at v4.14 21 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 4 * 5 * (C) SGI 2006, Christoph Lameter 6 * Cleaned up and restructured to ease the addition of alternative 7 * implementations of SLAB allocators. 8 * (C) Linux Foundation 2008-2013 9 * Unified interface for all slab allocators 10 */ 11 12#ifndef _LINUX_SLAB_H 13#define _LINUX_SLAB_H 14 15#include <linux/gfp.h> 16#include <linux/types.h> 17#include <linux/workqueue.h> 18 19 20/* 21 * Flags to pass to kmem_cache_create(). 22 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set. 23 */ 24#define SLAB_CONSISTENCY_CHECKS 0x00000100UL /* DEBUG: Perform (expensive) checks on alloc/free */ 25#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */ 26#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */ 27#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */ 28#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */ 29#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */ 30#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */ 31/* 32 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS! 33 * 34 * This delays freeing the SLAB page by a grace period, it does _NOT_ 35 * delay object freeing. This means that if you do kmem_cache_free() 36 * that memory location is free to be reused at any time. Thus it may 37 * be possible to see another object there in the same RCU grace period. 38 * 39 * This feature only ensures the memory location backing the object 40 * stays valid, the trick to using this is relying on an independent 41 * object validation pass. Something like: 42 * 43 * rcu_read_lock() 44 * again: 45 * obj = lockless_lookup(key); 46 * if (obj) { 47 * if (!try_get_ref(obj)) // might fail for free objects 48 * goto again; 49 * 50 * if (obj->key != key) { // not the object we expected 51 * put_ref(obj); 52 * goto again; 53 * } 54 * } 55 * rcu_read_unlock(); 56 * 57 * This is useful if we need to approach a kernel structure obliquely, 58 * from its address obtained without the usual locking. We can lock 59 * the structure to stabilize it and check it's still at the given address, 60 * only if we can be sure that the memory has not been meanwhile reused 61 * for some other kind of object (which our subsystem's lock might corrupt). 62 * 63 * rcu_read_lock before reading the address, then rcu_read_unlock after 64 * taking the spinlock within the structure expected at that address. 65 * 66 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU. 67 */ 68#define SLAB_TYPESAFE_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */ 69#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */ 70#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */ 71 72/* Flag to prevent checks on free */ 73#ifdef CONFIG_DEBUG_OBJECTS 74# define SLAB_DEBUG_OBJECTS 0x00400000UL 75#else 76# define SLAB_DEBUG_OBJECTS 0x00000000UL 77#endif 78 79#define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */ 80 81/* Don't track use of uninitialized memory */ 82#ifdef CONFIG_KMEMCHECK 83# define SLAB_NOTRACK 0x01000000UL 84#else 85# define SLAB_NOTRACK 0x00000000UL 86#endif 87#ifdef CONFIG_FAILSLAB 88# define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */ 89#else 90# define SLAB_FAILSLAB 0x00000000UL 91#endif 92#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) 93# define SLAB_ACCOUNT 0x04000000UL /* Account to memcg */ 94#else 95# define SLAB_ACCOUNT 0x00000000UL 96#endif 97 98#ifdef CONFIG_KASAN 99#define SLAB_KASAN 0x08000000UL 100#else 101#define SLAB_KASAN 0x00000000UL 102#endif 103 104/* The following flags affect the page allocator grouping pages by mobility */ 105#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */ 106#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 107/* 108 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 109 * 110 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 111 * 112 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 113 * Both make kfree a no-op. 114 */ 115#define ZERO_SIZE_PTR ((void *)16) 116 117#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 118 (unsigned long)ZERO_SIZE_PTR) 119 120#include <linux/kmemleak.h> 121#include <linux/kasan.h> 122 123struct mem_cgroup; 124/* 125 * struct kmem_cache related prototypes 126 */ 127void __init kmem_cache_init(void); 128bool slab_is_available(void); 129 130struct kmem_cache *kmem_cache_create(const char *, size_t, size_t, 131 unsigned long, 132 void (*)(void *)); 133void kmem_cache_destroy(struct kmem_cache *); 134int kmem_cache_shrink(struct kmem_cache *); 135 136void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *); 137void memcg_deactivate_kmem_caches(struct mem_cgroup *); 138void memcg_destroy_kmem_caches(struct mem_cgroup *); 139 140/* 141 * Please use this macro to create slab caches. Simply specify the 142 * name of the structure and maybe some flags that are listed above. 143 * 144 * The alignment of the struct determines object alignment. If you 145 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 146 * then the objects will be properly aligned in SMP configurations. 147 */ 148#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 149 sizeof(struct __struct), __alignof__(struct __struct),\ 150 (__flags), NULL) 151 152/* 153 * Common kmalloc functions provided by all allocators 154 */ 155void * __must_check __krealloc(const void *, size_t, gfp_t); 156void * __must_check krealloc(const void *, size_t, gfp_t); 157void kfree(const void *); 158void kzfree(const void *); 159size_t ksize(const void *); 160 161#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR 162const char *__check_heap_object(const void *ptr, unsigned long n, 163 struct page *page); 164#else 165static inline const char *__check_heap_object(const void *ptr, 166 unsigned long n, 167 struct page *page) 168{ 169 return NULL; 170} 171#endif 172 173/* 174 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 175 * alignment larger than the alignment of a 64-bit integer. 176 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. 177 */ 178#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 179#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 180#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 181#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) 182#else 183#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 184#endif 185 186/* 187 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 188 * Intended for arches that get misalignment faults even for 64 bit integer 189 * aligned buffers. 190 */ 191#ifndef ARCH_SLAB_MINALIGN 192#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 193#endif 194 195/* 196 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned 197 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN 198 * aligned pointers. 199 */ 200#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) 201#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) 202#define __assume_page_alignment __assume_aligned(PAGE_SIZE) 203 204/* 205 * Kmalloc array related definitions 206 */ 207 208#ifdef CONFIG_SLAB 209/* 210 * The largest kmalloc size supported by the SLAB allocators is 211 * 32 megabyte (2^25) or the maximum allocatable page order if that is 212 * less than 32 MB. 213 * 214 * WARNING: Its not easy to increase this value since the allocators have 215 * to do various tricks to work around compiler limitations in order to 216 * ensure proper constant folding. 217 */ 218#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ 219 (MAX_ORDER + PAGE_SHIFT - 1) : 25) 220#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH 221#ifndef KMALLOC_SHIFT_LOW 222#define KMALLOC_SHIFT_LOW 5 223#endif 224#endif 225 226#ifdef CONFIG_SLUB 227/* 228 * SLUB directly allocates requests fitting in to an order-1 page 229 * (PAGE_SIZE*2). Larger requests are passed to the page allocator. 230 */ 231#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 232#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) 233#ifndef KMALLOC_SHIFT_LOW 234#define KMALLOC_SHIFT_LOW 3 235#endif 236#endif 237 238#ifdef CONFIG_SLOB 239/* 240 * SLOB passes all requests larger than one page to the page allocator. 241 * No kmalloc array is necessary since objects of different sizes can 242 * be allocated from the same page. 243 */ 244#define KMALLOC_SHIFT_HIGH PAGE_SHIFT 245#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) 246#ifndef KMALLOC_SHIFT_LOW 247#define KMALLOC_SHIFT_LOW 3 248#endif 249#endif 250 251/* Maximum allocatable size */ 252#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 253/* Maximum size for which we actually use a slab cache */ 254#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 255/* Maximum order allocatable via the slab allocagtor */ 256#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 257 258/* 259 * Kmalloc subsystem. 260 */ 261#ifndef KMALLOC_MIN_SIZE 262#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 263#endif 264 265/* 266 * This restriction comes from byte sized index implementation. 267 * Page size is normally 2^12 bytes and, in this case, if we want to use 268 * byte sized index which can represent 2^8 entries, the size of the object 269 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. 270 * If minimum size of kmalloc is less than 16, we use it as minimum object 271 * size and give up to use byte sized index. 272 */ 273#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ 274 (KMALLOC_MIN_SIZE) : 16) 275 276#ifndef CONFIG_SLOB 277extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; 278#ifdef CONFIG_ZONE_DMA 279extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; 280#endif 281 282/* 283 * Figure out which kmalloc slab an allocation of a certain size 284 * belongs to. 285 * 0 = zero alloc 286 * 1 = 65 .. 96 bytes 287 * 2 = 129 .. 192 bytes 288 * n = 2^(n-1)+1 .. 2^n 289 */ 290static __always_inline int kmalloc_index(size_t size) 291{ 292 if (!size) 293 return 0; 294 295 if (size <= KMALLOC_MIN_SIZE) 296 return KMALLOC_SHIFT_LOW; 297 298 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 299 return 1; 300 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 301 return 2; 302 if (size <= 8) return 3; 303 if (size <= 16) return 4; 304 if (size <= 32) return 5; 305 if (size <= 64) return 6; 306 if (size <= 128) return 7; 307 if (size <= 256) return 8; 308 if (size <= 512) return 9; 309 if (size <= 1024) return 10; 310 if (size <= 2 * 1024) return 11; 311 if (size <= 4 * 1024) return 12; 312 if (size <= 8 * 1024) return 13; 313 if (size <= 16 * 1024) return 14; 314 if (size <= 32 * 1024) return 15; 315 if (size <= 64 * 1024) return 16; 316 if (size <= 128 * 1024) return 17; 317 if (size <= 256 * 1024) return 18; 318 if (size <= 512 * 1024) return 19; 319 if (size <= 1024 * 1024) return 20; 320 if (size <= 2 * 1024 * 1024) return 21; 321 if (size <= 4 * 1024 * 1024) return 22; 322 if (size <= 8 * 1024 * 1024) return 23; 323 if (size <= 16 * 1024 * 1024) return 24; 324 if (size <= 32 * 1024 * 1024) return 25; 325 if (size <= 64 * 1024 * 1024) return 26; 326 BUG(); 327 328 /* Will never be reached. Needed because the compiler may complain */ 329 return -1; 330} 331#endif /* !CONFIG_SLOB */ 332 333void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc; 334void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc; 335void kmem_cache_free(struct kmem_cache *, void *); 336 337/* 338 * Bulk allocation and freeing operations. These are accelerated in an 339 * allocator specific way to avoid taking locks repeatedly or building 340 * metadata structures unnecessarily. 341 * 342 * Note that interrupts must be enabled when calling these functions. 343 */ 344void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); 345int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); 346 347/* 348 * Caller must not use kfree_bulk() on memory not originally allocated 349 * by kmalloc(), because the SLOB allocator cannot handle this. 350 */ 351static __always_inline void kfree_bulk(size_t size, void **p) 352{ 353 kmem_cache_free_bulk(NULL, size, p); 354} 355 356#ifdef CONFIG_NUMA 357void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc; 358void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc; 359#else 360static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node) 361{ 362 return __kmalloc(size, flags); 363} 364 365static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) 366{ 367 return kmem_cache_alloc(s, flags); 368} 369#endif 370 371#ifdef CONFIG_TRACING 372extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc; 373 374#ifdef CONFIG_NUMA 375extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 376 gfp_t gfpflags, 377 int node, size_t size) __assume_slab_alignment __malloc; 378#else 379static __always_inline void * 380kmem_cache_alloc_node_trace(struct kmem_cache *s, 381 gfp_t gfpflags, 382 int node, size_t size) 383{ 384 return kmem_cache_alloc_trace(s, gfpflags, size); 385} 386#endif /* CONFIG_NUMA */ 387 388#else /* CONFIG_TRACING */ 389static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s, 390 gfp_t flags, size_t size) 391{ 392 void *ret = kmem_cache_alloc(s, flags); 393 394 kasan_kmalloc(s, ret, size, flags); 395 return ret; 396} 397 398static __always_inline void * 399kmem_cache_alloc_node_trace(struct kmem_cache *s, 400 gfp_t gfpflags, 401 int node, size_t size) 402{ 403 void *ret = kmem_cache_alloc_node(s, gfpflags, node); 404 405 kasan_kmalloc(s, ret, size, gfpflags); 406 return ret; 407} 408#endif /* CONFIG_TRACING */ 409 410extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; 411 412#ifdef CONFIG_TRACING 413extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; 414#else 415static __always_inline void * 416kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 417{ 418 return kmalloc_order(size, flags, order); 419} 420#endif 421 422static __always_inline void *kmalloc_large(size_t size, gfp_t flags) 423{ 424 unsigned int order = get_order(size); 425 return kmalloc_order_trace(size, flags, order); 426} 427 428/** 429 * kmalloc - allocate memory 430 * @size: how many bytes of memory are required. 431 * @flags: the type of memory to allocate. 432 * 433 * kmalloc is the normal method of allocating memory 434 * for objects smaller than page size in the kernel. 435 * 436 * The @flags argument may be one of: 437 * 438 * %GFP_USER - Allocate memory on behalf of user. May sleep. 439 * 440 * %GFP_KERNEL - Allocate normal kernel ram. May sleep. 441 * 442 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools. 443 * For example, use this inside interrupt handlers. 444 * 445 * %GFP_HIGHUSER - Allocate pages from high memory. 446 * 447 * %GFP_NOIO - Do not do any I/O at all while trying to get memory. 448 * 449 * %GFP_NOFS - Do not make any fs calls while trying to get memory. 450 * 451 * %GFP_NOWAIT - Allocation will not sleep. 452 * 453 * %__GFP_THISNODE - Allocate node-local memory only. 454 * 455 * %GFP_DMA - Allocation suitable for DMA. 456 * Should only be used for kmalloc() caches. Otherwise, use a 457 * slab created with SLAB_DMA. 458 * 459 * Also it is possible to set different flags by OR'ing 460 * in one or more of the following additional @flags: 461 * 462 * %__GFP_COLD - Request cache-cold pages instead of 463 * trying to return cache-warm pages. 464 * 465 * %__GFP_HIGH - This allocation has high priority and may use emergency pools. 466 * 467 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail 468 * (think twice before using). 469 * 470 * %__GFP_NORETRY - If memory is not immediately available, 471 * then give up at once. 472 * 473 * %__GFP_NOWARN - If allocation fails, don't issue any warnings. 474 * 475 * %__GFP_RETRY_MAYFAIL - Try really hard to succeed the allocation but fail 476 * eventually. 477 * 478 * There are other flags available as well, but these are not intended 479 * for general use, and so are not documented here. For a full list of 480 * potential flags, always refer to linux/gfp.h. 481 */ 482static __always_inline void *kmalloc(size_t size, gfp_t flags) 483{ 484 if (__builtin_constant_p(size)) { 485 if (size > KMALLOC_MAX_CACHE_SIZE) 486 return kmalloc_large(size, flags); 487#ifndef CONFIG_SLOB 488 if (!(flags & GFP_DMA)) { 489 int index = kmalloc_index(size); 490 491 if (!index) 492 return ZERO_SIZE_PTR; 493 494 return kmem_cache_alloc_trace(kmalloc_caches[index], 495 flags, size); 496 } 497#endif 498 } 499 return __kmalloc(size, flags); 500} 501 502/* 503 * Determine size used for the nth kmalloc cache. 504 * return size or 0 if a kmalloc cache for that 505 * size does not exist 506 */ 507static __always_inline int kmalloc_size(int n) 508{ 509#ifndef CONFIG_SLOB 510 if (n > 2) 511 return 1 << n; 512 513 if (n == 1 && KMALLOC_MIN_SIZE <= 32) 514 return 96; 515 516 if (n == 2 && KMALLOC_MIN_SIZE <= 64) 517 return 192; 518#endif 519 return 0; 520} 521 522static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) 523{ 524#ifndef CONFIG_SLOB 525 if (__builtin_constant_p(size) && 526 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) { 527 int i = kmalloc_index(size); 528 529 if (!i) 530 return ZERO_SIZE_PTR; 531 532 return kmem_cache_alloc_node_trace(kmalloc_caches[i], 533 flags, node, size); 534 } 535#endif 536 return __kmalloc_node(size, flags, node); 537} 538 539struct memcg_cache_array { 540 struct rcu_head rcu; 541 struct kmem_cache *entries[0]; 542}; 543 544/* 545 * This is the main placeholder for memcg-related information in kmem caches. 546 * Both the root cache and the child caches will have it. For the root cache, 547 * this will hold a dynamically allocated array large enough to hold 548 * information about the currently limited memcgs in the system. To allow the 549 * array to be accessed without taking any locks, on relocation we free the old 550 * version only after a grace period. 551 * 552 * Root and child caches hold different metadata. 553 * 554 * @root_cache: Common to root and child caches. NULL for root, pointer to 555 * the root cache for children. 556 * 557 * The following fields are specific to root caches. 558 * 559 * @memcg_caches: kmemcg ID indexed table of child caches. This table is 560 * used to index child cachces during allocation and cleared 561 * early during shutdown. 562 * 563 * @root_caches_node: List node for slab_root_caches list. 564 * 565 * @children: List of all child caches. While the child caches are also 566 * reachable through @memcg_caches, a child cache remains on 567 * this list until it is actually destroyed. 568 * 569 * The following fields are specific to child caches. 570 * 571 * @memcg: Pointer to the memcg this cache belongs to. 572 * 573 * @children_node: List node for @root_cache->children list. 574 * 575 * @kmem_caches_node: List node for @memcg->kmem_caches list. 576 */ 577struct memcg_cache_params { 578 struct kmem_cache *root_cache; 579 union { 580 struct { 581 struct memcg_cache_array __rcu *memcg_caches; 582 struct list_head __root_caches_node; 583 struct list_head children; 584 }; 585 struct { 586 struct mem_cgroup *memcg; 587 struct list_head children_node; 588 struct list_head kmem_caches_node; 589 590 void (*deact_fn)(struct kmem_cache *); 591 union { 592 struct rcu_head deact_rcu_head; 593 struct work_struct deact_work; 594 }; 595 }; 596 }; 597}; 598 599int memcg_update_all_caches(int num_memcgs); 600 601/** 602 * kmalloc_array - allocate memory for an array. 603 * @n: number of elements. 604 * @size: element size. 605 * @flags: the type of memory to allocate (see kmalloc). 606 */ 607static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags) 608{ 609 if (size != 0 && n > SIZE_MAX / size) 610 return NULL; 611 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 612 return kmalloc(n * size, flags); 613 return __kmalloc(n * size, flags); 614} 615 616/** 617 * kcalloc - allocate memory for an array. The memory is set to zero. 618 * @n: number of elements. 619 * @size: element size. 620 * @flags: the type of memory to allocate (see kmalloc). 621 */ 622static inline void *kcalloc(size_t n, size_t size, gfp_t flags) 623{ 624 return kmalloc_array(n, size, flags | __GFP_ZERO); 625} 626 627/* 628 * kmalloc_track_caller is a special version of kmalloc that records the 629 * calling function of the routine calling it for slab leak tracking instead 630 * of just the calling function (confusing, eh?). 631 * It's useful when the call to kmalloc comes from a widely-used standard 632 * allocator where we care about the real place the memory allocation 633 * request comes from. 634 */ 635extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); 636#define kmalloc_track_caller(size, flags) \ 637 __kmalloc_track_caller(size, flags, _RET_IP_) 638 639#ifdef CONFIG_NUMA 640extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); 641#define kmalloc_node_track_caller(size, flags, node) \ 642 __kmalloc_node_track_caller(size, flags, node, \ 643 _RET_IP_) 644 645#else /* CONFIG_NUMA */ 646 647#define kmalloc_node_track_caller(size, flags, node) \ 648 kmalloc_track_caller(size, flags) 649 650#endif /* CONFIG_NUMA */ 651 652/* 653 * Shortcuts 654 */ 655static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 656{ 657 return kmem_cache_alloc(k, flags | __GFP_ZERO); 658} 659 660/** 661 * kzalloc - allocate memory. The memory is set to zero. 662 * @size: how many bytes of memory are required. 663 * @flags: the type of memory to allocate (see kmalloc). 664 */ 665static inline void *kzalloc(size_t size, gfp_t flags) 666{ 667 return kmalloc(size, flags | __GFP_ZERO); 668} 669 670/** 671 * kzalloc_node - allocate zeroed memory from a particular memory node. 672 * @size: how many bytes of memory are required. 673 * @flags: the type of memory to allocate (see kmalloc). 674 * @node: memory node from which to allocate 675 */ 676static inline void *kzalloc_node(size_t size, gfp_t flags, int node) 677{ 678 return kmalloc_node(size, flags | __GFP_ZERO, node); 679} 680 681unsigned int kmem_cache_size(struct kmem_cache *s); 682void __init kmem_cache_init_late(void); 683 684#if defined(CONFIG_SMP) && defined(CONFIG_SLAB) 685int slab_prepare_cpu(unsigned int cpu); 686int slab_dead_cpu(unsigned int cpu); 687#else 688#define slab_prepare_cpu NULL 689#define slab_dead_cpu NULL 690#endif 691 692#endif /* _LINUX_SLAB_H */