Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/memblock.h>
25#include <linux/compiler.h>
26#include <linux/kernel.h>
27#include <linux/kasan.h>
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
33#include <linux/ratelimit.h>
34#include <linux/oom.h>
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
40#include <linux/memory_hotplug.h>
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
43#include <linux/vmstat.h>
44#include <linux/mempolicy.h>
45#include <linux/memremap.h>
46#include <linux/stop_machine.h>
47#include <linux/sort.h>
48#include <linux/pfn.h>
49#include <linux/backing-dev.h>
50#include <linux/fault-inject.h>
51#include <linux/page-isolation.h>
52#include <linux/page_ext.h>
53#include <linux/debugobjects.h>
54#include <linux/kmemleak.h>
55#include <linux/compaction.h>
56#include <trace/events/kmem.h>
57#include <trace/events/oom.h>
58#include <linux/prefetch.h>
59#include <linux/mm_inline.h>
60#include <linux/migrate.h>
61#include <linux/hugetlb.h>
62#include <linux/sched/rt.h>
63#include <linux/sched/mm.h>
64#include <linux/page_owner.h>
65#include <linux/kthread.h>
66#include <linux/memcontrol.h>
67#include <linux/ftrace.h>
68#include <linux/lockdep.h>
69#include <linux/nmi.h>
70
71#include <asm/sections.h>
72#include <asm/tlbflush.h>
73#include <asm/div64.h>
74#include "internal.h"
75
76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77static DEFINE_MUTEX(pcp_batch_high_lock);
78#define MIN_PERCPU_PAGELIST_FRACTION (8)
79
80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81DEFINE_PER_CPU(int, numa_node);
82EXPORT_PER_CPU_SYMBOL(numa_node);
83#endif
84
85DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86
87#ifdef CONFIG_HAVE_MEMORYLESS_NODES
88/*
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
93 */
94DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
95EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96int _node_numa_mem_[MAX_NUMNODES];
97#endif
98
99/* work_structs for global per-cpu drains */
100DEFINE_MUTEX(pcpu_drain_mutex);
101DEFINE_PER_CPU(struct work_struct, pcpu_drain);
102
103#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104volatile unsigned long latent_entropy __latent_entropy;
105EXPORT_SYMBOL(latent_entropy);
106#endif
107
108/*
109 * Array of node states.
110 */
111nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 [N_POSSIBLE] = NODE_MASK_ALL,
113 [N_ONLINE] = { { [0] = 1UL } },
114#ifndef CONFIG_NUMA
115 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
116#ifdef CONFIG_HIGHMEM
117 [N_HIGH_MEMORY] = { { [0] = 1UL } },
118#endif
119 [N_MEMORY] = { { [0] = 1UL } },
120 [N_CPU] = { { [0] = 1UL } },
121#endif /* NUMA */
122};
123EXPORT_SYMBOL(node_states);
124
125/* Protect totalram_pages and zone->managed_pages */
126static DEFINE_SPINLOCK(managed_page_count_lock);
127
128unsigned long totalram_pages __read_mostly;
129unsigned long totalreserve_pages __read_mostly;
130unsigned long totalcma_pages __read_mostly;
131
132int percpu_pagelist_fraction;
133gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
134
135/*
136 * A cached value of the page's pageblock's migratetype, used when the page is
137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139 * Also the migratetype set in the page does not necessarily match the pcplist
140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141 * other index - this ensures that it will be put on the correct CMA freelist.
142 */
143static inline int get_pcppage_migratetype(struct page *page)
144{
145 return page->index;
146}
147
148static inline void set_pcppage_migratetype(struct page *page, int migratetype)
149{
150 page->index = migratetype;
151}
152
153#ifdef CONFIG_PM_SLEEP
154/*
155 * The following functions are used by the suspend/hibernate code to temporarily
156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157 * while devices are suspended. To avoid races with the suspend/hibernate code,
158 * they should always be called with pm_mutex held (gfp_allowed_mask also should
159 * only be modified with pm_mutex held, unless the suspend/hibernate code is
160 * guaranteed not to run in parallel with that modification).
161 */
162
163static gfp_t saved_gfp_mask;
164
165void pm_restore_gfp_mask(void)
166{
167 WARN_ON(!mutex_is_locked(&pm_mutex));
168 if (saved_gfp_mask) {
169 gfp_allowed_mask = saved_gfp_mask;
170 saved_gfp_mask = 0;
171 }
172}
173
174void pm_restrict_gfp_mask(void)
175{
176 WARN_ON(!mutex_is_locked(&pm_mutex));
177 WARN_ON(saved_gfp_mask);
178 saved_gfp_mask = gfp_allowed_mask;
179 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
180}
181
182bool pm_suspended_storage(void)
183{
184 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
185 return false;
186 return true;
187}
188#endif /* CONFIG_PM_SLEEP */
189
190#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191unsigned int pageblock_order __read_mostly;
192#endif
193
194static void __free_pages_ok(struct page *page, unsigned int order);
195
196/*
197 * results with 256, 32 in the lowmem_reserve sysctl:
198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199 * 1G machine -> (16M dma, 784M normal, 224M high)
200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
203 *
204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
205 * don't need any ZONE_NORMAL reservation
206 */
207int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
208#ifdef CONFIG_ZONE_DMA
209 256,
210#endif
211#ifdef CONFIG_ZONE_DMA32
212 256,
213#endif
214#ifdef CONFIG_HIGHMEM
215 32,
216#endif
217 32,
218};
219
220EXPORT_SYMBOL(totalram_pages);
221
222static char * const zone_names[MAX_NR_ZONES] = {
223#ifdef CONFIG_ZONE_DMA
224 "DMA",
225#endif
226#ifdef CONFIG_ZONE_DMA32
227 "DMA32",
228#endif
229 "Normal",
230#ifdef CONFIG_HIGHMEM
231 "HighMem",
232#endif
233 "Movable",
234#ifdef CONFIG_ZONE_DEVICE
235 "Device",
236#endif
237};
238
239char * const migratetype_names[MIGRATE_TYPES] = {
240 "Unmovable",
241 "Movable",
242 "Reclaimable",
243 "HighAtomic",
244#ifdef CONFIG_CMA
245 "CMA",
246#endif
247#ifdef CONFIG_MEMORY_ISOLATION
248 "Isolate",
249#endif
250};
251
252compound_page_dtor * const compound_page_dtors[] = {
253 NULL,
254 free_compound_page,
255#ifdef CONFIG_HUGETLB_PAGE
256 free_huge_page,
257#endif
258#ifdef CONFIG_TRANSPARENT_HUGEPAGE
259 free_transhuge_page,
260#endif
261};
262
263int min_free_kbytes = 1024;
264int user_min_free_kbytes = -1;
265int watermark_scale_factor = 10;
266
267static unsigned long __meminitdata nr_kernel_pages;
268static unsigned long __meminitdata nr_all_pages;
269static unsigned long __meminitdata dma_reserve;
270
271#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
272static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
273static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
274static unsigned long __initdata required_kernelcore;
275static unsigned long __initdata required_movablecore;
276static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
277static bool mirrored_kernelcore;
278
279/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
280int movable_zone;
281EXPORT_SYMBOL(movable_zone);
282#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
283
284#if MAX_NUMNODES > 1
285int nr_node_ids __read_mostly = MAX_NUMNODES;
286int nr_online_nodes __read_mostly = 1;
287EXPORT_SYMBOL(nr_node_ids);
288EXPORT_SYMBOL(nr_online_nodes);
289#endif
290
291int page_group_by_mobility_disabled __read_mostly;
292
293#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
294
295/*
296 * Determine how many pages need to be initialized durig early boot
297 * (non-deferred initialization).
298 * The value of first_deferred_pfn will be set later, once non-deferred pages
299 * are initialized, but for now set it ULONG_MAX.
300 */
301static inline void reset_deferred_meminit(pg_data_t *pgdat)
302{
303 phys_addr_t start_addr, end_addr;
304 unsigned long max_pgcnt;
305 unsigned long reserved;
306
307 /*
308 * Initialise at least 2G of a node but also take into account that
309 * two large system hashes that can take up 1GB for 0.25TB/node.
310 */
311 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
312 (pgdat->node_spanned_pages >> 8));
313
314 /*
315 * Compensate the all the memblock reservations (e.g. crash kernel)
316 * from the initial estimation to make sure we will initialize enough
317 * memory to boot.
318 */
319 start_addr = PFN_PHYS(pgdat->node_start_pfn);
320 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
321 reserved = memblock_reserved_memory_within(start_addr, end_addr);
322 max_pgcnt += PHYS_PFN(reserved);
323
324 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
325 pgdat->first_deferred_pfn = ULONG_MAX;
326}
327
328/* Returns true if the struct page for the pfn is uninitialised */
329static inline bool __meminit early_page_uninitialised(unsigned long pfn)
330{
331 int nid = early_pfn_to_nid(pfn);
332
333 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
334 return true;
335
336 return false;
337}
338
339/*
340 * Returns false when the remaining initialisation should be deferred until
341 * later in the boot cycle when it can be parallelised.
342 */
343static inline bool update_defer_init(pg_data_t *pgdat,
344 unsigned long pfn, unsigned long zone_end,
345 unsigned long *nr_initialised)
346{
347 /* Always populate low zones for address-contrained allocations */
348 if (zone_end < pgdat_end_pfn(pgdat))
349 return true;
350 (*nr_initialised)++;
351 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
352 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
353 pgdat->first_deferred_pfn = pfn;
354 return false;
355 }
356
357 return true;
358}
359#else
360static inline void reset_deferred_meminit(pg_data_t *pgdat)
361{
362}
363
364static inline bool early_page_uninitialised(unsigned long pfn)
365{
366 return false;
367}
368
369static inline bool update_defer_init(pg_data_t *pgdat,
370 unsigned long pfn, unsigned long zone_end,
371 unsigned long *nr_initialised)
372{
373 return true;
374}
375#endif
376
377/* Return a pointer to the bitmap storing bits affecting a block of pages */
378static inline unsigned long *get_pageblock_bitmap(struct page *page,
379 unsigned long pfn)
380{
381#ifdef CONFIG_SPARSEMEM
382 return __pfn_to_section(pfn)->pageblock_flags;
383#else
384 return page_zone(page)->pageblock_flags;
385#endif /* CONFIG_SPARSEMEM */
386}
387
388static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
389{
390#ifdef CONFIG_SPARSEMEM
391 pfn &= (PAGES_PER_SECTION-1);
392 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
393#else
394 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
395 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
396#endif /* CONFIG_SPARSEMEM */
397}
398
399/**
400 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
401 * @page: The page within the block of interest
402 * @pfn: The target page frame number
403 * @end_bitidx: The last bit of interest to retrieve
404 * @mask: mask of bits that the caller is interested in
405 *
406 * Return: pageblock_bits flags
407 */
408static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
409 unsigned long pfn,
410 unsigned long end_bitidx,
411 unsigned long mask)
412{
413 unsigned long *bitmap;
414 unsigned long bitidx, word_bitidx;
415 unsigned long word;
416
417 bitmap = get_pageblock_bitmap(page, pfn);
418 bitidx = pfn_to_bitidx(page, pfn);
419 word_bitidx = bitidx / BITS_PER_LONG;
420 bitidx &= (BITS_PER_LONG-1);
421
422 word = bitmap[word_bitidx];
423 bitidx += end_bitidx;
424 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
425}
426
427unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
428 unsigned long end_bitidx,
429 unsigned long mask)
430{
431 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
432}
433
434static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
435{
436 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
437}
438
439/**
440 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
441 * @page: The page within the block of interest
442 * @flags: The flags to set
443 * @pfn: The target page frame number
444 * @end_bitidx: The last bit of interest
445 * @mask: mask of bits that the caller is interested in
446 */
447void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
448 unsigned long pfn,
449 unsigned long end_bitidx,
450 unsigned long mask)
451{
452 unsigned long *bitmap;
453 unsigned long bitidx, word_bitidx;
454 unsigned long old_word, word;
455
456 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
457
458 bitmap = get_pageblock_bitmap(page, pfn);
459 bitidx = pfn_to_bitidx(page, pfn);
460 word_bitidx = bitidx / BITS_PER_LONG;
461 bitidx &= (BITS_PER_LONG-1);
462
463 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
464
465 bitidx += end_bitidx;
466 mask <<= (BITS_PER_LONG - bitidx - 1);
467 flags <<= (BITS_PER_LONG - bitidx - 1);
468
469 word = READ_ONCE(bitmap[word_bitidx]);
470 for (;;) {
471 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
472 if (word == old_word)
473 break;
474 word = old_word;
475 }
476}
477
478void set_pageblock_migratetype(struct page *page, int migratetype)
479{
480 if (unlikely(page_group_by_mobility_disabled &&
481 migratetype < MIGRATE_PCPTYPES))
482 migratetype = MIGRATE_UNMOVABLE;
483
484 set_pageblock_flags_group(page, (unsigned long)migratetype,
485 PB_migrate, PB_migrate_end);
486}
487
488#ifdef CONFIG_DEBUG_VM
489static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
490{
491 int ret = 0;
492 unsigned seq;
493 unsigned long pfn = page_to_pfn(page);
494 unsigned long sp, start_pfn;
495
496 do {
497 seq = zone_span_seqbegin(zone);
498 start_pfn = zone->zone_start_pfn;
499 sp = zone->spanned_pages;
500 if (!zone_spans_pfn(zone, pfn))
501 ret = 1;
502 } while (zone_span_seqretry(zone, seq));
503
504 if (ret)
505 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
506 pfn, zone_to_nid(zone), zone->name,
507 start_pfn, start_pfn + sp);
508
509 return ret;
510}
511
512static int page_is_consistent(struct zone *zone, struct page *page)
513{
514 if (!pfn_valid_within(page_to_pfn(page)))
515 return 0;
516 if (zone != page_zone(page))
517 return 0;
518
519 return 1;
520}
521/*
522 * Temporary debugging check for pages not lying within a given zone.
523 */
524static int __maybe_unused bad_range(struct zone *zone, struct page *page)
525{
526 if (page_outside_zone_boundaries(zone, page))
527 return 1;
528 if (!page_is_consistent(zone, page))
529 return 1;
530
531 return 0;
532}
533#else
534static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
535{
536 return 0;
537}
538#endif
539
540static void bad_page(struct page *page, const char *reason,
541 unsigned long bad_flags)
542{
543 static unsigned long resume;
544 static unsigned long nr_shown;
545 static unsigned long nr_unshown;
546
547 /*
548 * Allow a burst of 60 reports, then keep quiet for that minute;
549 * or allow a steady drip of one report per second.
550 */
551 if (nr_shown == 60) {
552 if (time_before(jiffies, resume)) {
553 nr_unshown++;
554 goto out;
555 }
556 if (nr_unshown) {
557 pr_alert(
558 "BUG: Bad page state: %lu messages suppressed\n",
559 nr_unshown);
560 nr_unshown = 0;
561 }
562 nr_shown = 0;
563 }
564 if (nr_shown++ == 0)
565 resume = jiffies + 60 * HZ;
566
567 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
568 current->comm, page_to_pfn(page));
569 __dump_page(page, reason);
570 bad_flags &= page->flags;
571 if (bad_flags)
572 pr_alert("bad because of flags: %#lx(%pGp)\n",
573 bad_flags, &bad_flags);
574 dump_page_owner(page);
575
576 print_modules();
577 dump_stack();
578out:
579 /* Leave bad fields for debug, except PageBuddy could make trouble */
580 page_mapcount_reset(page); /* remove PageBuddy */
581 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
582}
583
584/*
585 * Higher-order pages are called "compound pages". They are structured thusly:
586 *
587 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
588 *
589 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
590 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
591 *
592 * The first tail page's ->compound_dtor holds the offset in array of compound
593 * page destructors. See compound_page_dtors.
594 *
595 * The first tail page's ->compound_order holds the order of allocation.
596 * This usage means that zero-order pages may not be compound.
597 */
598
599void free_compound_page(struct page *page)
600{
601 __free_pages_ok(page, compound_order(page));
602}
603
604void prep_compound_page(struct page *page, unsigned int order)
605{
606 int i;
607 int nr_pages = 1 << order;
608
609 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
610 set_compound_order(page, order);
611 __SetPageHead(page);
612 for (i = 1; i < nr_pages; i++) {
613 struct page *p = page + i;
614 set_page_count(p, 0);
615 p->mapping = TAIL_MAPPING;
616 set_compound_head(p, page);
617 }
618 atomic_set(compound_mapcount_ptr(page), -1);
619}
620
621#ifdef CONFIG_DEBUG_PAGEALLOC
622unsigned int _debug_guardpage_minorder;
623bool _debug_pagealloc_enabled __read_mostly
624 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
625EXPORT_SYMBOL(_debug_pagealloc_enabled);
626bool _debug_guardpage_enabled __read_mostly;
627
628static int __init early_debug_pagealloc(char *buf)
629{
630 if (!buf)
631 return -EINVAL;
632 return kstrtobool(buf, &_debug_pagealloc_enabled);
633}
634early_param("debug_pagealloc", early_debug_pagealloc);
635
636static bool need_debug_guardpage(void)
637{
638 /* If we don't use debug_pagealloc, we don't need guard page */
639 if (!debug_pagealloc_enabled())
640 return false;
641
642 if (!debug_guardpage_minorder())
643 return false;
644
645 return true;
646}
647
648static void init_debug_guardpage(void)
649{
650 if (!debug_pagealloc_enabled())
651 return;
652
653 if (!debug_guardpage_minorder())
654 return;
655
656 _debug_guardpage_enabled = true;
657}
658
659struct page_ext_operations debug_guardpage_ops = {
660 .need = need_debug_guardpage,
661 .init = init_debug_guardpage,
662};
663
664static int __init debug_guardpage_minorder_setup(char *buf)
665{
666 unsigned long res;
667
668 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
669 pr_err("Bad debug_guardpage_minorder value\n");
670 return 0;
671 }
672 _debug_guardpage_minorder = res;
673 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
674 return 0;
675}
676early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
677
678static inline bool set_page_guard(struct zone *zone, struct page *page,
679 unsigned int order, int migratetype)
680{
681 struct page_ext *page_ext;
682
683 if (!debug_guardpage_enabled())
684 return false;
685
686 if (order >= debug_guardpage_minorder())
687 return false;
688
689 page_ext = lookup_page_ext(page);
690 if (unlikely(!page_ext))
691 return false;
692
693 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
694
695 INIT_LIST_HEAD(&page->lru);
696 set_page_private(page, order);
697 /* Guard pages are not available for any usage */
698 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
699
700 return true;
701}
702
703static inline void clear_page_guard(struct zone *zone, struct page *page,
704 unsigned int order, int migratetype)
705{
706 struct page_ext *page_ext;
707
708 if (!debug_guardpage_enabled())
709 return;
710
711 page_ext = lookup_page_ext(page);
712 if (unlikely(!page_ext))
713 return;
714
715 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
716
717 set_page_private(page, 0);
718 if (!is_migrate_isolate(migratetype))
719 __mod_zone_freepage_state(zone, (1 << order), migratetype);
720}
721#else
722struct page_ext_operations debug_guardpage_ops;
723static inline bool set_page_guard(struct zone *zone, struct page *page,
724 unsigned int order, int migratetype) { return false; }
725static inline void clear_page_guard(struct zone *zone, struct page *page,
726 unsigned int order, int migratetype) {}
727#endif
728
729static inline void set_page_order(struct page *page, unsigned int order)
730{
731 set_page_private(page, order);
732 __SetPageBuddy(page);
733}
734
735static inline void rmv_page_order(struct page *page)
736{
737 __ClearPageBuddy(page);
738 set_page_private(page, 0);
739}
740
741/*
742 * This function checks whether a page is free && is the buddy
743 * we can do coalesce a page and its buddy if
744 * (a) the buddy is not in a hole (check before calling!) &&
745 * (b) the buddy is in the buddy system &&
746 * (c) a page and its buddy have the same order &&
747 * (d) a page and its buddy are in the same zone.
748 *
749 * For recording whether a page is in the buddy system, we set ->_mapcount
750 * PAGE_BUDDY_MAPCOUNT_VALUE.
751 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
752 * serialized by zone->lock.
753 *
754 * For recording page's order, we use page_private(page).
755 */
756static inline int page_is_buddy(struct page *page, struct page *buddy,
757 unsigned int order)
758{
759 if (page_is_guard(buddy) && page_order(buddy) == order) {
760 if (page_zone_id(page) != page_zone_id(buddy))
761 return 0;
762
763 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
764
765 return 1;
766 }
767
768 if (PageBuddy(buddy) && page_order(buddy) == order) {
769 /*
770 * zone check is done late to avoid uselessly
771 * calculating zone/node ids for pages that could
772 * never merge.
773 */
774 if (page_zone_id(page) != page_zone_id(buddy))
775 return 0;
776
777 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
778
779 return 1;
780 }
781 return 0;
782}
783
784/*
785 * Freeing function for a buddy system allocator.
786 *
787 * The concept of a buddy system is to maintain direct-mapped table
788 * (containing bit values) for memory blocks of various "orders".
789 * The bottom level table contains the map for the smallest allocatable
790 * units of memory (here, pages), and each level above it describes
791 * pairs of units from the levels below, hence, "buddies".
792 * At a high level, all that happens here is marking the table entry
793 * at the bottom level available, and propagating the changes upward
794 * as necessary, plus some accounting needed to play nicely with other
795 * parts of the VM system.
796 * At each level, we keep a list of pages, which are heads of continuous
797 * free pages of length of (1 << order) and marked with _mapcount
798 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
799 * field.
800 * So when we are allocating or freeing one, we can derive the state of the
801 * other. That is, if we allocate a small block, and both were
802 * free, the remainder of the region must be split into blocks.
803 * If a block is freed, and its buddy is also free, then this
804 * triggers coalescing into a block of larger size.
805 *
806 * -- nyc
807 */
808
809static inline void __free_one_page(struct page *page,
810 unsigned long pfn,
811 struct zone *zone, unsigned int order,
812 int migratetype)
813{
814 unsigned long combined_pfn;
815 unsigned long uninitialized_var(buddy_pfn);
816 struct page *buddy;
817 unsigned int max_order;
818
819 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
820
821 VM_BUG_ON(!zone_is_initialized(zone));
822 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
823
824 VM_BUG_ON(migratetype == -1);
825 if (likely(!is_migrate_isolate(migratetype)))
826 __mod_zone_freepage_state(zone, 1 << order, migratetype);
827
828 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
829 VM_BUG_ON_PAGE(bad_range(zone, page), page);
830
831continue_merging:
832 while (order < max_order - 1) {
833 buddy_pfn = __find_buddy_pfn(pfn, order);
834 buddy = page + (buddy_pfn - pfn);
835
836 if (!pfn_valid_within(buddy_pfn))
837 goto done_merging;
838 if (!page_is_buddy(page, buddy, order))
839 goto done_merging;
840 /*
841 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
842 * merge with it and move up one order.
843 */
844 if (page_is_guard(buddy)) {
845 clear_page_guard(zone, buddy, order, migratetype);
846 } else {
847 list_del(&buddy->lru);
848 zone->free_area[order].nr_free--;
849 rmv_page_order(buddy);
850 }
851 combined_pfn = buddy_pfn & pfn;
852 page = page + (combined_pfn - pfn);
853 pfn = combined_pfn;
854 order++;
855 }
856 if (max_order < MAX_ORDER) {
857 /* If we are here, it means order is >= pageblock_order.
858 * We want to prevent merge between freepages on isolate
859 * pageblock and normal pageblock. Without this, pageblock
860 * isolation could cause incorrect freepage or CMA accounting.
861 *
862 * We don't want to hit this code for the more frequent
863 * low-order merging.
864 */
865 if (unlikely(has_isolate_pageblock(zone))) {
866 int buddy_mt;
867
868 buddy_pfn = __find_buddy_pfn(pfn, order);
869 buddy = page + (buddy_pfn - pfn);
870 buddy_mt = get_pageblock_migratetype(buddy);
871
872 if (migratetype != buddy_mt
873 && (is_migrate_isolate(migratetype) ||
874 is_migrate_isolate(buddy_mt)))
875 goto done_merging;
876 }
877 max_order++;
878 goto continue_merging;
879 }
880
881done_merging:
882 set_page_order(page, order);
883
884 /*
885 * If this is not the largest possible page, check if the buddy
886 * of the next-highest order is free. If it is, it's possible
887 * that pages are being freed that will coalesce soon. In case,
888 * that is happening, add the free page to the tail of the list
889 * so it's less likely to be used soon and more likely to be merged
890 * as a higher order page
891 */
892 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
893 struct page *higher_page, *higher_buddy;
894 combined_pfn = buddy_pfn & pfn;
895 higher_page = page + (combined_pfn - pfn);
896 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
897 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
898 if (pfn_valid_within(buddy_pfn) &&
899 page_is_buddy(higher_page, higher_buddy, order + 1)) {
900 list_add_tail(&page->lru,
901 &zone->free_area[order].free_list[migratetype]);
902 goto out;
903 }
904 }
905
906 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
907out:
908 zone->free_area[order].nr_free++;
909}
910
911/*
912 * A bad page could be due to a number of fields. Instead of multiple branches,
913 * try and check multiple fields with one check. The caller must do a detailed
914 * check if necessary.
915 */
916static inline bool page_expected_state(struct page *page,
917 unsigned long check_flags)
918{
919 if (unlikely(atomic_read(&page->_mapcount) != -1))
920 return false;
921
922 if (unlikely((unsigned long)page->mapping |
923 page_ref_count(page) |
924#ifdef CONFIG_MEMCG
925 (unsigned long)page->mem_cgroup |
926#endif
927 (page->flags & check_flags)))
928 return false;
929
930 return true;
931}
932
933static void free_pages_check_bad(struct page *page)
934{
935 const char *bad_reason;
936 unsigned long bad_flags;
937
938 bad_reason = NULL;
939 bad_flags = 0;
940
941 if (unlikely(atomic_read(&page->_mapcount) != -1))
942 bad_reason = "nonzero mapcount";
943 if (unlikely(page->mapping != NULL))
944 bad_reason = "non-NULL mapping";
945 if (unlikely(page_ref_count(page) != 0))
946 bad_reason = "nonzero _refcount";
947 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
948 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
949 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
950 }
951#ifdef CONFIG_MEMCG
952 if (unlikely(page->mem_cgroup))
953 bad_reason = "page still charged to cgroup";
954#endif
955 bad_page(page, bad_reason, bad_flags);
956}
957
958static inline int free_pages_check(struct page *page)
959{
960 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
961 return 0;
962
963 /* Something has gone sideways, find it */
964 free_pages_check_bad(page);
965 return 1;
966}
967
968static int free_tail_pages_check(struct page *head_page, struct page *page)
969{
970 int ret = 1;
971
972 /*
973 * We rely page->lru.next never has bit 0 set, unless the page
974 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
975 */
976 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
977
978 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
979 ret = 0;
980 goto out;
981 }
982 switch (page - head_page) {
983 case 1:
984 /* the first tail page: ->mapping is compound_mapcount() */
985 if (unlikely(compound_mapcount(page))) {
986 bad_page(page, "nonzero compound_mapcount", 0);
987 goto out;
988 }
989 break;
990 case 2:
991 /*
992 * the second tail page: ->mapping is
993 * page_deferred_list().next -- ignore value.
994 */
995 break;
996 default:
997 if (page->mapping != TAIL_MAPPING) {
998 bad_page(page, "corrupted mapping in tail page", 0);
999 goto out;
1000 }
1001 break;
1002 }
1003 if (unlikely(!PageTail(page))) {
1004 bad_page(page, "PageTail not set", 0);
1005 goto out;
1006 }
1007 if (unlikely(compound_head(page) != head_page)) {
1008 bad_page(page, "compound_head not consistent", 0);
1009 goto out;
1010 }
1011 ret = 0;
1012out:
1013 page->mapping = NULL;
1014 clear_compound_head(page);
1015 return ret;
1016}
1017
1018static __always_inline bool free_pages_prepare(struct page *page,
1019 unsigned int order, bool check_free)
1020{
1021 int bad = 0;
1022
1023 VM_BUG_ON_PAGE(PageTail(page), page);
1024
1025 trace_mm_page_free(page, order);
1026
1027 /*
1028 * Check tail pages before head page information is cleared to
1029 * avoid checking PageCompound for order-0 pages.
1030 */
1031 if (unlikely(order)) {
1032 bool compound = PageCompound(page);
1033 int i;
1034
1035 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1036
1037 if (compound)
1038 ClearPageDoubleMap(page);
1039 for (i = 1; i < (1 << order); i++) {
1040 if (compound)
1041 bad += free_tail_pages_check(page, page + i);
1042 if (unlikely(free_pages_check(page + i))) {
1043 bad++;
1044 continue;
1045 }
1046 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1047 }
1048 }
1049 if (PageMappingFlags(page))
1050 page->mapping = NULL;
1051 if (memcg_kmem_enabled() && PageKmemcg(page))
1052 memcg_kmem_uncharge(page, order);
1053 if (check_free)
1054 bad += free_pages_check(page);
1055 if (bad)
1056 return false;
1057
1058 page_cpupid_reset_last(page);
1059 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1060 reset_page_owner(page, order);
1061
1062 if (!PageHighMem(page)) {
1063 debug_check_no_locks_freed(page_address(page),
1064 PAGE_SIZE << order);
1065 debug_check_no_obj_freed(page_address(page),
1066 PAGE_SIZE << order);
1067 }
1068 arch_free_page(page, order);
1069 kernel_poison_pages(page, 1 << order, 0);
1070 kernel_map_pages(page, 1 << order, 0);
1071 kasan_free_pages(page, order);
1072
1073 return true;
1074}
1075
1076#ifdef CONFIG_DEBUG_VM
1077static inline bool free_pcp_prepare(struct page *page)
1078{
1079 return free_pages_prepare(page, 0, true);
1080}
1081
1082static inline bool bulkfree_pcp_prepare(struct page *page)
1083{
1084 return false;
1085}
1086#else
1087static bool free_pcp_prepare(struct page *page)
1088{
1089 return free_pages_prepare(page, 0, false);
1090}
1091
1092static bool bulkfree_pcp_prepare(struct page *page)
1093{
1094 return free_pages_check(page);
1095}
1096#endif /* CONFIG_DEBUG_VM */
1097
1098/*
1099 * Frees a number of pages from the PCP lists
1100 * Assumes all pages on list are in same zone, and of same order.
1101 * count is the number of pages to free.
1102 *
1103 * If the zone was previously in an "all pages pinned" state then look to
1104 * see if this freeing clears that state.
1105 *
1106 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1107 * pinned" detection logic.
1108 */
1109static void free_pcppages_bulk(struct zone *zone, int count,
1110 struct per_cpu_pages *pcp)
1111{
1112 int migratetype = 0;
1113 int batch_free = 0;
1114 bool isolated_pageblocks;
1115
1116 spin_lock(&zone->lock);
1117 isolated_pageblocks = has_isolate_pageblock(zone);
1118
1119 while (count) {
1120 struct page *page;
1121 struct list_head *list;
1122
1123 /*
1124 * Remove pages from lists in a round-robin fashion. A
1125 * batch_free count is maintained that is incremented when an
1126 * empty list is encountered. This is so more pages are freed
1127 * off fuller lists instead of spinning excessively around empty
1128 * lists
1129 */
1130 do {
1131 batch_free++;
1132 if (++migratetype == MIGRATE_PCPTYPES)
1133 migratetype = 0;
1134 list = &pcp->lists[migratetype];
1135 } while (list_empty(list));
1136
1137 /* This is the only non-empty list. Free them all. */
1138 if (batch_free == MIGRATE_PCPTYPES)
1139 batch_free = count;
1140
1141 do {
1142 int mt; /* migratetype of the to-be-freed page */
1143
1144 page = list_last_entry(list, struct page, lru);
1145 /* must delete as __free_one_page list manipulates */
1146 list_del(&page->lru);
1147
1148 mt = get_pcppage_migratetype(page);
1149 /* MIGRATE_ISOLATE page should not go to pcplists */
1150 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1151 /* Pageblock could have been isolated meanwhile */
1152 if (unlikely(isolated_pageblocks))
1153 mt = get_pageblock_migratetype(page);
1154
1155 if (bulkfree_pcp_prepare(page))
1156 continue;
1157
1158 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1159 trace_mm_page_pcpu_drain(page, 0, mt);
1160 } while (--count && --batch_free && !list_empty(list));
1161 }
1162 spin_unlock(&zone->lock);
1163}
1164
1165static void free_one_page(struct zone *zone,
1166 struct page *page, unsigned long pfn,
1167 unsigned int order,
1168 int migratetype)
1169{
1170 spin_lock(&zone->lock);
1171 if (unlikely(has_isolate_pageblock(zone) ||
1172 is_migrate_isolate(migratetype))) {
1173 migratetype = get_pfnblock_migratetype(page, pfn);
1174 }
1175 __free_one_page(page, pfn, zone, order, migratetype);
1176 spin_unlock(&zone->lock);
1177}
1178
1179static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1180 unsigned long zone, int nid)
1181{
1182 mm_zero_struct_page(page);
1183 set_page_links(page, zone, nid, pfn);
1184 init_page_count(page);
1185 page_mapcount_reset(page);
1186 page_cpupid_reset_last(page);
1187
1188 INIT_LIST_HEAD(&page->lru);
1189#ifdef WANT_PAGE_VIRTUAL
1190 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1191 if (!is_highmem_idx(zone))
1192 set_page_address(page, __va(pfn << PAGE_SHIFT));
1193#endif
1194}
1195
1196static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1197 int nid)
1198{
1199 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1200}
1201
1202#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1203static void __meminit init_reserved_page(unsigned long pfn)
1204{
1205 pg_data_t *pgdat;
1206 int nid, zid;
1207
1208 if (!early_page_uninitialised(pfn))
1209 return;
1210
1211 nid = early_pfn_to_nid(pfn);
1212 pgdat = NODE_DATA(nid);
1213
1214 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1215 struct zone *zone = &pgdat->node_zones[zid];
1216
1217 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1218 break;
1219 }
1220 __init_single_pfn(pfn, zid, nid);
1221}
1222#else
1223static inline void init_reserved_page(unsigned long pfn)
1224{
1225}
1226#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1227
1228/*
1229 * Initialised pages do not have PageReserved set. This function is
1230 * called for each range allocated by the bootmem allocator and
1231 * marks the pages PageReserved. The remaining valid pages are later
1232 * sent to the buddy page allocator.
1233 */
1234void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1235{
1236 unsigned long start_pfn = PFN_DOWN(start);
1237 unsigned long end_pfn = PFN_UP(end);
1238
1239 for (; start_pfn < end_pfn; start_pfn++) {
1240 if (pfn_valid(start_pfn)) {
1241 struct page *page = pfn_to_page(start_pfn);
1242
1243 init_reserved_page(start_pfn);
1244
1245 /* Avoid false-positive PageTail() */
1246 INIT_LIST_HEAD(&page->lru);
1247
1248 SetPageReserved(page);
1249 }
1250 }
1251}
1252
1253static void __free_pages_ok(struct page *page, unsigned int order)
1254{
1255 unsigned long flags;
1256 int migratetype;
1257 unsigned long pfn = page_to_pfn(page);
1258
1259 if (!free_pages_prepare(page, order, true))
1260 return;
1261
1262 migratetype = get_pfnblock_migratetype(page, pfn);
1263 local_irq_save(flags);
1264 __count_vm_events(PGFREE, 1 << order);
1265 free_one_page(page_zone(page), page, pfn, order, migratetype);
1266 local_irq_restore(flags);
1267}
1268
1269static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1270{
1271 unsigned int nr_pages = 1 << order;
1272 struct page *p = page;
1273 unsigned int loop;
1274
1275 prefetchw(p);
1276 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1277 prefetchw(p + 1);
1278 __ClearPageReserved(p);
1279 set_page_count(p, 0);
1280 }
1281 __ClearPageReserved(p);
1282 set_page_count(p, 0);
1283
1284 page_zone(page)->managed_pages += nr_pages;
1285 set_page_refcounted(page);
1286 __free_pages(page, order);
1287}
1288
1289#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1290 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1291
1292static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1293
1294int __meminit early_pfn_to_nid(unsigned long pfn)
1295{
1296 static DEFINE_SPINLOCK(early_pfn_lock);
1297 int nid;
1298
1299 spin_lock(&early_pfn_lock);
1300 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1301 if (nid < 0)
1302 nid = first_online_node;
1303 spin_unlock(&early_pfn_lock);
1304
1305 return nid;
1306}
1307#endif
1308
1309#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1310static inline bool __meminit __maybe_unused
1311meminit_pfn_in_nid(unsigned long pfn, int node,
1312 struct mminit_pfnnid_cache *state)
1313{
1314 int nid;
1315
1316 nid = __early_pfn_to_nid(pfn, state);
1317 if (nid >= 0 && nid != node)
1318 return false;
1319 return true;
1320}
1321
1322/* Only safe to use early in boot when initialisation is single-threaded */
1323static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1324{
1325 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1326}
1327
1328#else
1329
1330static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1331{
1332 return true;
1333}
1334static inline bool __meminit __maybe_unused
1335meminit_pfn_in_nid(unsigned long pfn, int node,
1336 struct mminit_pfnnid_cache *state)
1337{
1338 return true;
1339}
1340#endif
1341
1342
1343void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1344 unsigned int order)
1345{
1346 if (early_page_uninitialised(pfn))
1347 return;
1348 return __free_pages_boot_core(page, order);
1349}
1350
1351/*
1352 * Check that the whole (or subset of) a pageblock given by the interval of
1353 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1354 * with the migration of free compaction scanner. The scanners then need to
1355 * use only pfn_valid_within() check for arches that allow holes within
1356 * pageblocks.
1357 *
1358 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1359 *
1360 * It's possible on some configurations to have a setup like node0 node1 node0
1361 * i.e. it's possible that all pages within a zones range of pages do not
1362 * belong to a single zone. We assume that a border between node0 and node1
1363 * can occur within a single pageblock, but not a node0 node1 node0
1364 * interleaving within a single pageblock. It is therefore sufficient to check
1365 * the first and last page of a pageblock and avoid checking each individual
1366 * page in a pageblock.
1367 */
1368struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1369 unsigned long end_pfn, struct zone *zone)
1370{
1371 struct page *start_page;
1372 struct page *end_page;
1373
1374 /* end_pfn is one past the range we are checking */
1375 end_pfn--;
1376
1377 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1378 return NULL;
1379
1380 start_page = pfn_to_online_page(start_pfn);
1381 if (!start_page)
1382 return NULL;
1383
1384 if (page_zone(start_page) != zone)
1385 return NULL;
1386
1387 end_page = pfn_to_page(end_pfn);
1388
1389 /* This gives a shorter code than deriving page_zone(end_page) */
1390 if (page_zone_id(start_page) != page_zone_id(end_page))
1391 return NULL;
1392
1393 return start_page;
1394}
1395
1396void set_zone_contiguous(struct zone *zone)
1397{
1398 unsigned long block_start_pfn = zone->zone_start_pfn;
1399 unsigned long block_end_pfn;
1400
1401 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1402 for (; block_start_pfn < zone_end_pfn(zone);
1403 block_start_pfn = block_end_pfn,
1404 block_end_pfn += pageblock_nr_pages) {
1405
1406 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1407
1408 if (!__pageblock_pfn_to_page(block_start_pfn,
1409 block_end_pfn, zone))
1410 return;
1411 }
1412
1413 /* We confirm that there is no hole */
1414 zone->contiguous = true;
1415}
1416
1417void clear_zone_contiguous(struct zone *zone)
1418{
1419 zone->contiguous = false;
1420}
1421
1422#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1423static void __init deferred_free_range(unsigned long pfn,
1424 unsigned long nr_pages)
1425{
1426 struct page *page;
1427 unsigned long i;
1428
1429 if (!nr_pages)
1430 return;
1431
1432 page = pfn_to_page(pfn);
1433
1434 /* Free a large naturally-aligned chunk if possible */
1435 if (nr_pages == pageblock_nr_pages &&
1436 (pfn & (pageblock_nr_pages - 1)) == 0) {
1437 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1438 __free_pages_boot_core(page, pageblock_order);
1439 return;
1440 }
1441
1442 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1443 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1444 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1445 __free_pages_boot_core(page, 0);
1446 }
1447}
1448
1449/* Completion tracking for deferred_init_memmap() threads */
1450static atomic_t pgdat_init_n_undone __initdata;
1451static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1452
1453static inline void __init pgdat_init_report_one_done(void)
1454{
1455 if (atomic_dec_and_test(&pgdat_init_n_undone))
1456 complete(&pgdat_init_all_done_comp);
1457}
1458
1459/*
1460 * Helper for deferred_init_range, free the given range, reset the counters, and
1461 * return number of pages freed.
1462 */
1463static inline unsigned long __init __def_free(unsigned long *nr_free,
1464 unsigned long *free_base_pfn,
1465 struct page **page)
1466{
1467 unsigned long nr = *nr_free;
1468
1469 deferred_free_range(*free_base_pfn, nr);
1470 *free_base_pfn = 0;
1471 *nr_free = 0;
1472 *page = NULL;
1473
1474 return nr;
1475}
1476
1477static unsigned long __init deferred_init_range(int nid, int zid,
1478 unsigned long start_pfn,
1479 unsigned long end_pfn)
1480{
1481 struct mminit_pfnnid_cache nid_init_state = { };
1482 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1483 unsigned long free_base_pfn = 0;
1484 unsigned long nr_pages = 0;
1485 unsigned long nr_free = 0;
1486 struct page *page = NULL;
1487 unsigned long pfn;
1488
1489 /*
1490 * First we check if pfn is valid on architectures where it is possible
1491 * to have holes within pageblock_nr_pages. On systems where it is not
1492 * possible, this function is optimized out.
1493 *
1494 * Then, we check if a current large page is valid by only checking the
1495 * validity of the head pfn.
1496 *
1497 * meminit_pfn_in_nid is checked on systems where pfns can interleave
1498 * within a node: a pfn is between start and end of a node, but does not
1499 * belong to this memory node.
1500 *
1501 * Finally, we minimize pfn page lookups and scheduler checks by
1502 * performing it only once every pageblock_nr_pages.
1503 *
1504 * We do it in two loops: first we initialize struct page, than free to
1505 * buddy allocator, becuse while we are freeing pages we can access
1506 * pages that are ahead (computing buddy page in __free_one_page()).
1507 */
1508 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1509 if (!pfn_valid_within(pfn))
1510 continue;
1511 if ((pfn & nr_pgmask) || pfn_valid(pfn)) {
1512 if (meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1513 if (page && (pfn & nr_pgmask))
1514 page++;
1515 else
1516 page = pfn_to_page(pfn);
1517 __init_single_page(page, pfn, zid, nid);
1518 cond_resched();
1519 }
1520 }
1521 }
1522
1523 page = NULL;
1524 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1525 if (!pfn_valid_within(pfn)) {
1526 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1527 } else if (!(pfn & nr_pgmask) && !pfn_valid(pfn)) {
1528 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1529 } else if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1530 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1531 } else if (page && (pfn & nr_pgmask)) {
1532 page++;
1533 nr_free++;
1534 } else {
1535 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1536 page = pfn_to_page(pfn);
1537 free_base_pfn = pfn;
1538 nr_free = 1;
1539 cond_resched();
1540 }
1541 }
1542 /* Free the last block of pages to allocator */
1543 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1544
1545 return nr_pages;
1546}
1547
1548/* Initialise remaining memory on a node */
1549static int __init deferred_init_memmap(void *data)
1550{
1551 pg_data_t *pgdat = data;
1552 int nid = pgdat->node_id;
1553 unsigned long start = jiffies;
1554 unsigned long nr_pages = 0;
1555 unsigned long spfn, epfn;
1556 phys_addr_t spa, epa;
1557 int zid;
1558 struct zone *zone;
1559 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1560 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1561 u64 i;
1562
1563 if (first_init_pfn == ULONG_MAX) {
1564 pgdat_init_report_one_done();
1565 return 0;
1566 }
1567
1568 /* Bind memory initialisation thread to a local node if possible */
1569 if (!cpumask_empty(cpumask))
1570 set_cpus_allowed_ptr(current, cpumask);
1571
1572 /* Sanity check boundaries */
1573 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1574 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1575 pgdat->first_deferred_pfn = ULONG_MAX;
1576
1577 /* Only the highest zone is deferred so find it */
1578 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1579 zone = pgdat->node_zones + zid;
1580 if (first_init_pfn < zone_end_pfn(zone))
1581 break;
1582 }
1583 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1584
1585 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1586 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1587 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1588 nr_pages += deferred_init_range(nid, zid, spfn, epfn);
1589 }
1590
1591 /* Sanity check that the next zone really is unpopulated */
1592 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1593
1594 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1595 jiffies_to_msecs(jiffies - start));
1596
1597 pgdat_init_report_one_done();
1598 return 0;
1599}
1600#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1601
1602void __init page_alloc_init_late(void)
1603{
1604 struct zone *zone;
1605
1606#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1607 int nid;
1608
1609 /* There will be num_node_state(N_MEMORY) threads */
1610 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1611 for_each_node_state(nid, N_MEMORY) {
1612 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1613 }
1614
1615 /* Block until all are initialised */
1616 wait_for_completion(&pgdat_init_all_done_comp);
1617
1618 /* Reinit limits that are based on free pages after the kernel is up */
1619 files_maxfiles_init();
1620#endif
1621#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1622 /* Discard memblock private memory */
1623 memblock_discard();
1624#endif
1625
1626 for_each_populated_zone(zone)
1627 set_zone_contiguous(zone);
1628}
1629
1630#ifdef CONFIG_CMA
1631/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1632void __init init_cma_reserved_pageblock(struct page *page)
1633{
1634 unsigned i = pageblock_nr_pages;
1635 struct page *p = page;
1636
1637 do {
1638 __ClearPageReserved(p);
1639 set_page_count(p, 0);
1640 } while (++p, --i);
1641
1642 set_pageblock_migratetype(page, MIGRATE_CMA);
1643
1644 if (pageblock_order >= MAX_ORDER) {
1645 i = pageblock_nr_pages;
1646 p = page;
1647 do {
1648 set_page_refcounted(p);
1649 __free_pages(p, MAX_ORDER - 1);
1650 p += MAX_ORDER_NR_PAGES;
1651 } while (i -= MAX_ORDER_NR_PAGES);
1652 } else {
1653 set_page_refcounted(page);
1654 __free_pages(page, pageblock_order);
1655 }
1656
1657 adjust_managed_page_count(page, pageblock_nr_pages);
1658}
1659#endif
1660
1661/*
1662 * The order of subdivision here is critical for the IO subsystem.
1663 * Please do not alter this order without good reasons and regression
1664 * testing. Specifically, as large blocks of memory are subdivided,
1665 * the order in which smaller blocks are delivered depends on the order
1666 * they're subdivided in this function. This is the primary factor
1667 * influencing the order in which pages are delivered to the IO
1668 * subsystem according to empirical testing, and this is also justified
1669 * by considering the behavior of a buddy system containing a single
1670 * large block of memory acted on by a series of small allocations.
1671 * This behavior is a critical factor in sglist merging's success.
1672 *
1673 * -- nyc
1674 */
1675static inline void expand(struct zone *zone, struct page *page,
1676 int low, int high, struct free_area *area,
1677 int migratetype)
1678{
1679 unsigned long size = 1 << high;
1680
1681 while (high > low) {
1682 area--;
1683 high--;
1684 size >>= 1;
1685 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1686
1687 /*
1688 * Mark as guard pages (or page), that will allow to
1689 * merge back to allocator when buddy will be freed.
1690 * Corresponding page table entries will not be touched,
1691 * pages will stay not present in virtual address space
1692 */
1693 if (set_page_guard(zone, &page[size], high, migratetype))
1694 continue;
1695
1696 list_add(&page[size].lru, &area->free_list[migratetype]);
1697 area->nr_free++;
1698 set_page_order(&page[size], high);
1699 }
1700}
1701
1702static void check_new_page_bad(struct page *page)
1703{
1704 const char *bad_reason = NULL;
1705 unsigned long bad_flags = 0;
1706
1707 if (unlikely(atomic_read(&page->_mapcount) != -1))
1708 bad_reason = "nonzero mapcount";
1709 if (unlikely(page->mapping != NULL))
1710 bad_reason = "non-NULL mapping";
1711 if (unlikely(page_ref_count(page) != 0))
1712 bad_reason = "nonzero _count";
1713 if (unlikely(page->flags & __PG_HWPOISON)) {
1714 bad_reason = "HWPoisoned (hardware-corrupted)";
1715 bad_flags = __PG_HWPOISON;
1716 /* Don't complain about hwpoisoned pages */
1717 page_mapcount_reset(page); /* remove PageBuddy */
1718 return;
1719 }
1720 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1721 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1722 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1723 }
1724#ifdef CONFIG_MEMCG
1725 if (unlikely(page->mem_cgroup))
1726 bad_reason = "page still charged to cgroup";
1727#endif
1728 bad_page(page, bad_reason, bad_flags);
1729}
1730
1731/*
1732 * This page is about to be returned from the page allocator
1733 */
1734static inline int check_new_page(struct page *page)
1735{
1736 if (likely(page_expected_state(page,
1737 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1738 return 0;
1739
1740 check_new_page_bad(page);
1741 return 1;
1742}
1743
1744static inline bool free_pages_prezeroed(void)
1745{
1746 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1747 page_poisoning_enabled();
1748}
1749
1750#ifdef CONFIG_DEBUG_VM
1751static bool check_pcp_refill(struct page *page)
1752{
1753 return false;
1754}
1755
1756static bool check_new_pcp(struct page *page)
1757{
1758 return check_new_page(page);
1759}
1760#else
1761static bool check_pcp_refill(struct page *page)
1762{
1763 return check_new_page(page);
1764}
1765static bool check_new_pcp(struct page *page)
1766{
1767 return false;
1768}
1769#endif /* CONFIG_DEBUG_VM */
1770
1771static bool check_new_pages(struct page *page, unsigned int order)
1772{
1773 int i;
1774 for (i = 0; i < (1 << order); i++) {
1775 struct page *p = page + i;
1776
1777 if (unlikely(check_new_page(p)))
1778 return true;
1779 }
1780
1781 return false;
1782}
1783
1784inline void post_alloc_hook(struct page *page, unsigned int order,
1785 gfp_t gfp_flags)
1786{
1787 set_page_private(page, 0);
1788 set_page_refcounted(page);
1789
1790 arch_alloc_page(page, order);
1791 kernel_map_pages(page, 1 << order, 1);
1792 kernel_poison_pages(page, 1 << order, 1);
1793 kasan_alloc_pages(page, order);
1794 set_page_owner(page, order, gfp_flags);
1795}
1796
1797static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1798 unsigned int alloc_flags)
1799{
1800 int i;
1801
1802 post_alloc_hook(page, order, gfp_flags);
1803
1804 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1805 for (i = 0; i < (1 << order); i++)
1806 clear_highpage(page + i);
1807
1808 if (order && (gfp_flags & __GFP_COMP))
1809 prep_compound_page(page, order);
1810
1811 /*
1812 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1813 * allocate the page. The expectation is that the caller is taking
1814 * steps that will free more memory. The caller should avoid the page
1815 * being used for !PFMEMALLOC purposes.
1816 */
1817 if (alloc_flags & ALLOC_NO_WATERMARKS)
1818 set_page_pfmemalloc(page);
1819 else
1820 clear_page_pfmemalloc(page);
1821}
1822
1823/*
1824 * Go through the free lists for the given migratetype and remove
1825 * the smallest available page from the freelists
1826 */
1827static __always_inline
1828struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1829 int migratetype)
1830{
1831 unsigned int current_order;
1832 struct free_area *area;
1833 struct page *page;
1834
1835 /* Find a page of the appropriate size in the preferred list */
1836 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1837 area = &(zone->free_area[current_order]);
1838 page = list_first_entry_or_null(&area->free_list[migratetype],
1839 struct page, lru);
1840 if (!page)
1841 continue;
1842 list_del(&page->lru);
1843 rmv_page_order(page);
1844 area->nr_free--;
1845 expand(zone, page, order, current_order, area, migratetype);
1846 set_pcppage_migratetype(page, migratetype);
1847 return page;
1848 }
1849
1850 return NULL;
1851}
1852
1853
1854/*
1855 * This array describes the order lists are fallen back to when
1856 * the free lists for the desirable migrate type are depleted
1857 */
1858static int fallbacks[MIGRATE_TYPES][4] = {
1859 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1860 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1861 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1862#ifdef CONFIG_CMA
1863 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1864#endif
1865#ifdef CONFIG_MEMORY_ISOLATION
1866 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1867#endif
1868};
1869
1870#ifdef CONFIG_CMA
1871static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1872 unsigned int order)
1873{
1874 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1875}
1876#else
1877static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1878 unsigned int order) { return NULL; }
1879#endif
1880
1881/*
1882 * Move the free pages in a range to the free lists of the requested type.
1883 * Note that start_page and end_pages are not aligned on a pageblock
1884 * boundary. If alignment is required, use move_freepages_block()
1885 */
1886static int move_freepages(struct zone *zone,
1887 struct page *start_page, struct page *end_page,
1888 int migratetype, int *num_movable)
1889{
1890 struct page *page;
1891 unsigned int order;
1892 int pages_moved = 0;
1893
1894#ifndef CONFIG_HOLES_IN_ZONE
1895 /*
1896 * page_zone is not safe to call in this context when
1897 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1898 * anyway as we check zone boundaries in move_freepages_block().
1899 * Remove at a later date when no bug reports exist related to
1900 * grouping pages by mobility
1901 */
1902 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1903#endif
1904
1905 if (num_movable)
1906 *num_movable = 0;
1907
1908 for (page = start_page; page <= end_page;) {
1909 if (!pfn_valid_within(page_to_pfn(page))) {
1910 page++;
1911 continue;
1912 }
1913
1914 /* Make sure we are not inadvertently changing nodes */
1915 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1916
1917 if (!PageBuddy(page)) {
1918 /*
1919 * We assume that pages that could be isolated for
1920 * migration are movable. But we don't actually try
1921 * isolating, as that would be expensive.
1922 */
1923 if (num_movable &&
1924 (PageLRU(page) || __PageMovable(page)))
1925 (*num_movable)++;
1926
1927 page++;
1928 continue;
1929 }
1930
1931 order = page_order(page);
1932 list_move(&page->lru,
1933 &zone->free_area[order].free_list[migratetype]);
1934 page += 1 << order;
1935 pages_moved += 1 << order;
1936 }
1937
1938 return pages_moved;
1939}
1940
1941int move_freepages_block(struct zone *zone, struct page *page,
1942 int migratetype, int *num_movable)
1943{
1944 unsigned long start_pfn, end_pfn;
1945 struct page *start_page, *end_page;
1946
1947 start_pfn = page_to_pfn(page);
1948 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1949 start_page = pfn_to_page(start_pfn);
1950 end_page = start_page + pageblock_nr_pages - 1;
1951 end_pfn = start_pfn + pageblock_nr_pages - 1;
1952
1953 /* Do not cross zone boundaries */
1954 if (!zone_spans_pfn(zone, start_pfn))
1955 start_page = page;
1956 if (!zone_spans_pfn(zone, end_pfn))
1957 return 0;
1958
1959 return move_freepages(zone, start_page, end_page, migratetype,
1960 num_movable);
1961}
1962
1963static void change_pageblock_range(struct page *pageblock_page,
1964 int start_order, int migratetype)
1965{
1966 int nr_pageblocks = 1 << (start_order - pageblock_order);
1967
1968 while (nr_pageblocks--) {
1969 set_pageblock_migratetype(pageblock_page, migratetype);
1970 pageblock_page += pageblock_nr_pages;
1971 }
1972}
1973
1974/*
1975 * When we are falling back to another migratetype during allocation, try to
1976 * steal extra free pages from the same pageblocks to satisfy further
1977 * allocations, instead of polluting multiple pageblocks.
1978 *
1979 * If we are stealing a relatively large buddy page, it is likely there will
1980 * be more free pages in the pageblock, so try to steal them all. For
1981 * reclaimable and unmovable allocations, we steal regardless of page size,
1982 * as fragmentation caused by those allocations polluting movable pageblocks
1983 * is worse than movable allocations stealing from unmovable and reclaimable
1984 * pageblocks.
1985 */
1986static bool can_steal_fallback(unsigned int order, int start_mt)
1987{
1988 /*
1989 * Leaving this order check is intended, although there is
1990 * relaxed order check in next check. The reason is that
1991 * we can actually steal whole pageblock if this condition met,
1992 * but, below check doesn't guarantee it and that is just heuristic
1993 * so could be changed anytime.
1994 */
1995 if (order >= pageblock_order)
1996 return true;
1997
1998 if (order >= pageblock_order / 2 ||
1999 start_mt == MIGRATE_RECLAIMABLE ||
2000 start_mt == MIGRATE_UNMOVABLE ||
2001 page_group_by_mobility_disabled)
2002 return true;
2003
2004 return false;
2005}
2006
2007/*
2008 * This function implements actual steal behaviour. If order is large enough,
2009 * we can steal whole pageblock. If not, we first move freepages in this
2010 * pageblock to our migratetype and determine how many already-allocated pages
2011 * are there in the pageblock with a compatible migratetype. If at least half
2012 * of pages are free or compatible, we can change migratetype of the pageblock
2013 * itself, so pages freed in the future will be put on the correct free list.
2014 */
2015static void steal_suitable_fallback(struct zone *zone, struct page *page,
2016 int start_type, bool whole_block)
2017{
2018 unsigned int current_order = page_order(page);
2019 struct free_area *area;
2020 int free_pages, movable_pages, alike_pages;
2021 int old_block_type;
2022
2023 old_block_type = get_pageblock_migratetype(page);
2024
2025 /*
2026 * This can happen due to races and we want to prevent broken
2027 * highatomic accounting.
2028 */
2029 if (is_migrate_highatomic(old_block_type))
2030 goto single_page;
2031
2032 /* Take ownership for orders >= pageblock_order */
2033 if (current_order >= pageblock_order) {
2034 change_pageblock_range(page, current_order, start_type);
2035 goto single_page;
2036 }
2037
2038 /* We are not allowed to try stealing from the whole block */
2039 if (!whole_block)
2040 goto single_page;
2041
2042 free_pages = move_freepages_block(zone, page, start_type,
2043 &movable_pages);
2044 /*
2045 * Determine how many pages are compatible with our allocation.
2046 * For movable allocation, it's the number of movable pages which
2047 * we just obtained. For other types it's a bit more tricky.
2048 */
2049 if (start_type == MIGRATE_MOVABLE) {
2050 alike_pages = movable_pages;
2051 } else {
2052 /*
2053 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2054 * to MOVABLE pageblock, consider all non-movable pages as
2055 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2056 * vice versa, be conservative since we can't distinguish the
2057 * exact migratetype of non-movable pages.
2058 */
2059 if (old_block_type == MIGRATE_MOVABLE)
2060 alike_pages = pageblock_nr_pages
2061 - (free_pages + movable_pages);
2062 else
2063 alike_pages = 0;
2064 }
2065
2066 /* moving whole block can fail due to zone boundary conditions */
2067 if (!free_pages)
2068 goto single_page;
2069
2070 /*
2071 * If a sufficient number of pages in the block are either free or of
2072 * comparable migratability as our allocation, claim the whole block.
2073 */
2074 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2075 page_group_by_mobility_disabled)
2076 set_pageblock_migratetype(page, start_type);
2077
2078 return;
2079
2080single_page:
2081 area = &zone->free_area[current_order];
2082 list_move(&page->lru, &area->free_list[start_type]);
2083}
2084
2085/*
2086 * Check whether there is a suitable fallback freepage with requested order.
2087 * If only_stealable is true, this function returns fallback_mt only if
2088 * we can steal other freepages all together. This would help to reduce
2089 * fragmentation due to mixed migratetype pages in one pageblock.
2090 */
2091int find_suitable_fallback(struct free_area *area, unsigned int order,
2092 int migratetype, bool only_stealable, bool *can_steal)
2093{
2094 int i;
2095 int fallback_mt;
2096
2097 if (area->nr_free == 0)
2098 return -1;
2099
2100 *can_steal = false;
2101 for (i = 0;; i++) {
2102 fallback_mt = fallbacks[migratetype][i];
2103 if (fallback_mt == MIGRATE_TYPES)
2104 break;
2105
2106 if (list_empty(&area->free_list[fallback_mt]))
2107 continue;
2108
2109 if (can_steal_fallback(order, migratetype))
2110 *can_steal = true;
2111
2112 if (!only_stealable)
2113 return fallback_mt;
2114
2115 if (*can_steal)
2116 return fallback_mt;
2117 }
2118
2119 return -1;
2120}
2121
2122/*
2123 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2124 * there are no empty page blocks that contain a page with a suitable order
2125 */
2126static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2127 unsigned int alloc_order)
2128{
2129 int mt;
2130 unsigned long max_managed, flags;
2131
2132 /*
2133 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2134 * Check is race-prone but harmless.
2135 */
2136 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2137 if (zone->nr_reserved_highatomic >= max_managed)
2138 return;
2139
2140 spin_lock_irqsave(&zone->lock, flags);
2141
2142 /* Recheck the nr_reserved_highatomic limit under the lock */
2143 if (zone->nr_reserved_highatomic >= max_managed)
2144 goto out_unlock;
2145
2146 /* Yoink! */
2147 mt = get_pageblock_migratetype(page);
2148 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2149 && !is_migrate_cma(mt)) {
2150 zone->nr_reserved_highatomic += pageblock_nr_pages;
2151 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2152 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2153 }
2154
2155out_unlock:
2156 spin_unlock_irqrestore(&zone->lock, flags);
2157}
2158
2159/*
2160 * Used when an allocation is about to fail under memory pressure. This
2161 * potentially hurts the reliability of high-order allocations when under
2162 * intense memory pressure but failed atomic allocations should be easier
2163 * to recover from than an OOM.
2164 *
2165 * If @force is true, try to unreserve a pageblock even though highatomic
2166 * pageblock is exhausted.
2167 */
2168static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2169 bool force)
2170{
2171 struct zonelist *zonelist = ac->zonelist;
2172 unsigned long flags;
2173 struct zoneref *z;
2174 struct zone *zone;
2175 struct page *page;
2176 int order;
2177 bool ret;
2178
2179 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2180 ac->nodemask) {
2181 /*
2182 * Preserve at least one pageblock unless memory pressure
2183 * is really high.
2184 */
2185 if (!force && zone->nr_reserved_highatomic <=
2186 pageblock_nr_pages)
2187 continue;
2188
2189 spin_lock_irqsave(&zone->lock, flags);
2190 for (order = 0; order < MAX_ORDER; order++) {
2191 struct free_area *area = &(zone->free_area[order]);
2192
2193 page = list_first_entry_or_null(
2194 &area->free_list[MIGRATE_HIGHATOMIC],
2195 struct page, lru);
2196 if (!page)
2197 continue;
2198
2199 /*
2200 * In page freeing path, migratetype change is racy so
2201 * we can counter several free pages in a pageblock
2202 * in this loop althoug we changed the pageblock type
2203 * from highatomic to ac->migratetype. So we should
2204 * adjust the count once.
2205 */
2206 if (is_migrate_highatomic_page(page)) {
2207 /*
2208 * It should never happen but changes to
2209 * locking could inadvertently allow a per-cpu
2210 * drain to add pages to MIGRATE_HIGHATOMIC
2211 * while unreserving so be safe and watch for
2212 * underflows.
2213 */
2214 zone->nr_reserved_highatomic -= min(
2215 pageblock_nr_pages,
2216 zone->nr_reserved_highatomic);
2217 }
2218
2219 /*
2220 * Convert to ac->migratetype and avoid the normal
2221 * pageblock stealing heuristics. Minimally, the caller
2222 * is doing the work and needs the pages. More
2223 * importantly, if the block was always converted to
2224 * MIGRATE_UNMOVABLE or another type then the number
2225 * of pageblocks that cannot be completely freed
2226 * may increase.
2227 */
2228 set_pageblock_migratetype(page, ac->migratetype);
2229 ret = move_freepages_block(zone, page, ac->migratetype,
2230 NULL);
2231 if (ret) {
2232 spin_unlock_irqrestore(&zone->lock, flags);
2233 return ret;
2234 }
2235 }
2236 spin_unlock_irqrestore(&zone->lock, flags);
2237 }
2238
2239 return false;
2240}
2241
2242/*
2243 * Try finding a free buddy page on the fallback list and put it on the free
2244 * list of requested migratetype, possibly along with other pages from the same
2245 * block, depending on fragmentation avoidance heuristics. Returns true if
2246 * fallback was found so that __rmqueue_smallest() can grab it.
2247 *
2248 * The use of signed ints for order and current_order is a deliberate
2249 * deviation from the rest of this file, to make the for loop
2250 * condition simpler.
2251 */
2252static __always_inline bool
2253__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2254{
2255 struct free_area *area;
2256 int current_order;
2257 struct page *page;
2258 int fallback_mt;
2259 bool can_steal;
2260
2261 /*
2262 * Find the largest available free page in the other list. This roughly
2263 * approximates finding the pageblock with the most free pages, which
2264 * would be too costly to do exactly.
2265 */
2266 for (current_order = MAX_ORDER - 1; current_order >= order;
2267 --current_order) {
2268 area = &(zone->free_area[current_order]);
2269 fallback_mt = find_suitable_fallback(area, current_order,
2270 start_migratetype, false, &can_steal);
2271 if (fallback_mt == -1)
2272 continue;
2273
2274 /*
2275 * We cannot steal all free pages from the pageblock and the
2276 * requested migratetype is movable. In that case it's better to
2277 * steal and split the smallest available page instead of the
2278 * largest available page, because even if the next movable
2279 * allocation falls back into a different pageblock than this
2280 * one, it won't cause permanent fragmentation.
2281 */
2282 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2283 && current_order > order)
2284 goto find_smallest;
2285
2286 goto do_steal;
2287 }
2288
2289 return false;
2290
2291find_smallest:
2292 for (current_order = order; current_order < MAX_ORDER;
2293 current_order++) {
2294 area = &(zone->free_area[current_order]);
2295 fallback_mt = find_suitable_fallback(area, current_order,
2296 start_migratetype, false, &can_steal);
2297 if (fallback_mt != -1)
2298 break;
2299 }
2300
2301 /*
2302 * This should not happen - we already found a suitable fallback
2303 * when looking for the largest page.
2304 */
2305 VM_BUG_ON(current_order == MAX_ORDER);
2306
2307do_steal:
2308 page = list_first_entry(&area->free_list[fallback_mt],
2309 struct page, lru);
2310
2311 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2312
2313 trace_mm_page_alloc_extfrag(page, order, current_order,
2314 start_migratetype, fallback_mt);
2315
2316 return true;
2317
2318}
2319
2320/*
2321 * Do the hard work of removing an element from the buddy allocator.
2322 * Call me with the zone->lock already held.
2323 */
2324static __always_inline struct page *
2325__rmqueue(struct zone *zone, unsigned int order, int migratetype)
2326{
2327 struct page *page;
2328
2329retry:
2330 page = __rmqueue_smallest(zone, order, migratetype);
2331 if (unlikely(!page)) {
2332 if (migratetype == MIGRATE_MOVABLE)
2333 page = __rmqueue_cma_fallback(zone, order);
2334
2335 if (!page && __rmqueue_fallback(zone, order, migratetype))
2336 goto retry;
2337 }
2338
2339 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2340 return page;
2341}
2342
2343/*
2344 * Obtain a specified number of elements from the buddy allocator, all under
2345 * a single hold of the lock, for efficiency. Add them to the supplied list.
2346 * Returns the number of new pages which were placed at *list.
2347 */
2348static int rmqueue_bulk(struct zone *zone, unsigned int order,
2349 unsigned long count, struct list_head *list,
2350 int migratetype)
2351{
2352 int i, alloced = 0;
2353
2354 spin_lock(&zone->lock);
2355 for (i = 0; i < count; ++i) {
2356 struct page *page = __rmqueue(zone, order, migratetype);
2357 if (unlikely(page == NULL))
2358 break;
2359
2360 if (unlikely(check_pcp_refill(page)))
2361 continue;
2362
2363 /*
2364 * Split buddy pages returned by expand() are received here in
2365 * physical page order. The page is added to the tail of
2366 * caller's list. From the callers perspective, the linked list
2367 * is ordered by page number under some conditions. This is
2368 * useful for IO devices that can forward direction from the
2369 * head, thus also in the physical page order. This is useful
2370 * for IO devices that can merge IO requests if the physical
2371 * pages are ordered properly.
2372 */
2373 list_add_tail(&page->lru, list);
2374 alloced++;
2375 if (is_migrate_cma(get_pcppage_migratetype(page)))
2376 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2377 -(1 << order));
2378 }
2379
2380 /*
2381 * i pages were removed from the buddy list even if some leak due
2382 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2383 * on i. Do not confuse with 'alloced' which is the number of
2384 * pages added to the pcp list.
2385 */
2386 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2387 spin_unlock(&zone->lock);
2388 return alloced;
2389}
2390
2391#ifdef CONFIG_NUMA
2392/*
2393 * Called from the vmstat counter updater to drain pagesets of this
2394 * currently executing processor on remote nodes after they have
2395 * expired.
2396 *
2397 * Note that this function must be called with the thread pinned to
2398 * a single processor.
2399 */
2400void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2401{
2402 unsigned long flags;
2403 int to_drain, batch;
2404
2405 local_irq_save(flags);
2406 batch = READ_ONCE(pcp->batch);
2407 to_drain = min(pcp->count, batch);
2408 if (to_drain > 0) {
2409 free_pcppages_bulk(zone, to_drain, pcp);
2410 pcp->count -= to_drain;
2411 }
2412 local_irq_restore(flags);
2413}
2414#endif
2415
2416/*
2417 * Drain pcplists of the indicated processor and zone.
2418 *
2419 * The processor must either be the current processor and the
2420 * thread pinned to the current processor or a processor that
2421 * is not online.
2422 */
2423static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2424{
2425 unsigned long flags;
2426 struct per_cpu_pageset *pset;
2427 struct per_cpu_pages *pcp;
2428
2429 local_irq_save(flags);
2430 pset = per_cpu_ptr(zone->pageset, cpu);
2431
2432 pcp = &pset->pcp;
2433 if (pcp->count) {
2434 free_pcppages_bulk(zone, pcp->count, pcp);
2435 pcp->count = 0;
2436 }
2437 local_irq_restore(flags);
2438}
2439
2440/*
2441 * Drain pcplists of all zones on the indicated processor.
2442 *
2443 * The processor must either be the current processor and the
2444 * thread pinned to the current processor or a processor that
2445 * is not online.
2446 */
2447static void drain_pages(unsigned int cpu)
2448{
2449 struct zone *zone;
2450
2451 for_each_populated_zone(zone) {
2452 drain_pages_zone(cpu, zone);
2453 }
2454}
2455
2456/*
2457 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2458 *
2459 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2460 * the single zone's pages.
2461 */
2462void drain_local_pages(struct zone *zone)
2463{
2464 int cpu = smp_processor_id();
2465
2466 if (zone)
2467 drain_pages_zone(cpu, zone);
2468 else
2469 drain_pages(cpu);
2470}
2471
2472static void drain_local_pages_wq(struct work_struct *work)
2473{
2474 /*
2475 * drain_all_pages doesn't use proper cpu hotplug protection so
2476 * we can race with cpu offline when the WQ can move this from
2477 * a cpu pinned worker to an unbound one. We can operate on a different
2478 * cpu which is allright but we also have to make sure to not move to
2479 * a different one.
2480 */
2481 preempt_disable();
2482 drain_local_pages(NULL);
2483 preempt_enable();
2484}
2485
2486/*
2487 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2488 *
2489 * When zone parameter is non-NULL, spill just the single zone's pages.
2490 *
2491 * Note that this can be extremely slow as the draining happens in a workqueue.
2492 */
2493void drain_all_pages(struct zone *zone)
2494{
2495 int cpu;
2496
2497 /*
2498 * Allocate in the BSS so we wont require allocation in
2499 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2500 */
2501 static cpumask_t cpus_with_pcps;
2502
2503 /*
2504 * Make sure nobody triggers this path before mm_percpu_wq is fully
2505 * initialized.
2506 */
2507 if (WARN_ON_ONCE(!mm_percpu_wq))
2508 return;
2509
2510 /*
2511 * Do not drain if one is already in progress unless it's specific to
2512 * a zone. Such callers are primarily CMA and memory hotplug and need
2513 * the drain to be complete when the call returns.
2514 */
2515 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2516 if (!zone)
2517 return;
2518 mutex_lock(&pcpu_drain_mutex);
2519 }
2520
2521 /*
2522 * We don't care about racing with CPU hotplug event
2523 * as offline notification will cause the notified
2524 * cpu to drain that CPU pcps and on_each_cpu_mask
2525 * disables preemption as part of its processing
2526 */
2527 for_each_online_cpu(cpu) {
2528 struct per_cpu_pageset *pcp;
2529 struct zone *z;
2530 bool has_pcps = false;
2531
2532 if (zone) {
2533 pcp = per_cpu_ptr(zone->pageset, cpu);
2534 if (pcp->pcp.count)
2535 has_pcps = true;
2536 } else {
2537 for_each_populated_zone(z) {
2538 pcp = per_cpu_ptr(z->pageset, cpu);
2539 if (pcp->pcp.count) {
2540 has_pcps = true;
2541 break;
2542 }
2543 }
2544 }
2545
2546 if (has_pcps)
2547 cpumask_set_cpu(cpu, &cpus_with_pcps);
2548 else
2549 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2550 }
2551
2552 for_each_cpu(cpu, &cpus_with_pcps) {
2553 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2554 INIT_WORK(work, drain_local_pages_wq);
2555 queue_work_on(cpu, mm_percpu_wq, work);
2556 }
2557 for_each_cpu(cpu, &cpus_with_pcps)
2558 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2559
2560 mutex_unlock(&pcpu_drain_mutex);
2561}
2562
2563#ifdef CONFIG_HIBERNATION
2564
2565/*
2566 * Touch the watchdog for every WD_PAGE_COUNT pages.
2567 */
2568#define WD_PAGE_COUNT (128*1024)
2569
2570void mark_free_pages(struct zone *zone)
2571{
2572 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2573 unsigned long flags;
2574 unsigned int order, t;
2575 struct page *page;
2576
2577 if (zone_is_empty(zone))
2578 return;
2579
2580 spin_lock_irqsave(&zone->lock, flags);
2581
2582 max_zone_pfn = zone_end_pfn(zone);
2583 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2584 if (pfn_valid(pfn)) {
2585 page = pfn_to_page(pfn);
2586
2587 if (!--page_count) {
2588 touch_nmi_watchdog();
2589 page_count = WD_PAGE_COUNT;
2590 }
2591
2592 if (page_zone(page) != zone)
2593 continue;
2594
2595 if (!swsusp_page_is_forbidden(page))
2596 swsusp_unset_page_free(page);
2597 }
2598
2599 for_each_migratetype_order(order, t) {
2600 list_for_each_entry(page,
2601 &zone->free_area[order].free_list[t], lru) {
2602 unsigned long i;
2603
2604 pfn = page_to_pfn(page);
2605 for (i = 0; i < (1UL << order); i++) {
2606 if (!--page_count) {
2607 touch_nmi_watchdog();
2608 page_count = WD_PAGE_COUNT;
2609 }
2610 swsusp_set_page_free(pfn_to_page(pfn + i));
2611 }
2612 }
2613 }
2614 spin_unlock_irqrestore(&zone->lock, flags);
2615}
2616#endif /* CONFIG_PM */
2617
2618static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2619{
2620 int migratetype;
2621
2622 if (!free_pcp_prepare(page))
2623 return false;
2624
2625 migratetype = get_pfnblock_migratetype(page, pfn);
2626 set_pcppage_migratetype(page, migratetype);
2627 return true;
2628}
2629
2630static void free_unref_page_commit(struct page *page, unsigned long pfn)
2631{
2632 struct zone *zone = page_zone(page);
2633 struct per_cpu_pages *pcp;
2634 int migratetype;
2635
2636 migratetype = get_pcppage_migratetype(page);
2637 __count_vm_event(PGFREE);
2638
2639 /*
2640 * We only track unmovable, reclaimable and movable on pcp lists.
2641 * Free ISOLATE pages back to the allocator because they are being
2642 * offlined but treat HIGHATOMIC as movable pages so we can get those
2643 * areas back if necessary. Otherwise, we may have to free
2644 * excessively into the page allocator
2645 */
2646 if (migratetype >= MIGRATE_PCPTYPES) {
2647 if (unlikely(is_migrate_isolate(migratetype))) {
2648 free_one_page(zone, page, pfn, 0, migratetype);
2649 return;
2650 }
2651 migratetype = MIGRATE_MOVABLE;
2652 }
2653
2654 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2655 list_add(&page->lru, &pcp->lists[migratetype]);
2656 pcp->count++;
2657 if (pcp->count >= pcp->high) {
2658 unsigned long batch = READ_ONCE(pcp->batch);
2659 free_pcppages_bulk(zone, batch, pcp);
2660 pcp->count -= batch;
2661 }
2662}
2663
2664/*
2665 * Free a 0-order page
2666 */
2667void free_unref_page(struct page *page)
2668{
2669 unsigned long flags;
2670 unsigned long pfn = page_to_pfn(page);
2671
2672 if (!free_unref_page_prepare(page, pfn))
2673 return;
2674
2675 local_irq_save(flags);
2676 free_unref_page_commit(page, pfn);
2677 local_irq_restore(flags);
2678}
2679
2680/*
2681 * Free a list of 0-order pages
2682 */
2683void free_unref_page_list(struct list_head *list)
2684{
2685 struct page *page, *next;
2686 unsigned long flags, pfn;
2687
2688 /* Prepare pages for freeing */
2689 list_for_each_entry_safe(page, next, list, lru) {
2690 pfn = page_to_pfn(page);
2691 if (!free_unref_page_prepare(page, pfn))
2692 list_del(&page->lru);
2693 set_page_private(page, pfn);
2694 }
2695
2696 local_irq_save(flags);
2697 list_for_each_entry_safe(page, next, list, lru) {
2698 unsigned long pfn = page_private(page);
2699
2700 set_page_private(page, 0);
2701 trace_mm_page_free_batched(page);
2702 free_unref_page_commit(page, pfn);
2703 }
2704 local_irq_restore(flags);
2705}
2706
2707/*
2708 * split_page takes a non-compound higher-order page, and splits it into
2709 * n (1<<order) sub-pages: page[0..n]
2710 * Each sub-page must be freed individually.
2711 *
2712 * Note: this is probably too low level an operation for use in drivers.
2713 * Please consult with lkml before using this in your driver.
2714 */
2715void split_page(struct page *page, unsigned int order)
2716{
2717 int i;
2718
2719 VM_BUG_ON_PAGE(PageCompound(page), page);
2720 VM_BUG_ON_PAGE(!page_count(page), page);
2721
2722 for (i = 1; i < (1 << order); i++)
2723 set_page_refcounted(page + i);
2724 split_page_owner(page, order);
2725}
2726EXPORT_SYMBOL_GPL(split_page);
2727
2728int __isolate_free_page(struct page *page, unsigned int order)
2729{
2730 unsigned long watermark;
2731 struct zone *zone;
2732 int mt;
2733
2734 BUG_ON(!PageBuddy(page));
2735
2736 zone = page_zone(page);
2737 mt = get_pageblock_migratetype(page);
2738
2739 if (!is_migrate_isolate(mt)) {
2740 /*
2741 * Obey watermarks as if the page was being allocated. We can
2742 * emulate a high-order watermark check with a raised order-0
2743 * watermark, because we already know our high-order page
2744 * exists.
2745 */
2746 watermark = min_wmark_pages(zone) + (1UL << order);
2747 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2748 return 0;
2749
2750 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2751 }
2752
2753 /* Remove page from free list */
2754 list_del(&page->lru);
2755 zone->free_area[order].nr_free--;
2756 rmv_page_order(page);
2757
2758 /*
2759 * Set the pageblock if the isolated page is at least half of a
2760 * pageblock
2761 */
2762 if (order >= pageblock_order - 1) {
2763 struct page *endpage = page + (1 << order) - 1;
2764 for (; page < endpage; page += pageblock_nr_pages) {
2765 int mt = get_pageblock_migratetype(page);
2766 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2767 && !is_migrate_highatomic(mt))
2768 set_pageblock_migratetype(page,
2769 MIGRATE_MOVABLE);
2770 }
2771 }
2772
2773
2774 return 1UL << order;
2775}
2776
2777/*
2778 * Update NUMA hit/miss statistics
2779 *
2780 * Must be called with interrupts disabled.
2781 */
2782static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2783{
2784#ifdef CONFIG_NUMA
2785 enum numa_stat_item local_stat = NUMA_LOCAL;
2786
2787 /* skip numa counters update if numa stats is disabled */
2788 if (!static_branch_likely(&vm_numa_stat_key))
2789 return;
2790
2791 if (z->node != numa_node_id())
2792 local_stat = NUMA_OTHER;
2793
2794 if (z->node == preferred_zone->node)
2795 __inc_numa_state(z, NUMA_HIT);
2796 else {
2797 __inc_numa_state(z, NUMA_MISS);
2798 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2799 }
2800 __inc_numa_state(z, local_stat);
2801#endif
2802}
2803
2804/* Remove page from the per-cpu list, caller must protect the list */
2805static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2806 struct per_cpu_pages *pcp,
2807 struct list_head *list)
2808{
2809 struct page *page;
2810
2811 do {
2812 if (list_empty(list)) {
2813 pcp->count += rmqueue_bulk(zone, 0,
2814 pcp->batch, list,
2815 migratetype);
2816 if (unlikely(list_empty(list)))
2817 return NULL;
2818 }
2819
2820 page = list_first_entry(list, struct page, lru);
2821 list_del(&page->lru);
2822 pcp->count--;
2823 } while (check_new_pcp(page));
2824
2825 return page;
2826}
2827
2828/* Lock and remove page from the per-cpu list */
2829static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2830 struct zone *zone, unsigned int order,
2831 gfp_t gfp_flags, int migratetype)
2832{
2833 struct per_cpu_pages *pcp;
2834 struct list_head *list;
2835 struct page *page;
2836 unsigned long flags;
2837
2838 local_irq_save(flags);
2839 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2840 list = &pcp->lists[migratetype];
2841 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
2842 if (page) {
2843 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2844 zone_statistics(preferred_zone, zone);
2845 }
2846 local_irq_restore(flags);
2847 return page;
2848}
2849
2850/*
2851 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2852 */
2853static inline
2854struct page *rmqueue(struct zone *preferred_zone,
2855 struct zone *zone, unsigned int order,
2856 gfp_t gfp_flags, unsigned int alloc_flags,
2857 int migratetype)
2858{
2859 unsigned long flags;
2860 struct page *page;
2861
2862 if (likely(order == 0)) {
2863 page = rmqueue_pcplist(preferred_zone, zone, order,
2864 gfp_flags, migratetype);
2865 goto out;
2866 }
2867
2868 /*
2869 * We most definitely don't want callers attempting to
2870 * allocate greater than order-1 page units with __GFP_NOFAIL.
2871 */
2872 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2873 spin_lock_irqsave(&zone->lock, flags);
2874
2875 do {
2876 page = NULL;
2877 if (alloc_flags & ALLOC_HARDER) {
2878 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2879 if (page)
2880 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2881 }
2882 if (!page)
2883 page = __rmqueue(zone, order, migratetype);
2884 } while (page && check_new_pages(page, order));
2885 spin_unlock(&zone->lock);
2886 if (!page)
2887 goto failed;
2888 __mod_zone_freepage_state(zone, -(1 << order),
2889 get_pcppage_migratetype(page));
2890
2891 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2892 zone_statistics(preferred_zone, zone);
2893 local_irq_restore(flags);
2894
2895out:
2896 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2897 return page;
2898
2899failed:
2900 local_irq_restore(flags);
2901 return NULL;
2902}
2903
2904#ifdef CONFIG_FAIL_PAGE_ALLOC
2905
2906static struct {
2907 struct fault_attr attr;
2908
2909 bool ignore_gfp_highmem;
2910 bool ignore_gfp_reclaim;
2911 u32 min_order;
2912} fail_page_alloc = {
2913 .attr = FAULT_ATTR_INITIALIZER,
2914 .ignore_gfp_reclaim = true,
2915 .ignore_gfp_highmem = true,
2916 .min_order = 1,
2917};
2918
2919static int __init setup_fail_page_alloc(char *str)
2920{
2921 return setup_fault_attr(&fail_page_alloc.attr, str);
2922}
2923__setup("fail_page_alloc=", setup_fail_page_alloc);
2924
2925static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2926{
2927 if (order < fail_page_alloc.min_order)
2928 return false;
2929 if (gfp_mask & __GFP_NOFAIL)
2930 return false;
2931 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2932 return false;
2933 if (fail_page_alloc.ignore_gfp_reclaim &&
2934 (gfp_mask & __GFP_DIRECT_RECLAIM))
2935 return false;
2936
2937 return should_fail(&fail_page_alloc.attr, 1 << order);
2938}
2939
2940#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2941
2942static int __init fail_page_alloc_debugfs(void)
2943{
2944 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2945 struct dentry *dir;
2946
2947 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2948 &fail_page_alloc.attr);
2949 if (IS_ERR(dir))
2950 return PTR_ERR(dir);
2951
2952 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2953 &fail_page_alloc.ignore_gfp_reclaim))
2954 goto fail;
2955 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2956 &fail_page_alloc.ignore_gfp_highmem))
2957 goto fail;
2958 if (!debugfs_create_u32("min-order", mode, dir,
2959 &fail_page_alloc.min_order))
2960 goto fail;
2961
2962 return 0;
2963fail:
2964 debugfs_remove_recursive(dir);
2965
2966 return -ENOMEM;
2967}
2968
2969late_initcall(fail_page_alloc_debugfs);
2970
2971#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2972
2973#else /* CONFIG_FAIL_PAGE_ALLOC */
2974
2975static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2976{
2977 return false;
2978}
2979
2980#endif /* CONFIG_FAIL_PAGE_ALLOC */
2981
2982/*
2983 * Return true if free base pages are above 'mark'. For high-order checks it
2984 * will return true of the order-0 watermark is reached and there is at least
2985 * one free page of a suitable size. Checking now avoids taking the zone lock
2986 * to check in the allocation paths if no pages are free.
2987 */
2988bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2989 int classzone_idx, unsigned int alloc_flags,
2990 long free_pages)
2991{
2992 long min = mark;
2993 int o;
2994 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
2995
2996 /* free_pages may go negative - that's OK */
2997 free_pages -= (1 << order) - 1;
2998
2999 if (alloc_flags & ALLOC_HIGH)
3000 min -= min / 2;
3001
3002 /*
3003 * If the caller does not have rights to ALLOC_HARDER then subtract
3004 * the high-atomic reserves. This will over-estimate the size of the
3005 * atomic reserve but it avoids a search.
3006 */
3007 if (likely(!alloc_harder)) {
3008 free_pages -= z->nr_reserved_highatomic;
3009 } else {
3010 /*
3011 * OOM victims can try even harder than normal ALLOC_HARDER
3012 * users on the grounds that it's definitely going to be in
3013 * the exit path shortly and free memory. Any allocation it
3014 * makes during the free path will be small and short-lived.
3015 */
3016 if (alloc_flags & ALLOC_OOM)
3017 min -= min / 2;
3018 else
3019 min -= min / 4;
3020 }
3021
3022
3023#ifdef CONFIG_CMA
3024 /* If allocation can't use CMA areas don't use free CMA pages */
3025 if (!(alloc_flags & ALLOC_CMA))
3026 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3027#endif
3028
3029 /*
3030 * Check watermarks for an order-0 allocation request. If these
3031 * are not met, then a high-order request also cannot go ahead
3032 * even if a suitable page happened to be free.
3033 */
3034 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3035 return false;
3036
3037 /* If this is an order-0 request then the watermark is fine */
3038 if (!order)
3039 return true;
3040
3041 /* For a high-order request, check at least one suitable page is free */
3042 for (o = order; o < MAX_ORDER; o++) {
3043 struct free_area *area = &z->free_area[o];
3044 int mt;
3045
3046 if (!area->nr_free)
3047 continue;
3048
3049 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3050 if (!list_empty(&area->free_list[mt]))
3051 return true;
3052 }
3053
3054#ifdef CONFIG_CMA
3055 if ((alloc_flags & ALLOC_CMA) &&
3056 !list_empty(&area->free_list[MIGRATE_CMA])) {
3057 return true;
3058 }
3059#endif
3060 if (alloc_harder &&
3061 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3062 return true;
3063 }
3064 return false;
3065}
3066
3067bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3068 int classzone_idx, unsigned int alloc_flags)
3069{
3070 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3071 zone_page_state(z, NR_FREE_PAGES));
3072}
3073
3074static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3075 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3076{
3077 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3078 long cma_pages = 0;
3079
3080#ifdef CONFIG_CMA
3081 /* If allocation can't use CMA areas don't use free CMA pages */
3082 if (!(alloc_flags & ALLOC_CMA))
3083 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3084#endif
3085
3086 /*
3087 * Fast check for order-0 only. If this fails then the reserves
3088 * need to be calculated. There is a corner case where the check
3089 * passes but only the high-order atomic reserve are free. If
3090 * the caller is !atomic then it'll uselessly search the free
3091 * list. That corner case is then slower but it is harmless.
3092 */
3093 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3094 return true;
3095
3096 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3097 free_pages);
3098}
3099
3100bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3101 unsigned long mark, int classzone_idx)
3102{
3103 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3104
3105 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3106 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3107
3108 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3109 free_pages);
3110}
3111
3112#ifdef CONFIG_NUMA
3113static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3114{
3115 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3116 RECLAIM_DISTANCE;
3117}
3118#else /* CONFIG_NUMA */
3119static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3120{
3121 return true;
3122}
3123#endif /* CONFIG_NUMA */
3124
3125/*
3126 * get_page_from_freelist goes through the zonelist trying to allocate
3127 * a page.
3128 */
3129static struct page *
3130get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3131 const struct alloc_context *ac)
3132{
3133 struct zoneref *z = ac->preferred_zoneref;
3134 struct zone *zone;
3135 struct pglist_data *last_pgdat_dirty_limit = NULL;
3136
3137 /*
3138 * Scan zonelist, looking for a zone with enough free.
3139 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3140 */
3141 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3142 ac->nodemask) {
3143 struct page *page;
3144 unsigned long mark;
3145
3146 if (cpusets_enabled() &&
3147 (alloc_flags & ALLOC_CPUSET) &&
3148 !__cpuset_zone_allowed(zone, gfp_mask))
3149 continue;
3150 /*
3151 * When allocating a page cache page for writing, we
3152 * want to get it from a node that is within its dirty
3153 * limit, such that no single node holds more than its
3154 * proportional share of globally allowed dirty pages.
3155 * The dirty limits take into account the node's
3156 * lowmem reserves and high watermark so that kswapd
3157 * should be able to balance it without having to
3158 * write pages from its LRU list.
3159 *
3160 * XXX: For now, allow allocations to potentially
3161 * exceed the per-node dirty limit in the slowpath
3162 * (spread_dirty_pages unset) before going into reclaim,
3163 * which is important when on a NUMA setup the allowed
3164 * nodes are together not big enough to reach the
3165 * global limit. The proper fix for these situations
3166 * will require awareness of nodes in the
3167 * dirty-throttling and the flusher threads.
3168 */
3169 if (ac->spread_dirty_pages) {
3170 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3171 continue;
3172
3173 if (!node_dirty_ok(zone->zone_pgdat)) {
3174 last_pgdat_dirty_limit = zone->zone_pgdat;
3175 continue;
3176 }
3177 }
3178
3179 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3180 if (!zone_watermark_fast(zone, order, mark,
3181 ac_classzone_idx(ac), alloc_flags)) {
3182 int ret;
3183
3184 /* Checked here to keep the fast path fast */
3185 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3186 if (alloc_flags & ALLOC_NO_WATERMARKS)
3187 goto try_this_zone;
3188
3189 if (node_reclaim_mode == 0 ||
3190 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3191 continue;
3192
3193 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3194 switch (ret) {
3195 case NODE_RECLAIM_NOSCAN:
3196 /* did not scan */
3197 continue;
3198 case NODE_RECLAIM_FULL:
3199 /* scanned but unreclaimable */
3200 continue;
3201 default:
3202 /* did we reclaim enough */
3203 if (zone_watermark_ok(zone, order, mark,
3204 ac_classzone_idx(ac), alloc_flags))
3205 goto try_this_zone;
3206
3207 continue;
3208 }
3209 }
3210
3211try_this_zone:
3212 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3213 gfp_mask, alloc_flags, ac->migratetype);
3214 if (page) {
3215 prep_new_page(page, order, gfp_mask, alloc_flags);
3216
3217 /*
3218 * If this is a high-order atomic allocation then check
3219 * if the pageblock should be reserved for the future
3220 */
3221 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3222 reserve_highatomic_pageblock(page, zone, order);
3223
3224 return page;
3225 }
3226 }
3227
3228 return NULL;
3229}
3230
3231/*
3232 * Large machines with many possible nodes should not always dump per-node
3233 * meminfo in irq context.
3234 */
3235static inline bool should_suppress_show_mem(void)
3236{
3237 bool ret = false;
3238
3239#if NODES_SHIFT > 8
3240 ret = in_interrupt();
3241#endif
3242 return ret;
3243}
3244
3245static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3246{
3247 unsigned int filter = SHOW_MEM_FILTER_NODES;
3248 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3249
3250 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3251 return;
3252
3253 /*
3254 * This documents exceptions given to allocations in certain
3255 * contexts that are allowed to allocate outside current's set
3256 * of allowed nodes.
3257 */
3258 if (!(gfp_mask & __GFP_NOMEMALLOC))
3259 if (tsk_is_oom_victim(current) ||
3260 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3261 filter &= ~SHOW_MEM_FILTER_NODES;
3262 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3263 filter &= ~SHOW_MEM_FILTER_NODES;
3264
3265 show_mem(filter, nodemask);
3266}
3267
3268void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3269{
3270 struct va_format vaf;
3271 va_list args;
3272 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3273 DEFAULT_RATELIMIT_BURST);
3274
3275 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3276 return;
3277
3278 va_start(args, fmt);
3279 vaf.fmt = fmt;
3280 vaf.va = &args;
3281 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3282 current->comm, &vaf, gfp_mask, &gfp_mask,
3283 nodemask_pr_args(nodemask));
3284 va_end(args);
3285
3286 cpuset_print_current_mems_allowed();
3287
3288 dump_stack();
3289 warn_alloc_show_mem(gfp_mask, nodemask);
3290}
3291
3292static inline struct page *
3293__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3294 unsigned int alloc_flags,
3295 const struct alloc_context *ac)
3296{
3297 struct page *page;
3298
3299 page = get_page_from_freelist(gfp_mask, order,
3300 alloc_flags|ALLOC_CPUSET, ac);
3301 /*
3302 * fallback to ignore cpuset restriction if our nodes
3303 * are depleted
3304 */
3305 if (!page)
3306 page = get_page_from_freelist(gfp_mask, order,
3307 alloc_flags, ac);
3308
3309 return page;
3310}
3311
3312static inline struct page *
3313__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3314 const struct alloc_context *ac, unsigned long *did_some_progress)
3315{
3316 struct oom_control oc = {
3317 .zonelist = ac->zonelist,
3318 .nodemask = ac->nodemask,
3319 .memcg = NULL,
3320 .gfp_mask = gfp_mask,
3321 .order = order,
3322 };
3323 struct page *page;
3324
3325 *did_some_progress = 0;
3326
3327 /*
3328 * Acquire the oom lock. If that fails, somebody else is
3329 * making progress for us.
3330 */
3331 if (!mutex_trylock(&oom_lock)) {
3332 *did_some_progress = 1;
3333 schedule_timeout_uninterruptible(1);
3334 return NULL;
3335 }
3336
3337 /*
3338 * Go through the zonelist yet one more time, keep very high watermark
3339 * here, this is only to catch a parallel oom killing, we must fail if
3340 * we're still under heavy pressure. But make sure that this reclaim
3341 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3342 * allocation which will never fail due to oom_lock already held.
3343 */
3344 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3345 ~__GFP_DIRECT_RECLAIM, order,
3346 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3347 if (page)
3348 goto out;
3349
3350 /* Coredumps can quickly deplete all memory reserves */
3351 if (current->flags & PF_DUMPCORE)
3352 goto out;
3353 /* The OOM killer will not help higher order allocs */
3354 if (order > PAGE_ALLOC_COSTLY_ORDER)
3355 goto out;
3356 /*
3357 * We have already exhausted all our reclaim opportunities without any
3358 * success so it is time to admit defeat. We will skip the OOM killer
3359 * because it is very likely that the caller has a more reasonable
3360 * fallback than shooting a random task.
3361 */
3362 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3363 goto out;
3364 /* The OOM killer does not needlessly kill tasks for lowmem */
3365 if (ac->high_zoneidx < ZONE_NORMAL)
3366 goto out;
3367 if (pm_suspended_storage())
3368 goto out;
3369 /*
3370 * XXX: GFP_NOFS allocations should rather fail than rely on
3371 * other request to make a forward progress.
3372 * We are in an unfortunate situation where out_of_memory cannot
3373 * do much for this context but let's try it to at least get
3374 * access to memory reserved if the current task is killed (see
3375 * out_of_memory). Once filesystems are ready to handle allocation
3376 * failures more gracefully we should just bail out here.
3377 */
3378
3379 /* The OOM killer may not free memory on a specific node */
3380 if (gfp_mask & __GFP_THISNODE)
3381 goto out;
3382
3383 /* Exhausted what can be done so it's blamo time */
3384 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3385 *did_some_progress = 1;
3386
3387 /*
3388 * Help non-failing allocations by giving them access to memory
3389 * reserves
3390 */
3391 if (gfp_mask & __GFP_NOFAIL)
3392 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3393 ALLOC_NO_WATERMARKS, ac);
3394 }
3395out:
3396 mutex_unlock(&oom_lock);
3397 return page;
3398}
3399
3400/*
3401 * Maximum number of compaction retries wit a progress before OOM
3402 * killer is consider as the only way to move forward.
3403 */
3404#define MAX_COMPACT_RETRIES 16
3405
3406#ifdef CONFIG_COMPACTION
3407/* Try memory compaction for high-order allocations before reclaim */
3408static struct page *
3409__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3410 unsigned int alloc_flags, const struct alloc_context *ac,
3411 enum compact_priority prio, enum compact_result *compact_result)
3412{
3413 struct page *page;
3414 unsigned int noreclaim_flag;
3415
3416 if (!order)
3417 return NULL;
3418
3419 noreclaim_flag = memalloc_noreclaim_save();
3420 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3421 prio);
3422 memalloc_noreclaim_restore(noreclaim_flag);
3423
3424 if (*compact_result <= COMPACT_INACTIVE)
3425 return NULL;
3426
3427 /*
3428 * At least in one zone compaction wasn't deferred or skipped, so let's
3429 * count a compaction stall
3430 */
3431 count_vm_event(COMPACTSTALL);
3432
3433 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3434
3435 if (page) {
3436 struct zone *zone = page_zone(page);
3437
3438 zone->compact_blockskip_flush = false;
3439 compaction_defer_reset(zone, order, true);
3440 count_vm_event(COMPACTSUCCESS);
3441 return page;
3442 }
3443
3444 /*
3445 * It's bad if compaction run occurs and fails. The most likely reason
3446 * is that pages exist, but not enough to satisfy watermarks.
3447 */
3448 count_vm_event(COMPACTFAIL);
3449
3450 cond_resched();
3451
3452 return NULL;
3453}
3454
3455static inline bool
3456should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3457 enum compact_result compact_result,
3458 enum compact_priority *compact_priority,
3459 int *compaction_retries)
3460{
3461 int max_retries = MAX_COMPACT_RETRIES;
3462 int min_priority;
3463 bool ret = false;
3464 int retries = *compaction_retries;
3465 enum compact_priority priority = *compact_priority;
3466
3467 if (!order)
3468 return false;
3469
3470 if (compaction_made_progress(compact_result))
3471 (*compaction_retries)++;
3472
3473 /*
3474 * compaction considers all the zone as desperately out of memory
3475 * so it doesn't really make much sense to retry except when the
3476 * failure could be caused by insufficient priority
3477 */
3478 if (compaction_failed(compact_result))
3479 goto check_priority;
3480
3481 /*
3482 * make sure the compaction wasn't deferred or didn't bail out early
3483 * due to locks contention before we declare that we should give up.
3484 * But do not retry if the given zonelist is not suitable for
3485 * compaction.
3486 */
3487 if (compaction_withdrawn(compact_result)) {
3488 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3489 goto out;
3490 }
3491
3492 /*
3493 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3494 * costly ones because they are de facto nofail and invoke OOM
3495 * killer to move on while costly can fail and users are ready
3496 * to cope with that. 1/4 retries is rather arbitrary but we
3497 * would need much more detailed feedback from compaction to
3498 * make a better decision.
3499 */
3500 if (order > PAGE_ALLOC_COSTLY_ORDER)
3501 max_retries /= 4;
3502 if (*compaction_retries <= max_retries) {
3503 ret = true;
3504 goto out;
3505 }
3506
3507 /*
3508 * Make sure there are attempts at the highest priority if we exhausted
3509 * all retries or failed at the lower priorities.
3510 */
3511check_priority:
3512 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3513 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3514
3515 if (*compact_priority > min_priority) {
3516 (*compact_priority)--;
3517 *compaction_retries = 0;
3518 ret = true;
3519 }
3520out:
3521 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3522 return ret;
3523}
3524#else
3525static inline struct page *
3526__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3527 unsigned int alloc_flags, const struct alloc_context *ac,
3528 enum compact_priority prio, enum compact_result *compact_result)
3529{
3530 *compact_result = COMPACT_SKIPPED;
3531 return NULL;
3532}
3533
3534static inline bool
3535should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3536 enum compact_result compact_result,
3537 enum compact_priority *compact_priority,
3538 int *compaction_retries)
3539{
3540 struct zone *zone;
3541 struct zoneref *z;
3542
3543 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3544 return false;
3545
3546 /*
3547 * There are setups with compaction disabled which would prefer to loop
3548 * inside the allocator rather than hit the oom killer prematurely.
3549 * Let's give them a good hope and keep retrying while the order-0
3550 * watermarks are OK.
3551 */
3552 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3553 ac->nodemask) {
3554 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3555 ac_classzone_idx(ac), alloc_flags))
3556 return true;
3557 }
3558 return false;
3559}
3560#endif /* CONFIG_COMPACTION */
3561
3562#ifdef CONFIG_LOCKDEP
3563struct lockdep_map __fs_reclaim_map =
3564 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3565
3566static bool __need_fs_reclaim(gfp_t gfp_mask)
3567{
3568 gfp_mask = current_gfp_context(gfp_mask);
3569
3570 /* no reclaim without waiting on it */
3571 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3572 return false;
3573
3574 /* this guy won't enter reclaim */
3575 if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
3576 return false;
3577
3578 /* We're only interested __GFP_FS allocations for now */
3579 if (!(gfp_mask & __GFP_FS))
3580 return false;
3581
3582 if (gfp_mask & __GFP_NOLOCKDEP)
3583 return false;
3584
3585 return true;
3586}
3587
3588void fs_reclaim_acquire(gfp_t gfp_mask)
3589{
3590 if (__need_fs_reclaim(gfp_mask))
3591 lock_map_acquire(&__fs_reclaim_map);
3592}
3593EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3594
3595void fs_reclaim_release(gfp_t gfp_mask)
3596{
3597 if (__need_fs_reclaim(gfp_mask))
3598 lock_map_release(&__fs_reclaim_map);
3599}
3600EXPORT_SYMBOL_GPL(fs_reclaim_release);
3601#endif
3602
3603/* Perform direct synchronous page reclaim */
3604static int
3605__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3606 const struct alloc_context *ac)
3607{
3608 struct reclaim_state reclaim_state;
3609 int progress;
3610 unsigned int noreclaim_flag;
3611
3612 cond_resched();
3613
3614 /* We now go into synchronous reclaim */
3615 cpuset_memory_pressure_bump();
3616 noreclaim_flag = memalloc_noreclaim_save();
3617 fs_reclaim_acquire(gfp_mask);
3618 reclaim_state.reclaimed_slab = 0;
3619 current->reclaim_state = &reclaim_state;
3620
3621 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3622 ac->nodemask);
3623
3624 current->reclaim_state = NULL;
3625 fs_reclaim_release(gfp_mask);
3626 memalloc_noreclaim_restore(noreclaim_flag);
3627
3628 cond_resched();
3629
3630 return progress;
3631}
3632
3633/* The really slow allocator path where we enter direct reclaim */
3634static inline struct page *
3635__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3636 unsigned int alloc_flags, const struct alloc_context *ac,
3637 unsigned long *did_some_progress)
3638{
3639 struct page *page = NULL;
3640 bool drained = false;
3641
3642 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3643 if (unlikely(!(*did_some_progress)))
3644 return NULL;
3645
3646retry:
3647 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3648
3649 /*
3650 * If an allocation failed after direct reclaim, it could be because
3651 * pages are pinned on the per-cpu lists or in high alloc reserves.
3652 * Shrink them them and try again
3653 */
3654 if (!page && !drained) {
3655 unreserve_highatomic_pageblock(ac, false);
3656 drain_all_pages(NULL);
3657 drained = true;
3658 goto retry;
3659 }
3660
3661 return page;
3662}
3663
3664static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3665{
3666 struct zoneref *z;
3667 struct zone *zone;
3668 pg_data_t *last_pgdat = NULL;
3669
3670 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3671 ac->high_zoneidx, ac->nodemask) {
3672 if (last_pgdat != zone->zone_pgdat)
3673 wakeup_kswapd(zone, order, ac->high_zoneidx);
3674 last_pgdat = zone->zone_pgdat;
3675 }
3676}
3677
3678static inline unsigned int
3679gfp_to_alloc_flags(gfp_t gfp_mask)
3680{
3681 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3682
3683 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3684 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3685
3686 /*
3687 * The caller may dip into page reserves a bit more if the caller
3688 * cannot run direct reclaim, or if the caller has realtime scheduling
3689 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3690 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3691 */
3692 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3693
3694 if (gfp_mask & __GFP_ATOMIC) {
3695 /*
3696 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3697 * if it can't schedule.
3698 */
3699 if (!(gfp_mask & __GFP_NOMEMALLOC))
3700 alloc_flags |= ALLOC_HARDER;
3701 /*
3702 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3703 * comment for __cpuset_node_allowed().
3704 */
3705 alloc_flags &= ~ALLOC_CPUSET;
3706 } else if (unlikely(rt_task(current)) && !in_interrupt())
3707 alloc_flags |= ALLOC_HARDER;
3708
3709#ifdef CONFIG_CMA
3710 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3711 alloc_flags |= ALLOC_CMA;
3712#endif
3713 return alloc_flags;
3714}
3715
3716static bool oom_reserves_allowed(struct task_struct *tsk)
3717{
3718 if (!tsk_is_oom_victim(tsk))
3719 return false;
3720
3721 /*
3722 * !MMU doesn't have oom reaper so give access to memory reserves
3723 * only to the thread with TIF_MEMDIE set
3724 */
3725 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3726 return false;
3727
3728 return true;
3729}
3730
3731/*
3732 * Distinguish requests which really need access to full memory
3733 * reserves from oom victims which can live with a portion of it
3734 */
3735static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3736{
3737 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3738 return 0;
3739 if (gfp_mask & __GFP_MEMALLOC)
3740 return ALLOC_NO_WATERMARKS;
3741 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3742 return ALLOC_NO_WATERMARKS;
3743 if (!in_interrupt()) {
3744 if (current->flags & PF_MEMALLOC)
3745 return ALLOC_NO_WATERMARKS;
3746 else if (oom_reserves_allowed(current))
3747 return ALLOC_OOM;
3748 }
3749
3750 return 0;
3751}
3752
3753bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3754{
3755 return !!__gfp_pfmemalloc_flags(gfp_mask);
3756}
3757
3758/*
3759 * Checks whether it makes sense to retry the reclaim to make a forward progress
3760 * for the given allocation request.
3761 *
3762 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3763 * without success, or when we couldn't even meet the watermark if we
3764 * reclaimed all remaining pages on the LRU lists.
3765 *
3766 * Returns true if a retry is viable or false to enter the oom path.
3767 */
3768static inline bool
3769should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3770 struct alloc_context *ac, int alloc_flags,
3771 bool did_some_progress, int *no_progress_loops)
3772{
3773 struct zone *zone;
3774 struct zoneref *z;
3775
3776 /*
3777 * Costly allocations might have made a progress but this doesn't mean
3778 * their order will become available due to high fragmentation so
3779 * always increment the no progress counter for them
3780 */
3781 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3782 *no_progress_loops = 0;
3783 else
3784 (*no_progress_loops)++;
3785
3786 /*
3787 * Make sure we converge to OOM if we cannot make any progress
3788 * several times in the row.
3789 */
3790 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3791 /* Before OOM, exhaust highatomic_reserve */
3792 return unreserve_highatomic_pageblock(ac, true);
3793 }
3794
3795 /*
3796 * Keep reclaiming pages while there is a chance this will lead
3797 * somewhere. If none of the target zones can satisfy our allocation
3798 * request even if all reclaimable pages are considered then we are
3799 * screwed and have to go OOM.
3800 */
3801 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3802 ac->nodemask) {
3803 unsigned long available;
3804 unsigned long reclaimable;
3805 unsigned long min_wmark = min_wmark_pages(zone);
3806 bool wmark;
3807
3808 available = reclaimable = zone_reclaimable_pages(zone);
3809 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3810
3811 /*
3812 * Would the allocation succeed if we reclaimed all
3813 * reclaimable pages?
3814 */
3815 wmark = __zone_watermark_ok(zone, order, min_wmark,
3816 ac_classzone_idx(ac), alloc_flags, available);
3817 trace_reclaim_retry_zone(z, order, reclaimable,
3818 available, min_wmark, *no_progress_loops, wmark);
3819 if (wmark) {
3820 /*
3821 * If we didn't make any progress and have a lot of
3822 * dirty + writeback pages then we should wait for
3823 * an IO to complete to slow down the reclaim and
3824 * prevent from pre mature OOM
3825 */
3826 if (!did_some_progress) {
3827 unsigned long write_pending;
3828
3829 write_pending = zone_page_state_snapshot(zone,
3830 NR_ZONE_WRITE_PENDING);
3831
3832 if (2 * write_pending > reclaimable) {
3833 congestion_wait(BLK_RW_ASYNC, HZ/10);
3834 return true;
3835 }
3836 }
3837
3838 /*
3839 * Memory allocation/reclaim might be called from a WQ
3840 * context and the current implementation of the WQ
3841 * concurrency control doesn't recognize that
3842 * a particular WQ is congested if the worker thread is
3843 * looping without ever sleeping. Therefore we have to
3844 * do a short sleep here rather than calling
3845 * cond_resched().
3846 */
3847 if (current->flags & PF_WQ_WORKER)
3848 schedule_timeout_uninterruptible(1);
3849 else
3850 cond_resched();
3851
3852 return true;
3853 }
3854 }
3855
3856 return false;
3857}
3858
3859static inline bool
3860check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3861{
3862 /*
3863 * It's possible that cpuset's mems_allowed and the nodemask from
3864 * mempolicy don't intersect. This should be normally dealt with by
3865 * policy_nodemask(), but it's possible to race with cpuset update in
3866 * such a way the check therein was true, and then it became false
3867 * before we got our cpuset_mems_cookie here.
3868 * This assumes that for all allocations, ac->nodemask can come only
3869 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3870 * when it does not intersect with the cpuset restrictions) or the
3871 * caller can deal with a violated nodemask.
3872 */
3873 if (cpusets_enabled() && ac->nodemask &&
3874 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3875 ac->nodemask = NULL;
3876 return true;
3877 }
3878
3879 /*
3880 * When updating a task's mems_allowed or mempolicy nodemask, it is
3881 * possible to race with parallel threads in such a way that our
3882 * allocation can fail while the mask is being updated. If we are about
3883 * to fail, check if the cpuset changed during allocation and if so,
3884 * retry.
3885 */
3886 if (read_mems_allowed_retry(cpuset_mems_cookie))
3887 return true;
3888
3889 return false;
3890}
3891
3892static inline struct page *
3893__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3894 struct alloc_context *ac)
3895{
3896 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3897 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3898 struct page *page = NULL;
3899 unsigned int alloc_flags;
3900 unsigned long did_some_progress;
3901 enum compact_priority compact_priority;
3902 enum compact_result compact_result;
3903 int compaction_retries;
3904 int no_progress_loops;
3905 unsigned int cpuset_mems_cookie;
3906 int reserve_flags;
3907
3908 /*
3909 * In the slowpath, we sanity check order to avoid ever trying to
3910 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3911 * be using allocators in order of preference for an area that is
3912 * too large.
3913 */
3914 if (order >= MAX_ORDER) {
3915 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3916 return NULL;
3917 }
3918
3919 /*
3920 * We also sanity check to catch abuse of atomic reserves being used by
3921 * callers that are not in atomic context.
3922 */
3923 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3924 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3925 gfp_mask &= ~__GFP_ATOMIC;
3926
3927retry_cpuset:
3928 compaction_retries = 0;
3929 no_progress_loops = 0;
3930 compact_priority = DEF_COMPACT_PRIORITY;
3931 cpuset_mems_cookie = read_mems_allowed_begin();
3932
3933 /*
3934 * The fast path uses conservative alloc_flags to succeed only until
3935 * kswapd needs to be woken up, and to avoid the cost of setting up
3936 * alloc_flags precisely. So we do that now.
3937 */
3938 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3939
3940 /*
3941 * We need to recalculate the starting point for the zonelist iterator
3942 * because we might have used different nodemask in the fast path, or
3943 * there was a cpuset modification and we are retrying - otherwise we
3944 * could end up iterating over non-eligible zones endlessly.
3945 */
3946 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3947 ac->high_zoneidx, ac->nodemask);
3948 if (!ac->preferred_zoneref->zone)
3949 goto nopage;
3950
3951 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3952 wake_all_kswapds(order, ac);
3953
3954 /*
3955 * The adjusted alloc_flags might result in immediate success, so try
3956 * that first
3957 */
3958 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3959 if (page)
3960 goto got_pg;
3961
3962 /*
3963 * For costly allocations, try direct compaction first, as it's likely
3964 * that we have enough base pages and don't need to reclaim. For non-
3965 * movable high-order allocations, do that as well, as compaction will
3966 * try prevent permanent fragmentation by migrating from blocks of the
3967 * same migratetype.
3968 * Don't try this for allocations that are allowed to ignore
3969 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3970 */
3971 if (can_direct_reclaim &&
3972 (costly_order ||
3973 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3974 && !gfp_pfmemalloc_allowed(gfp_mask)) {
3975 page = __alloc_pages_direct_compact(gfp_mask, order,
3976 alloc_flags, ac,
3977 INIT_COMPACT_PRIORITY,
3978 &compact_result);
3979 if (page)
3980 goto got_pg;
3981
3982 /*
3983 * Checks for costly allocations with __GFP_NORETRY, which
3984 * includes THP page fault allocations
3985 */
3986 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3987 /*
3988 * If compaction is deferred for high-order allocations,
3989 * it is because sync compaction recently failed. If
3990 * this is the case and the caller requested a THP
3991 * allocation, we do not want to heavily disrupt the
3992 * system, so we fail the allocation instead of entering
3993 * direct reclaim.
3994 */
3995 if (compact_result == COMPACT_DEFERRED)
3996 goto nopage;
3997
3998 /*
3999 * Looks like reclaim/compaction is worth trying, but
4000 * sync compaction could be very expensive, so keep
4001 * using async compaction.
4002 */
4003 compact_priority = INIT_COMPACT_PRIORITY;
4004 }
4005 }
4006
4007retry:
4008 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4009 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4010 wake_all_kswapds(order, ac);
4011
4012 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4013 if (reserve_flags)
4014 alloc_flags = reserve_flags;
4015
4016 /*
4017 * Reset the zonelist iterators if memory policies can be ignored.
4018 * These allocations are high priority and system rather than user
4019 * orientated.
4020 */
4021 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4022 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4023 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4024 ac->high_zoneidx, ac->nodemask);
4025 }
4026
4027 /* Attempt with potentially adjusted zonelist and alloc_flags */
4028 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4029 if (page)
4030 goto got_pg;
4031
4032 /* Caller is not willing to reclaim, we can't balance anything */
4033 if (!can_direct_reclaim)
4034 goto nopage;
4035
4036 /* Avoid recursion of direct reclaim */
4037 if (current->flags & PF_MEMALLOC)
4038 goto nopage;
4039
4040 /* Try direct reclaim and then allocating */
4041 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4042 &did_some_progress);
4043 if (page)
4044 goto got_pg;
4045
4046 /* Try direct compaction and then allocating */
4047 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4048 compact_priority, &compact_result);
4049 if (page)
4050 goto got_pg;
4051
4052 /* Do not loop if specifically requested */
4053 if (gfp_mask & __GFP_NORETRY)
4054 goto nopage;
4055
4056 /*
4057 * Do not retry costly high order allocations unless they are
4058 * __GFP_RETRY_MAYFAIL
4059 */
4060 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4061 goto nopage;
4062
4063 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4064 did_some_progress > 0, &no_progress_loops))
4065 goto retry;
4066
4067 /*
4068 * It doesn't make any sense to retry for the compaction if the order-0
4069 * reclaim is not able to make any progress because the current
4070 * implementation of the compaction depends on the sufficient amount
4071 * of free memory (see __compaction_suitable)
4072 */
4073 if (did_some_progress > 0 &&
4074 should_compact_retry(ac, order, alloc_flags,
4075 compact_result, &compact_priority,
4076 &compaction_retries))
4077 goto retry;
4078
4079
4080 /* Deal with possible cpuset update races before we start OOM killing */
4081 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4082 goto retry_cpuset;
4083
4084 /* Reclaim has failed us, start killing things */
4085 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4086 if (page)
4087 goto got_pg;
4088
4089 /* Avoid allocations with no watermarks from looping endlessly */
4090 if (tsk_is_oom_victim(current) &&
4091 (alloc_flags == ALLOC_OOM ||
4092 (gfp_mask & __GFP_NOMEMALLOC)))
4093 goto nopage;
4094
4095 /* Retry as long as the OOM killer is making progress */
4096 if (did_some_progress) {
4097 no_progress_loops = 0;
4098 goto retry;
4099 }
4100
4101nopage:
4102 /* Deal with possible cpuset update races before we fail */
4103 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4104 goto retry_cpuset;
4105
4106 /*
4107 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4108 * we always retry
4109 */
4110 if (gfp_mask & __GFP_NOFAIL) {
4111 /*
4112 * All existing users of the __GFP_NOFAIL are blockable, so warn
4113 * of any new users that actually require GFP_NOWAIT
4114 */
4115 if (WARN_ON_ONCE(!can_direct_reclaim))
4116 goto fail;
4117
4118 /*
4119 * PF_MEMALLOC request from this context is rather bizarre
4120 * because we cannot reclaim anything and only can loop waiting
4121 * for somebody to do a work for us
4122 */
4123 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4124
4125 /*
4126 * non failing costly orders are a hard requirement which we
4127 * are not prepared for much so let's warn about these users
4128 * so that we can identify them and convert them to something
4129 * else.
4130 */
4131 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4132
4133 /*
4134 * Help non-failing allocations by giving them access to memory
4135 * reserves but do not use ALLOC_NO_WATERMARKS because this
4136 * could deplete whole memory reserves which would just make
4137 * the situation worse
4138 */
4139 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4140 if (page)
4141 goto got_pg;
4142
4143 cond_resched();
4144 goto retry;
4145 }
4146fail:
4147 warn_alloc(gfp_mask, ac->nodemask,
4148 "page allocation failure: order:%u", order);
4149got_pg:
4150 return page;
4151}
4152
4153static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4154 int preferred_nid, nodemask_t *nodemask,
4155 struct alloc_context *ac, gfp_t *alloc_mask,
4156 unsigned int *alloc_flags)
4157{
4158 ac->high_zoneidx = gfp_zone(gfp_mask);
4159 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4160 ac->nodemask = nodemask;
4161 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4162
4163 if (cpusets_enabled()) {
4164 *alloc_mask |= __GFP_HARDWALL;
4165 if (!ac->nodemask)
4166 ac->nodemask = &cpuset_current_mems_allowed;
4167 else
4168 *alloc_flags |= ALLOC_CPUSET;
4169 }
4170
4171 fs_reclaim_acquire(gfp_mask);
4172 fs_reclaim_release(gfp_mask);
4173
4174 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4175
4176 if (should_fail_alloc_page(gfp_mask, order))
4177 return false;
4178
4179 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4180 *alloc_flags |= ALLOC_CMA;
4181
4182 return true;
4183}
4184
4185/* Determine whether to spread dirty pages and what the first usable zone */
4186static inline void finalise_ac(gfp_t gfp_mask,
4187 unsigned int order, struct alloc_context *ac)
4188{
4189 /* Dirty zone balancing only done in the fast path */
4190 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4191
4192 /*
4193 * The preferred zone is used for statistics but crucially it is
4194 * also used as the starting point for the zonelist iterator. It
4195 * may get reset for allocations that ignore memory policies.
4196 */
4197 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4198 ac->high_zoneidx, ac->nodemask);
4199}
4200
4201/*
4202 * This is the 'heart' of the zoned buddy allocator.
4203 */
4204struct page *
4205__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4206 nodemask_t *nodemask)
4207{
4208 struct page *page;
4209 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4210 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4211 struct alloc_context ac = { };
4212
4213 gfp_mask &= gfp_allowed_mask;
4214 alloc_mask = gfp_mask;
4215 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4216 return NULL;
4217
4218 finalise_ac(gfp_mask, order, &ac);
4219
4220 /* First allocation attempt */
4221 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4222 if (likely(page))
4223 goto out;
4224
4225 /*
4226 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4227 * resp. GFP_NOIO which has to be inherited for all allocation requests
4228 * from a particular context which has been marked by
4229 * memalloc_no{fs,io}_{save,restore}.
4230 */
4231 alloc_mask = current_gfp_context(gfp_mask);
4232 ac.spread_dirty_pages = false;
4233
4234 /*
4235 * Restore the original nodemask if it was potentially replaced with
4236 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4237 */
4238 if (unlikely(ac.nodemask != nodemask))
4239 ac.nodemask = nodemask;
4240
4241 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4242
4243out:
4244 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4245 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4246 __free_pages(page, order);
4247 page = NULL;
4248 }
4249
4250 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4251
4252 return page;
4253}
4254EXPORT_SYMBOL(__alloc_pages_nodemask);
4255
4256/*
4257 * Common helper functions.
4258 */
4259unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4260{
4261 struct page *page;
4262
4263 /*
4264 * __get_free_pages() returns a 32-bit address, which cannot represent
4265 * a highmem page
4266 */
4267 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4268
4269 page = alloc_pages(gfp_mask, order);
4270 if (!page)
4271 return 0;
4272 return (unsigned long) page_address(page);
4273}
4274EXPORT_SYMBOL(__get_free_pages);
4275
4276unsigned long get_zeroed_page(gfp_t gfp_mask)
4277{
4278 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4279}
4280EXPORT_SYMBOL(get_zeroed_page);
4281
4282void __free_pages(struct page *page, unsigned int order)
4283{
4284 if (put_page_testzero(page)) {
4285 if (order == 0)
4286 free_unref_page(page);
4287 else
4288 __free_pages_ok(page, order);
4289 }
4290}
4291
4292EXPORT_SYMBOL(__free_pages);
4293
4294void free_pages(unsigned long addr, unsigned int order)
4295{
4296 if (addr != 0) {
4297 VM_BUG_ON(!virt_addr_valid((void *)addr));
4298 __free_pages(virt_to_page((void *)addr), order);
4299 }
4300}
4301
4302EXPORT_SYMBOL(free_pages);
4303
4304/*
4305 * Page Fragment:
4306 * An arbitrary-length arbitrary-offset area of memory which resides
4307 * within a 0 or higher order page. Multiple fragments within that page
4308 * are individually refcounted, in the page's reference counter.
4309 *
4310 * The page_frag functions below provide a simple allocation framework for
4311 * page fragments. This is used by the network stack and network device
4312 * drivers to provide a backing region of memory for use as either an
4313 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4314 */
4315static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4316 gfp_t gfp_mask)
4317{
4318 struct page *page = NULL;
4319 gfp_t gfp = gfp_mask;
4320
4321#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4322 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4323 __GFP_NOMEMALLOC;
4324 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4325 PAGE_FRAG_CACHE_MAX_ORDER);
4326 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4327#endif
4328 if (unlikely(!page))
4329 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4330
4331 nc->va = page ? page_address(page) : NULL;
4332
4333 return page;
4334}
4335
4336void __page_frag_cache_drain(struct page *page, unsigned int count)
4337{
4338 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4339
4340 if (page_ref_sub_and_test(page, count)) {
4341 unsigned int order = compound_order(page);
4342
4343 if (order == 0)
4344 free_unref_page(page);
4345 else
4346 __free_pages_ok(page, order);
4347 }
4348}
4349EXPORT_SYMBOL(__page_frag_cache_drain);
4350
4351void *page_frag_alloc(struct page_frag_cache *nc,
4352 unsigned int fragsz, gfp_t gfp_mask)
4353{
4354 unsigned int size = PAGE_SIZE;
4355 struct page *page;
4356 int offset;
4357
4358 if (unlikely(!nc->va)) {
4359refill:
4360 page = __page_frag_cache_refill(nc, gfp_mask);
4361 if (!page)
4362 return NULL;
4363
4364#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4365 /* if size can vary use size else just use PAGE_SIZE */
4366 size = nc->size;
4367#endif
4368 /* Even if we own the page, we do not use atomic_set().
4369 * This would break get_page_unless_zero() users.
4370 */
4371 page_ref_add(page, size - 1);
4372
4373 /* reset page count bias and offset to start of new frag */
4374 nc->pfmemalloc = page_is_pfmemalloc(page);
4375 nc->pagecnt_bias = size;
4376 nc->offset = size;
4377 }
4378
4379 offset = nc->offset - fragsz;
4380 if (unlikely(offset < 0)) {
4381 page = virt_to_page(nc->va);
4382
4383 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4384 goto refill;
4385
4386#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4387 /* if size can vary use size else just use PAGE_SIZE */
4388 size = nc->size;
4389#endif
4390 /* OK, page count is 0, we can safely set it */
4391 set_page_count(page, size);
4392
4393 /* reset page count bias and offset to start of new frag */
4394 nc->pagecnt_bias = size;
4395 offset = size - fragsz;
4396 }
4397
4398 nc->pagecnt_bias--;
4399 nc->offset = offset;
4400
4401 return nc->va + offset;
4402}
4403EXPORT_SYMBOL(page_frag_alloc);
4404
4405/*
4406 * Frees a page fragment allocated out of either a compound or order 0 page.
4407 */
4408void page_frag_free(void *addr)
4409{
4410 struct page *page = virt_to_head_page(addr);
4411
4412 if (unlikely(put_page_testzero(page)))
4413 __free_pages_ok(page, compound_order(page));
4414}
4415EXPORT_SYMBOL(page_frag_free);
4416
4417static void *make_alloc_exact(unsigned long addr, unsigned int order,
4418 size_t size)
4419{
4420 if (addr) {
4421 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4422 unsigned long used = addr + PAGE_ALIGN(size);
4423
4424 split_page(virt_to_page((void *)addr), order);
4425 while (used < alloc_end) {
4426 free_page(used);
4427 used += PAGE_SIZE;
4428 }
4429 }
4430 return (void *)addr;
4431}
4432
4433/**
4434 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4435 * @size: the number of bytes to allocate
4436 * @gfp_mask: GFP flags for the allocation
4437 *
4438 * This function is similar to alloc_pages(), except that it allocates the
4439 * minimum number of pages to satisfy the request. alloc_pages() can only
4440 * allocate memory in power-of-two pages.
4441 *
4442 * This function is also limited by MAX_ORDER.
4443 *
4444 * Memory allocated by this function must be released by free_pages_exact().
4445 */
4446void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4447{
4448 unsigned int order = get_order(size);
4449 unsigned long addr;
4450
4451 addr = __get_free_pages(gfp_mask, order);
4452 return make_alloc_exact(addr, order, size);
4453}
4454EXPORT_SYMBOL(alloc_pages_exact);
4455
4456/**
4457 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4458 * pages on a node.
4459 * @nid: the preferred node ID where memory should be allocated
4460 * @size: the number of bytes to allocate
4461 * @gfp_mask: GFP flags for the allocation
4462 *
4463 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4464 * back.
4465 */
4466void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4467{
4468 unsigned int order = get_order(size);
4469 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4470 if (!p)
4471 return NULL;
4472 return make_alloc_exact((unsigned long)page_address(p), order, size);
4473}
4474
4475/**
4476 * free_pages_exact - release memory allocated via alloc_pages_exact()
4477 * @virt: the value returned by alloc_pages_exact.
4478 * @size: size of allocation, same value as passed to alloc_pages_exact().
4479 *
4480 * Release the memory allocated by a previous call to alloc_pages_exact.
4481 */
4482void free_pages_exact(void *virt, size_t size)
4483{
4484 unsigned long addr = (unsigned long)virt;
4485 unsigned long end = addr + PAGE_ALIGN(size);
4486
4487 while (addr < end) {
4488 free_page(addr);
4489 addr += PAGE_SIZE;
4490 }
4491}
4492EXPORT_SYMBOL(free_pages_exact);
4493
4494/**
4495 * nr_free_zone_pages - count number of pages beyond high watermark
4496 * @offset: The zone index of the highest zone
4497 *
4498 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4499 * high watermark within all zones at or below a given zone index. For each
4500 * zone, the number of pages is calculated as:
4501 *
4502 * nr_free_zone_pages = managed_pages - high_pages
4503 */
4504static unsigned long nr_free_zone_pages(int offset)
4505{
4506 struct zoneref *z;
4507 struct zone *zone;
4508
4509 /* Just pick one node, since fallback list is circular */
4510 unsigned long sum = 0;
4511
4512 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4513
4514 for_each_zone_zonelist(zone, z, zonelist, offset) {
4515 unsigned long size = zone->managed_pages;
4516 unsigned long high = high_wmark_pages(zone);
4517 if (size > high)
4518 sum += size - high;
4519 }
4520
4521 return sum;
4522}
4523
4524/**
4525 * nr_free_buffer_pages - count number of pages beyond high watermark
4526 *
4527 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4528 * watermark within ZONE_DMA and ZONE_NORMAL.
4529 */
4530unsigned long nr_free_buffer_pages(void)
4531{
4532 return nr_free_zone_pages(gfp_zone(GFP_USER));
4533}
4534EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4535
4536/**
4537 * nr_free_pagecache_pages - count number of pages beyond high watermark
4538 *
4539 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4540 * high watermark within all zones.
4541 */
4542unsigned long nr_free_pagecache_pages(void)
4543{
4544 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4545}
4546
4547static inline void show_node(struct zone *zone)
4548{
4549 if (IS_ENABLED(CONFIG_NUMA))
4550 printk("Node %d ", zone_to_nid(zone));
4551}
4552
4553long si_mem_available(void)
4554{
4555 long available;
4556 unsigned long pagecache;
4557 unsigned long wmark_low = 0;
4558 unsigned long pages[NR_LRU_LISTS];
4559 struct zone *zone;
4560 int lru;
4561
4562 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4563 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4564
4565 for_each_zone(zone)
4566 wmark_low += zone->watermark[WMARK_LOW];
4567
4568 /*
4569 * Estimate the amount of memory available for userspace allocations,
4570 * without causing swapping.
4571 */
4572 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4573
4574 /*
4575 * Not all the page cache can be freed, otherwise the system will
4576 * start swapping. Assume at least half of the page cache, or the
4577 * low watermark worth of cache, needs to stay.
4578 */
4579 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4580 pagecache -= min(pagecache / 2, wmark_low);
4581 available += pagecache;
4582
4583 /*
4584 * Part of the reclaimable slab consists of items that are in use,
4585 * and cannot be freed. Cap this estimate at the low watermark.
4586 */
4587 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4588 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4589 wmark_low);
4590
4591 if (available < 0)
4592 available = 0;
4593 return available;
4594}
4595EXPORT_SYMBOL_GPL(si_mem_available);
4596
4597void si_meminfo(struct sysinfo *val)
4598{
4599 val->totalram = totalram_pages;
4600 val->sharedram = global_node_page_state(NR_SHMEM);
4601 val->freeram = global_zone_page_state(NR_FREE_PAGES);
4602 val->bufferram = nr_blockdev_pages();
4603 val->totalhigh = totalhigh_pages;
4604 val->freehigh = nr_free_highpages();
4605 val->mem_unit = PAGE_SIZE;
4606}
4607
4608EXPORT_SYMBOL(si_meminfo);
4609
4610#ifdef CONFIG_NUMA
4611void si_meminfo_node(struct sysinfo *val, int nid)
4612{
4613 int zone_type; /* needs to be signed */
4614 unsigned long managed_pages = 0;
4615 unsigned long managed_highpages = 0;
4616 unsigned long free_highpages = 0;
4617 pg_data_t *pgdat = NODE_DATA(nid);
4618
4619 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4620 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4621 val->totalram = managed_pages;
4622 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4623 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4624#ifdef CONFIG_HIGHMEM
4625 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4626 struct zone *zone = &pgdat->node_zones[zone_type];
4627
4628 if (is_highmem(zone)) {
4629 managed_highpages += zone->managed_pages;
4630 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4631 }
4632 }
4633 val->totalhigh = managed_highpages;
4634 val->freehigh = free_highpages;
4635#else
4636 val->totalhigh = managed_highpages;
4637 val->freehigh = free_highpages;
4638#endif
4639 val->mem_unit = PAGE_SIZE;
4640}
4641#endif
4642
4643/*
4644 * Determine whether the node should be displayed or not, depending on whether
4645 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4646 */
4647static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4648{
4649 if (!(flags & SHOW_MEM_FILTER_NODES))
4650 return false;
4651
4652 /*
4653 * no node mask - aka implicit memory numa policy. Do not bother with
4654 * the synchronization - read_mems_allowed_begin - because we do not
4655 * have to be precise here.
4656 */
4657 if (!nodemask)
4658 nodemask = &cpuset_current_mems_allowed;
4659
4660 return !node_isset(nid, *nodemask);
4661}
4662
4663#define K(x) ((x) << (PAGE_SHIFT-10))
4664
4665static void show_migration_types(unsigned char type)
4666{
4667 static const char types[MIGRATE_TYPES] = {
4668 [MIGRATE_UNMOVABLE] = 'U',
4669 [MIGRATE_MOVABLE] = 'M',
4670 [MIGRATE_RECLAIMABLE] = 'E',
4671 [MIGRATE_HIGHATOMIC] = 'H',
4672#ifdef CONFIG_CMA
4673 [MIGRATE_CMA] = 'C',
4674#endif
4675#ifdef CONFIG_MEMORY_ISOLATION
4676 [MIGRATE_ISOLATE] = 'I',
4677#endif
4678 };
4679 char tmp[MIGRATE_TYPES + 1];
4680 char *p = tmp;
4681 int i;
4682
4683 for (i = 0; i < MIGRATE_TYPES; i++) {
4684 if (type & (1 << i))
4685 *p++ = types[i];
4686 }
4687
4688 *p = '\0';
4689 printk(KERN_CONT "(%s) ", tmp);
4690}
4691
4692/*
4693 * Show free area list (used inside shift_scroll-lock stuff)
4694 * We also calculate the percentage fragmentation. We do this by counting the
4695 * memory on each free list with the exception of the first item on the list.
4696 *
4697 * Bits in @filter:
4698 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4699 * cpuset.
4700 */
4701void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4702{
4703 unsigned long free_pcp = 0;
4704 int cpu;
4705 struct zone *zone;
4706 pg_data_t *pgdat;
4707
4708 for_each_populated_zone(zone) {
4709 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4710 continue;
4711
4712 for_each_online_cpu(cpu)
4713 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4714 }
4715
4716 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4717 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4718 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4719 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4720 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4721 " free:%lu free_pcp:%lu free_cma:%lu\n",
4722 global_node_page_state(NR_ACTIVE_ANON),
4723 global_node_page_state(NR_INACTIVE_ANON),
4724 global_node_page_state(NR_ISOLATED_ANON),
4725 global_node_page_state(NR_ACTIVE_FILE),
4726 global_node_page_state(NR_INACTIVE_FILE),
4727 global_node_page_state(NR_ISOLATED_FILE),
4728 global_node_page_state(NR_UNEVICTABLE),
4729 global_node_page_state(NR_FILE_DIRTY),
4730 global_node_page_state(NR_WRITEBACK),
4731 global_node_page_state(NR_UNSTABLE_NFS),
4732 global_node_page_state(NR_SLAB_RECLAIMABLE),
4733 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4734 global_node_page_state(NR_FILE_MAPPED),
4735 global_node_page_state(NR_SHMEM),
4736 global_zone_page_state(NR_PAGETABLE),
4737 global_zone_page_state(NR_BOUNCE),
4738 global_zone_page_state(NR_FREE_PAGES),
4739 free_pcp,
4740 global_zone_page_state(NR_FREE_CMA_PAGES));
4741
4742 for_each_online_pgdat(pgdat) {
4743 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4744 continue;
4745
4746 printk("Node %d"
4747 " active_anon:%lukB"
4748 " inactive_anon:%lukB"
4749 " active_file:%lukB"
4750 " inactive_file:%lukB"
4751 " unevictable:%lukB"
4752 " isolated(anon):%lukB"
4753 " isolated(file):%lukB"
4754 " mapped:%lukB"
4755 " dirty:%lukB"
4756 " writeback:%lukB"
4757 " shmem:%lukB"
4758#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4759 " shmem_thp: %lukB"
4760 " shmem_pmdmapped: %lukB"
4761 " anon_thp: %lukB"
4762#endif
4763 " writeback_tmp:%lukB"
4764 " unstable:%lukB"
4765 " all_unreclaimable? %s"
4766 "\n",
4767 pgdat->node_id,
4768 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4769 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4770 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4771 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4772 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4773 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4774 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4775 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4776 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4777 K(node_page_state(pgdat, NR_WRITEBACK)),
4778 K(node_page_state(pgdat, NR_SHMEM)),
4779#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4780 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4781 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4782 * HPAGE_PMD_NR),
4783 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4784#endif
4785 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4786 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4787 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4788 "yes" : "no");
4789 }
4790
4791 for_each_populated_zone(zone) {
4792 int i;
4793
4794 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4795 continue;
4796
4797 free_pcp = 0;
4798 for_each_online_cpu(cpu)
4799 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4800
4801 show_node(zone);
4802 printk(KERN_CONT
4803 "%s"
4804 " free:%lukB"
4805 " min:%lukB"
4806 " low:%lukB"
4807 " high:%lukB"
4808 " active_anon:%lukB"
4809 " inactive_anon:%lukB"
4810 " active_file:%lukB"
4811 " inactive_file:%lukB"
4812 " unevictable:%lukB"
4813 " writepending:%lukB"
4814 " present:%lukB"
4815 " managed:%lukB"
4816 " mlocked:%lukB"
4817 " kernel_stack:%lukB"
4818 " pagetables:%lukB"
4819 " bounce:%lukB"
4820 " free_pcp:%lukB"
4821 " local_pcp:%ukB"
4822 " free_cma:%lukB"
4823 "\n",
4824 zone->name,
4825 K(zone_page_state(zone, NR_FREE_PAGES)),
4826 K(min_wmark_pages(zone)),
4827 K(low_wmark_pages(zone)),
4828 K(high_wmark_pages(zone)),
4829 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4830 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4831 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4832 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4833 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4834 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4835 K(zone->present_pages),
4836 K(zone->managed_pages),
4837 K(zone_page_state(zone, NR_MLOCK)),
4838 zone_page_state(zone, NR_KERNEL_STACK_KB),
4839 K(zone_page_state(zone, NR_PAGETABLE)),
4840 K(zone_page_state(zone, NR_BOUNCE)),
4841 K(free_pcp),
4842 K(this_cpu_read(zone->pageset->pcp.count)),
4843 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4844 printk("lowmem_reserve[]:");
4845 for (i = 0; i < MAX_NR_ZONES; i++)
4846 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4847 printk(KERN_CONT "\n");
4848 }
4849
4850 for_each_populated_zone(zone) {
4851 unsigned int order;
4852 unsigned long nr[MAX_ORDER], flags, total = 0;
4853 unsigned char types[MAX_ORDER];
4854
4855 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4856 continue;
4857 show_node(zone);
4858 printk(KERN_CONT "%s: ", zone->name);
4859
4860 spin_lock_irqsave(&zone->lock, flags);
4861 for (order = 0; order < MAX_ORDER; order++) {
4862 struct free_area *area = &zone->free_area[order];
4863 int type;
4864
4865 nr[order] = area->nr_free;
4866 total += nr[order] << order;
4867
4868 types[order] = 0;
4869 for (type = 0; type < MIGRATE_TYPES; type++) {
4870 if (!list_empty(&area->free_list[type]))
4871 types[order] |= 1 << type;
4872 }
4873 }
4874 spin_unlock_irqrestore(&zone->lock, flags);
4875 for (order = 0; order < MAX_ORDER; order++) {
4876 printk(KERN_CONT "%lu*%lukB ",
4877 nr[order], K(1UL) << order);
4878 if (nr[order])
4879 show_migration_types(types[order]);
4880 }
4881 printk(KERN_CONT "= %lukB\n", K(total));
4882 }
4883
4884 hugetlb_show_meminfo();
4885
4886 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4887
4888 show_swap_cache_info();
4889}
4890
4891static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4892{
4893 zoneref->zone = zone;
4894 zoneref->zone_idx = zone_idx(zone);
4895}
4896
4897/*
4898 * Builds allocation fallback zone lists.
4899 *
4900 * Add all populated zones of a node to the zonelist.
4901 */
4902static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4903{
4904 struct zone *zone;
4905 enum zone_type zone_type = MAX_NR_ZONES;
4906 int nr_zones = 0;
4907
4908 do {
4909 zone_type--;
4910 zone = pgdat->node_zones + zone_type;
4911 if (managed_zone(zone)) {
4912 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4913 check_highest_zone(zone_type);
4914 }
4915 } while (zone_type);
4916
4917 return nr_zones;
4918}
4919
4920#ifdef CONFIG_NUMA
4921
4922static int __parse_numa_zonelist_order(char *s)
4923{
4924 /*
4925 * We used to support different zonlists modes but they turned
4926 * out to be just not useful. Let's keep the warning in place
4927 * if somebody still use the cmd line parameter so that we do
4928 * not fail it silently
4929 */
4930 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4931 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
4932 return -EINVAL;
4933 }
4934 return 0;
4935}
4936
4937static __init int setup_numa_zonelist_order(char *s)
4938{
4939 if (!s)
4940 return 0;
4941
4942 return __parse_numa_zonelist_order(s);
4943}
4944early_param("numa_zonelist_order", setup_numa_zonelist_order);
4945
4946char numa_zonelist_order[] = "Node";
4947
4948/*
4949 * sysctl handler for numa_zonelist_order
4950 */
4951int numa_zonelist_order_handler(struct ctl_table *table, int write,
4952 void __user *buffer, size_t *length,
4953 loff_t *ppos)
4954{
4955 char *str;
4956 int ret;
4957
4958 if (!write)
4959 return proc_dostring(table, write, buffer, length, ppos);
4960 str = memdup_user_nul(buffer, 16);
4961 if (IS_ERR(str))
4962 return PTR_ERR(str);
4963
4964 ret = __parse_numa_zonelist_order(str);
4965 kfree(str);
4966 return ret;
4967}
4968
4969
4970#define MAX_NODE_LOAD (nr_online_nodes)
4971static int node_load[MAX_NUMNODES];
4972
4973/**
4974 * find_next_best_node - find the next node that should appear in a given node's fallback list
4975 * @node: node whose fallback list we're appending
4976 * @used_node_mask: nodemask_t of already used nodes
4977 *
4978 * We use a number of factors to determine which is the next node that should
4979 * appear on a given node's fallback list. The node should not have appeared
4980 * already in @node's fallback list, and it should be the next closest node
4981 * according to the distance array (which contains arbitrary distance values
4982 * from each node to each node in the system), and should also prefer nodes
4983 * with no CPUs, since presumably they'll have very little allocation pressure
4984 * on them otherwise.
4985 * It returns -1 if no node is found.
4986 */
4987static int find_next_best_node(int node, nodemask_t *used_node_mask)
4988{
4989 int n, val;
4990 int min_val = INT_MAX;
4991 int best_node = NUMA_NO_NODE;
4992 const struct cpumask *tmp = cpumask_of_node(0);
4993
4994 /* Use the local node if we haven't already */
4995 if (!node_isset(node, *used_node_mask)) {
4996 node_set(node, *used_node_mask);
4997 return node;
4998 }
4999
5000 for_each_node_state(n, N_MEMORY) {
5001
5002 /* Don't want a node to appear more than once */
5003 if (node_isset(n, *used_node_mask))
5004 continue;
5005
5006 /* Use the distance array to find the distance */
5007 val = node_distance(node, n);
5008
5009 /* Penalize nodes under us ("prefer the next node") */
5010 val += (n < node);
5011
5012 /* Give preference to headless and unused nodes */
5013 tmp = cpumask_of_node(n);
5014 if (!cpumask_empty(tmp))
5015 val += PENALTY_FOR_NODE_WITH_CPUS;
5016
5017 /* Slight preference for less loaded node */
5018 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5019 val += node_load[n];
5020
5021 if (val < min_val) {
5022 min_val = val;
5023 best_node = n;
5024 }
5025 }
5026
5027 if (best_node >= 0)
5028 node_set(best_node, *used_node_mask);
5029
5030 return best_node;
5031}
5032
5033
5034/*
5035 * Build zonelists ordered by node and zones within node.
5036 * This results in maximum locality--normal zone overflows into local
5037 * DMA zone, if any--but risks exhausting DMA zone.
5038 */
5039static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5040 unsigned nr_nodes)
5041{
5042 struct zoneref *zonerefs;
5043 int i;
5044
5045 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5046
5047 for (i = 0; i < nr_nodes; i++) {
5048 int nr_zones;
5049
5050 pg_data_t *node = NODE_DATA(node_order[i]);
5051
5052 nr_zones = build_zonerefs_node(node, zonerefs);
5053 zonerefs += nr_zones;
5054 }
5055 zonerefs->zone = NULL;
5056 zonerefs->zone_idx = 0;
5057}
5058
5059/*
5060 * Build gfp_thisnode zonelists
5061 */
5062static void build_thisnode_zonelists(pg_data_t *pgdat)
5063{
5064 struct zoneref *zonerefs;
5065 int nr_zones;
5066
5067 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5068 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5069 zonerefs += nr_zones;
5070 zonerefs->zone = NULL;
5071 zonerefs->zone_idx = 0;
5072}
5073
5074/*
5075 * Build zonelists ordered by zone and nodes within zones.
5076 * This results in conserving DMA zone[s] until all Normal memory is
5077 * exhausted, but results in overflowing to remote node while memory
5078 * may still exist in local DMA zone.
5079 */
5080
5081static void build_zonelists(pg_data_t *pgdat)
5082{
5083 static int node_order[MAX_NUMNODES];
5084 int node, load, nr_nodes = 0;
5085 nodemask_t used_mask;
5086 int local_node, prev_node;
5087
5088 /* NUMA-aware ordering of nodes */
5089 local_node = pgdat->node_id;
5090 load = nr_online_nodes;
5091 prev_node = local_node;
5092 nodes_clear(used_mask);
5093
5094 memset(node_order, 0, sizeof(node_order));
5095 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5096 /*
5097 * We don't want to pressure a particular node.
5098 * So adding penalty to the first node in same
5099 * distance group to make it round-robin.
5100 */
5101 if (node_distance(local_node, node) !=
5102 node_distance(local_node, prev_node))
5103 node_load[node] = load;
5104
5105 node_order[nr_nodes++] = node;
5106 prev_node = node;
5107 load--;
5108 }
5109
5110 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5111 build_thisnode_zonelists(pgdat);
5112}
5113
5114#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5115/*
5116 * Return node id of node used for "local" allocations.
5117 * I.e., first node id of first zone in arg node's generic zonelist.
5118 * Used for initializing percpu 'numa_mem', which is used primarily
5119 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5120 */
5121int local_memory_node(int node)
5122{
5123 struct zoneref *z;
5124
5125 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5126 gfp_zone(GFP_KERNEL),
5127 NULL);
5128 return z->zone->node;
5129}
5130#endif
5131
5132static void setup_min_unmapped_ratio(void);
5133static void setup_min_slab_ratio(void);
5134#else /* CONFIG_NUMA */
5135
5136static void build_zonelists(pg_data_t *pgdat)
5137{
5138 int node, local_node;
5139 struct zoneref *zonerefs;
5140 int nr_zones;
5141
5142 local_node = pgdat->node_id;
5143
5144 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5145 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5146 zonerefs += nr_zones;
5147
5148 /*
5149 * Now we build the zonelist so that it contains the zones
5150 * of all the other nodes.
5151 * We don't want to pressure a particular node, so when
5152 * building the zones for node N, we make sure that the
5153 * zones coming right after the local ones are those from
5154 * node N+1 (modulo N)
5155 */
5156 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5157 if (!node_online(node))
5158 continue;
5159 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5160 zonerefs += nr_zones;
5161 }
5162 for (node = 0; node < local_node; node++) {
5163 if (!node_online(node))
5164 continue;
5165 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5166 zonerefs += nr_zones;
5167 }
5168
5169 zonerefs->zone = NULL;
5170 zonerefs->zone_idx = 0;
5171}
5172
5173#endif /* CONFIG_NUMA */
5174
5175/*
5176 * Boot pageset table. One per cpu which is going to be used for all
5177 * zones and all nodes. The parameters will be set in such a way
5178 * that an item put on a list will immediately be handed over to
5179 * the buddy list. This is safe since pageset manipulation is done
5180 * with interrupts disabled.
5181 *
5182 * The boot_pagesets must be kept even after bootup is complete for
5183 * unused processors and/or zones. They do play a role for bootstrapping
5184 * hotplugged processors.
5185 *
5186 * zoneinfo_show() and maybe other functions do
5187 * not check if the processor is online before following the pageset pointer.
5188 * Other parts of the kernel may not check if the zone is available.
5189 */
5190static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5191static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5192static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5193
5194static void __build_all_zonelists(void *data)
5195{
5196 int nid;
5197 int __maybe_unused cpu;
5198 pg_data_t *self = data;
5199 static DEFINE_SPINLOCK(lock);
5200
5201 spin_lock(&lock);
5202
5203#ifdef CONFIG_NUMA
5204 memset(node_load, 0, sizeof(node_load));
5205#endif
5206
5207 /*
5208 * This node is hotadded and no memory is yet present. So just
5209 * building zonelists is fine - no need to touch other nodes.
5210 */
5211 if (self && !node_online(self->node_id)) {
5212 build_zonelists(self);
5213 } else {
5214 for_each_online_node(nid) {
5215 pg_data_t *pgdat = NODE_DATA(nid);
5216
5217 build_zonelists(pgdat);
5218 }
5219
5220#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5221 /*
5222 * We now know the "local memory node" for each node--
5223 * i.e., the node of the first zone in the generic zonelist.
5224 * Set up numa_mem percpu variable for on-line cpus. During
5225 * boot, only the boot cpu should be on-line; we'll init the
5226 * secondary cpus' numa_mem as they come on-line. During
5227 * node/memory hotplug, we'll fixup all on-line cpus.
5228 */
5229 for_each_online_cpu(cpu)
5230 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5231#endif
5232 }
5233
5234 spin_unlock(&lock);
5235}
5236
5237static noinline void __init
5238build_all_zonelists_init(void)
5239{
5240 int cpu;
5241
5242 __build_all_zonelists(NULL);
5243
5244 /*
5245 * Initialize the boot_pagesets that are going to be used
5246 * for bootstrapping processors. The real pagesets for
5247 * each zone will be allocated later when the per cpu
5248 * allocator is available.
5249 *
5250 * boot_pagesets are used also for bootstrapping offline
5251 * cpus if the system is already booted because the pagesets
5252 * are needed to initialize allocators on a specific cpu too.
5253 * F.e. the percpu allocator needs the page allocator which
5254 * needs the percpu allocator in order to allocate its pagesets
5255 * (a chicken-egg dilemma).
5256 */
5257 for_each_possible_cpu(cpu)
5258 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5259
5260 mminit_verify_zonelist();
5261 cpuset_init_current_mems_allowed();
5262}
5263
5264/*
5265 * unless system_state == SYSTEM_BOOTING.
5266 *
5267 * __ref due to call of __init annotated helper build_all_zonelists_init
5268 * [protected by SYSTEM_BOOTING].
5269 */
5270void __ref build_all_zonelists(pg_data_t *pgdat)
5271{
5272 if (system_state == SYSTEM_BOOTING) {
5273 build_all_zonelists_init();
5274 } else {
5275 __build_all_zonelists(pgdat);
5276 /* cpuset refresh routine should be here */
5277 }
5278 vm_total_pages = nr_free_pagecache_pages();
5279 /*
5280 * Disable grouping by mobility if the number of pages in the
5281 * system is too low to allow the mechanism to work. It would be
5282 * more accurate, but expensive to check per-zone. This check is
5283 * made on memory-hotadd so a system can start with mobility
5284 * disabled and enable it later
5285 */
5286 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5287 page_group_by_mobility_disabled = 1;
5288 else
5289 page_group_by_mobility_disabled = 0;
5290
5291 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5292 nr_online_nodes,
5293 page_group_by_mobility_disabled ? "off" : "on",
5294 vm_total_pages);
5295#ifdef CONFIG_NUMA
5296 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5297#endif
5298}
5299
5300/*
5301 * Initially all pages are reserved - free ones are freed
5302 * up by free_all_bootmem() once the early boot process is
5303 * done. Non-atomic initialization, single-pass.
5304 */
5305void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5306 unsigned long start_pfn, enum memmap_context context)
5307{
5308 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5309 unsigned long end_pfn = start_pfn + size;
5310 pg_data_t *pgdat = NODE_DATA(nid);
5311 unsigned long pfn;
5312 unsigned long nr_initialised = 0;
5313#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5314 struct memblock_region *r = NULL, *tmp;
5315#endif
5316
5317 if (highest_memmap_pfn < end_pfn - 1)
5318 highest_memmap_pfn = end_pfn - 1;
5319
5320 /*
5321 * Honor reservation requested by the driver for this ZONE_DEVICE
5322 * memory
5323 */
5324 if (altmap && start_pfn == altmap->base_pfn)
5325 start_pfn += altmap->reserve;
5326
5327 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5328 /*
5329 * There can be holes in boot-time mem_map[]s handed to this
5330 * function. They do not exist on hotplugged memory.
5331 */
5332 if (context != MEMMAP_EARLY)
5333 goto not_early;
5334
5335 if (!early_pfn_valid(pfn)) {
5336#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5337 /*
5338 * Skip to the pfn preceding the next valid one (or
5339 * end_pfn), such that we hit a valid pfn (or end_pfn)
5340 * on our next iteration of the loop.
5341 */
5342 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5343#endif
5344 continue;
5345 }
5346 if (!early_pfn_in_nid(pfn, nid))
5347 continue;
5348 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5349 break;
5350
5351#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5352 /*
5353 * Check given memblock attribute by firmware which can affect
5354 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5355 * mirrored, it's an overlapped memmap init. skip it.
5356 */
5357 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5358 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5359 for_each_memblock(memory, tmp)
5360 if (pfn < memblock_region_memory_end_pfn(tmp))
5361 break;
5362 r = tmp;
5363 }
5364 if (pfn >= memblock_region_memory_base_pfn(r) &&
5365 memblock_is_mirror(r)) {
5366 /* already initialized as NORMAL */
5367 pfn = memblock_region_memory_end_pfn(r);
5368 continue;
5369 }
5370 }
5371#endif
5372
5373not_early:
5374 /*
5375 * Mark the block movable so that blocks are reserved for
5376 * movable at startup. This will force kernel allocations
5377 * to reserve their blocks rather than leaking throughout
5378 * the address space during boot when many long-lived
5379 * kernel allocations are made.
5380 *
5381 * bitmap is created for zone's valid pfn range. but memmap
5382 * can be created for invalid pages (for alignment)
5383 * check here not to call set_pageblock_migratetype() against
5384 * pfn out of zone.
5385 */
5386 if (!(pfn & (pageblock_nr_pages - 1))) {
5387 struct page *page = pfn_to_page(pfn);
5388
5389 __init_single_page(page, pfn, zone, nid);
5390 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5391 cond_resched();
5392 } else {
5393 __init_single_pfn(pfn, zone, nid);
5394 }
5395 }
5396}
5397
5398static void __meminit zone_init_free_lists(struct zone *zone)
5399{
5400 unsigned int order, t;
5401 for_each_migratetype_order(order, t) {
5402 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5403 zone->free_area[order].nr_free = 0;
5404 }
5405}
5406
5407#ifndef __HAVE_ARCH_MEMMAP_INIT
5408#define memmap_init(size, nid, zone, start_pfn) \
5409 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5410#endif
5411
5412static int zone_batchsize(struct zone *zone)
5413{
5414#ifdef CONFIG_MMU
5415 int batch;
5416
5417 /*
5418 * The per-cpu-pages pools are set to around 1000th of the
5419 * size of the zone. But no more than 1/2 of a meg.
5420 *
5421 * OK, so we don't know how big the cache is. So guess.
5422 */
5423 batch = zone->managed_pages / 1024;
5424 if (batch * PAGE_SIZE > 512 * 1024)
5425 batch = (512 * 1024) / PAGE_SIZE;
5426 batch /= 4; /* We effectively *= 4 below */
5427 if (batch < 1)
5428 batch = 1;
5429
5430 /*
5431 * Clamp the batch to a 2^n - 1 value. Having a power
5432 * of 2 value was found to be more likely to have
5433 * suboptimal cache aliasing properties in some cases.
5434 *
5435 * For example if 2 tasks are alternately allocating
5436 * batches of pages, one task can end up with a lot
5437 * of pages of one half of the possible page colors
5438 * and the other with pages of the other colors.
5439 */
5440 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5441
5442 return batch;
5443
5444#else
5445 /* The deferral and batching of frees should be suppressed under NOMMU
5446 * conditions.
5447 *
5448 * The problem is that NOMMU needs to be able to allocate large chunks
5449 * of contiguous memory as there's no hardware page translation to
5450 * assemble apparent contiguous memory from discontiguous pages.
5451 *
5452 * Queueing large contiguous runs of pages for batching, however,
5453 * causes the pages to actually be freed in smaller chunks. As there
5454 * can be a significant delay between the individual batches being
5455 * recycled, this leads to the once large chunks of space being
5456 * fragmented and becoming unavailable for high-order allocations.
5457 */
5458 return 0;
5459#endif
5460}
5461
5462/*
5463 * pcp->high and pcp->batch values are related and dependent on one another:
5464 * ->batch must never be higher then ->high.
5465 * The following function updates them in a safe manner without read side
5466 * locking.
5467 *
5468 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5469 * those fields changing asynchronously (acording the the above rule).
5470 *
5471 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5472 * outside of boot time (or some other assurance that no concurrent updaters
5473 * exist).
5474 */
5475static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5476 unsigned long batch)
5477{
5478 /* start with a fail safe value for batch */
5479 pcp->batch = 1;
5480 smp_wmb();
5481
5482 /* Update high, then batch, in order */
5483 pcp->high = high;
5484 smp_wmb();
5485
5486 pcp->batch = batch;
5487}
5488
5489/* a companion to pageset_set_high() */
5490static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5491{
5492 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5493}
5494
5495static void pageset_init(struct per_cpu_pageset *p)
5496{
5497 struct per_cpu_pages *pcp;
5498 int migratetype;
5499
5500 memset(p, 0, sizeof(*p));
5501
5502 pcp = &p->pcp;
5503 pcp->count = 0;
5504 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5505 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5506}
5507
5508static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5509{
5510 pageset_init(p);
5511 pageset_set_batch(p, batch);
5512}
5513
5514/*
5515 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5516 * to the value high for the pageset p.
5517 */
5518static void pageset_set_high(struct per_cpu_pageset *p,
5519 unsigned long high)
5520{
5521 unsigned long batch = max(1UL, high / 4);
5522 if ((high / 4) > (PAGE_SHIFT * 8))
5523 batch = PAGE_SHIFT * 8;
5524
5525 pageset_update(&p->pcp, high, batch);
5526}
5527
5528static void pageset_set_high_and_batch(struct zone *zone,
5529 struct per_cpu_pageset *pcp)
5530{
5531 if (percpu_pagelist_fraction)
5532 pageset_set_high(pcp,
5533 (zone->managed_pages /
5534 percpu_pagelist_fraction));
5535 else
5536 pageset_set_batch(pcp, zone_batchsize(zone));
5537}
5538
5539static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5540{
5541 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5542
5543 pageset_init(pcp);
5544 pageset_set_high_and_batch(zone, pcp);
5545}
5546
5547void __meminit setup_zone_pageset(struct zone *zone)
5548{
5549 int cpu;
5550 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5551 for_each_possible_cpu(cpu)
5552 zone_pageset_init(zone, cpu);
5553}
5554
5555/*
5556 * Allocate per cpu pagesets and initialize them.
5557 * Before this call only boot pagesets were available.
5558 */
5559void __init setup_per_cpu_pageset(void)
5560{
5561 struct pglist_data *pgdat;
5562 struct zone *zone;
5563
5564 for_each_populated_zone(zone)
5565 setup_zone_pageset(zone);
5566
5567 for_each_online_pgdat(pgdat)
5568 pgdat->per_cpu_nodestats =
5569 alloc_percpu(struct per_cpu_nodestat);
5570}
5571
5572static __meminit void zone_pcp_init(struct zone *zone)
5573{
5574 /*
5575 * per cpu subsystem is not up at this point. The following code
5576 * relies on the ability of the linker to provide the
5577 * offset of a (static) per cpu variable into the per cpu area.
5578 */
5579 zone->pageset = &boot_pageset;
5580
5581 if (populated_zone(zone))
5582 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5583 zone->name, zone->present_pages,
5584 zone_batchsize(zone));
5585}
5586
5587void __meminit init_currently_empty_zone(struct zone *zone,
5588 unsigned long zone_start_pfn,
5589 unsigned long size)
5590{
5591 struct pglist_data *pgdat = zone->zone_pgdat;
5592
5593 pgdat->nr_zones = zone_idx(zone) + 1;
5594
5595 zone->zone_start_pfn = zone_start_pfn;
5596
5597 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5598 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5599 pgdat->node_id,
5600 (unsigned long)zone_idx(zone),
5601 zone_start_pfn, (zone_start_pfn + size));
5602
5603 zone_init_free_lists(zone);
5604 zone->initialized = 1;
5605}
5606
5607#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5608#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5609
5610/*
5611 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5612 */
5613int __meminit __early_pfn_to_nid(unsigned long pfn,
5614 struct mminit_pfnnid_cache *state)
5615{
5616 unsigned long start_pfn, end_pfn;
5617 int nid;
5618
5619 if (state->last_start <= pfn && pfn < state->last_end)
5620 return state->last_nid;
5621
5622 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5623 if (nid != -1) {
5624 state->last_start = start_pfn;
5625 state->last_end = end_pfn;
5626 state->last_nid = nid;
5627 }
5628
5629 return nid;
5630}
5631#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5632
5633/**
5634 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5635 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5636 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5637 *
5638 * If an architecture guarantees that all ranges registered contain no holes
5639 * and may be freed, this this function may be used instead of calling
5640 * memblock_free_early_nid() manually.
5641 */
5642void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5643{
5644 unsigned long start_pfn, end_pfn;
5645 int i, this_nid;
5646
5647 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5648 start_pfn = min(start_pfn, max_low_pfn);
5649 end_pfn = min(end_pfn, max_low_pfn);
5650
5651 if (start_pfn < end_pfn)
5652 memblock_free_early_nid(PFN_PHYS(start_pfn),
5653 (end_pfn - start_pfn) << PAGE_SHIFT,
5654 this_nid);
5655 }
5656}
5657
5658/**
5659 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5660 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5661 *
5662 * If an architecture guarantees that all ranges registered contain no holes and may
5663 * be freed, this function may be used instead of calling memory_present() manually.
5664 */
5665void __init sparse_memory_present_with_active_regions(int nid)
5666{
5667 unsigned long start_pfn, end_pfn;
5668 int i, this_nid;
5669
5670 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5671 memory_present(this_nid, start_pfn, end_pfn);
5672}
5673
5674/**
5675 * get_pfn_range_for_nid - Return the start and end page frames for a node
5676 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5677 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5678 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5679 *
5680 * It returns the start and end page frame of a node based on information
5681 * provided by memblock_set_node(). If called for a node
5682 * with no available memory, a warning is printed and the start and end
5683 * PFNs will be 0.
5684 */
5685void __meminit get_pfn_range_for_nid(unsigned int nid,
5686 unsigned long *start_pfn, unsigned long *end_pfn)
5687{
5688 unsigned long this_start_pfn, this_end_pfn;
5689 int i;
5690
5691 *start_pfn = -1UL;
5692 *end_pfn = 0;
5693
5694 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5695 *start_pfn = min(*start_pfn, this_start_pfn);
5696 *end_pfn = max(*end_pfn, this_end_pfn);
5697 }
5698
5699 if (*start_pfn == -1UL)
5700 *start_pfn = 0;
5701}
5702
5703/*
5704 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5705 * assumption is made that zones within a node are ordered in monotonic
5706 * increasing memory addresses so that the "highest" populated zone is used
5707 */
5708static void __init find_usable_zone_for_movable(void)
5709{
5710 int zone_index;
5711 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5712 if (zone_index == ZONE_MOVABLE)
5713 continue;
5714
5715 if (arch_zone_highest_possible_pfn[zone_index] >
5716 arch_zone_lowest_possible_pfn[zone_index])
5717 break;
5718 }
5719
5720 VM_BUG_ON(zone_index == -1);
5721 movable_zone = zone_index;
5722}
5723
5724/*
5725 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5726 * because it is sized independent of architecture. Unlike the other zones,
5727 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5728 * in each node depending on the size of each node and how evenly kernelcore
5729 * is distributed. This helper function adjusts the zone ranges
5730 * provided by the architecture for a given node by using the end of the
5731 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5732 * zones within a node are in order of monotonic increases memory addresses
5733 */
5734static void __meminit adjust_zone_range_for_zone_movable(int nid,
5735 unsigned long zone_type,
5736 unsigned long node_start_pfn,
5737 unsigned long node_end_pfn,
5738 unsigned long *zone_start_pfn,
5739 unsigned long *zone_end_pfn)
5740{
5741 /* Only adjust if ZONE_MOVABLE is on this node */
5742 if (zone_movable_pfn[nid]) {
5743 /* Size ZONE_MOVABLE */
5744 if (zone_type == ZONE_MOVABLE) {
5745 *zone_start_pfn = zone_movable_pfn[nid];
5746 *zone_end_pfn = min(node_end_pfn,
5747 arch_zone_highest_possible_pfn[movable_zone]);
5748
5749 /* Adjust for ZONE_MOVABLE starting within this range */
5750 } else if (!mirrored_kernelcore &&
5751 *zone_start_pfn < zone_movable_pfn[nid] &&
5752 *zone_end_pfn > zone_movable_pfn[nid]) {
5753 *zone_end_pfn = zone_movable_pfn[nid];
5754
5755 /* Check if this whole range is within ZONE_MOVABLE */
5756 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5757 *zone_start_pfn = *zone_end_pfn;
5758 }
5759}
5760
5761/*
5762 * Return the number of pages a zone spans in a node, including holes
5763 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5764 */
5765static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5766 unsigned long zone_type,
5767 unsigned long node_start_pfn,
5768 unsigned long node_end_pfn,
5769 unsigned long *zone_start_pfn,
5770 unsigned long *zone_end_pfn,
5771 unsigned long *ignored)
5772{
5773 /* When hotadd a new node from cpu_up(), the node should be empty */
5774 if (!node_start_pfn && !node_end_pfn)
5775 return 0;
5776
5777 /* Get the start and end of the zone */
5778 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5779 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5780 adjust_zone_range_for_zone_movable(nid, zone_type,
5781 node_start_pfn, node_end_pfn,
5782 zone_start_pfn, zone_end_pfn);
5783
5784 /* Check that this node has pages within the zone's required range */
5785 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5786 return 0;
5787
5788 /* Move the zone boundaries inside the node if necessary */
5789 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5790 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5791
5792 /* Return the spanned pages */
5793 return *zone_end_pfn - *zone_start_pfn;
5794}
5795
5796/*
5797 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5798 * then all holes in the requested range will be accounted for.
5799 */
5800unsigned long __meminit __absent_pages_in_range(int nid,
5801 unsigned long range_start_pfn,
5802 unsigned long range_end_pfn)
5803{
5804 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5805 unsigned long start_pfn, end_pfn;
5806 int i;
5807
5808 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5809 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5810 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5811 nr_absent -= end_pfn - start_pfn;
5812 }
5813 return nr_absent;
5814}
5815
5816/**
5817 * absent_pages_in_range - Return number of page frames in holes within a range
5818 * @start_pfn: The start PFN to start searching for holes
5819 * @end_pfn: The end PFN to stop searching for holes
5820 *
5821 * It returns the number of pages frames in memory holes within a range.
5822 */
5823unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5824 unsigned long end_pfn)
5825{
5826 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5827}
5828
5829/* Return the number of page frames in holes in a zone on a node */
5830static unsigned long __meminit zone_absent_pages_in_node(int nid,
5831 unsigned long zone_type,
5832 unsigned long node_start_pfn,
5833 unsigned long node_end_pfn,
5834 unsigned long *ignored)
5835{
5836 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5837 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5838 unsigned long zone_start_pfn, zone_end_pfn;
5839 unsigned long nr_absent;
5840
5841 /* When hotadd a new node from cpu_up(), the node should be empty */
5842 if (!node_start_pfn && !node_end_pfn)
5843 return 0;
5844
5845 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5846 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5847
5848 adjust_zone_range_for_zone_movable(nid, zone_type,
5849 node_start_pfn, node_end_pfn,
5850 &zone_start_pfn, &zone_end_pfn);
5851 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5852
5853 /*
5854 * ZONE_MOVABLE handling.
5855 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5856 * and vice versa.
5857 */
5858 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5859 unsigned long start_pfn, end_pfn;
5860 struct memblock_region *r;
5861
5862 for_each_memblock(memory, r) {
5863 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5864 zone_start_pfn, zone_end_pfn);
5865 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5866 zone_start_pfn, zone_end_pfn);
5867
5868 if (zone_type == ZONE_MOVABLE &&
5869 memblock_is_mirror(r))
5870 nr_absent += end_pfn - start_pfn;
5871
5872 if (zone_type == ZONE_NORMAL &&
5873 !memblock_is_mirror(r))
5874 nr_absent += end_pfn - start_pfn;
5875 }
5876 }
5877
5878 return nr_absent;
5879}
5880
5881#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5882static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5883 unsigned long zone_type,
5884 unsigned long node_start_pfn,
5885 unsigned long node_end_pfn,
5886 unsigned long *zone_start_pfn,
5887 unsigned long *zone_end_pfn,
5888 unsigned long *zones_size)
5889{
5890 unsigned int zone;
5891
5892 *zone_start_pfn = node_start_pfn;
5893 for (zone = 0; zone < zone_type; zone++)
5894 *zone_start_pfn += zones_size[zone];
5895
5896 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5897
5898 return zones_size[zone_type];
5899}
5900
5901static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5902 unsigned long zone_type,
5903 unsigned long node_start_pfn,
5904 unsigned long node_end_pfn,
5905 unsigned long *zholes_size)
5906{
5907 if (!zholes_size)
5908 return 0;
5909
5910 return zholes_size[zone_type];
5911}
5912
5913#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5914
5915static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5916 unsigned long node_start_pfn,
5917 unsigned long node_end_pfn,
5918 unsigned long *zones_size,
5919 unsigned long *zholes_size)
5920{
5921 unsigned long realtotalpages = 0, totalpages = 0;
5922 enum zone_type i;
5923
5924 for (i = 0; i < MAX_NR_ZONES; i++) {
5925 struct zone *zone = pgdat->node_zones + i;
5926 unsigned long zone_start_pfn, zone_end_pfn;
5927 unsigned long size, real_size;
5928
5929 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5930 node_start_pfn,
5931 node_end_pfn,
5932 &zone_start_pfn,
5933 &zone_end_pfn,
5934 zones_size);
5935 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5936 node_start_pfn, node_end_pfn,
5937 zholes_size);
5938 if (size)
5939 zone->zone_start_pfn = zone_start_pfn;
5940 else
5941 zone->zone_start_pfn = 0;
5942 zone->spanned_pages = size;
5943 zone->present_pages = real_size;
5944
5945 totalpages += size;
5946 realtotalpages += real_size;
5947 }
5948
5949 pgdat->node_spanned_pages = totalpages;
5950 pgdat->node_present_pages = realtotalpages;
5951 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5952 realtotalpages);
5953}
5954
5955#ifndef CONFIG_SPARSEMEM
5956/*
5957 * Calculate the size of the zone->blockflags rounded to an unsigned long
5958 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5959 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5960 * round what is now in bits to nearest long in bits, then return it in
5961 * bytes.
5962 */
5963static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5964{
5965 unsigned long usemapsize;
5966
5967 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5968 usemapsize = roundup(zonesize, pageblock_nr_pages);
5969 usemapsize = usemapsize >> pageblock_order;
5970 usemapsize *= NR_PAGEBLOCK_BITS;
5971 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5972
5973 return usemapsize / 8;
5974}
5975
5976static void __init setup_usemap(struct pglist_data *pgdat,
5977 struct zone *zone,
5978 unsigned long zone_start_pfn,
5979 unsigned long zonesize)
5980{
5981 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5982 zone->pageblock_flags = NULL;
5983 if (usemapsize)
5984 zone->pageblock_flags =
5985 memblock_virt_alloc_node_nopanic(usemapsize,
5986 pgdat->node_id);
5987}
5988#else
5989static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5990 unsigned long zone_start_pfn, unsigned long zonesize) {}
5991#endif /* CONFIG_SPARSEMEM */
5992
5993#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5994
5995/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5996void __paginginit set_pageblock_order(void)
5997{
5998 unsigned int order;
5999
6000 /* Check that pageblock_nr_pages has not already been setup */
6001 if (pageblock_order)
6002 return;
6003
6004 if (HPAGE_SHIFT > PAGE_SHIFT)
6005 order = HUGETLB_PAGE_ORDER;
6006 else
6007 order = MAX_ORDER - 1;
6008
6009 /*
6010 * Assume the largest contiguous order of interest is a huge page.
6011 * This value may be variable depending on boot parameters on IA64 and
6012 * powerpc.
6013 */
6014 pageblock_order = order;
6015}
6016#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6017
6018/*
6019 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6020 * is unused as pageblock_order is set at compile-time. See
6021 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6022 * the kernel config
6023 */
6024void __paginginit set_pageblock_order(void)
6025{
6026}
6027
6028#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6029
6030static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6031 unsigned long present_pages)
6032{
6033 unsigned long pages = spanned_pages;
6034
6035 /*
6036 * Provide a more accurate estimation if there are holes within
6037 * the zone and SPARSEMEM is in use. If there are holes within the
6038 * zone, each populated memory region may cost us one or two extra
6039 * memmap pages due to alignment because memmap pages for each
6040 * populated regions may not be naturally aligned on page boundary.
6041 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6042 */
6043 if (spanned_pages > present_pages + (present_pages >> 4) &&
6044 IS_ENABLED(CONFIG_SPARSEMEM))
6045 pages = present_pages;
6046
6047 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6048}
6049
6050/*
6051 * Set up the zone data structures:
6052 * - mark all pages reserved
6053 * - mark all memory queues empty
6054 * - clear the memory bitmaps
6055 *
6056 * NOTE: pgdat should get zeroed by caller.
6057 */
6058static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6059{
6060 enum zone_type j;
6061 int nid = pgdat->node_id;
6062
6063 pgdat_resize_init(pgdat);
6064#ifdef CONFIG_NUMA_BALANCING
6065 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6066 pgdat->numabalancing_migrate_nr_pages = 0;
6067 pgdat->numabalancing_migrate_next_window = jiffies;
6068#endif
6069#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6070 spin_lock_init(&pgdat->split_queue_lock);
6071 INIT_LIST_HEAD(&pgdat->split_queue);
6072 pgdat->split_queue_len = 0;
6073#endif
6074 init_waitqueue_head(&pgdat->kswapd_wait);
6075 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6076#ifdef CONFIG_COMPACTION
6077 init_waitqueue_head(&pgdat->kcompactd_wait);
6078#endif
6079 pgdat_page_ext_init(pgdat);
6080 spin_lock_init(&pgdat->lru_lock);
6081 lruvec_init(node_lruvec(pgdat));
6082
6083 pgdat->per_cpu_nodestats = &boot_nodestats;
6084
6085 for (j = 0; j < MAX_NR_ZONES; j++) {
6086 struct zone *zone = pgdat->node_zones + j;
6087 unsigned long size, realsize, freesize, memmap_pages;
6088 unsigned long zone_start_pfn = zone->zone_start_pfn;
6089
6090 size = zone->spanned_pages;
6091 realsize = freesize = zone->present_pages;
6092
6093 /*
6094 * Adjust freesize so that it accounts for how much memory
6095 * is used by this zone for memmap. This affects the watermark
6096 * and per-cpu initialisations
6097 */
6098 memmap_pages = calc_memmap_size(size, realsize);
6099 if (!is_highmem_idx(j)) {
6100 if (freesize >= memmap_pages) {
6101 freesize -= memmap_pages;
6102 if (memmap_pages)
6103 printk(KERN_DEBUG
6104 " %s zone: %lu pages used for memmap\n",
6105 zone_names[j], memmap_pages);
6106 } else
6107 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6108 zone_names[j], memmap_pages, freesize);
6109 }
6110
6111 /* Account for reserved pages */
6112 if (j == 0 && freesize > dma_reserve) {
6113 freesize -= dma_reserve;
6114 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6115 zone_names[0], dma_reserve);
6116 }
6117
6118 if (!is_highmem_idx(j))
6119 nr_kernel_pages += freesize;
6120 /* Charge for highmem memmap if there are enough kernel pages */
6121 else if (nr_kernel_pages > memmap_pages * 2)
6122 nr_kernel_pages -= memmap_pages;
6123 nr_all_pages += freesize;
6124
6125 /*
6126 * Set an approximate value for lowmem here, it will be adjusted
6127 * when the bootmem allocator frees pages into the buddy system.
6128 * And all highmem pages will be managed by the buddy system.
6129 */
6130 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6131#ifdef CONFIG_NUMA
6132 zone->node = nid;
6133#endif
6134 zone->name = zone_names[j];
6135 zone->zone_pgdat = pgdat;
6136 spin_lock_init(&zone->lock);
6137 zone_seqlock_init(zone);
6138 zone_pcp_init(zone);
6139
6140 if (!size)
6141 continue;
6142
6143 set_pageblock_order();
6144 setup_usemap(pgdat, zone, zone_start_pfn, size);
6145 init_currently_empty_zone(zone, zone_start_pfn, size);
6146 memmap_init(size, nid, j, zone_start_pfn);
6147 }
6148}
6149
6150#ifdef CONFIG_FLAT_NODE_MEM_MAP
6151static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6152{
6153 unsigned long __maybe_unused start = 0;
6154 unsigned long __maybe_unused offset = 0;
6155
6156 /* Skip empty nodes */
6157 if (!pgdat->node_spanned_pages)
6158 return;
6159
6160 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6161 offset = pgdat->node_start_pfn - start;
6162 /* ia64 gets its own node_mem_map, before this, without bootmem */
6163 if (!pgdat->node_mem_map) {
6164 unsigned long size, end;
6165 struct page *map;
6166
6167 /*
6168 * The zone's endpoints aren't required to be MAX_ORDER
6169 * aligned but the node_mem_map endpoints must be in order
6170 * for the buddy allocator to function correctly.
6171 */
6172 end = pgdat_end_pfn(pgdat);
6173 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6174 size = (end - start) * sizeof(struct page);
6175 map = alloc_remap(pgdat->node_id, size);
6176 if (!map)
6177 map = memblock_virt_alloc_node_nopanic(size,
6178 pgdat->node_id);
6179 pgdat->node_mem_map = map + offset;
6180 }
6181 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6182 __func__, pgdat->node_id, (unsigned long)pgdat,
6183 (unsigned long)pgdat->node_mem_map);
6184#ifndef CONFIG_NEED_MULTIPLE_NODES
6185 /*
6186 * With no DISCONTIG, the global mem_map is just set as node 0's
6187 */
6188 if (pgdat == NODE_DATA(0)) {
6189 mem_map = NODE_DATA(0)->node_mem_map;
6190#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6191 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6192 mem_map -= offset;
6193#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6194 }
6195#endif
6196}
6197#else
6198static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6199#endif /* CONFIG_FLAT_NODE_MEM_MAP */
6200
6201void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6202 unsigned long node_start_pfn, unsigned long *zholes_size)
6203{
6204 pg_data_t *pgdat = NODE_DATA(nid);
6205 unsigned long start_pfn = 0;
6206 unsigned long end_pfn = 0;
6207
6208 /* pg_data_t should be reset to zero when it's allocated */
6209 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6210
6211 pgdat->node_id = nid;
6212 pgdat->node_start_pfn = node_start_pfn;
6213 pgdat->per_cpu_nodestats = NULL;
6214#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6215 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6216 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6217 (u64)start_pfn << PAGE_SHIFT,
6218 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6219#else
6220 start_pfn = node_start_pfn;
6221#endif
6222 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6223 zones_size, zholes_size);
6224
6225 alloc_node_mem_map(pgdat);
6226
6227 reset_deferred_meminit(pgdat);
6228 free_area_init_core(pgdat);
6229}
6230
6231#ifdef CONFIG_HAVE_MEMBLOCK
6232/*
6233 * Only struct pages that are backed by physical memory are zeroed and
6234 * initialized by going through __init_single_page(). But, there are some
6235 * struct pages which are reserved in memblock allocator and their fields
6236 * may be accessed (for example page_to_pfn() on some configuration accesses
6237 * flags). We must explicitly zero those struct pages.
6238 */
6239void __paginginit zero_resv_unavail(void)
6240{
6241 phys_addr_t start, end;
6242 unsigned long pfn;
6243 u64 i, pgcnt;
6244
6245 /*
6246 * Loop through ranges that are reserved, but do not have reported
6247 * physical memory backing.
6248 */
6249 pgcnt = 0;
6250 for_each_resv_unavail_range(i, &start, &end) {
6251 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6252 mm_zero_struct_page(pfn_to_page(pfn));
6253 pgcnt++;
6254 }
6255 }
6256
6257 /*
6258 * Struct pages that do not have backing memory. This could be because
6259 * firmware is using some of this memory, or for some other reasons.
6260 * Once memblock is changed so such behaviour is not allowed: i.e.
6261 * list of "reserved" memory must be a subset of list of "memory", then
6262 * this code can be removed.
6263 */
6264 if (pgcnt)
6265 pr_info("Reserved but unavailable: %lld pages", pgcnt);
6266}
6267#endif /* CONFIG_HAVE_MEMBLOCK */
6268
6269#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6270
6271#if MAX_NUMNODES > 1
6272/*
6273 * Figure out the number of possible node ids.
6274 */
6275void __init setup_nr_node_ids(void)
6276{
6277 unsigned int highest;
6278
6279 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6280 nr_node_ids = highest + 1;
6281}
6282#endif
6283
6284/**
6285 * node_map_pfn_alignment - determine the maximum internode alignment
6286 *
6287 * This function should be called after node map is populated and sorted.
6288 * It calculates the maximum power of two alignment which can distinguish
6289 * all the nodes.
6290 *
6291 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6292 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6293 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6294 * shifted, 1GiB is enough and this function will indicate so.
6295 *
6296 * This is used to test whether pfn -> nid mapping of the chosen memory
6297 * model has fine enough granularity to avoid incorrect mapping for the
6298 * populated node map.
6299 *
6300 * Returns the determined alignment in pfn's. 0 if there is no alignment
6301 * requirement (single node).
6302 */
6303unsigned long __init node_map_pfn_alignment(void)
6304{
6305 unsigned long accl_mask = 0, last_end = 0;
6306 unsigned long start, end, mask;
6307 int last_nid = -1;
6308 int i, nid;
6309
6310 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6311 if (!start || last_nid < 0 || last_nid == nid) {
6312 last_nid = nid;
6313 last_end = end;
6314 continue;
6315 }
6316
6317 /*
6318 * Start with a mask granular enough to pin-point to the
6319 * start pfn and tick off bits one-by-one until it becomes
6320 * too coarse to separate the current node from the last.
6321 */
6322 mask = ~((1 << __ffs(start)) - 1);
6323 while (mask && last_end <= (start & (mask << 1)))
6324 mask <<= 1;
6325
6326 /* accumulate all internode masks */
6327 accl_mask |= mask;
6328 }
6329
6330 /* convert mask to number of pages */
6331 return ~accl_mask + 1;
6332}
6333
6334/* Find the lowest pfn for a node */
6335static unsigned long __init find_min_pfn_for_node(int nid)
6336{
6337 unsigned long min_pfn = ULONG_MAX;
6338 unsigned long start_pfn;
6339 int i;
6340
6341 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6342 min_pfn = min(min_pfn, start_pfn);
6343
6344 if (min_pfn == ULONG_MAX) {
6345 pr_warn("Could not find start_pfn for node %d\n", nid);
6346 return 0;
6347 }
6348
6349 return min_pfn;
6350}
6351
6352/**
6353 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6354 *
6355 * It returns the minimum PFN based on information provided via
6356 * memblock_set_node().
6357 */
6358unsigned long __init find_min_pfn_with_active_regions(void)
6359{
6360 return find_min_pfn_for_node(MAX_NUMNODES);
6361}
6362
6363/*
6364 * early_calculate_totalpages()
6365 * Sum pages in active regions for movable zone.
6366 * Populate N_MEMORY for calculating usable_nodes.
6367 */
6368static unsigned long __init early_calculate_totalpages(void)
6369{
6370 unsigned long totalpages = 0;
6371 unsigned long start_pfn, end_pfn;
6372 int i, nid;
6373
6374 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6375 unsigned long pages = end_pfn - start_pfn;
6376
6377 totalpages += pages;
6378 if (pages)
6379 node_set_state(nid, N_MEMORY);
6380 }
6381 return totalpages;
6382}
6383
6384/*
6385 * Find the PFN the Movable zone begins in each node. Kernel memory
6386 * is spread evenly between nodes as long as the nodes have enough
6387 * memory. When they don't, some nodes will have more kernelcore than
6388 * others
6389 */
6390static void __init find_zone_movable_pfns_for_nodes(void)
6391{
6392 int i, nid;
6393 unsigned long usable_startpfn;
6394 unsigned long kernelcore_node, kernelcore_remaining;
6395 /* save the state before borrow the nodemask */
6396 nodemask_t saved_node_state = node_states[N_MEMORY];
6397 unsigned long totalpages = early_calculate_totalpages();
6398 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6399 struct memblock_region *r;
6400
6401 /* Need to find movable_zone earlier when movable_node is specified. */
6402 find_usable_zone_for_movable();
6403
6404 /*
6405 * If movable_node is specified, ignore kernelcore and movablecore
6406 * options.
6407 */
6408 if (movable_node_is_enabled()) {
6409 for_each_memblock(memory, r) {
6410 if (!memblock_is_hotpluggable(r))
6411 continue;
6412
6413 nid = r->nid;
6414
6415 usable_startpfn = PFN_DOWN(r->base);
6416 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6417 min(usable_startpfn, zone_movable_pfn[nid]) :
6418 usable_startpfn;
6419 }
6420
6421 goto out2;
6422 }
6423
6424 /*
6425 * If kernelcore=mirror is specified, ignore movablecore option
6426 */
6427 if (mirrored_kernelcore) {
6428 bool mem_below_4gb_not_mirrored = false;
6429
6430 for_each_memblock(memory, r) {
6431 if (memblock_is_mirror(r))
6432 continue;
6433
6434 nid = r->nid;
6435
6436 usable_startpfn = memblock_region_memory_base_pfn(r);
6437
6438 if (usable_startpfn < 0x100000) {
6439 mem_below_4gb_not_mirrored = true;
6440 continue;
6441 }
6442
6443 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6444 min(usable_startpfn, zone_movable_pfn[nid]) :
6445 usable_startpfn;
6446 }
6447
6448 if (mem_below_4gb_not_mirrored)
6449 pr_warn("This configuration results in unmirrored kernel memory.");
6450
6451 goto out2;
6452 }
6453
6454 /*
6455 * If movablecore=nn[KMG] was specified, calculate what size of
6456 * kernelcore that corresponds so that memory usable for
6457 * any allocation type is evenly spread. If both kernelcore
6458 * and movablecore are specified, then the value of kernelcore
6459 * will be used for required_kernelcore if it's greater than
6460 * what movablecore would have allowed.
6461 */
6462 if (required_movablecore) {
6463 unsigned long corepages;
6464
6465 /*
6466 * Round-up so that ZONE_MOVABLE is at least as large as what
6467 * was requested by the user
6468 */
6469 required_movablecore =
6470 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6471 required_movablecore = min(totalpages, required_movablecore);
6472 corepages = totalpages - required_movablecore;
6473
6474 required_kernelcore = max(required_kernelcore, corepages);
6475 }
6476
6477 /*
6478 * If kernelcore was not specified or kernelcore size is larger
6479 * than totalpages, there is no ZONE_MOVABLE.
6480 */
6481 if (!required_kernelcore || required_kernelcore >= totalpages)
6482 goto out;
6483
6484 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6485 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6486
6487restart:
6488 /* Spread kernelcore memory as evenly as possible throughout nodes */
6489 kernelcore_node = required_kernelcore / usable_nodes;
6490 for_each_node_state(nid, N_MEMORY) {
6491 unsigned long start_pfn, end_pfn;
6492
6493 /*
6494 * Recalculate kernelcore_node if the division per node
6495 * now exceeds what is necessary to satisfy the requested
6496 * amount of memory for the kernel
6497 */
6498 if (required_kernelcore < kernelcore_node)
6499 kernelcore_node = required_kernelcore / usable_nodes;
6500
6501 /*
6502 * As the map is walked, we track how much memory is usable
6503 * by the kernel using kernelcore_remaining. When it is
6504 * 0, the rest of the node is usable by ZONE_MOVABLE
6505 */
6506 kernelcore_remaining = kernelcore_node;
6507
6508 /* Go through each range of PFNs within this node */
6509 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6510 unsigned long size_pages;
6511
6512 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6513 if (start_pfn >= end_pfn)
6514 continue;
6515
6516 /* Account for what is only usable for kernelcore */
6517 if (start_pfn < usable_startpfn) {
6518 unsigned long kernel_pages;
6519 kernel_pages = min(end_pfn, usable_startpfn)
6520 - start_pfn;
6521
6522 kernelcore_remaining -= min(kernel_pages,
6523 kernelcore_remaining);
6524 required_kernelcore -= min(kernel_pages,
6525 required_kernelcore);
6526
6527 /* Continue if range is now fully accounted */
6528 if (end_pfn <= usable_startpfn) {
6529
6530 /*
6531 * Push zone_movable_pfn to the end so
6532 * that if we have to rebalance
6533 * kernelcore across nodes, we will
6534 * not double account here
6535 */
6536 zone_movable_pfn[nid] = end_pfn;
6537 continue;
6538 }
6539 start_pfn = usable_startpfn;
6540 }
6541
6542 /*
6543 * The usable PFN range for ZONE_MOVABLE is from
6544 * start_pfn->end_pfn. Calculate size_pages as the
6545 * number of pages used as kernelcore
6546 */
6547 size_pages = end_pfn - start_pfn;
6548 if (size_pages > kernelcore_remaining)
6549 size_pages = kernelcore_remaining;
6550 zone_movable_pfn[nid] = start_pfn + size_pages;
6551
6552 /*
6553 * Some kernelcore has been met, update counts and
6554 * break if the kernelcore for this node has been
6555 * satisfied
6556 */
6557 required_kernelcore -= min(required_kernelcore,
6558 size_pages);
6559 kernelcore_remaining -= size_pages;
6560 if (!kernelcore_remaining)
6561 break;
6562 }
6563 }
6564
6565 /*
6566 * If there is still required_kernelcore, we do another pass with one
6567 * less node in the count. This will push zone_movable_pfn[nid] further
6568 * along on the nodes that still have memory until kernelcore is
6569 * satisfied
6570 */
6571 usable_nodes--;
6572 if (usable_nodes && required_kernelcore > usable_nodes)
6573 goto restart;
6574
6575out2:
6576 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6577 for (nid = 0; nid < MAX_NUMNODES; nid++)
6578 zone_movable_pfn[nid] =
6579 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6580
6581out:
6582 /* restore the node_state */
6583 node_states[N_MEMORY] = saved_node_state;
6584}
6585
6586/* Any regular or high memory on that node ? */
6587static void check_for_memory(pg_data_t *pgdat, int nid)
6588{
6589 enum zone_type zone_type;
6590
6591 if (N_MEMORY == N_NORMAL_MEMORY)
6592 return;
6593
6594 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6595 struct zone *zone = &pgdat->node_zones[zone_type];
6596 if (populated_zone(zone)) {
6597 node_set_state(nid, N_HIGH_MEMORY);
6598 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6599 zone_type <= ZONE_NORMAL)
6600 node_set_state(nid, N_NORMAL_MEMORY);
6601 break;
6602 }
6603 }
6604}
6605
6606/**
6607 * free_area_init_nodes - Initialise all pg_data_t and zone data
6608 * @max_zone_pfn: an array of max PFNs for each zone
6609 *
6610 * This will call free_area_init_node() for each active node in the system.
6611 * Using the page ranges provided by memblock_set_node(), the size of each
6612 * zone in each node and their holes is calculated. If the maximum PFN
6613 * between two adjacent zones match, it is assumed that the zone is empty.
6614 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6615 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6616 * starts where the previous one ended. For example, ZONE_DMA32 starts
6617 * at arch_max_dma_pfn.
6618 */
6619void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6620{
6621 unsigned long start_pfn, end_pfn;
6622 int i, nid;
6623
6624 /* Record where the zone boundaries are */
6625 memset(arch_zone_lowest_possible_pfn, 0,
6626 sizeof(arch_zone_lowest_possible_pfn));
6627 memset(arch_zone_highest_possible_pfn, 0,
6628 sizeof(arch_zone_highest_possible_pfn));
6629
6630 start_pfn = find_min_pfn_with_active_regions();
6631
6632 for (i = 0; i < MAX_NR_ZONES; i++) {
6633 if (i == ZONE_MOVABLE)
6634 continue;
6635
6636 end_pfn = max(max_zone_pfn[i], start_pfn);
6637 arch_zone_lowest_possible_pfn[i] = start_pfn;
6638 arch_zone_highest_possible_pfn[i] = end_pfn;
6639
6640 start_pfn = end_pfn;
6641 }
6642
6643 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6644 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6645 find_zone_movable_pfns_for_nodes();
6646
6647 /* Print out the zone ranges */
6648 pr_info("Zone ranges:\n");
6649 for (i = 0; i < MAX_NR_ZONES; i++) {
6650 if (i == ZONE_MOVABLE)
6651 continue;
6652 pr_info(" %-8s ", zone_names[i]);
6653 if (arch_zone_lowest_possible_pfn[i] ==
6654 arch_zone_highest_possible_pfn[i])
6655 pr_cont("empty\n");
6656 else
6657 pr_cont("[mem %#018Lx-%#018Lx]\n",
6658 (u64)arch_zone_lowest_possible_pfn[i]
6659 << PAGE_SHIFT,
6660 ((u64)arch_zone_highest_possible_pfn[i]
6661 << PAGE_SHIFT) - 1);
6662 }
6663
6664 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6665 pr_info("Movable zone start for each node\n");
6666 for (i = 0; i < MAX_NUMNODES; i++) {
6667 if (zone_movable_pfn[i])
6668 pr_info(" Node %d: %#018Lx\n", i,
6669 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6670 }
6671
6672 /* Print out the early node map */
6673 pr_info("Early memory node ranges\n");
6674 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6675 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6676 (u64)start_pfn << PAGE_SHIFT,
6677 ((u64)end_pfn << PAGE_SHIFT) - 1);
6678
6679 /* Initialise every node */
6680 mminit_verify_pageflags_layout();
6681 setup_nr_node_ids();
6682 for_each_online_node(nid) {
6683 pg_data_t *pgdat = NODE_DATA(nid);
6684 free_area_init_node(nid, NULL,
6685 find_min_pfn_for_node(nid), NULL);
6686
6687 /* Any memory on that node */
6688 if (pgdat->node_present_pages)
6689 node_set_state(nid, N_MEMORY);
6690 check_for_memory(pgdat, nid);
6691 }
6692 zero_resv_unavail();
6693}
6694
6695static int __init cmdline_parse_core(char *p, unsigned long *core)
6696{
6697 unsigned long long coremem;
6698 if (!p)
6699 return -EINVAL;
6700
6701 coremem = memparse(p, &p);
6702 *core = coremem >> PAGE_SHIFT;
6703
6704 /* Paranoid check that UL is enough for the coremem value */
6705 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6706
6707 return 0;
6708}
6709
6710/*
6711 * kernelcore=size sets the amount of memory for use for allocations that
6712 * cannot be reclaimed or migrated.
6713 */
6714static int __init cmdline_parse_kernelcore(char *p)
6715{
6716 /* parse kernelcore=mirror */
6717 if (parse_option_str(p, "mirror")) {
6718 mirrored_kernelcore = true;
6719 return 0;
6720 }
6721
6722 return cmdline_parse_core(p, &required_kernelcore);
6723}
6724
6725/*
6726 * movablecore=size sets the amount of memory for use for allocations that
6727 * can be reclaimed or migrated.
6728 */
6729static int __init cmdline_parse_movablecore(char *p)
6730{
6731 return cmdline_parse_core(p, &required_movablecore);
6732}
6733
6734early_param("kernelcore", cmdline_parse_kernelcore);
6735early_param("movablecore", cmdline_parse_movablecore);
6736
6737#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6738
6739void adjust_managed_page_count(struct page *page, long count)
6740{
6741 spin_lock(&managed_page_count_lock);
6742 page_zone(page)->managed_pages += count;
6743 totalram_pages += count;
6744#ifdef CONFIG_HIGHMEM
6745 if (PageHighMem(page))
6746 totalhigh_pages += count;
6747#endif
6748 spin_unlock(&managed_page_count_lock);
6749}
6750EXPORT_SYMBOL(adjust_managed_page_count);
6751
6752unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6753{
6754 void *pos;
6755 unsigned long pages = 0;
6756
6757 start = (void *)PAGE_ALIGN((unsigned long)start);
6758 end = (void *)((unsigned long)end & PAGE_MASK);
6759 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6760 if ((unsigned int)poison <= 0xFF)
6761 memset(pos, poison, PAGE_SIZE);
6762 free_reserved_page(virt_to_page(pos));
6763 }
6764
6765 if (pages && s)
6766 pr_info("Freeing %s memory: %ldK\n",
6767 s, pages << (PAGE_SHIFT - 10));
6768
6769 return pages;
6770}
6771EXPORT_SYMBOL(free_reserved_area);
6772
6773#ifdef CONFIG_HIGHMEM
6774void free_highmem_page(struct page *page)
6775{
6776 __free_reserved_page(page);
6777 totalram_pages++;
6778 page_zone(page)->managed_pages++;
6779 totalhigh_pages++;
6780}
6781#endif
6782
6783
6784void __init mem_init_print_info(const char *str)
6785{
6786 unsigned long physpages, codesize, datasize, rosize, bss_size;
6787 unsigned long init_code_size, init_data_size;
6788
6789 physpages = get_num_physpages();
6790 codesize = _etext - _stext;
6791 datasize = _edata - _sdata;
6792 rosize = __end_rodata - __start_rodata;
6793 bss_size = __bss_stop - __bss_start;
6794 init_data_size = __init_end - __init_begin;
6795 init_code_size = _einittext - _sinittext;
6796
6797 /*
6798 * Detect special cases and adjust section sizes accordingly:
6799 * 1) .init.* may be embedded into .data sections
6800 * 2) .init.text.* may be out of [__init_begin, __init_end],
6801 * please refer to arch/tile/kernel/vmlinux.lds.S.
6802 * 3) .rodata.* may be embedded into .text or .data sections.
6803 */
6804#define adj_init_size(start, end, size, pos, adj) \
6805 do { \
6806 if (start <= pos && pos < end && size > adj) \
6807 size -= adj; \
6808 } while (0)
6809
6810 adj_init_size(__init_begin, __init_end, init_data_size,
6811 _sinittext, init_code_size);
6812 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6813 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6814 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6815 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6816
6817#undef adj_init_size
6818
6819 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6820#ifdef CONFIG_HIGHMEM
6821 ", %luK highmem"
6822#endif
6823 "%s%s)\n",
6824 nr_free_pages() << (PAGE_SHIFT - 10),
6825 physpages << (PAGE_SHIFT - 10),
6826 codesize >> 10, datasize >> 10, rosize >> 10,
6827 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6828 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6829 totalcma_pages << (PAGE_SHIFT - 10),
6830#ifdef CONFIG_HIGHMEM
6831 totalhigh_pages << (PAGE_SHIFT - 10),
6832#endif
6833 str ? ", " : "", str ? str : "");
6834}
6835
6836/**
6837 * set_dma_reserve - set the specified number of pages reserved in the first zone
6838 * @new_dma_reserve: The number of pages to mark reserved
6839 *
6840 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6841 * In the DMA zone, a significant percentage may be consumed by kernel image
6842 * and other unfreeable allocations which can skew the watermarks badly. This
6843 * function may optionally be used to account for unfreeable pages in the
6844 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6845 * smaller per-cpu batchsize.
6846 */
6847void __init set_dma_reserve(unsigned long new_dma_reserve)
6848{
6849 dma_reserve = new_dma_reserve;
6850}
6851
6852void __init free_area_init(unsigned long *zones_size)
6853{
6854 free_area_init_node(0, zones_size,
6855 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6856 zero_resv_unavail();
6857}
6858
6859static int page_alloc_cpu_dead(unsigned int cpu)
6860{
6861
6862 lru_add_drain_cpu(cpu);
6863 drain_pages(cpu);
6864
6865 /*
6866 * Spill the event counters of the dead processor
6867 * into the current processors event counters.
6868 * This artificially elevates the count of the current
6869 * processor.
6870 */
6871 vm_events_fold_cpu(cpu);
6872
6873 /*
6874 * Zero the differential counters of the dead processor
6875 * so that the vm statistics are consistent.
6876 *
6877 * This is only okay since the processor is dead and cannot
6878 * race with what we are doing.
6879 */
6880 cpu_vm_stats_fold(cpu);
6881 return 0;
6882}
6883
6884void __init page_alloc_init(void)
6885{
6886 int ret;
6887
6888 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6889 "mm/page_alloc:dead", NULL,
6890 page_alloc_cpu_dead);
6891 WARN_ON(ret < 0);
6892}
6893
6894/*
6895 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6896 * or min_free_kbytes changes.
6897 */
6898static void calculate_totalreserve_pages(void)
6899{
6900 struct pglist_data *pgdat;
6901 unsigned long reserve_pages = 0;
6902 enum zone_type i, j;
6903
6904 for_each_online_pgdat(pgdat) {
6905
6906 pgdat->totalreserve_pages = 0;
6907
6908 for (i = 0; i < MAX_NR_ZONES; i++) {
6909 struct zone *zone = pgdat->node_zones + i;
6910 long max = 0;
6911
6912 /* Find valid and maximum lowmem_reserve in the zone */
6913 for (j = i; j < MAX_NR_ZONES; j++) {
6914 if (zone->lowmem_reserve[j] > max)
6915 max = zone->lowmem_reserve[j];
6916 }
6917
6918 /* we treat the high watermark as reserved pages. */
6919 max += high_wmark_pages(zone);
6920
6921 if (max > zone->managed_pages)
6922 max = zone->managed_pages;
6923
6924 pgdat->totalreserve_pages += max;
6925
6926 reserve_pages += max;
6927 }
6928 }
6929 totalreserve_pages = reserve_pages;
6930}
6931
6932/*
6933 * setup_per_zone_lowmem_reserve - called whenever
6934 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6935 * has a correct pages reserved value, so an adequate number of
6936 * pages are left in the zone after a successful __alloc_pages().
6937 */
6938static void setup_per_zone_lowmem_reserve(void)
6939{
6940 struct pglist_data *pgdat;
6941 enum zone_type j, idx;
6942
6943 for_each_online_pgdat(pgdat) {
6944 for (j = 0; j < MAX_NR_ZONES; j++) {
6945 struct zone *zone = pgdat->node_zones + j;
6946 unsigned long managed_pages = zone->managed_pages;
6947
6948 zone->lowmem_reserve[j] = 0;
6949
6950 idx = j;
6951 while (idx) {
6952 struct zone *lower_zone;
6953
6954 idx--;
6955
6956 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6957 sysctl_lowmem_reserve_ratio[idx] = 1;
6958
6959 lower_zone = pgdat->node_zones + idx;
6960 lower_zone->lowmem_reserve[j] = managed_pages /
6961 sysctl_lowmem_reserve_ratio[idx];
6962 managed_pages += lower_zone->managed_pages;
6963 }
6964 }
6965 }
6966
6967 /* update totalreserve_pages */
6968 calculate_totalreserve_pages();
6969}
6970
6971static void __setup_per_zone_wmarks(void)
6972{
6973 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6974 unsigned long lowmem_pages = 0;
6975 struct zone *zone;
6976 unsigned long flags;
6977
6978 /* Calculate total number of !ZONE_HIGHMEM pages */
6979 for_each_zone(zone) {
6980 if (!is_highmem(zone))
6981 lowmem_pages += zone->managed_pages;
6982 }
6983
6984 for_each_zone(zone) {
6985 u64 tmp;
6986
6987 spin_lock_irqsave(&zone->lock, flags);
6988 tmp = (u64)pages_min * zone->managed_pages;
6989 do_div(tmp, lowmem_pages);
6990 if (is_highmem(zone)) {
6991 /*
6992 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6993 * need highmem pages, so cap pages_min to a small
6994 * value here.
6995 *
6996 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6997 * deltas control asynch page reclaim, and so should
6998 * not be capped for highmem.
6999 */
7000 unsigned long min_pages;
7001
7002 min_pages = zone->managed_pages / 1024;
7003 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7004 zone->watermark[WMARK_MIN] = min_pages;
7005 } else {
7006 /*
7007 * If it's a lowmem zone, reserve a number of pages
7008 * proportionate to the zone's size.
7009 */
7010 zone->watermark[WMARK_MIN] = tmp;
7011 }
7012
7013 /*
7014 * Set the kswapd watermarks distance according to the
7015 * scale factor in proportion to available memory, but
7016 * ensure a minimum size on small systems.
7017 */
7018 tmp = max_t(u64, tmp >> 2,
7019 mult_frac(zone->managed_pages,
7020 watermark_scale_factor, 10000));
7021
7022 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7023 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7024
7025 spin_unlock_irqrestore(&zone->lock, flags);
7026 }
7027
7028 /* update totalreserve_pages */
7029 calculate_totalreserve_pages();
7030}
7031
7032/**
7033 * setup_per_zone_wmarks - called when min_free_kbytes changes
7034 * or when memory is hot-{added|removed}
7035 *
7036 * Ensures that the watermark[min,low,high] values for each zone are set
7037 * correctly with respect to min_free_kbytes.
7038 */
7039void setup_per_zone_wmarks(void)
7040{
7041 static DEFINE_SPINLOCK(lock);
7042
7043 spin_lock(&lock);
7044 __setup_per_zone_wmarks();
7045 spin_unlock(&lock);
7046}
7047
7048/*
7049 * Initialise min_free_kbytes.
7050 *
7051 * For small machines we want it small (128k min). For large machines
7052 * we want it large (64MB max). But it is not linear, because network
7053 * bandwidth does not increase linearly with machine size. We use
7054 *
7055 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7056 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7057 *
7058 * which yields
7059 *
7060 * 16MB: 512k
7061 * 32MB: 724k
7062 * 64MB: 1024k
7063 * 128MB: 1448k
7064 * 256MB: 2048k
7065 * 512MB: 2896k
7066 * 1024MB: 4096k
7067 * 2048MB: 5792k
7068 * 4096MB: 8192k
7069 * 8192MB: 11584k
7070 * 16384MB: 16384k
7071 */
7072int __meminit init_per_zone_wmark_min(void)
7073{
7074 unsigned long lowmem_kbytes;
7075 int new_min_free_kbytes;
7076
7077 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7078 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7079
7080 if (new_min_free_kbytes > user_min_free_kbytes) {
7081 min_free_kbytes = new_min_free_kbytes;
7082 if (min_free_kbytes < 128)
7083 min_free_kbytes = 128;
7084 if (min_free_kbytes > 65536)
7085 min_free_kbytes = 65536;
7086 } else {
7087 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7088 new_min_free_kbytes, user_min_free_kbytes);
7089 }
7090 setup_per_zone_wmarks();
7091 refresh_zone_stat_thresholds();
7092 setup_per_zone_lowmem_reserve();
7093
7094#ifdef CONFIG_NUMA
7095 setup_min_unmapped_ratio();
7096 setup_min_slab_ratio();
7097#endif
7098
7099 return 0;
7100}
7101core_initcall(init_per_zone_wmark_min)
7102
7103/*
7104 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7105 * that we can call two helper functions whenever min_free_kbytes
7106 * changes.
7107 */
7108int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7109 void __user *buffer, size_t *length, loff_t *ppos)
7110{
7111 int rc;
7112
7113 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7114 if (rc)
7115 return rc;
7116
7117 if (write) {
7118 user_min_free_kbytes = min_free_kbytes;
7119 setup_per_zone_wmarks();
7120 }
7121 return 0;
7122}
7123
7124int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7125 void __user *buffer, size_t *length, loff_t *ppos)
7126{
7127 int rc;
7128
7129 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7130 if (rc)
7131 return rc;
7132
7133 if (write)
7134 setup_per_zone_wmarks();
7135
7136 return 0;
7137}
7138
7139#ifdef CONFIG_NUMA
7140static void setup_min_unmapped_ratio(void)
7141{
7142 pg_data_t *pgdat;
7143 struct zone *zone;
7144
7145 for_each_online_pgdat(pgdat)
7146 pgdat->min_unmapped_pages = 0;
7147
7148 for_each_zone(zone)
7149 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7150 sysctl_min_unmapped_ratio) / 100;
7151}
7152
7153
7154int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7155 void __user *buffer, size_t *length, loff_t *ppos)
7156{
7157 int rc;
7158
7159 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7160 if (rc)
7161 return rc;
7162
7163 setup_min_unmapped_ratio();
7164
7165 return 0;
7166}
7167
7168static void setup_min_slab_ratio(void)
7169{
7170 pg_data_t *pgdat;
7171 struct zone *zone;
7172
7173 for_each_online_pgdat(pgdat)
7174 pgdat->min_slab_pages = 0;
7175
7176 for_each_zone(zone)
7177 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7178 sysctl_min_slab_ratio) / 100;
7179}
7180
7181int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7182 void __user *buffer, size_t *length, loff_t *ppos)
7183{
7184 int rc;
7185
7186 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7187 if (rc)
7188 return rc;
7189
7190 setup_min_slab_ratio();
7191
7192 return 0;
7193}
7194#endif
7195
7196/*
7197 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7198 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7199 * whenever sysctl_lowmem_reserve_ratio changes.
7200 *
7201 * The reserve ratio obviously has absolutely no relation with the
7202 * minimum watermarks. The lowmem reserve ratio can only make sense
7203 * if in function of the boot time zone sizes.
7204 */
7205int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7206 void __user *buffer, size_t *length, loff_t *ppos)
7207{
7208 proc_dointvec_minmax(table, write, buffer, length, ppos);
7209 setup_per_zone_lowmem_reserve();
7210 return 0;
7211}
7212
7213/*
7214 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7215 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7216 * pagelist can have before it gets flushed back to buddy allocator.
7217 */
7218int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7219 void __user *buffer, size_t *length, loff_t *ppos)
7220{
7221 struct zone *zone;
7222 int old_percpu_pagelist_fraction;
7223 int ret;
7224
7225 mutex_lock(&pcp_batch_high_lock);
7226 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7227
7228 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7229 if (!write || ret < 0)
7230 goto out;
7231
7232 /* Sanity checking to avoid pcp imbalance */
7233 if (percpu_pagelist_fraction &&
7234 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7235 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7236 ret = -EINVAL;
7237 goto out;
7238 }
7239
7240 /* No change? */
7241 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7242 goto out;
7243
7244 for_each_populated_zone(zone) {
7245 unsigned int cpu;
7246
7247 for_each_possible_cpu(cpu)
7248 pageset_set_high_and_batch(zone,
7249 per_cpu_ptr(zone->pageset, cpu));
7250 }
7251out:
7252 mutex_unlock(&pcp_batch_high_lock);
7253 return ret;
7254}
7255
7256#ifdef CONFIG_NUMA
7257int hashdist = HASHDIST_DEFAULT;
7258
7259static int __init set_hashdist(char *str)
7260{
7261 if (!str)
7262 return 0;
7263 hashdist = simple_strtoul(str, &str, 0);
7264 return 1;
7265}
7266__setup("hashdist=", set_hashdist);
7267#endif
7268
7269#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7270/*
7271 * Returns the number of pages that arch has reserved but
7272 * is not known to alloc_large_system_hash().
7273 */
7274static unsigned long __init arch_reserved_kernel_pages(void)
7275{
7276 return 0;
7277}
7278#endif
7279
7280/*
7281 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7282 * machines. As memory size is increased the scale is also increased but at
7283 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7284 * quadruples the scale is increased by one, which means the size of hash table
7285 * only doubles, instead of quadrupling as well.
7286 * Because 32-bit systems cannot have large physical memory, where this scaling
7287 * makes sense, it is disabled on such platforms.
7288 */
7289#if __BITS_PER_LONG > 32
7290#define ADAPT_SCALE_BASE (64ul << 30)
7291#define ADAPT_SCALE_SHIFT 2
7292#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7293#endif
7294
7295/*
7296 * allocate a large system hash table from bootmem
7297 * - it is assumed that the hash table must contain an exact power-of-2
7298 * quantity of entries
7299 * - limit is the number of hash buckets, not the total allocation size
7300 */
7301void *__init alloc_large_system_hash(const char *tablename,
7302 unsigned long bucketsize,
7303 unsigned long numentries,
7304 int scale,
7305 int flags,
7306 unsigned int *_hash_shift,
7307 unsigned int *_hash_mask,
7308 unsigned long low_limit,
7309 unsigned long high_limit)
7310{
7311 unsigned long long max = high_limit;
7312 unsigned long log2qty, size;
7313 void *table = NULL;
7314 gfp_t gfp_flags;
7315
7316 /* allow the kernel cmdline to have a say */
7317 if (!numentries) {
7318 /* round applicable memory size up to nearest megabyte */
7319 numentries = nr_kernel_pages;
7320 numentries -= arch_reserved_kernel_pages();
7321
7322 /* It isn't necessary when PAGE_SIZE >= 1MB */
7323 if (PAGE_SHIFT < 20)
7324 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7325
7326#if __BITS_PER_LONG > 32
7327 if (!high_limit) {
7328 unsigned long adapt;
7329
7330 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7331 adapt <<= ADAPT_SCALE_SHIFT)
7332 scale++;
7333 }
7334#endif
7335
7336 /* limit to 1 bucket per 2^scale bytes of low memory */
7337 if (scale > PAGE_SHIFT)
7338 numentries >>= (scale - PAGE_SHIFT);
7339 else
7340 numentries <<= (PAGE_SHIFT - scale);
7341
7342 /* Make sure we've got at least a 0-order allocation.. */
7343 if (unlikely(flags & HASH_SMALL)) {
7344 /* Makes no sense without HASH_EARLY */
7345 WARN_ON(!(flags & HASH_EARLY));
7346 if (!(numentries >> *_hash_shift)) {
7347 numentries = 1UL << *_hash_shift;
7348 BUG_ON(!numentries);
7349 }
7350 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7351 numentries = PAGE_SIZE / bucketsize;
7352 }
7353 numentries = roundup_pow_of_two(numentries);
7354
7355 /* limit allocation size to 1/16 total memory by default */
7356 if (max == 0) {
7357 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7358 do_div(max, bucketsize);
7359 }
7360 max = min(max, 0x80000000ULL);
7361
7362 if (numentries < low_limit)
7363 numentries = low_limit;
7364 if (numentries > max)
7365 numentries = max;
7366
7367 log2qty = ilog2(numentries);
7368
7369 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7370 do {
7371 size = bucketsize << log2qty;
7372 if (flags & HASH_EARLY) {
7373 if (flags & HASH_ZERO)
7374 table = memblock_virt_alloc_nopanic(size, 0);
7375 else
7376 table = memblock_virt_alloc_raw(size, 0);
7377 } else if (hashdist) {
7378 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7379 } else {
7380 /*
7381 * If bucketsize is not a power-of-two, we may free
7382 * some pages at the end of hash table which
7383 * alloc_pages_exact() automatically does
7384 */
7385 if (get_order(size) < MAX_ORDER) {
7386 table = alloc_pages_exact(size, gfp_flags);
7387 kmemleak_alloc(table, size, 1, gfp_flags);
7388 }
7389 }
7390 } while (!table && size > PAGE_SIZE && --log2qty);
7391
7392 if (!table)
7393 panic("Failed to allocate %s hash table\n", tablename);
7394
7395 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7396 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7397
7398 if (_hash_shift)
7399 *_hash_shift = log2qty;
7400 if (_hash_mask)
7401 *_hash_mask = (1 << log2qty) - 1;
7402
7403 return table;
7404}
7405
7406/*
7407 * This function checks whether pageblock includes unmovable pages or not.
7408 * If @count is not zero, it is okay to include less @count unmovable pages
7409 *
7410 * PageLRU check without isolation or lru_lock could race so that
7411 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7412 * check without lock_page also may miss some movable non-lru pages at
7413 * race condition. So you can't expect this function should be exact.
7414 */
7415bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7416 int migratetype,
7417 bool skip_hwpoisoned_pages)
7418{
7419 unsigned long pfn, iter, found;
7420
7421 /*
7422 * For avoiding noise data, lru_add_drain_all() should be called
7423 * If ZONE_MOVABLE, the zone never contains unmovable pages
7424 */
7425 if (zone_idx(zone) == ZONE_MOVABLE)
7426 return false;
7427
7428 /*
7429 * CMA allocations (alloc_contig_range) really need to mark isolate
7430 * CMA pageblocks even when they are not movable in fact so consider
7431 * them movable here.
7432 */
7433 if (is_migrate_cma(migratetype) &&
7434 is_migrate_cma(get_pageblock_migratetype(page)))
7435 return false;
7436
7437 pfn = page_to_pfn(page);
7438 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7439 unsigned long check = pfn + iter;
7440
7441 if (!pfn_valid_within(check))
7442 continue;
7443
7444 page = pfn_to_page(check);
7445
7446 if (PageReserved(page))
7447 return true;
7448
7449 /*
7450 * Hugepages are not in LRU lists, but they're movable.
7451 * We need not scan over tail pages bacause we don't
7452 * handle each tail page individually in migration.
7453 */
7454 if (PageHuge(page)) {
7455 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7456 continue;
7457 }
7458
7459 /*
7460 * We can't use page_count without pin a page
7461 * because another CPU can free compound page.
7462 * This check already skips compound tails of THP
7463 * because their page->_refcount is zero at all time.
7464 */
7465 if (!page_ref_count(page)) {
7466 if (PageBuddy(page))
7467 iter += (1 << page_order(page)) - 1;
7468 continue;
7469 }
7470
7471 /*
7472 * The HWPoisoned page may be not in buddy system, and
7473 * page_count() is not 0.
7474 */
7475 if (skip_hwpoisoned_pages && PageHWPoison(page))
7476 continue;
7477
7478 if (__PageMovable(page))
7479 continue;
7480
7481 if (!PageLRU(page))
7482 found++;
7483 /*
7484 * If there are RECLAIMABLE pages, we need to check
7485 * it. But now, memory offline itself doesn't call
7486 * shrink_node_slabs() and it still to be fixed.
7487 */
7488 /*
7489 * If the page is not RAM, page_count()should be 0.
7490 * we don't need more check. This is an _used_ not-movable page.
7491 *
7492 * The problematic thing here is PG_reserved pages. PG_reserved
7493 * is set to both of a memory hole page and a _used_ kernel
7494 * page at boot.
7495 */
7496 if (found > count)
7497 return true;
7498 }
7499 return false;
7500}
7501
7502bool is_pageblock_removable_nolock(struct page *page)
7503{
7504 struct zone *zone;
7505 unsigned long pfn;
7506
7507 /*
7508 * We have to be careful here because we are iterating over memory
7509 * sections which are not zone aware so we might end up outside of
7510 * the zone but still within the section.
7511 * We have to take care about the node as well. If the node is offline
7512 * its NODE_DATA will be NULL - see page_zone.
7513 */
7514 if (!node_online(page_to_nid(page)))
7515 return false;
7516
7517 zone = page_zone(page);
7518 pfn = page_to_pfn(page);
7519 if (!zone_spans_pfn(zone, pfn))
7520 return false;
7521
7522 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
7523}
7524
7525#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7526
7527static unsigned long pfn_max_align_down(unsigned long pfn)
7528{
7529 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7530 pageblock_nr_pages) - 1);
7531}
7532
7533static unsigned long pfn_max_align_up(unsigned long pfn)
7534{
7535 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7536 pageblock_nr_pages));
7537}
7538
7539/* [start, end) must belong to a single zone. */
7540static int __alloc_contig_migrate_range(struct compact_control *cc,
7541 unsigned long start, unsigned long end)
7542{
7543 /* This function is based on compact_zone() from compaction.c. */
7544 unsigned long nr_reclaimed;
7545 unsigned long pfn = start;
7546 unsigned int tries = 0;
7547 int ret = 0;
7548
7549 migrate_prep();
7550
7551 while (pfn < end || !list_empty(&cc->migratepages)) {
7552 if (fatal_signal_pending(current)) {
7553 ret = -EINTR;
7554 break;
7555 }
7556
7557 if (list_empty(&cc->migratepages)) {
7558 cc->nr_migratepages = 0;
7559 pfn = isolate_migratepages_range(cc, pfn, end);
7560 if (!pfn) {
7561 ret = -EINTR;
7562 break;
7563 }
7564 tries = 0;
7565 } else if (++tries == 5) {
7566 ret = ret < 0 ? ret : -EBUSY;
7567 break;
7568 }
7569
7570 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7571 &cc->migratepages);
7572 cc->nr_migratepages -= nr_reclaimed;
7573
7574 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7575 NULL, 0, cc->mode, MR_CMA);
7576 }
7577 if (ret < 0) {
7578 putback_movable_pages(&cc->migratepages);
7579 return ret;
7580 }
7581 return 0;
7582}
7583
7584/**
7585 * alloc_contig_range() -- tries to allocate given range of pages
7586 * @start: start PFN to allocate
7587 * @end: one-past-the-last PFN to allocate
7588 * @migratetype: migratetype of the underlaying pageblocks (either
7589 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7590 * in range must have the same migratetype and it must
7591 * be either of the two.
7592 * @gfp_mask: GFP mask to use during compaction
7593 *
7594 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7595 * aligned, however it's the caller's responsibility to guarantee that
7596 * we are the only thread that changes migrate type of pageblocks the
7597 * pages fall in.
7598 *
7599 * The PFN range must belong to a single zone.
7600 *
7601 * Returns zero on success or negative error code. On success all
7602 * pages which PFN is in [start, end) are allocated for the caller and
7603 * need to be freed with free_contig_range().
7604 */
7605int alloc_contig_range(unsigned long start, unsigned long end,
7606 unsigned migratetype, gfp_t gfp_mask)
7607{
7608 unsigned long outer_start, outer_end;
7609 unsigned int order;
7610 int ret = 0;
7611
7612 struct compact_control cc = {
7613 .nr_migratepages = 0,
7614 .order = -1,
7615 .zone = page_zone(pfn_to_page(start)),
7616 .mode = MIGRATE_SYNC,
7617 .ignore_skip_hint = true,
7618 .no_set_skip_hint = true,
7619 .gfp_mask = current_gfp_context(gfp_mask),
7620 };
7621 INIT_LIST_HEAD(&cc.migratepages);
7622
7623 /*
7624 * What we do here is we mark all pageblocks in range as
7625 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7626 * have different sizes, and due to the way page allocator
7627 * work, we align the range to biggest of the two pages so
7628 * that page allocator won't try to merge buddies from
7629 * different pageblocks and change MIGRATE_ISOLATE to some
7630 * other migration type.
7631 *
7632 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7633 * migrate the pages from an unaligned range (ie. pages that
7634 * we are interested in). This will put all the pages in
7635 * range back to page allocator as MIGRATE_ISOLATE.
7636 *
7637 * When this is done, we take the pages in range from page
7638 * allocator removing them from the buddy system. This way
7639 * page allocator will never consider using them.
7640 *
7641 * This lets us mark the pageblocks back as
7642 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7643 * aligned range but not in the unaligned, original range are
7644 * put back to page allocator so that buddy can use them.
7645 */
7646
7647 ret = start_isolate_page_range(pfn_max_align_down(start),
7648 pfn_max_align_up(end), migratetype,
7649 false);
7650 if (ret)
7651 return ret;
7652
7653 /*
7654 * In case of -EBUSY, we'd like to know which page causes problem.
7655 * So, just fall through. test_pages_isolated() has a tracepoint
7656 * which will report the busy page.
7657 *
7658 * It is possible that busy pages could become available before
7659 * the call to test_pages_isolated, and the range will actually be
7660 * allocated. So, if we fall through be sure to clear ret so that
7661 * -EBUSY is not accidentally used or returned to caller.
7662 */
7663 ret = __alloc_contig_migrate_range(&cc, start, end);
7664 if (ret && ret != -EBUSY)
7665 goto done;
7666 ret =0;
7667
7668 /*
7669 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7670 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7671 * more, all pages in [start, end) are free in page allocator.
7672 * What we are going to do is to allocate all pages from
7673 * [start, end) (that is remove them from page allocator).
7674 *
7675 * The only problem is that pages at the beginning and at the
7676 * end of interesting range may be not aligned with pages that
7677 * page allocator holds, ie. they can be part of higher order
7678 * pages. Because of this, we reserve the bigger range and
7679 * once this is done free the pages we are not interested in.
7680 *
7681 * We don't have to hold zone->lock here because the pages are
7682 * isolated thus they won't get removed from buddy.
7683 */
7684
7685 lru_add_drain_all();
7686 drain_all_pages(cc.zone);
7687
7688 order = 0;
7689 outer_start = start;
7690 while (!PageBuddy(pfn_to_page(outer_start))) {
7691 if (++order >= MAX_ORDER) {
7692 outer_start = start;
7693 break;
7694 }
7695 outer_start &= ~0UL << order;
7696 }
7697
7698 if (outer_start != start) {
7699 order = page_order(pfn_to_page(outer_start));
7700
7701 /*
7702 * outer_start page could be small order buddy page and
7703 * it doesn't include start page. Adjust outer_start
7704 * in this case to report failed page properly
7705 * on tracepoint in test_pages_isolated()
7706 */
7707 if (outer_start + (1UL << order) <= start)
7708 outer_start = start;
7709 }
7710
7711 /* Make sure the range is really isolated. */
7712 if (test_pages_isolated(outer_start, end, false)) {
7713 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7714 __func__, outer_start, end);
7715 ret = -EBUSY;
7716 goto done;
7717 }
7718
7719 /* Grab isolated pages from freelists. */
7720 outer_end = isolate_freepages_range(&cc, outer_start, end);
7721 if (!outer_end) {
7722 ret = -EBUSY;
7723 goto done;
7724 }
7725
7726 /* Free head and tail (if any) */
7727 if (start != outer_start)
7728 free_contig_range(outer_start, start - outer_start);
7729 if (end != outer_end)
7730 free_contig_range(end, outer_end - end);
7731
7732done:
7733 undo_isolate_page_range(pfn_max_align_down(start),
7734 pfn_max_align_up(end), migratetype);
7735 return ret;
7736}
7737
7738void free_contig_range(unsigned long pfn, unsigned nr_pages)
7739{
7740 unsigned int count = 0;
7741
7742 for (; nr_pages--; pfn++) {
7743 struct page *page = pfn_to_page(pfn);
7744
7745 count += page_count(page) != 1;
7746 __free_page(page);
7747 }
7748 WARN(count != 0, "%d pages are still in use!\n", count);
7749}
7750#endif
7751
7752#ifdef CONFIG_MEMORY_HOTPLUG
7753/*
7754 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7755 * page high values need to be recalulated.
7756 */
7757void __meminit zone_pcp_update(struct zone *zone)
7758{
7759 unsigned cpu;
7760 mutex_lock(&pcp_batch_high_lock);
7761 for_each_possible_cpu(cpu)
7762 pageset_set_high_and_batch(zone,
7763 per_cpu_ptr(zone->pageset, cpu));
7764 mutex_unlock(&pcp_batch_high_lock);
7765}
7766#endif
7767
7768void zone_pcp_reset(struct zone *zone)
7769{
7770 unsigned long flags;
7771 int cpu;
7772 struct per_cpu_pageset *pset;
7773
7774 /* avoid races with drain_pages() */
7775 local_irq_save(flags);
7776 if (zone->pageset != &boot_pageset) {
7777 for_each_online_cpu(cpu) {
7778 pset = per_cpu_ptr(zone->pageset, cpu);
7779 drain_zonestat(zone, pset);
7780 }
7781 free_percpu(zone->pageset);
7782 zone->pageset = &boot_pageset;
7783 }
7784 local_irq_restore(flags);
7785}
7786
7787#ifdef CONFIG_MEMORY_HOTREMOVE
7788/*
7789 * All pages in the range must be in a single zone and isolated
7790 * before calling this.
7791 */
7792void
7793__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7794{
7795 struct page *page;
7796 struct zone *zone;
7797 unsigned int order, i;
7798 unsigned long pfn;
7799 unsigned long flags;
7800 /* find the first valid pfn */
7801 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7802 if (pfn_valid(pfn))
7803 break;
7804 if (pfn == end_pfn)
7805 return;
7806 offline_mem_sections(pfn, end_pfn);
7807 zone = page_zone(pfn_to_page(pfn));
7808 spin_lock_irqsave(&zone->lock, flags);
7809 pfn = start_pfn;
7810 while (pfn < end_pfn) {
7811 if (!pfn_valid(pfn)) {
7812 pfn++;
7813 continue;
7814 }
7815 page = pfn_to_page(pfn);
7816 /*
7817 * The HWPoisoned page may be not in buddy system, and
7818 * page_count() is not 0.
7819 */
7820 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7821 pfn++;
7822 SetPageReserved(page);
7823 continue;
7824 }
7825
7826 BUG_ON(page_count(page));
7827 BUG_ON(!PageBuddy(page));
7828 order = page_order(page);
7829#ifdef CONFIG_DEBUG_VM
7830 pr_info("remove from free list %lx %d %lx\n",
7831 pfn, 1 << order, end_pfn);
7832#endif
7833 list_del(&page->lru);
7834 rmv_page_order(page);
7835 zone->free_area[order].nr_free--;
7836 for (i = 0; i < (1 << order); i++)
7837 SetPageReserved((page+i));
7838 pfn += (1 << order);
7839 }
7840 spin_unlock_irqrestore(&zone->lock, flags);
7841}
7842#endif
7843
7844bool is_free_buddy_page(struct page *page)
7845{
7846 struct zone *zone = page_zone(page);
7847 unsigned long pfn = page_to_pfn(page);
7848 unsigned long flags;
7849 unsigned int order;
7850
7851 spin_lock_irqsave(&zone->lock, flags);
7852 for (order = 0; order < MAX_ORDER; order++) {
7853 struct page *page_head = page - (pfn & ((1 << order) - 1));
7854
7855 if (PageBuddy(page_head) && page_order(page_head) >= order)
7856 break;
7857 }
7858 spin_unlock_irqrestore(&zone->lock, flags);
7859
7860 return order < MAX_ORDER;
7861}