *, const struct iov_iter *, 981 gfp_t); 982extern void blk_execute_rq(struct request_queue *, struct gendisk *, 983 struct request *, int); 984extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 985 struct request *, int, rq_end_io_fn *); 986 987int blk_status_to_errno(blk_status_t status); 988blk_status_t errno_to_blk_status(int errno); 989 990bool blk_poll(struct request_queue *q, blk_qc_t cookie); 991 992static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 993{ 994 return bdev->bd_disk->queue; /* this is never NULL */ 995} 996 997/* 998 * blk_rq_pos() : the current sector 999 * blk_rq_bytes() : bytes left in the entire request 1000 * blk_rq_cur_bytes() : bytes left in the current segment 1001 * blk_rq_err_bytes() : bytes left till the next error boundary 1002 * blk_rq_sectors() : sectors left in the entire request 1003 * blk_rq_cur_sectors() : sectors left in the current segment 1004 */ 1005static inline sector_t blk_rq_pos(const struct request *rq) 1006{ 1007 return rq->__sector; 1008} 1009 1010static inline unsigned int blk_rq_bytes(const struct request *rq) 1011{ 1012 return rq->__data_len; 1013} 1014 1015static inline int blk_rq_cur_bytes(const struct request *rq) 1016{ 1017 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 1018} 1019 1020extern unsigned int blk_rq_err_bytes(const struct request *rq); 1021 1022static inline unsigned int blk_rq_sectors(const struct request *rq) 1023{ 1024 return blk_rq_bytes(rq) >> 9; 1025} 1026 1027static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 1028{ 1029 return blk_rq_cur_bytes(rq) >> 9; 1030} 1031 1032/* 1033 * Some commands like WRITE SAME have a payload or data transfer size which 1034 * is different from the size of the request. Any driver that supports such 1035 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1036 * calculate the data transfer size. 1037 */ 1038static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1039{ 1040 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1041 return rq->special_vec.bv_len; 1042 return blk_rq_bytes(rq); 1043} 1044 1045static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1046 int op) 1047{ 1048 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1049 return min(q->limits.max_discard_sectors, UINT_MAX >> 9); 1050 1051 if (unlikely(op == REQ_OP_WRITE_SAME)) 1052 return q->limits.max_write_same_sectors; 1053 1054 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1055 return q->limits.max_write_zeroes_sectors; 1056 1057 return q->limits.max_sectors; 1058} 1059 1060/* 1061 * Return maximum size of a request at given offset. Only valid for 1062 * file system requests. 1063 */ 1064static inline unsigned int blk_max_size_offset(struct request_queue *q, 1065 sector_t offset) 1066{ 1067 if (!q->limits.chunk_sectors) 1068 return q->limits.max_sectors; 1069 1070 return q->limits.chunk_sectors - 1071 (offset & (q->limits.chunk_sectors - 1)); 1072} 1073 1074static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1075 sector_t offset) 1076{ 1077 struct request_queue *q = rq->q; 1078 1079 if (blk_rq_is_passthrough(rq)) 1080 return q->limits.max_hw_sectors; 1081 1082 if (!q->limits.chunk_sectors || 1083 req_op(rq) == REQ_OP_DISCARD || 1084 req_op(rq) == REQ_OP_SECURE_ERASE) 1085 return blk_queue_get_max_sectors(q, req_op(rq)); 1086 1087 return min(blk_max_size_offset(q, offset), 1088 blk_queue_get_max_sectors(q, req_op(rq))); 1089} 1090 1091static inline unsigned int blk_rq_count_bios(struct request *rq) 1092{ 1093 unsigned int nr_bios = 0; 1094 struct bio *bio; 1095 1096 __rq_for_each_bio(bio, rq) 1097 nr_bios++; 1098 1099 return nr_bios; 1100} 1101 1102/* 1103 * Request issue related functions. 1104 */ 1105extern struct request *blk_peek_request(struct request_queue *q); 1106extern void blk_start_request(struct request *rq); 1107extern struct request *blk_fetch_request(struct request_queue *q); 1108 1109void blk_steal_bios(struct bio_list *list, struct request *rq); 1110 1111/* 1112 * Request completion related functions. 1113 * 1114 * blk_update_request() completes given number of bytes and updates 1115 * the request without completing it. 1116 * 1117 * blk_end_request() and friends. __blk_end_request() must be called 1118 * with the request queue spinlock acquired. 1119 * 1120 * Several drivers define their own end_request and call 1121 * blk_end_request() for parts of the original function. 1122 * This prevents code duplication in drivers. 1123 */ 1124extern bool blk_update_request(struct request *rq, blk_status_t error, 1125 unsigned int nr_bytes); 1126extern void blk_finish_request(struct request *rq, blk_status_t error); 1127extern bool blk_end_request(struct request *rq, blk_status_t error, 1128 unsigned int nr_bytes); 1129extern void blk_end_request_all(struct request *rq, blk_status_t error); 1130extern bool __blk_end_request(struct request *rq, blk_status_t error, 1131 unsigned int nr_bytes); 1132extern void __blk_end_request_all(struct request *rq, blk_status_t error); 1133extern bool __blk_end_request_cur(struct request *rq, blk_status_t error); 1134 1135extern void blk_complete_request(struct request *); 1136extern void __blk_complete_request(struct request *); 1137extern void blk_abort_request(struct request *); 1138extern void blk_unprep_request(struct request *); 1139 1140/* 1141 * Access functions for manipulating queue properties 1142 */ 1143extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn, 1144 spinlock_t *lock, int node_id); 1145extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *); 1146extern int blk_init_allocated_queue(struct request_queue *); 1147extern void blk_cleanup_queue(struct request_queue *); 1148extern void blk_queue_make_request(struct request_queue *, make_request_fn *); 1149extern void blk_queue_bounce_limit(struct request_queue *, u64); 1150extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1151extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1152extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1153extern void blk_queue_max_discard_segments(struct request_queue *, 1154 unsigned short); 1155extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1156extern void blk_queue_max_discard_sectors(struct request_queue *q, 1157 unsigned int max_discard_sectors); 1158extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1159 unsigned int max_write_same_sectors); 1160extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1161 unsigned int max_write_same_sectors); 1162extern void blk_queue_logical_block_size(struct request_queue *, unsigned short); 1163extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1164extern void blk_queue_alignment_offset(struct request_queue *q, 1165 unsigned int alignment); 1166extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1167extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1168extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1169extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1170extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1171extern void blk_set_default_limits(struct queue_limits *lim); 1172extern void blk_set_stacking_limits(struct queue_limits *lim); 1173extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1174 sector_t offset); 1175extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 1176 sector_t offset); 1177extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1178 sector_t offset); 1179extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b); 1180extern void blk_queue_dma_pad(struct request_queue *, unsigned int); 1181extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1182extern int blk_queue_dma_drain(struct request_queue *q, 1183 dma_drain_needed_fn *dma_drain_needed, 1184 void *buf, unsigned int size); 1185extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn); 1186extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1187extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1188extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn); 1189extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn); 1190extern void blk_queue_dma_alignment(struct request_queue *, int); 1191extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1192extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *); 1193extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *); 1194extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1195extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable); 1196extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1197 1198/* 1199 * Number of physical segments as sent to the device. 1200 * 1201 * Normally this is the number of discontiguous data segments sent by the 1202 * submitter. But for data-less command like discard we might have no 1203 * actual data segments submitted, but the driver might have to add it's 1204 * own special payload. In that case we still return 1 here so that this 1205 * special payload will be mapped. 1206 */ 1207static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1208{ 1209 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1210 return 1; 1211 return rq->nr_phys_segments; 1212} 1213 1214/* 1215 * Number of discard segments (or ranges) the driver needs to fill in. 1216 * Each discard bio merged into a request is counted as one segment. 1217 */ 1218static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1219{ 1220 return max_t(unsigned short, rq->nr_phys_segments, 1); 1221} 1222 1223extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *); 1224extern void blk_dump_rq_flags(struct request *, char *); 1225extern long nr_blockdev_pages(void); 1226 1227bool __must_check blk_get_queue(struct request_queue *); 1228struct request_queue *blk_alloc_queue(gfp_t); 1229struct request_queue *blk_alloc_queue_node(gfp_t, int); 1230extern void blk_put_queue(struct request_queue *); 1231extern void blk_set_queue_dying(struct request_queue *); 1232 1233/* 1234 * block layer runtime pm functions 1235 */ 1236#ifdef CONFIG_PM 1237extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev); 1238extern int blk_pre_runtime_suspend(struct request_queue *q); 1239extern void blk_post_runtime_suspend(struct request_queue *q, int err); 1240extern void blk_pre_runtime_resume(struct request_queue *q); 1241extern void blk_post_runtime_resume(struct request_queue *q, int err); 1242extern void blk_set_runtime_active(struct request_queue *q); 1243#else 1244static inline void blk_pm_runtime_init(struct request_queue *q, 1245 struct device *dev) {} 1246static inline int blk_pre_runtime_suspend(struct request_queue *q) 1247{ 1248 return -ENOSYS; 1249} 1250static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {} 1251static inline void blk_pre_runtime_resume(struct request_queue *q) {} 1252static inline void blk_post_runtime_resume(struct request_queue *q, int err) {} 1253static inline void blk_set_runtime_active(struct request_queue *q) {} 1254#endif 1255 1256/* 1257 * blk_plug permits building a queue of related requests by holding the I/O 1258 * fragments for a short period. This allows merging of sequential requests 1259 * into single larger request. As the requests are moved from a per-task list to 1260 * the device's request_queue in a batch, this results in improved scalability 1261 * as the lock contention for request_queue lock is reduced. 1262 * 1263 * It is ok not to disable preemption when adding the request to the plug list 1264 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1265 * the plug list when the task sleeps by itself. For details, please see 1266 * schedule() where blk_schedule_flush_plug() is called. 1267 */ 1268struct blk_plug { 1269 struct list_head list; /* requests */ 1270 struct list_head mq_list; /* blk-mq requests */ 1271 struct list_head cb_list; /* md requires an unplug callback */ 1272}; 1273#define BLK_MAX_REQUEST_COUNT 16 1274#define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1275 1276struct blk_plug_cb; 1277typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1278struct blk_plug_cb { 1279 struct list_head list; 1280 blk_plug_cb_fn callback; 1281 void *data; 1282}; 1283extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1284 void *data, int size); 1285extern void blk_start_plug(struct blk_plug *); 1286extern void blk_finish_plug(struct blk_plug *); 1287extern void blk_flush_plug_list(struct blk_plug *, bool); 1288 1289static inline void blk_flush_plug(struct task_struct *tsk) 1290{ 1291 struct blk_plug *plug = tsk->plug; 1292 1293 if (plug) 1294 blk_flush_plug_list(plug, false); 1295} 1296 1297static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1298{ 1299 struct blk_plug *plug = tsk->plug; 1300 1301 if (plug) 1302 blk_flush_plug_list(plug, true); 1303} 1304 1305static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1306{ 1307 struct blk_plug *plug = tsk->plug; 1308 1309 return plug && 1310 (!list_empty(&plug->list) || 1311 !list_empty(&plug->mq_list) || 1312 !list_empty(&plug->cb_list)); 1313} 1314 1315/* 1316 * tag stuff 1317 */ 1318extern int blk_queue_start_tag(struct request_queue *, struct request *); 1319extern struct request *blk_queue_find_tag(struct request_queue *, int); 1320extern void blk_queue_end_tag(struct request_queue *, struct request *); 1321extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int); 1322extern void blk_queue_free_tags(struct request_queue *); 1323extern int blk_queue_resize_tags(struct request_queue *, int); 1324extern void blk_queue_invalidate_tags(struct request_queue *); 1325extern struct blk_queue_tag *blk_init_tags(int, int); 1326extern void blk_free_tags(struct blk_queue_tag *); 1327 1328static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt, 1329 int tag) 1330{ 1331 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth)) 1332 return NULL; 1333 return bqt->tag_index[tag]; 1334} 1335 1336extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *); 1337extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1338 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1339 1340#define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1341 1342extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1343 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1344extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1345 sector_t nr_sects, gfp_t gfp_mask, int flags, 1346 struct bio **biop); 1347 1348#define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1349#define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1350 1351extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1352 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1353 unsigned flags); 1354extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1355 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1356 1357static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1358 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1359{ 1360 return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - 9), 1361 nr_blocks << (sb->s_blocksize_bits - 9), 1362 gfp_mask, flags); 1363} 1364static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1365 sector_t nr_blocks, gfp_t gfp_mask) 1366{ 1367 return blkdev_issue_zeroout(sb->s_bdev, 1368 block << (sb->s_blocksize_bits - 9), 1369 nr_blocks << (sb->s_blocksize_bits - 9), 1370 gfp_mask, 0); 1371} 1372 1373extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1374 1375enum blk_default_limits { 1376 BLK_MAX_SEGMENTS = 128, 1377 BLK_SAFE_MAX_SECTORS = 255, 1378 BLK_DEF_MAX_SECTORS = 2560, 1379 BLK_MAX_SEGMENT_SIZE = 65536, 1380 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1381}; 1382 1383#define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist) 1384 1385static inline unsigned long queue_segment_boundary(struct request_queue *q) 1386{ 1387 return q->limits.seg_boundary_mask; 1388} 1389 1390static inline unsigned long queue_virt_boundary(struct request_queue *q) 1391{ 1392 return q->limits.virt_boundary_mask; 1393} 1394 1395static inline unsigned int queue_max_sectors(struct request_queue *q) 1396{ 1397 return q->limits.max_sectors; 1398} 1399 1400static inline unsigned int queue_max_hw_sectors(struct request_queue *q) 1401{ 1402 return q->limits.max_hw_sectors; 1403} 1404 1405static inline unsigned short queue_max_segments(struct request_queue *q) 1406{ 1407 return q->limits.max_segments; 1408} 1409 1410static inline unsigned short queue_max_discard_segments(struct request_queue *q) 1411{ 1412 return q->limits.max_discard_segments; 1413} 1414 1415static inline unsigned int queue_max_segment_size(struct request_queue *q) 1416{ 1417 return q->limits.max_segment_size; 1418} 1419 1420static inline unsigned short queue_logical_block_size(struct request_queue *q) 1421{ 1422 int retval = 512; 1423 1424 if (q && q->limits.logical_block_size) 1425 retval = q->limits.logical_block_size; 1426 1427 return retval; 1428} 1429 1430static inline unsigned short bdev_logical_block_size(struct block_device *bdev) 1431{ 1432 return queue_logical_block_size(bdev_get_queue(bdev)); 1433} 1434 1435static inline unsigned int queue_physical_block_size(struct request_queue *q) 1436{ 1437 return q->limits.physical_block_size; 1438} 1439 1440static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1441{ 1442 return queue_physical_block_size(bdev_get_queue(bdev)); 1443} 1444 1445static inline unsigned int queue_io_min(struct request_queue *q) 1446{ 1447 return q->limits.io_min; 1448} 1449 1450static inline int bdev_io_min(struct block_device *bdev) 1451{ 1452 return queue_io_min(bdev_get_queue(bdev)); 1453} 1454 1455static inline unsigned int queue_io_opt(struct request_queue *q) 1456{ 1457 return q->limits.io_opt; 1458} 1459 1460static inline int bdev_io_opt(struct block_device *bdev) 1461{ 1462 return queue_io_opt(bdev_get_queue(bdev)); 1463} 1464 1465static inline int queue_alignment_offset(struct request_queue *q) 1466{ 1467 if (q->limits.misaligned) 1468 return -1; 1469 1470 return q->limits.alignment_offset; 1471} 1472 1473static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1474{ 1475 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1476 unsigned int alignment = sector_div(sector, granularity >> 9) << 9; 1477 1478 return (granularity + lim->alignment_offset - alignment) % granularity; 1479} 1480 1481static inline int bdev_alignment_offset(struct block_device *bdev) 1482{ 1483 struct request_queue *q = bdev_get_queue(bdev); 1484 1485 if (q->limits.misaligned) 1486 return -1; 1487 1488 if (bdev != bdev->bd_contains) 1489 return bdev->bd_part->alignment_offset; 1490 1491 return q->limits.alignment_offset; 1492} 1493 1494static inline int queue_discard_alignment(struct request_queue *q) 1495{ 1496 if (q->limits.discard_misaligned) 1497 return -1; 1498 1499 return q->limits.discard_alignment; 1500} 1501 1502static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1503{ 1504 unsigned int alignment, granularity, offset; 1505 1506 if (!lim->max_discard_sectors) 1507 return 0; 1508 1509 /* Why are these in bytes, not sectors? */ 1510 alignment = lim->discard_alignment >> 9; 1511 granularity = lim->discard_granularity >> 9; 1512 if (!granularity) 1513 return 0; 1514 1515 /* Offset of the partition start in 'granularity' sectors */ 1516 offset = sector_div(sector, granularity); 1517 1518 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1519 offset = (granularity + alignment - offset) % granularity; 1520 1521 /* Turn it back into bytes, gaah */ 1522 return offset << 9; 1523} 1524 1525static inline int bdev_discard_alignment(struct block_device *bdev) 1526{ 1527 struct request_queue *q = bdev_get_queue(bdev); 1528 1529 if (bdev != bdev->bd_contains) 1530 return bdev->bd_part->discard_alignment; 1531 1532 return q->limits.discard_alignment; 1533} 1534 1535static inline unsigned int bdev_write_same(struct block_device *bdev) 1536{ 1537 struct request_queue *q = bdev_get_queue(bdev); 1538 1539 if (q) 1540 return q->limits.max_write_same_sectors; 1541 1542 return 0; 1543} 1544 1545static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1546{ 1547 struct request_queue *q = bdev_get_queue(bdev); 1548 1549 if (q) 1550 return q->limits.max_write_zeroes_sectors; 1551 1552 return 0; 1553} 1554 1555static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1556{ 1557 struct request_queue *q = bdev_get_queue(bdev); 1558 1559 if (q) 1560 return blk_queue_zoned_model(q); 1561 1562 return BLK_ZONED_NONE; 1563} 1564 1565static inline bool bdev_is_zoned(struct block_device *bdev) 1566{ 1567 struct request_queue *q = bdev_get_queue(bdev); 1568 1569 if (q) 1570 return blk_queue_is_zoned(q); 1571 1572 return false; 1573} 1574 1575static inline unsigned int bdev_zone_sectors(struct block_device *bdev) 1576{ 1577 struct request_queue *q = bdev_get_queue(bdev); 1578 1579 if (q) 1580 return blk_queue_zone_sectors(q); 1581 1582 return 0; 1583} 1584 1585static inline int queue_dma_alignment(struct request_queue *q) 1586{ 1587 return q ? q->dma_alignment : 511; 1588} 1589 1590static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1591 unsigned int len) 1592{ 1593 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1594 return !(addr & alignment) && !(len & alignment); 1595} 1596 1597/* assumes size > 256 */ 1598static inline unsigned int blksize_bits(unsigned int size) 1599{ 1600 unsigned int bits = 8; 1601 do { 1602 bits++; 1603 size >>= 1; 1604 } while (size > 256); 1605 return bits; 1606} 1607 1608static inline unsigned int block_size(struct block_device *bdev) 1609{ 1610 return bdev->bd_block_size; 1611} 1612 1613static inline bool queue_flush_queueable(struct request_queue *q) 1614{ 1615 return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags); 1616} 1617 1618typedef struct {struct page *v;} Sector; 1619 1620unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *); 1621 1622static inline void put_dev_sector(Sector p) 1623{ 1624 put_page(p.v); 1625} 1626 1627static inline bool __bvec_gap_to_prev(struct request_queue *q, 1628 struct bio_vec *bprv, unsigned int offset) 1629{ 1630 return offset || 1631 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q)); 1632} 1633 1634/* 1635 * Check if adding a bio_vec after bprv with offset would create a gap in 1636 * the SG list. Most drivers don't care about this, but some do. 1637 */ 1638static inline bool bvec_gap_to_prev(struct request_queue *q, 1639 struct bio_vec *bprv, unsigned int offset) 1640{ 1641 if (!queue_virt_boundary(q)) 1642 return false; 1643 return __bvec_gap_to_prev(q, bprv, offset); 1644} 1645 1646/* 1647 * Check if the two bvecs from two bios can be merged to one segment. 1648 * If yes, no need to check gap between the two bios since the 1st bio 1649 * and the 1st bvec in the 2nd bio can be handled in one segment. 1650 */ 1651static inline bool bios_segs_mergeable(struct request_queue *q, 1652 struct bio *prev, struct bio_vec *prev_last_bv, 1653 struct bio_vec *next_first_bv) 1654{ 1655 if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv)) 1656 return false; 1657 if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv)) 1658 return false; 1659 if (prev->bi_seg_back_size + next_first_bv->bv_len > 1660 queue_max_segment_size(q)) 1661 return false; 1662 return true; 1663} 1664 1665static inline bool bio_will_gap(struct request_queue *q, 1666 struct request *prev_rq, 1667 struct bio *prev, 1668 struct bio *next) 1669{ 1670 if (bio_has_data(prev) && queue_virt_boundary(q)) { 1671 struct bio_vec pb, nb; 1672 1673 /* 1674 * don't merge if the 1st bio starts with non-zero 1675 * offset, otherwise it is quite difficult to respect 1676 * sg gap limit. We work hard to merge a huge number of small 1677 * single bios in case of mkfs. 1678 */ 1679 if (prev_rq) 1680 bio_get_first_bvec(prev_rq->bio, &pb); 1681 else 1682 bio_get_first_bvec(prev, &pb); 1683 if (pb.bv_offset) 1684 return true; 1685 1686 /* 1687 * We don't need to worry about the situation that the 1688 * merged segment ends in unaligned virt boundary: 1689 * 1690 * - if 'pb' ends aligned, the merged segment ends aligned 1691 * - if 'pb' ends unaligned, the next bio must include 1692 * one single bvec of 'nb', otherwise the 'nb' can't 1693 * merge with 'pb' 1694 */ 1695 bio_get_last_bvec(prev, &pb); 1696 bio_get_first_bvec(next, &nb); 1697 1698 if (!bios_segs_mergeable(q, prev, &pb, &nb)) 1699 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 1700 } 1701 1702 return false; 1703} 1704 1705static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 1706{ 1707 return bio_will_gap(req->q, req, req->biotail, bio); 1708} 1709 1710static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 1711{ 1712 return bio_will_gap(req->q, NULL, bio, req->bio); 1713} 1714 1715int kblockd_schedule_work(struct work_struct *work); 1716int kblockd_schedule_work_on(int cpu, struct work_struct *work); 1717int kblockd_schedule_delayed_work(struct delayed_work *dwork, unsigned long delay); 1718int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1719int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1720 1721#ifdef CONFIG_BLK_CGROUP 1722/* 1723 * This should not be using sched_clock(). A real patch is in progress 1724 * to fix this up, until that is in place we need to disable preemption 1725 * around sched_clock() in this function and set_io_start_time_ns(). 1726 */ 1727static inline void set_start_time_ns(struct request *req) 1728{ 1729 preempt_disable(); 1730 req->start_time_ns = sched_clock(); 1731 preempt_enable(); 1732} 1733 1734static inline void set_io_start_time_ns(struct request *req) 1735{ 1736 preempt_disable(); 1737 req->io_start_time_ns = sched_clock(); 1738 preempt_enable(); 1739} 1740 1741static inline uint64_t rq_start_time_ns(struct request *req) 1742{ 1743 return req->start_time_ns; 1744} 1745 1746static inline uint64_t rq_io_start_time_ns(struct request *req) 1747{ 1748 return req->io_start_time_ns; 1749} 1750#else 1751static inline void set_start_time_ns(struct request *req) {} 1752static inline void set_io_start_time_ns(struct request *req) {} 1753static inline uint64_t rq_start_time_ns(struct request *req) 1754{ 1755 return 0; 1756} 1757static inline uint64_t rq_io_start_time_ns(struct request *req) 1758{ 1759 return 0; 1760} 1761#endif 1762 1763#define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1764 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1765#define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1766 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1767 1768#if defined(CONFIG_BLK_DEV_INTEGRITY) 1769 1770enum blk_integrity_flags { 1771 BLK_INTEGRITY_VERIFY = 1 << 0, 1772 BLK_INTEGRITY_GENERATE = 1 << 1, 1773 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1774 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1775}; 1776 1777struct blk_integrity_iter { 1778 void *prot_buf; 1779 void *data_buf; 1780 sector_t seed; 1781 unsigned int data_size; 1782 unsigned short interval; 1783 const char *disk_name; 1784}; 1785 1786typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1787 1788struct blk_integrity_profile { 1789 integrity_processing_fn *generate_fn; 1790 integrity_processing_fn *verify_fn; 1791 const char *name; 1792}; 1793 1794extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1795extern void blk_integrity_unregister(struct gendisk *); 1796extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1797extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1798 struct scatterlist *); 1799extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1800extern bool blk_integrity_merge_rq(struct request_queue *, struct request *, 1801 struct request *); 1802extern bool blk_integrity_merge_bio(struct request_queue *, struct request *, 1803 struct bio *); 1804 1805static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1806{ 1807 struct blk_integrity *bi = &disk->queue->integrity; 1808 1809 if (!bi->profile) 1810 return NULL; 1811 1812 return bi; 1813} 1814 1815static inline 1816struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1817{ 1818 return blk_get_integrity(bdev->bd_disk); 1819} 1820 1821static inline bool blk_integrity_rq(struct request *rq) 1822{ 1823 return rq->cmd_flags & REQ_INTEGRITY; 1824} 1825 1826static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1827 unsigned int segs) 1828{ 1829 q->limits.max_integrity_segments = segs; 1830} 1831 1832static inline unsigned short 1833queue_max_integrity_segments(struct request_queue *q) 1834{ 1835 return q->limits.max_integrity_segments; 1836} 1837 1838static inline bool integrity_req_gap_back_merge(struct request *req, 1839 struct bio *next) 1840{ 1841 struct bio_integrity_payload *bip = bio_integrity(req->bio); 1842 struct bio_integrity_payload *bip_next = bio_integrity(next); 1843 1844 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 1845 bip_next->bip_vec[0].bv_offset); 1846} 1847 1848static inline bool integrity_req_gap_front_merge(struct request *req, 1849 struct bio *bio) 1850{ 1851 struct bio_integrity_payload *bip = bio_integrity(bio); 1852 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 1853 1854 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 1855 bip_next->bip_vec[0].bv_offset); 1856} 1857 1858#else /* CONFIG_BLK_DEV_INTEGRITY */ 1859 1860struct bio; 1861struct block_device; 1862struct gendisk; 1863struct blk_integrity; 1864 1865static inline int blk_integrity_rq(struct request *rq) 1866{ 1867 return 0; 1868} 1869static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1870 struct bio *b) 1871{ 1872 return 0; 1873} 1874static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1875 struct bio *b, 1876 struct scatterlist *s) 1877{ 1878 return 0; 1879} 1880static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1881{ 1882 return NULL; 1883} 1884static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1885{ 1886 return NULL; 1887} 1888static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1889{ 1890 return 0; 1891} 1892static inline void blk_integrity_register(struct gendisk *d, 1893 struct blk_integrity *b) 1894{ 1895} 1896static inline void blk_integrity_unregister(struct gendisk *d) 1897{ 1898} 1899static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1900 unsigned int segs) 1901{ 1902} 1903static inline unsigned short queue_max_integrity_segments(struct request_queue *q) 1904{ 1905 return 0; 1906} 1907static inline bool blk_integrity_merge_rq(struct request_queue *rq, 1908 struct request *r1, 1909 struct request *r2) 1910{ 1911 return true; 1912} 1913static inline bool blk_integrity_merge_bio(struct request_queue *rq, 1914 struct request *r, 1915 struct bio *b) 1916{ 1917 return true; 1918} 1919 1920static inline bool integrity_req_gap_back_merge(struct request *req, 1921 struct bio *next) 1922{ 1923 return false; 1924} 1925static inline bool integrity_req_gap_front_merge(struct request *req, 1926 struct bio *bio) 1927{ 1928 return false; 1929} 1930 1931#endif /* CONFIG_BLK_DEV_INTEGRITY */ 1932 1933struct block_device_operations { 1934 int (*open) (struct block_device *, fmode_t); 1935 void (*release) (struct gendisk *, fmode_t); 1936 int (*rw_page)(struct block_device *, sector_t, struct page *, bool); 1937 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1938 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1939 unsigned int (*check_events) (struct gendisk *disk, 1940 unsigned int clearing); 1941 /* ->media_changed() is DEPRECATED, use ->check_events() instead */ 1942 int (*media_changed) (struct gendisk *); 1943 void (*unlock_native_capacity) (struct gendisk *); 1944 int (*revalidate_disk) (struct gendisk *); 1945 int (*getgeo)(struct block_device *, struct hd_geometry *); 1946 /* this callback is with swap_lock and sometimes page table lock held */ 1947 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1948 struct module *owner; 1949 const struct pr_ops *pr_ops; 1950}; 1951 1952extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 1953 unsigned long); 1954extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1955extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1956 struct writeback_control *); 1957#else /* CONFIG_BLOCK */ 1958 1959struct block_device; 1960 1961/* 1962 * stubs for when the block layer is configured out 1963 */ 1964#define buffer_heads_over_limit 0 1965 1966static inline long nr_blockdev_pages(void) 1967{ 1968 return 0; 1969} 1970 1971struct blk_plug { 1972}; 1973 1974static inline void blk_start_plug(struct blk_plug *plug) 1975{ 1976} 1977 1978static inline void blk_finish_plug(struct blk_plug *plug) 1979{ 1980} 1981 1982static inline void blk_flush_plug(struct task_struct *task) 1983{ 1984} 1985 1986static inline void blk_schedule_flush_plug(struct task_struct *task) 1987{ 1988} 1989 1990 1991static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1992{ 1993 return false; 1994} 1995 1996static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 1997 sector_t *error_sector) 1998{ 1999 return 0; 2000} 2001 2002#endif /* CONFIG_BLOCK */ 2003 2004#endif