at v4.14 40 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <uapi/linux/perf_event.h> 18 19/* 20 * Kernel-internal data types and definitions: 21 */ 22 23#ifdef CONFIG_PERF_EVENTS 24# include <asm/perf_event.h> 25# include <asm/local64.h> 26#endif 27 28struct perf_guest_info_callbacks { 29 int (*is_in_guest)(void); 30 int (*is_user_mode)(void); 31 unsigned long (*get_guest_ip)(void); 32}; 33 34#ifdef CONFIG_HAVE_HW_BREAKPOINT 35#include <asm/hw_breakpoint.h> 36#endif 37 38#include <linux/list.h> 39#include <linux/mutex.h> 40#include <linux/rculist.h> 41#include <linux/rcupdate.h> 42#include <linux/spinlock.h> 43#include <linux/hrtimer.h> 44#include <linux/fs.h> 45#include <linux/pid_namespace.h> 46#include <linux/workqueue.h> 47#include <linux/ftrace.h> 48#include <linux/cpu.h> 49#include <linux/irq_work.h> 50#include <linux/static_key.h> 51#include <linux/jump_label_ratelimit.h> 52#include <linux/atomic.h> 53#include <linux/sysfs.h> 54#include <linux/perf_regs.h> 55#include <linux/workqueue.h> 56#include <linux/cgroup.h> 57#include <asm/local.h> 58 59struct perf_callchain_entry { 60 __u64 nr; 61 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */ 62}; 63 64struct perf_callchain_entry_ctx { 65 struct perf_callchain_entry *entry; 66 u32 max_stack; 67 u32 nr; 68 short contexts; 69 bool contexts_maxed; 70}; 71 72typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 73 unsigned long off, unsigned long len); 74 75struct perf_raw_frag { 76 union { 77 struct perf_raw_frag *next; 78 unsigned long pad; 79 }; 80 perf_copy_f copy; 81 void *data; 82 u32 size; 83} __packed; 84 85struct perf_raw_record { 86 struct perf_raw_frag frag; 87 u32 size; 88}; 89 90/* 91 * branch stack layout: 92 * nr: number of taken branches stored in entries[] 93 * 94 * Note that nr can vary from sample to sample 95 * branches (to, from) are stored from most recent 96 * to least recent, i.e., entries[0] contains the most 97 * recent branch. 98 */ 99struct perf_branch_stack { 100 __u64 nr; 101 struct perf_branch_entry entries[0]; 102}; 103 104struct task_struct; 105 106/* 107 * extra PMU register associated with an event 108 */ 109struct hw_perf_event_extra { 110 u64 config; /* register value */ 111 unsigned int reg; /* register address or index */ 112 int alloc; /* extra register already allocated */ 113 int idx; /* index in shared_regs->regs[] */ 114}; 115 116/** 117 * struct hw_perf_event - performance event hardware details: 118 */ 119struct hw_perf_event { 120#ifdef CONFIG_PERF_EVENTS 121 union { 122 struct { /* hardware */ 123 u64 config; 124 u64 last_tag; 125 unsigned long config_base; 126 unsigned long event_base; 127 int event_base_rdpmc; 128 int idx; 129 int last_cpu; 130 int flags; 131 132 struct hw_perf_event_extra extra_reg; 133 struct hw_perf_event_extra branch_reg; 134 }; 135 struct { /* software */ 136 struct hrtimer hrtimer; 137 }; 138 struct { /* tracepoint */ 139 /* for tp_event->class */ 140 struct list_head tp_list; 141 }; 142 struct { /* amd_power */ 143 u64 pwr_acc; 144 u64 ptsc; 145 }; 146#ifdef CONFIG_HAVE_HW_BREAKPOINT 147 struct { /* breakpoint */ 148 /* 149 * Crufty hack to avoid the chicken and egg 150 * problem hw_breakpoint has with context 151 * creation and event initalization. 152 */ 153 struct arch_hw_breakpoint info; 154 struct list_head bp_list; 155 }; 156#endif 157 struct { /* amd_iommu */ 158 u8 iommu_bank; 159 u8 iommu_cntr; 160 u16 padding; 161 u64 conf; 162 u64 conf1; 163 }; 164 }; 165 /* 166 * If the event is a per task event, this will point to the task in 167 * question. See the comment in perf_event_alloc(). 168 */ 169 struct task_struct *target; 170 171 /* 172 * PMU would store hardware filter configuration 173 * here. 174 */ 175 void *addr_filters; 176 177 /* Last sync'ed generation of filters */ 178 unsigned long addr_filters_gen; 179 180/* 181 * hw_perf_event::state flags; used to track the PERF_EF_* state. 182 */ 183#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 184#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 185#define PERF_HES_ARCH 0x04 186 187 int state; 188 189 /* 190 * The last observed hardware counter value, updated with a 191 * local64_cmpxchg() such that pmu::read() can be called nested. 192 */ 193 local64_t prev_count; 194 195 /* 196 * The period to start the next sample with. 197 */ 198 u64 sample_period; 199 200 /* 201 * The period we started this sample with. 202 */ 203 u64 last_period; 204 205 /* 206 * However much is left of the current period; note that this is 207 * a full 64bit value and allows for generation of periods longer 208 * than hardware might allow. 209 */ 210 local64_t period_left; 211 212 /* 213 * State for throttling the event, see __perf_event_overflow() and 214 * perf_adjust_freq_unthr_context(). 215 */ 216 u64 interrupts_seq; 217 u64 interrupts; 218 219 /* 220 * State for freq target events, see __perf_event_overflow() and 221 * perf_adjust_freq_unthr_context(). 222 */ 223 u64 freq_time_stamp; 224 u64 freq_count_stamp; 225#endif 226}; 227 228struct perf_event; 229 230/* 231 * Common implementation detail of pmu::{start,commit,cancel}_txn 232 */ 233#define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 234#define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 235 236/** 237 * pmu::capabilities flags 238 */ 239#define PERF_PMU_CAP_NO_INTERRUPT 0x01 240#define PERF_PMU_CAP_NO_NMI 0x02 241#define PERF_PMU_CAP_AUX_NO_SG 0x04 242#define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08 243#define PERF_PMU_CAP_EXCLUSIVE 0x10 244#define PERF_PMU_CAP_ITRACE 0x20 245#define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 246 247/** 248 * struct pmu - generic performance monitoring unit 249 */ 250struct pmu { 251 struct list_head entry; 252 253 struct module *module; 254 struct device *dev; 255 const struct attribute_group **attr_groups; 256 const char *name; 257 int type; 258 259 /* 260 * various common per-pmu feature flags 261 */ 262 int capabilities; 263 264 int * __percpu pmu_disable_count; 265 struct perf_cpu_context * __percpu pmu_cpu_context; 266 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 267 int task_ctx_nr; 268 int hrtimer_interval_ms; 269 270 /* number of address filters this PMU can do */ 271 unsigned int nr_addr_filters; 272 273 /* 274 * Fully disable/enable this PMU, can be used to protect from the PMI 275 * as well as for lazy/batch writing of the MSRs. 276 */ 277 void (*pmu_enable) (struct pmu *pmu); /* optional */ 278 void (*pmu_disable) (struct pmu *pmu); /* optional */ 279 280 /* 281 * Try and initialize the event for this PMU. 282 * 283 * Returns: 284 * -ENOENT -- @event is not for this PMU 285 * 286 * -ENODEV -- @event is for this PMU but PMU not present 287 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 288 * -EINVAL -- @event is for this PMU but @event is not valid 289 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 290 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges 291 * 292 * 0 -- @event is for this PMU and valid 293 * 294 * Other error return values are allowed. 295 */ 296 int (*event_init) (struct perf_event *event); 297 298 /* 299 * Notification that the event was mapped or unmapped. Called 300 * in the context of the mapping task. 301 */ 302 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 303 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 304 305 /* 306 * Flags for ->add()/->del()/ ->start()/->stop(). There are 307 * matching hw_perf_event::state flags. 308 */ 309#define PERF_EF_START 0x01 /* start the counter when adding */ 310#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 311#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 312 313 /* 314 * Adds/Removes a counter to/from the PMU, can be done inside a 315 * transaction, see the ->*_txn() methods. 316 * 317 * The add/del callbacks will reserve all hardware resources required 318 * to service the event, this includes any counter constraint 319 * scheduling etc. 320 * 321 * Called with IRQs disabled and the PMU disabled on the CPU the event 322 * is on. 323 * 324 * ->add() called without PERF_EF_START should result in the same state 325 * as ->add() followed by ->stop(). 326 * 327 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 328 * ->stop() that must deal with already being stopped without 329 * PERF_EF_UPDATE. 330 */ 331 int (*add) (struct perf_event *event, int flags); 332 void (*del) (struct perf_event *event, int flags); 333 334 /* 335 * Starts/Stops a counter present on the PMU. 336 * 337 * The PMI handler should stop the counter when perf_event_overflow() 338 * returns !0. ->start() will be used to continue. 339 * 340 * Also used to change the sample period. 341 * 342 * Called with IRQs disabled and the PMU disabled on the CPU the event 343 * is on -- will be called from NMI context with the PMU generates 344 * NMIs. 345 * 346 * ->stop() with PERF_EF_UPDATE will read the counter and update 347 * period/count values like ->read() would. 348 * 349 * ->start() with PERF_EF_RELOAD will reprogram the the counter 350 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 351 */ 352 void (*start) (struct perf_event *event, int flags); 353 void (*stop) (struct perf_event *event, int flags); 354 355 /* 356 * Updates the counter value of the event. 357 * 358 * For sampling capable PMUs this will also update the software period 359 * hw_perf_event::period_left field. 360 */ 361 void (*read) (struct perf_event *event); 362 363 /* 364 * Group events scheduling is treated as a transaction, add 365 * group events as a whole and perform one schedulability test. 366 * If the test fails, roll back the whole group 367 * 368 * Start the transaction, after this ->add() doesn't need to 369 * do schedulability tests. 370 * 371 * Optional. 372 */ 373 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 374 /* 375 * If ->start_txn() disabled the ->add() schedulability test 376 * then ->commit_txn() is required to perform one. On success 377 * the transaction is closed. On error the transaction is kept 378 * open until ->cancel_txn() is called. 379 * 380 * Optional. 381 */ 382 int (*commit_txn) (struct pmu *pmu); 383 /* 384 * Will cancel the transaction, assumes ->del() is called 385 * for each successful ->add() during the transaction. 386 * 387 * Optional. 388 */ 389 void (*cancel_txn) (struct pmu *pmu); 390 391 /* 392 * Will return the value for perf_event_mmap_page::index for this event, 393 * if no implementation is provided it will default to: event->hw.idx + 1. 394 */ 395 int (*event_idx) (struct perf_event *event); /*optional */ 396 397 /* 398 * context-switches callback 399 */ 400 void (*sched_task) (struct perf_event_context *ctx, 401 bool sched_in); 402 /* 403 * PMU specific data size 404 */ 405 size_t task_ctx_size; 406 407 408 /* 409 * Set up pmu-private data structures for an AUX area 410 */ 411 void *(*setup_aux) (int cpu, void **pages, 412 int nr_pages, bool overwrite); 413 /* optional */ 414 415 /* 416 * Free pmu-private AUX data structures 417 */ 418 void (*free_aux) (void *aux); /* optional */ 419 420 /* 421 * Validate address range filters: make sure the HW supports the 422 * requested configuration and number of filters; return 0 if the 423 * supplied filters are valid, -errno otherwise. 424 * 425 * Runs in the context of the ioctl()ing process and is not serialized 426 * with the rest of the PMU callbacks. 427 */ 428 int (*addr_filters_validate) (struct list_head *filters); 429 /* optional */ 430 431 /* 432 * Synchronize address range filter configuration: 433 * translate hw-agnostic filters into hardware configuration in 434 * event::hw::addr_filters. 435 * 436 * Runs as a part of filter sync sequence that is done in ->start() 437 * callback by calling perf_event_addr_filters_sync(). 438 * 439 * May (and should) traverse event::addr_filters::list, for which its 440 * caller provides necessary serialization. 441 */ 442 void (*addr_filters_sync) (struct perf_event *event); 443 /* optional */ 444 445 /* 446 * Filter events for PMU-specific reasons. 447 */ 448 int (*filter_match) (struct perf_event *event); /* optional */ 449}; 450 451/** 452 * struct perf_addr_filter - address range filter definition 453 * @entry: event's filter list linkage 454 * @inode: object file's inode for file-based filters 455 * @offset: filter range offset 456 * @size: filter range size 457 * @range: 1: range, 0: address 458 * @filter: 1: filter/start, 0: stop 459 * 460 * This is a hardware-agnostic filter configuration as specified by the user. 461 */ 462struct perf_addr_filter { 463 struct list_head entry; 464 struct inode *inode; 465 unsigned long offset; 466 unsigned long size; 467 unsigned int range : 1, 468 filter : 1; 469}; 470 471/** 472 * struct perf_addr_filters_head - container for address range filters 473 * @list: list of filters for this event 474 * @lock: spinlock that serializes accesses to the @list and event's 475 * (and its children's) filter generations. 476 * @nr_file_filters: number of file-based filters 477 * 478 * A child event will use parent's @list (and therefore @lock), so they are 479 * bundled together; see perf_event_addr_filters(). 480 */ 481struct perf_addr_filters_head { 482 struct list_head list; 483 raw_spinlock_t lock; 484 unsigned int nr_file_filters; 485}; 486 487/** 488 * enum perf_event_active_state - the states of a event 489 */ 490enum perf_event_active_state { 491 PERF_EVENT_STATE_DEAD = -4, 492 PERF_EVENT_STATE_EXIT = -3, 493 PERF_EVENT_STATE_ERROR = -2, 494 PERF_EVENT_STATE_OFF = -1, 495 PERF_EVENT_STATE_INACTIVE = 0, 496 PERF_EVENT_STATE_ACTIVE = 1, 497}; 498 499struct file; 500struct perf_sample_data; 501 502typedef void (*perf_overflow_handler_t)(struct perf_event *, 503 struct perf_sample_data *, 504 struct pt_regs *regs); 505 506/* 507 * Event capabilities. For event_caps and groups caps. 508 * 509 * PERF_EV_CAP_SOFTWARE: Is a software event. 510 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 511 * from any CPU in the package where it is active. 512 */ 513#define PERF_EV_CAP_SOFTWARE BIT(0) 514#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 515 516#define SWEVENT_HLIST_BITS 8 517#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 518 519struct swevent_hlist { 520 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 521 struct rcu_head rcu_head; 522}; 523 524#define PERF_ATTACH_CONTEXT 0x01 525#define PERF_ATTACH_GROUP 0x02 526#define PERF_ATTACH_TASK 0x04 527#define PERF_ATTACH_TASK_DATA 0x08 528#define PERF_ATTACH_ITRACE 0x10 529 530struct perf_cgroup; 531struct ring_buffer; 532 533struct pmu_event_list { 534 raw_spinlock_t lock; 535 struct list_head list; 536}; 537 538/** 539 * struct perf_event - performance event kernel representation: 540 */ 541struct perf_event { 542#ifdef CONFIG_PERF_EVENTS 543 /* 544 * entry onto perf_event_context::event_list; 545 * modifications require ctx->lock 546 * RCU safe iterations. 547 */ 548 struct list_head event_entry; 549 550 /* 551 * XXX: group_entry and sibling_list should be mutually exclusive; 552 * either you're a sibling on a group, or you're the group leader. 553 * Rework the code to always use the same list element. 554 * 555 * Locked for modification by both ctx->mutex and ctx->lock; holding 556 * either sufficies for read. 557 */ 558 struct list_head group_entry; 559 struct list_head sibling_list; 560 561 /* 562 * We need storage to track the entries in perf_pmu_migrate_context; we 563 * cannot use the event_entry because of RCU and we want to keep the 564 * group in tact which avoids us using the other two entries. 565 */ 566 struct list_head migrate_entry; 567 568 struct hlist_node hlist_entry; 569 struct list_head active_entry; 570 int nr_siblings; 571 572 /* Not serialized. Only written during event initialization. */ 573 int event_caps; 574 /* The cumulative AND of all event_caps for events in this group. */ 575 int group_caps; 576 577 struct perf_event *group_leader; 578 struct pmu *pmu; 579 void *pmu_private; 580 581 enum perf_event_active_state state; 582 unsigned int attach_state; 583 local64_t count; 584 atomic64_t child_count; 585 586 /* 587 * These are the total time in nanoseconds that the event 588 * has been enabled (i.e. eligible to run, and the task has 589 * been scheduled in, if this is a per-task event) 590 * and running (scheduled onto the CPU), respectively. 591 * 592 * They are computed from tstamp_enabled, tstamp_running and 593 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 594 */ 595 u64 total_time_enabled; 596 u64 total_time_running; 597 598 /* 599 * These are timestamps used for computing total_time_enabled 600 * and total_time_running when the event is in INACTIVE or 601 * ACTIVE state, measured in nanoseconds from an arbitrary point 602 * in time. 603 * tstamp_enabled: the notional time when the event was enabled 604 * tstamp_running: the notional time when the event was scheduled on 605 * tstamp_stopped: in INACTIVE state, the notional time when the 606 * event was scheduled off. 607 */ 608 u64 tstamp_enabled; 609 u64 tstamp_running; 610 u64 tstamp_stopped; 611 612 /* 613 * timestamp shadows the actual context timing but it can 614 * be safely used in NMI interrupt context. It reflects the 615 * context time as it was when the event was last scheduled in. 616 * 617 * ctx_time already accounts for ctx->timestamp. Therefore to 618 * compute ctx_time for a sample, simply add perf_clock(). 619 */ 620 u64 shadow_ctx_time; 621 622 struct perf_event_attr attr; 623 u16 header_size; 624 u16 id_header_size; 625 u16 read_size; 626 struct hw_perf_event hw; 627 628 struct perf_event_context *ctx; 629 atomic_long_t refcount; 630 631 /* 632 * These accumulate total time (in nanoseconds) that children 633 * events have been enabled and running, respectively. 634 */ 635 atomic64_t child_total_time_enabled; 636 atomic64_t child_total_time_running; 637 638 /* 639 * Protect attach/detach and child_list: 640 */ 641 struct mutex child_mutex; 642 struct list_head child_list; 643 struct perf_event *parent; 644 645 int oncpu; 646 int cpu; 647 648 struct list_head owner_entry; 649 struct task_struct *owner; 650 651 /* mmap bits */ 652 struct mutex mmap_mutex; 653 atomic_t mmap_count; 654 655 struct ring_buffer *rb; 656 struct list_head rb_entry; 657 unsigned long rcu_batches; 658 int rcu_pending; 659 660 /* poll related */ 661 wait_queue_head_t waitq; 662 struct fasync_struct *fasync; 663 664 /* delayed work for NMIs and such */ 665 int pending_wakeup; 666 int pending_kill; 667 int pending_disable; 668 struct irq_work pending; 669 670 atomic_t event_limit; 671 672 /* address range filters */ 673 struct perf_addr_filters_head addr_filters; 674 /* vma address array for file-based filders */ 675 unsigned long *addr_filters_offs; 676 unsigned long addr_filters_gen; 677 678 void (*destroy)(struct perf_event *); 679 struct rcu_head rcu_head; 680 681 struct pid_namespace *ns; 682 u64 id; 683 684 u64 (*clock)(void); 685 perf_overflow_handler_t overflow_handler; 686 void *overflow_handler_context; 687#ifdef CONFIG_BPF_SYSCALL 688 perf_overflow_handler_t orig_overflow_handler; 689 struct bpf_prog *prog; 690#endif 691 692#ifdef CONFIG_EVENT_TRACING 693 struct trace_event_call *tp_event; 694 struct event_filter *filter; 695#ifdef CONFIG_FUNCTION_TRACER 696 struct ftrace_ops ftrace_ops; 697#endif 698#endif 699 700#ifdef CONFIG_CGROUP_PERF 701 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 702 int cgrp_defer_enabled; 703#endif 704 705 struct list_head sb_list; 706#endif /* CONFIG_PERF_EVENTS */ 707}; 708 709/** 710 * struct perf_event_context - event context structure 711 * 712 * Used as a container for task events and CPU events as well: 713 */ 714struct perf_event_context { 715 struct pmu *pmu; 716 /* 717 * Protect the states of the events in the list, 718 * nr_active, and the list: 719 */ 720 raw_spinlock_t lock; 721 /* 722 * Protect the list of events. Locking either mutex or lock 723 * is sufficient to ensure the list doesn't change; to change 724 * the list you need to lock both the mutex and the spinlock. 725 */ 726 struct mutex mutex; 727 728 struct list_head active_ctx_list; 729 struct list_head pinned_groups; 730 struct list_head flexible_groups; 731 struct list_head event_list; 732 int nr_events; 733 int nr_active; 734 int is_active; 735 int nr_stat; 736 int nr_freq; 737 int rotate_disable; 738 atomic_t refcount; 739 struct task_struct *task; 740 741 /* 742 * Context clock, runs when context enabled. 743 */ 744 u64 time; 745 u64 timestamp; 746 747 /* 748 * These fields let us detect when two contexts have both 749 * been cloned (inherited) from a common ancestor. 750 */ 751 struct perf_event_context *parent_ctx; 752 u64 parent_gen; 753 u64 generation; 754 int pin_count; 755#ifdef CONFIG_CGROUP_PERF 756 int nr_cgroups; /* cgroup evts */ 757#endif 758 void *task_ctx_data; /* pmu specific data */ 759 struct rcu_head rcu_head; 760}; 761 762/* 763 * Number of contexts where an event can trigger: 764 * task, softirq, hardirq, nmi. 765 */ 766#define PERF_NR_CONTEXTS 4 767 768/** 769 * struct perf_event_cpu_context - per cpu event context structure 770 */ 771struct perf_cpu_context { 772 struct perf_event_context ctx; 773 struct perf_event_context *task_ctx; 774 int active_oncpu; 775 int exclusive; 776 777 raw_spinlock_t hrtimer_lock; 778 struct hrtimer hrtimer; 779 ktime_t hrtimer_interval; 780 unsigned int hrtimer_active; 781 782#ifdef CONFIG_CGROUP_PERF 783 struct perf_cgroup *cgrp; 784 struct list_head cgrp_cpuctx_entry; 785#endif 786 787 struct list_head sched_cb_entry; 788 int sched_cb_usage; 789 790 int online; 791}; 792 793struct perf_output_handle { 794 struct perf_event *event; 795 struct ring_buffer *rb; 796 unsigned long wakeup; 797 unsigned long size; 798 u64 aux_flags; 799 union { 800 void *addr; 801 unsigned long head; 802 }; 803 int page; 804}; 805 806struct bpf_perf_event_data_kern { 807 struct pt_regs *regs; 808 struct perf_sample_data *data; 809}; 810 811#ifdef CONFIG_CGROUP_PERF 812 813/* 814 * perf_cgroup_info keeps track of time_enabled for a cgroup. 815 * This is a per-cpu dynamically allocated data structure. 816 */ 817struct perf_cgroup_info { 818 u64 time; 819 u64 timestamp; 820}; 821 822struct perf_cgroup { 823 struct cgroup_subsys_state css; 824 struct perf_cgroup_info __percpu *info; 825}; 826 827/* 828 * Must ensure cgroup is pinned (css_get) before calling 829 * this function. In other words, we cannot call this function 830 * if there is no cgroup event for the current CPU context. 831 */ 832static inline struct perf_cgroup * 833perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 834{ 835 return container_of(task_css_check(task, perf_event_cgrp_id, 836 ctx ? lockdep_is_held(&ctx->lock) 837 : true), 838 struct perf_cgroup, css); 839} 840#endif /* CONFIG_CGROUP_PERF */ 841 842#ifdef CONFIG_PERF_EVENTS 843 844extern void *perf_aux_output_begin(struct perf_output_handle *handle, 845 struct perf_event *event); 846extern void perf_aux_output_end(struct perf_output_handle *handle, 847 unsigned long size); 848extern int perf_aux_output_skip(struct perf_output_handle *handle, 849 unsigned long size); 850extern void *perf_get_aux(struct perf_output_handle *handle); 851extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 852extern void perf_event_itrace_started(struct perf_event *event); 853 854extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 855extern void perf_pmu_unregister(struct pmu *pmu); 856 857extern int perf_num_counters(void); 858extern const char *perf_pmu_name(void); 859extern void __perf_event_task_sched_in(struct task_struct *prev, 860 struct task_struct *task); 861extern void __perf_event_task_sched_out(struct task_struct *prev, 862 struct task_struct *next); 863extern int perf_event_init_task(struct task_struct *child); 864extern void perf_event_exit_task(struct task_struct *child); 865extern void perf_event_free_task(struct task_struct *task); 866extern void perf_event_delayed_put(struct task_struct *task); 867extern struct file *perf_event_get(unsigned int fd); 868extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 869extern void perf_event_print_debug(void); 870extern void perf_pmu_disable(struct pmu *pmu); 871extern void perf_pmu_enable(struct pmu *pmu); 872extern void perf_sched_cb_dec(struct pmu *pmu); 873extern void perf_sched_cb_inc(struct pmu *pmu); 874extern int perf_event_task_disable(void); 875extern int perf_event_task_enable(void); 876extern int perf_event_refresh(struct perf_event *event, int refresh); 877extern void perf_event_update_userpage(struct perf_event *event); 878extern int perf_event_release_kernel(struct perf_event *event); 879extern struct perf_event * 880perf_event_create_kernel_counter(struct perf_event_attr *attr, 881 int cpu, 882 struct task_struct *task, 883 perf_overflow_handler_t callback, 884 void *context); 885extern void perf_pmu_migrate_context(struct pmu *pmu, 886 int src_cpu, int dst_cpu); 887int perf_event_read_local(struct perf_event *event, u64 *value); 888extern u64 perf_event_read_value(struct perf_event *event, 889 u64 *enabled, u64 *running); 890 891 892struct perf_sample_data { 893 /* 894 * Fields set by perf_sample_data_init(), group so as to 895 * minimize the cachelines touched. 896 */ 897 u64 addr; 898 struct perf_raw_record *raw; 899 struct perf_branch_stack *br_stack; 900 u64 period; 901 u64 weight; 902 u64 txn; 903 union perf_mem_data_src data_src; 904 905 /* 906 * The other fields, optionally {set,used} by 907 * perf_{prepare,output}_sample(). 908 */ 909 u64 type; 910 u64 ip; 911 struct { 912 u32 pid; 913 u32 tid; 914 } tid_entry; 915 u64 time; 916 u64 id; 917 u64 stream_id; 918 struct { 919 u32 cpu; 920 u32 reserved; 921 } cpu_entry; 922 struct perf_callchain_entry *callchain; 923 924 /* 925 * regs_user may point to task_pt_regs or to regs_user_copy, depending 926 * on arch details. 927 */ 928 struct perf_regs regs_user; 929 struct pt_regs regs_user_copy; 930 931 struct perf_regs regs_intr; 932 u64 stack_user_size; 933 934 u64 phys_addr; 935} ____cacheline_aligned; 936 937/* default value for data source */ 938#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 939 PERF_MEM_S(LVL, NA) |\ 940 PERF_MEM_S(SNOOP, NA) |\ 941 PERF_MEM_S(LOCK, NA) |\ 942 PERF_MEM_S(TLB, NA)) 943 944static inline void perf_sample_data_init(struct perf_sample_data *data, 945 u64 addr, u64 period) 946{ 947 /* remaining struct members initialized in perf_prepare_sample() */ 948 data->addr = addr; 949 data->raw = NULL; 950 data->br_stack = NULL; 951 data->period = period; 952 data->weight = 0; 953 data->data_src.val = PERF_MEM_NA; 954 data->txn = 0; 955} 956 957extern void perf_output_sample(struct perf_output_handle *handle, 958 struct perf_event_header *header, 959 struct perf_sample_data *data, 960 struct perf_event *event); 961extern void perf_prepare_sample(struct perf_event_header *header, 962 struct perf_sample_data *data, 963 struct perf_event *event, 964 struct pt_regs *regs); 965 966extern int perf_event_overflow(struct perf_event *event, 967 struct perf_sample_data *data, 968 struct pt_regs *regs); 969 970extern void perf_event_output_forward(struct perf_event *event, 971 struct perf_sample_data *data, 972 struct pt_regs *regs); 973extern void perf_event_output_backward(struct perf_event *event, 974 struct perf_sample_data *data, 975 struct pt_regs *regs); 976extern void perf_event_output(struct perf_event *event, 977 struct perf_sample_data *data, 978 struct pt_regs *regs); 979 980static inline bool 981is_default_overflow_handler(struct perf_event *event) 982{ 983 if (likely(event->overflow_handler == perf_event_output_forward)) 984 return true; 985 if (unlikely(event->overflow_handler == perf_event_output_backward)) 986 return true; 987 return false; 988} 989 990extern void 991perf_event_header__init_id(struct perf_event_header *header, 992 struct perf_sample_data *data, 993 struct perf_event *event); 994extern void 995perf_event__output_id_sample(struct perf_event *event, 996 struct perf_output_handle *handle, 997 struct perf_sample_data *sample); 998 999extern void 1000perf_log_lost_samples(struct perf_event *event, u64 lost); 1001 1002static inline bool is_sampling_event(struct perf_event *event) 1003{ 1004 return event->attr.sample_period != 0; 1005} 1006 1007/* 1008 * Return 1 for a software event, 0 for a hardware event 1009 */ 1010static inline int is_software_event(struct perf_event *event) 1011{ 1012 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1013} 1014 1015extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1016 1017extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1018extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1019 1020#ifndef perf_arch_fetch_caller_regs 1021static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1022#endif 1023 1024/* 1025 * Take a snapshot of the regs. Skip ip and frame pointer to 1026 * the nth caller. We only need a few of the regs: 1027 * - ip for PERF_SAMPLE_IP 1028 * - cs for user_mode() tests 1029 * - bp for callchains 1030 * - eflags, for future purposes, just in case 1031 */ 1032static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1033{ 1034 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1035} 1036 1037static __always_inline void 1038perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1039{ 1040 if (static_key_false(&perf_swevent_enabled[event_id])) 1041 __perf_sw_event(event_id, nr, regs, addr); 1042} 1043 1044DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1045 1046/* 1047 * 'Special' version for the scheduler, it hard assumes no recursion, 1048 * which is guaranteed by us not actually scheduling inside other swevents 1049 * because those disable preemption. 1050 */ 1051static __always_inline void 1052perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1053{ 1054 if (static_key_false(&perf_swevent_enabled[event_id])) { 1055 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1056 1057 perf_fetch_caller_regs(regs); 1058 ___perf_sw_event(event_id, nr, regs, addr); 1059 } 1060} 1061 1062extern struct static_key_false perf_sched_events; 1063 1064static __always_inline bool 1065perf_sw_migrate_enabled(void) 1066{ 1067 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 1068 return true; 1069 return false; 1070} 1071 1072static inline void perf_event_task_migrate(struct task_struct *task) 1073{ 1074 if (perf_sw_migrate_enabled()) 1075 task->sched_migrated = 1; 1076} 1077 1078static inline void perf_event_task_sched_in(struct task_struct *prev, 1079 struct task_struct *task) 1080{ 1081 if (static_branch_unlikely(&perf_sched_events)) 1082 __perf_event_task_sched_in(prev, task); 1083 1084 if (perf_sw_migrate_enabled() && task->sched_migrated) { 1085 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1086 1087 perf_fetch_caller_regs(regs); 1088 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 1089 task->sched_migrated = 0; 1090 } 1091} 1092 1093static inline void perf_event_task_sched_out(struct task_struct *prev, 1094 struct task_struct *next) 1095{ 1096 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1097 1098 if (static_branch_unlikely(&perf_sched_events)) 1099 __perf_event_task_sched_out(prev, next); 1100} 1101 1102extern void perf_event_mmap(struct vm_area_struct *vma); 1103extern struct perf_guest_info_callbacks *perf_guest_cbs; 1104extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1105extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1106 1107extern void perf_event_exec(void); 1108extern void perf_event_comm(struct task_struct *tsk, bool exec); 1109extern void perf_event_namespaces(struct task_struct *tsk); 1110extern void perf_event_fork(struct task_struct *tsk); 1111 1112/* Callchains */ 1113DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1114 1115extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1116extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1117extern struct perf_callchain_entry * 1118get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1119 u32 max_stack, bool crosstask, bool add_mark); 1120extern int get_callchain_buffers(int max_stack); 1121extern void put_callchain_buffers(void); 1122 1123extern int sysctl_perf_event_max_stack; 1124extern int sysctl_perf_event_max_contexts_per_stack; 1125 1126static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1127{ 1128 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1129 struct perf_callchain_entry *entry = ctx->entry; 1130 entry->ip[entry->nr++] = ip; 1131 ++ctx->contexts; 1132 return 0; 1133 } else { 1134 ctx->contexts_maxed = true; 1135 return -1; /* no more room, stop walking the stack */ 1136 } 1137} 1138 1139static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1140{ 1141 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1142 struct perf_callchain_entry *entry = ctx->entry; 1143 entry->ip[entry->nr++] = ip; 1144 ++ctx->nr; 1145 return 0; 1146 } else { 1147 return -1; /* no more room, stop walking the stack */ 1148 } 1149} 1150 1151extern int sysctl_perf_event_paranoid; 1152extern int sysctl_perf_event_mlock; 1153extern int sysctl_perf_event_sample_rate; 1154extern int sysctl_perf_cpu_time_max_percent; 1155 1156extern void perf_sample_event_took(u64 sample_len_ns); 1157 1158extern int perf_proc_update_handler(struct ctl_table *table, int write, 1159 void __user *buffer, size_t *lenp, 1160 loff_t *ppos); 1161extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1162 void __user *buffer, size_t *lenp, 1163 loff_t *ppos); 1164 1165int perf_event_max_stack_handler(struct ctl_table *table, int write, 1166 void __user *buffer, size_t *lenp, loff_t *ppos); 1167 1168static inline bool perf_paranoid_tracepoint_raw(void) 1169{ 1170 return sysctl_perf_event_paranoid > -1; 1171} 1172 1173static inline bool perf_paranoid_cpu(void) 1174{ 1175 return sysctl_perf_event_paranoid > 0; 1176} 1177 1178static inline bool perf_paranoid_kernel(void) 1179{ 1180 return sysctl_perf_event_paranoid > 1; 1181} 1182 1183extern void perf_event_init(void); 1184extern void perf_tp_event(u16 event_type, u64 count, void *record, 1185 int entry_size, struct pt_regs *regs, 1186 struct hlist_head *head, int rctx, 1187 struct task_struct *task, struct perf_event *event); 1188extern void perf_bp_event(struct perf_event *event, void *data); 1189 1190#ifndef perf_misc_flags 1191# define perf_misc_flags(regs) \ 1192 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1193# define perf_instruction_pointer(regs) instruction_pointer(regs) 1194#endif 1195 1196static inline bool has_branch_stack(struct perf_event *event) 1197{ 1198 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1199} 1200 1201static inline bool needs_branch_stack(struct perf_event *event) 1202{ 1203 return event->attr.branch_sample_type != 0; 1204} 1205 1206static inline bool has_aux(struct perf_event *event) 1207{ 1208 return event->pmu->setup_aux; 1209} 1210 1211static inline bool is_write_backward(struct perf_event *event) 1212{ 1213 return !!event->attr.write_backward; 1214} 1215 1216static inline bool has_addr_filter(struct perf_event *event) 1217{ 1218 return event->pmu->nr_addr_filters; 1219} 1220 1221/* 1222 * An inherited event uses parent's filters 1223 */ 1224static inline struct perf_addr_filters_head * 1225perf_event_addr_filters(struct perf_event *event) 1226{ 1227 struct perf_addr_filters_head *ifh = &event->addr_filters; 1228 1229 if (event->parent) 1230 ifh = &event->parent->addr_filters; 1231 1232 return ifh; 1233} 1234 1235extern void perf_event_addr_filters_sync(struct perf_event *event); 1236 1237extern int perf_output_begin(struct perf_output_handle *handle, 1238 struct perf_event *event, unsigned int size); 1239extern int perf_output_begin_forward(struct perf_output_handle *handle, 1240 struct perf_event *event, 1241 unsigned int size); 1242extern int perf_output_begin_backward(struct perf_output_handle *handle, 1243 struct perf_event *event, 1244 unsigned int size); 1245 1246extern void perf_output_end(struct perf_output_handle *handle); 1247extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1248 const void *buf, unsigned int len); 1249extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1250 unsigned int len); 1251extern int perf_swevent_get_recursion_context(void); 1252extern void perf_swevent_put_recursion_context(int rctx); 1253extern u64 perf_swevent_set_period(struct perf_event *event); 1254extern void perf_event_enable(struct perf_event *event); 1255extern void perf_event_disable(struct perf_event *event); 1256extern void perf_event_disable_local(struct perf_event *event); 1257extern void perf_event_disable_inatomic(struct perf_event *event); 1258extern void perf_event_task_tick(void); 1259extern int perf_event_account_interrupt(struct perf_event *event); 1260#else /* !CONFIG_PERF_EVENTS: */ 1261static inline void * 1262perf_aux_output_begin(struct perf_output_handle *handle, 1263 struct perf_event *event) { return NULL; } 1264static inline void 1265perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1266 { } 1267static inline int 1268perf_aux_output_skip(struct perf_output_handle *handle, 1269 unsigned long size) { return -EINVAL; } 1270static inline void * 1271perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1272static inline void 1273perf_event_task_migrate(struct task_struct *task) { } 1274static inline void 1275perf_event_task_sched_in(struct task_struct *prev, 1276 struct task_struct *task) { } 1277static inline void 1278perf_event_task_sched_out(struct task_struct *prev, 1279 struct task_struct *next) { } 1280static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1281static inline void perf_event_exit_task(struct task_struct *child) { } 1282static inline void perf_event_free_task(struct task_struct *task) { } 1283static inline void perf_event_delayed_put(struct task_struct *task) { } 1284static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1285static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1286{ 1287 return ERR_PTR(-EINVAL); 1288} 1289static inline int perf_event_read_local(struct perf_event *event, u64 *value) 1290{ 1291 return -EINVAL; 1292} 1293static inline void perf_event_print_debug(void) { } 1294static inline int perf_event_task_disable(void) { return -EINVAL; } 1295static inline int perf_event_task_enable(void) { return -EINVAL; } 1296static inline int perf_event_refresh(struct perf_event *event, int refresh) 1297{ 1298 return -EINVAL; 1299} 1300 1301static inline void 1302perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1303static inline void 1304perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1305static inline void 1306perf_bp_event(struct perf_event *event, void *data) { } 1307 1308static inline int perf_register_guest_info_callbacks 1309(struct perf_guest_info_callbacks *callbacks) { return 0; } 1310static inline int perf_unregister_guest_info_callbacks 1311(struct perf_guest_info_callbacks *callbacks) { return 0; } 1312 1313static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1314static inline void perf_event_exec(void) { } 1315static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1316static inline void perf_event_namespaces(struct task_struct *tsk) { } 1317static inline void perf_event_fork(struct task_struct *tsk) { } 1318static inline void perf_event_init(void) { } 1319static inline int perf_swevent_get_recursion_context(void) { return -1; } 1320static inline void perf_swevent_put_recursion_context(int rctx) { } 1321static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1322static inline void perf_event_enable(struct perf_event *event) { } 1323static inline void perf_event_disable(struct perf_event *event) { } 1324static inline int __perf_event_disable(void *info) { return -1; } 1325static inline void perf_event_task_tick(void) { } 1326static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1327#endif 1328 1329#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1330extern void perf_restore_debug_store(void); 1331#else 1332static inline void perf_restore_debug_store(void) { } 1333#endif 1334 1335static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1336{ 1337 return frag->pad < sizeof(u64); 1338} 1339 1340#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1341 1342struct perf_pmu_events_attr { 1343 struct device_attribute attr; 1344 u64 id; 1345 const char *event_str; 1346}; 1347 1348struct perf_pmu_events_ht_attr { 1349 struct device_attribute attr; 1350 u64 id; 1351 const char *event_str_ht; 1352 const char *event_str_noht; 1353}; 1354 1355ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1356 char *page); 1357 1358#define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1359static struct perf_pmu_events_attr _var = { \ 1360 .attr = __ATTR(_name, 0444, _show, NULL), \ 1361 .id = _id, \ 1362}; 1363 1364#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1365static struct perf_pmu_events_attr _var = { \ 1366 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1367 .id = 0, \ 1368 .event_str = _str, \ 1369}; 1370 1371#define PMU_FORMAT_ATTR(_name, _format) \ 1372static ssize_t \ 1373_name##_show(struct device *dev, \ 1374 struct device_attribute *attr, \ 1375 char *page) \ 1376{ \ 1377 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1378 return sprintf(page, _format "\n"); \ 1379} \ 1380 \ 1381static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1382 1383/* Performance counter hotplug functions */ 1384#ifdef CONFIG_PERF_EVENTS 1385int perf_event_init_cpu(unsigned int cpu); 1386int perf_event_exit_cpu(unsigned int cpu); 1387#else 1388#define perf_event_init_cpu NULL 1389#define perf_event_exit_cpu NULL 1390#endif 1391 1392#endif /* _LINUX_PERF_EVENT_H */