at v4.14 24 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Macros for manipulating and testing page->flags 4 */ 5 6#ifndef PAGE_FLAGS_H 7#define PAGE_FLAGS_H 8 9#include <linux/types.h> 10#include <linux/bug.h> 11#include <linux/mmdebug.h> 12#ifndef __GENERATING_BOUNDS_H 13#include <linux/mm_types.h> 14#include <generated/bounds.h> 15#endif /* !__GENERATING_BOUNDS_H */ 16 17/* 18 * Various page->flags bits: 19 * 20 * PG_reserved is set for special pages, which can never be swapped out. Some 21 * of them might not even exist (eg empty_bad_page)... 22 * 23 * The PG_private bitflag is set on pagecache pages if they contain filesystem 24 * specific data (which is normally at page->private). It can be used by 25 * private allocations for its own usage. 26 * 27 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 28 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 29 * is set before writeback starts and cleared when it finishes. 30 * 31 * PG_locked also pins a page in pagecache, and blocks truncation of the file 32 * while it is held. 33 * 34 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 35 * to become unlocked. 36 * 37 * PG_uptodate tells whether the page's contents is valid. When a read 38 * completes, the page becomes uptodate, unless a disk I/O error happened. 39 * 40 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 41 * file-backed pagecache (see mm/vmscan.c). 42 * 43 * PG_error is set to indicate that an I/O error occurred on this page. 44 * 45 * PG_arch_1 is an architecture specific page state bit. The generic code 46 * guarantees that this bit is cleared for a page when it first is entered into 47 * the page cache. 48 * 49 * PG_highmem pages are not permanently mapped into the kernel virtual address 50 * space, they need to be kmapped separately for doing IO on the pages. The 51 * struct page (these bits with information) are always mapped into kernel 52 * address space... 53 * 54 * PG_hwpoison indicates that a page got corrupted in hardware and contains 55 * data with incorrect ECC bits that triggered a machine check. Accessing is 56 * not safe since it may cause another machine check. Don't touch! 57 */ 58 59/* 60 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break 61 * locked- and dirty-page accounting. 62 * 63 * The page flags field is split into two parts, the main flags area 64 * which extends from the low bits upwards, and the fields area which 65 * extends from the high bits downwards. 66 * 67 * | FIELD | ... | FLAGS | 68 * N-1 ^ 0 69 * (NR_PAGEFLAGS) 70 * 71 * The fields area is reserved for fields mapping zone, node (for NUMA) and 72 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 73 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 74 */ 75enum pageflags { 76 PG_locked, /* Page is locked. Don't touch. */ 77 PG_error, 78 PG_referenced, 79 PG_uptodate, 80 PG_dirty, 81 PG_lru, 82 PG_active, 83 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ 84 PG_slab, 85 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 86 PG_arch_1, 87 PG_reserved, 88 PG_private, /* If pagecache, has fs-private data */ 89 PG_private_2, /* If pagecache, has fs aux data */ 90 PG_writeback, /* Page is under writeback */ 91 PG_head, /* A head page */ 92 PG_mappedtodisk, /* Has blocks allocated on-disk */ 93 PG_reclaim, /* To be reclaimed asap */ 94 PG_swapbacked, /* Page is backed by RAM/swap */ 95 PG_unevictable, /* Page is "unevictable" */ 96#ifdef CONFIG_MMU 97 PG_mlocked, /* Page is vma mlocked */ 98#endif 99#ifdef CONFIG_ARCH_USES_PG_UNCACHED 100 PG_uncached, /* Page has been mapped as uncached */ 101#endif 102#ifdef CONFIG_MEMORY_FAILURE 103 PG_hwpoison, /* hardware poisoned page. Don't touch */ 104#endif 105#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 106 PG_young, 107 PG_idle, 108#endif 109 __NR_PAGEFLAGS, 110 111 /* Filesystems */ 112 PG_checked = PG_owner_priv_1, 113 114 /* SwapBacked */ 115 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ 116 117 /* Two page bits are conscripted by FS-Cache to maintain local caching 118 * state. These bits are set on pages belonging to the netfs's inodes 119 * when those inodes are being locally cached. 120 */ 121 PG_fscache = PG_private_2, /* page backed by cache */ 122 123 /* XEN */ 124 /* Pinned in Xen as a read-only pagetable page. */ 125 PG_pinned = PG_owner_priv_1, 126 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 127 PG_savepinned = PG_dirty, 128 /* Has a grant mapping of another (foreign) domain's page. */ 129 PG_foreign = PG_owner_priv_1, 130 131 /* SLOB */ 132 PG_slob_free = PG_private, 133 134 /* Compound pages. Stored in first tail page's flags */ 135 PG_double_map = PG_private_2, 136 137 /* non-lru isolated movable page */ 138 PG_isolated = PG_reclaim, 139}; 140 141#ifndef __GENERATING_BOUNDS_H 142 143struct page; /* forward declaration */ 144 145static inline struct page *compound_head(struct page *page) 146{ 147 unsigned long head = READ_ONCE(page->compound_head); 148 149 if (unlikely(head & 1)) 150 return (struct page *) (head - 1); 151 return page; 152} 153 154static __always_inline int PageTail(struct page *page) 155{ 156 return READ_ONCE(page->compound_head) & 1; 157} 158 159static __always_inline int PageCompound(struct page *page) 160{ 161 return test_bit(PG_head, &page->flags) || PageTail(page); 162} 163 164/* 165 * Page flags policies wrt compound pages 166 * 167 * PF_ANY: 168 * the page flag is relevant for small, head and tail pages. 169 * 170 * PF_HEAD: 171 * for compound page all operations related to the page flag applied to 172 * head page. 173 * 174 * PF_ONLY_HEAD: 175 * for compound page, callers only ever operate on the head page. 176 * 177 * PF_NO_TAIL: 178 * modifications of the page flag must be done on small or head pages, 179 * checks can be done on tail pages too. 180 * 181 * PF_NO_COMPOUND: 182 * the page flag is not relevant for compound pages. 183 */ 184#define PF_ANY(page, enforce) page 185#define PF_HEAD(page, enforce) compound_head(page) 186#define PF_ONLY_HEAD(page, enforce) ({ \ 187 VM_BUG_ON_PGFLAGS(PageTail(page), page); \ 188 page;}) 189#define PF_NO_TAIL(page, enforce) ({ \ 190 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 191 compound_head(page);}) 192#define PF_NO_COMPOUND(page, enforce) ({ \ 193 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 194 page;}) 195 196/* 197 * Macros to create function definitions for page flags 198 */ 199#define TESTPAGEFLAG(uname, lname, policy) \ 200static __always_inline int Page##uname(struct page *page) \ 201 { return test_bit(PG_##lname, &policy(page, 0)->flags); } 202 203#define SETPAGEFLAG(uname, lname, policy) \ 204static __always_inline void SetPage##uname(struct page *page) \ 205 { set_bit(PG_##lname, &policy(page, 1)->flags); } 206 207#define CLEARPAGEFLAG(uname, lname, policy) \ 208static __always_inline void ClearPage##uname(struct page *page) \ 209 { clear_bit(PG_##lname, &policy(page, 1)->flags); } 210 211#define __SETPAGEFLAG(uname, lname, policy) \ 212static __always_inline void __SetPage##uname(struct page *page) \ 213 { __set_bit(PG_##lname, &policy(page, 1)->flags); } 214 215#define __CLEARPAGEFLAG(uname, lname, policy) \ 216static __always_inline void __ClearPage##uname(struct page *page) \ 217 { __clear_bit(PG_##lname, &policy(page, 1)->flags); } 218 219#define TESTSETFLAG(uname, lname, policy) \ 220static __always_inline int TestSetPage##uname(struct page *page) \ 221 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 222 223#define TESTCLEARFLAG(uname, lname, policy) \ 224static __always_inline int TestClearPage##uname(struct page *page) \ 225 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 226 227#define PAGEFLAG(uname, lname, policy) \ 228 TESTPAGEFLAG(uname, lname, policy) \ 229 SETPAGEFLAG(uname, lname, policy) \ 230 CLEARPAGEFLAG(uname, lname, policy) 231 232#define __PAGEFLAG(uname, lname, policy) \ 233 TESTPAGEFLAG(uname, lname, policy) \ 234 __SETPAGEFLAG(uname, lname, policy) \ 235 __CLEARPAGEFLAG(uname, lname, policy) 236 237#define TESTSCFLAG(uname, lname, policy) \ 238 TESTSETFLAG(uname, lname, policy) \ 239 TESTCLEARFLAG(uname, lname, policy) 240 241#define TESTPAGEFLAG_FALSE(uname) \ 242static inline int Page##uname(const struct page *page) { return 0; } 243 244#define SETPAGEFLAG_NOOP(uname) \ 245static inline void SetPage##uname(struct page *page) { } 246 247#define CLEARPAGEFLAG_NOOP(uname) \ 248static inline void ClearPage##uname(struct page *page) { } 249 250#define __CLEARPAGEFLAG_NOOP(uname) \ 251static inline void __ClearPage##uname(struct page *page) { } 252 253#define TESTSETFLAG_FALSE(uname) \ 254static inline int TestSetPage##uname(struct page *page) { return 0; } 255 256#define TESTCLEARFLAG_FALSE(uname) \ 257static inline int TestClearPage##uname(struct page *page) { return 0; } 258 259#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \ 260 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname) 261 262#define TESTSCFLAG_FALSE(uname) \ 263 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname) 264 265__PAGEFLAG(Locked, locked, PF_NO_TAIL) 266PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) 267PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND) 268PAGEFLAG(Referenced, referenced, PF_HEAD) 269 TESTCLEARFLAG(Referenced, referenced, PF_HEAD) 270 __SETPAGEFLAG(Referenced, referenced, PF_HEAD) 271PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 272 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 273PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 274PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) 275 TESTCLEARFLAG(Active, active, PF_HEAD) 276__PAGEFLAG(Slab, slab, PF_NO_TAIL) 277__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL) 278PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 279 280/* Xen */ 281PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 282 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 283PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 284PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 285 286PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 287 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 288PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 289 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 290 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 291 292/* 293 * Private page markings that may be used by the filesystem that owns the page 294 * for its own purposes. 295 * - PG_private and PG_private_2 cause releasepage() and co to be invoked 296 */ 297PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY) 298 __CLEARPAGEFLAG(Private, private, PF_ANY) 299PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) 300PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 301 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 302 303/* 304 * Only test-and-set exist for PG_writeback. The unconditional operators are 305 * risky: they bypass page accounting. 306 */ 307TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL) 308 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL) 309PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL) 310 311/* PG_readahead is only used for reads; PG_reclaim is only for writes */ 312PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 313 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 314PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND) 315 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND) 316 317#ifdef CONFIG_HIGHMEM 318/* 319 * Must use a macro here due to header dependency issues. page_zone() is not 320 * available at this point. 321 */ 322#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 323#else 324PAGEFLAG_FALSE(HighMem) 325#endif 326 327#ifdef CONFIG_SWAP 328static __always_inline int PageSwapCache(struct page *page) 329{ 330#ifdef CONFIG_THP_SWAP 331 page = compound_head(page); 332#endif 333 return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags); 334 335} 336SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 337CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 338#else 339PAGEFLAG_FALSE(SwapCache) 340#endif 341 342PAGEFLAG(Unevictable, unevictable, PF_HEAD) 343 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) 344 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) 345 346#ifdef CONFIG_MMU 347PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 348 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 349 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) 350#else 351PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked) 352 TESTSCFLAG_FALSE(Mlocked) 353#endif 354 355#ifdef CONFIG_ARCH_USES_PG_UNCACHED 356PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) 357#else 358PAGEFLAG_FALSE(Uncached) 359#endif 360 361#ifdef CONFIG_MEMORY_FAILURE 362PAGEFLAG(HWPoison, hwpoison, PF_ANY) 363TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 364#define __PG_HWPOISON (1UL << PG_hwpoison) 365#else 366PAGEFLAG_FALSE(HWPoison) 367#define __PG_HWPOISON 0 368#endif 369 370#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 371TESTPAGEFLAG(Young, young, PF_ANY) 372SETPAGEFLAG(Young, young, PF_ANY) 373TESTCLEARFLAG(Young, young, PF_ANY) 374PAGEFLAG(Idle, idle, PF_ANY) 375#endif 376 377/* 378 * On an anonymous page mapped into a user virtual memory area, 379 * page->mapping points to its anon_vma, not to a struct address_space; 380 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 381 * 382 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 383 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON 384 * bit; and then page->mapping points, not to an anon_vma, but to a private 385 * structure which KSM associates with that merged page. See ksm.h. 386 * 387 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable 388 * page and then page->mapping points a struct address_space. 389 * 390 * Please note that, confusingly, "page_mapping" refers to the inode 391 * address_space which maps the page from disk; whereas "page_mapped" 392 * refers to user virtual address space into which the page is mapped. 393 */ 394#define PAGE_MAPPING_ANON 0x1 395#define PAGE_MAPPING_MOVABLE 0x2 396#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 397#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 398 399static __always_inline int PageMappingFlags(struct page *page) 400{ 401 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; 402} 403 404static __always_inline int PageAnon(struct page *page) 405{ 406 page = compound_head(page); 407 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 408} 409 410static __always_inline int __PageMovable(struct page *page) 411{ 412 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 413 PAGE_MAPPING_MOVABLE; 414} 415 416#ifdef CONFIG_KSM 417/* 418 * A KSM page is one of those write-protected "shared pages" or "merged pages" 419 * which KSM maps into multiple mms, wherever identical anonymous page content 420 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 421 * anon_vma, but to that page's node of the stable tree. 422 */ 423static __always_inline int PageKsm(struct page *page) 424{ 425 page = compound_head(page); 426 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 427 PAGE_MAPPING_KSM; 428} 429#else 430TESTPAGEFLAG_FALSE(Ksm) 431#endif 432 433u64 stable_page_flags(struct page *page); 434 435static inline int PageUptodate(struct page *page) 436{ 437 int ret; 438 page = compound_head(page); 439 ret = test_bit(PG_uptodate, &(page)->flags); 440 /* 441 * Must ensure that the data we read out of the page is loaded 442 * _after_ we've loaded page->flags to check for PageUptodate. 443 * We can skip the barrier if the page is not uptodate, because 444 * we wouldn't be reading anything from it. 445 * 446 * See SetPageUptodate() for the other side of the story. 447 */ 448 if (ret) 449 smp_rmb(); 450 451 return ret; 452} 453 454static __always_inline void __SetPageUptodate(struct page *page) 455{ 456 VM_BUG_ON_PAGE(PageTail(page), page); 457 smp_wmb(); 458 __set_bit(PG_uptodate, &page->flags); 459} 460 461static __always_inline void SetPageUptodate(struct page *page) 462{ 463 VM_BUG_ON_PAGE(PageTail(page), page); 464 /* 465 * Memory barrier must be issued before setting the PG_uptodate bit, 466 * so that all previous stores issued in order to bring the page 467 * uptodate are actually visible before PageUptodate becomes true. 468 */ 469 smp_wmb(); 470 set_bit(PG_uptodate, &page->flags); 471} 472 473CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 474 475int test_clear_page_writeback(struct page *page); 476int __test_set_page_writeback(struct page *page, bool keep_write); 477 478#define test_set_page_writeback(page) \ 479 __test_set_page_writeback(page, false) 480#define test_set_page_writeback_keepwrite(page) \ 481 __test_set_page_writeback(page, true) 482 483static inline void set_page_writeback(struct page *page) 484{ 485 test_set_page_writeback(page); 486} 487 488static inline void set_page_writeback_keepwrite(struct page *page) 489{ 490 test_set_page_writeback_keepwrite(page); 491} 492 493__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY) 494 495static __always_inline void set_compound_head(struct page *page, struct page *head) 496{ 497 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 498} 499 500static __always_inline void clear_compound_head(struct page *page) 501{ 502 WRITE_ONCE(page->compound_head, 0); 503} 504 505#ifdef CONFIG_TRANSPARENT_HUGEPAGE 506static inline void ClearPageCompound(struct page *page) 507{ 508 BUG_ON(!PageHead(page)); 509 ClearPageHead(page); 510} 511#endif 512 513#define PG_head_mask ((1UL << PG_head)) 514 515#ifdef CONFIG_HUGETLB_PAGE 516int PageHuge(struct page *page); 517int PageHeadHuge(struct page *page); 518bool page_huge_active(struct page *page); 519#else 520TESTPAGEFLAG_FALSE(Huge) 521TESTPAGEFLAG_FALSE(HeadHuge) 522 523static inline bool page_huge_active(struct page *page) 524{ 525 return 0; 526} 527#endif 528 529 530#ifdef CONFIG_TRANSPARENT_HUGEPAGE 531/* 532 * PageHuge() only returns true for hugetlbfs pages, but not for 533 * normal or transparent huge pages. 534 * 535 * PageTransHuge() returns true for both transparent huge and 536 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 537 * called only in the core VM paths where hugetlbfs pages can't exist. 538 */ 539static inline int PageTransHuge(struct page *page) 540{ 541 VM_BUG_ON_PAGE(PageTail(page), page); 542 return PageHead(page); 543} 544 545/* 546 * PageTransCompound returns true for both transparent huge pages 547 * and hugetlbfs pages, so it should only be called when it's known 548 * that hugetlbfs pages aren't involved. 549 */ 550static inline int PageTransCompound(struct page *page) 551{ 552 return PageCompound(page); 553} 554 555/* 556 * PageTransCompoundMap is the same as PageTransCompound, but it also 557 * guarantees the primary MMU has the entire compound page mapped 558 * through pmd_trans_huge, which in turn guarantees the secondary MMUs 559 * can also map the entire compound page. This allows the secondary 560 * MMUs to call get_user_pages() only once for each compound page and 561 * to immediately map the entire compound page with a single secondary 562 * MMU fault. If there will be a pmd split later, the secondary MMUs 563 * will get an update through the MMU notifier invalidation through 564 * split_huge_pmd(). 565 * 566 * Unlike PageTransCompound, this is safe to be called only while 567 * split_huge_pmd() cannot run from under us, like if protected by the 568 * MMU notifier, otherwise it may result in page->_mapcount < 0 false 569 * positives. 570 */ 571static inline int PageTransCompoundMap(struct page *page) 572{ 573 return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0; 574} 575 576/* 577 * PageTransTail returns true for both transparent huge pages 578 * and hugetlbfs pages, so it should only be called when it's known 579 * that hugetlbfs pages aren't involved. 580 */ 581static inline int PageTransTail(struct page *page) 582{ 583 return PageTail(page); 584} 585 586/* 587 * PageDoubleMap indicates that the compound page is mapped with PTEs as well 588 * as PMDs. 589 * 590 * This is required for optimization of rmap operations for THP: we can postpone 591 * per small page mapcount accounting (and its overhead from atomic operations) 592 * until the first PMD split. 593 * 594 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up 595 * by one. This reference will go away with last compound_mapcount. 596 * 597 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap(). 598 */ 599static inline int PageDoubleMap(struct page *page) 600{ 601 return PageHead(page) && test_bit(PG_double_map, &page[1].flags); 602} 603 604static inline void SetPageDoubleMap(struct page *page) 605{ 606 VM_BUG_ON_PAGE(!PageHead(page), page); 607 set_bit(PG_double_map, &page[1].flags); 608} 609 610static inline void ClearPageDoubleMap(struct page *page) 611{ 612 VM_BUG_ON_PAGE(!PageHead(page), page); 613 clear_bit(PG_double_map, &page[1].flags); 614} 615static inline int TestSetPageDoubleMap(struct page *page) 616{ 617 VM_BUG_ON_PAGE(!PageHead(page), page); 618 return test_and_set_bit(PG_double_map, &page[1].flags); 619} 620 621static inline int TestClearPageDoubleMap(struct page *page) 622{ 623 VM_BUG_ON_PAGE(!PageHead(page), page); 624 return test_and_clear_bit(PG_double_map, &page[1].flags); 625} 626 627#else 628TESTPAGEFLAG_FALSE(TransHuge) 629TESTPAGEFLAG_FALSE(TransCompound) 630TESTPAGEFLAG_FALSE(TransCompoundMap) 631TESTPAGEFLAG_FALSE(TransTail) 632PAGEFLAG_FALSE(DoubleMap) 633 TESTSETFLAG_FALSE(DoubleMap) 634 TESTCLEARFLAG_FALSE(DoubleMap) 635#endif 636 637/* 638 * For pages that are never mapped to userspace, page->mapcount may be 639 * used for storing extra information about page type. Any value used 640 * for this purpose must be <= -2, but it's better start not too close 641 * to -2 so that an underflow of the page_mapcount() won't be mistaken 642 * for a special page. 643 */ 644#define PAGE_MAPCOUNT_OPS(uname, lname) \ 645static __always_inline int Page##uname(struct page *page) \ 646{ \ 647 return atomic_read(&page->_mapcount) == \ 648 PAGE_##lname##_MAPCOUNT_VALUE; \ 649} \ 650static __always_inline void __SetPage##uname(struct page *page) \ 651{ \ 652 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); \ 653 atomic_set(&page->_mapcount, PAGE_##lname##_MAPCOUNT_VALUE); \ 654} \ 655static __always_inline void __ClearPage##uname(struct page *page) \ 656{ \ 657 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 658 atomic_set(&page->_mapcount, -1); \ 659} 660 661/* 662 * PageBuddy() indicate that the page is free and in the buddy system 663 * (see mm/page_alloc.c). 664 */ 665#define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 666PAGE_MAPCOUNT_OPS(Buddy, BUDDY) 667 668/* 669 * PageBalloon() is set on pages that are on the balloon page list 670 * (see mm/balloon_compaction.c). 671 */ 672#define PAGE_BALLOON_MAPCOUNT_VALUE (-256) 673PAGE_MAPCOUNT_OPS(Balloon, BALLOON) 674 675/* 676 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on 677 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free. 678 */ 679#define PAGE_KMEMCG_MAPCOUNT_VALUE (-512) 680PAGE_MAPCOUNT_OPS(Kmemcg, KMEMCG) 681 682extern bool is_free_buddy_page(struct page *page); 683 684__PAGEFLAG(Isolated, isolated, PF_ANY); 685 686/* 687 * If network-based swap is enabled, sl*b must keep track of whether pages 688 * were allocated from pfmemalloc reserves. 689 */ 690static inline int PageSlabPfmemalloc(struct page *page) 691{ 692 VM_BUG_ON_PAGE(!PageSlab(page), page); 693 return PageActive(page); 694} 695 696static inline void SetPageSlabPfmemalloc(struct page *page) 697{ 698 VM_BUG_ON_PAGE(!PageSlab(page), page); 699 SetPageActive(page); 700} 701 702static inline void __ClearPageSlabPfmemalloc(struct page *page) 703{ 704 VM_BUG_ON_PAGE(!PageSlab(page), page); 705 __ClearPageActive(page); 706} 707 708static inline void ClearPageSlabPfmemalloc(struct page *page) 709{ 710 VM_BUG_ON_PAGE(!PageSlab(page), page); 711 ClearPageActive(page); 712} 713 714#ifdef CONFIG_MMU 715#define __PG_MLOCKED (1UL << PG_mlocked) 716#else 717#define __PG_MLOCKED 0 718#endif 719 720/* 721 * Flags checked when a page is freed. Pages being freed should not have 722 * these flags set. It they are, there is a problem. 723 */ 724#define PAGE_FLAGS_CHECK_AT_FREE \ 725 (1UL << PG_lru | 1UL << PG_locked | \ 726 1UL << PG_private | 1UL << PG_private_2 | \ 727 1UL << PG_writeback | 1UL << PG_reserved | \ 728 1UL << PG_slab | 1UL << PG_active | \ 729 1UL << PG_unevictable | __PG_MLOCKED) 730 731/* 732 * Flags checked when a page is prepped for return by the page allocator. 733 * Pages being prepped should not have these flags set. It they are set, 734 * there has been a kernel bug or struct page corruption. 735 * 736 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 737 * alloc-free cycle to prevent from reusing the page. 738 */ 739#define PAGE_FLAGS_CHECK_AT_PREP \ 740 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON) 741 742#define PAGE_FLAGS_PRIVATE \ 743 (1UL << PG_private | 1UL << PG_private_2) 744/** 745 * page_has_private - Determine if page has private stuff 746 * @page: The page to be checked 747 * 748 * Determine if a page has private stuff, indicating that release routines 749 * should be invoked upon it. 750 */ 751static inline int page_has_private(struct page *page) 752{ 753 return !!(page->flags & PAGE_FLAGS_PRIVATE); 754} 755 756#undef PF_ANY 757#undef PF_HEAD 758#undef PF_ONLY_HEAD 759#undef PF_NO_TAIL 760#undef PF_NO_COMPOUND 761#endif /* !__GENERATING_BOUNDS_H */ 762 763#endif /* PAGE_FLAGS_H */