Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Macros for manipulating and testing page->flags
4 */
5
6#ifndef PAGE_FLAGS_H
7#define PAGE_FLAGS_H
8
9#include <linux/types.h>
10#include <linux/bug.h>
11#include <linux/mmdebug.h>
12#ifndef __GENERATING_BOUNDS_H
13#include <linux/mm_types.h>
14#include <generated/bounds.h>
15#endif /* !__GENERATING_BOUNDS_H */
16
17/*
18 * Various page->flags bits:
19 *
20 * PG_reserved is set for special pages, which can never be swapped out. Some
21 * of them might not even exist (eg empty_bad_page)...
22 *
23 * The PG_private bitflag is set on pagecache pages if they contain filesystem
24 * specific data (which is normally at page->private). It can be used by
25 * private allocations for its own usage.
26 *
27 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
28 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
29 * is set before writeback starts and cleared when it finishes.
30 *
31 * PG_locked also pins a page in pagecache, and blocks truncation of the file
32 * while it is held.
33 *
34 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
35 * to become unlocked.
36 *
37 * PG_uptodate tells whether the page's contents is valid. When a read
38 * completes, the page becomes uptodate, unless a disk I/O error happened.
39 *
40 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
41 * file-backed pagecache (see mm/vmscan.c).
42 *
43 * PG_error is set to indicate that an I/O error occurred on this page.
44 *
45 * PG_arch_1 is an architecture specific page state bit. The generic code
46 * guarantees that this bit is cleared for a page when it first is entered into
47 * the page cache.
48 *
49 * PG_highmem pages are not permanently mapped into the kernel virtual address
50 * space, they need to be kmapped separately for doing IO on the pages. The
51 * struct page (these bits with information) are always mapped into kernel
52 * address space...
53 *
54 * PG_hwpoison indicates that a page got corrupted in hardware and contains
55 * data with incorrect ECC bits that triggered a machine check. Accessing is
56 * not safe since it may cause another machine check. Don't touch!
57 */
58
59/*
60 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break
61 * locked- and dirty-page accounting.
62 *
63 * The page flags field is split into two parts, the main flags area
64 * which extends from the low bits upwards, and the fields area which
65 * extends from the high bits downwards.
66 *
67 * | FIELD | ... | FLAGS |
68 * N-1 ^ 0
69 * (NR_PAGEFLAGS)
70 *
71 * The fields area is reserved for fields mapping zone, node (for NUMA) and
72 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
73 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
74 */
75enum pageflags {
76 PG_locked, /* Page is locked. Don't touch. */
77 PG_error,
78 PG_referenced,
79 PG_uptodate,
80 PG_dirty,
81 PG_lru,
82 PG_active,
83 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
84 PG_slab,
85 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/
86 PG_arch_1,
87 PG_reserved,
88 PG_private, /* If pagecache, has fs-private data */
89 PG_private_2, /* If pagecache, has fs aux data */
90 PG_writeback, /* Page is under writeback */
91 PG_head, /* A head page */
92 PG_mappedtodisk, /* Has blocks allocated on-disk */
93 PG_reclaim, /* To be reclaimed asap */
94 PG_swapbacked, /* Page is backed by RAM/swap */
95 PG_unevictable, /* Page is "unevictable" */
96#ifdef CONFIG_MMU
97 PG_mlocked, /* Page is vma mlocked */
98#endif
99#ifdef CONFIG_ARCH_USES_PG_UNCACHED
100 PG_uncached, /* Page has been mapped as uncached */
101#endif
102#ifdef CONFIG_MEMORY_FAILURE
103 PG_hwpoison, /* hardware poisoned page. Don't touch */
104#endif
105#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
106 PG_young,
107 PG_idle,
108#endif
109 __NR_PAGEFLAGS,
110
111 /* Filesystems */
112 PG_checked = PG_owner_priv_1,
113
114 /* SwapBacked */
115 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
116
117 /* Two page bits are conscripted by FS-Cache to maintain local caching
118 * state. These bits are set on pages belonging to the netfs's inodes
119 * when those inodes are being locally cached.
120 */
121 PG_fscache = PG_private_2, /* page backed by cache */
122
123 /* XEN */
124 /* Pinned in Xen as a read-only pagetable page. */
125 PG_pinned = PG_owner_priv_1,
126 /* Pinned as part of domain save (see xen_mm_pin_all()). */
127 PG_savepinned = PG_dirty,
128 /* Has a grant mapping of another (foreign) domain's page. */
129 PG_foreign = PG_owner_priv_1,
130
131 /* SLOB */
132 PG_slob_free = PG_private,
133
134 /* Compound pages. Stored in first tail page's flags */
135 PG_double_map = PG_private_2,
136
137 /* non-lru isolated movable page */
138 PG_isolated = PG_reclaim,
139};
140
141#ifndef __GENERATING_BOUNDS_H
142
143struct page; /* forward declaration */
144
145static inline struct page *compound_head(struct page *page)
146{
147 unsigned long head = READ_ONCE(page->compound_head);
148
149 if (unlikely(head & 1))
150 return (struct page *) (head - 1);
151 return page;
152}
153
154static __always_inline int PageTail(struct page *page)
155{
156 return READ_ONCE(page->compound_head) & 1;
157}
158
159static __always_inline int PageCompound(struct page *page)
160{
161 return test_bit(PG_head, &page->flags) || PageTail(page);
162}
163
164/*
165 * Page flags policies wrt compound pages
166 *
167 * PF_ANY:
168 * the page flag is relevant for small, head and tail pages.
169 *
170 * PF_HEAD:
171 * for compound page all operations related to the page flag applied to
172 * head page.
173 *
174 * PF_ONLY_HEAD:
175 * for compound page, callers only ever operate on the head page.
176 *
177 * PF_NO_TAIL:
178 * modifications of the page flag must be done on small or head pages,
179 * checks can be done on tail pages too.
180 *
181 * PF_NO_COMPOUND:
182 * the page flag is not relevant for compound pages.
183 */
184#define PF_ANY(page, enforce) page
185#define PF_HEAD(page, enforce) compound_head(page)
186#define PF_ONLY_HEAD(page, enforce) ({ \
187 VM_BUG_ON_PGFLAGS(PageTail(page), page); \
188 page;})
189#define PF_NO_TAIL(page, enforce) ({ \
190 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \
191 compound_head(page);})
192#define PF_NO_COMPOUND(page, enforce) ({ \
193 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
194 page;})
195
196/*
197 * Macros to create function definitions for page flags
198 */
199#define TESTPAGEFLAG(uname, lname, policy) \
200static __always_inline int Page##uname(struct page *page) \
201 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
202
203#define SETPAGEFLAG(uname, lname, policy) \
204static __always_inline void SetPage##uname(struct page *page) \
205 { set_bit(PG_##lname, &policy(page, 1)->flags); }
206
207#define CLEARPAGEFLAG(uname, lname, policy) \
208static __always_inline void ClearPage##uname(struct page *page) \
209 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
210
211#define __SETPAGEFLAG(uname, lname, policy) \
212static __always_inline void __SetPage##uname(struct page *page) \
213 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
214
215#define __CLEARPAGEFLAG(uname, lname, policy) \
216static __always_inline void __ClearPage##uname(struct page *page) \
217 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
218
219#define TESTSETFLAG(uname, lname, policy) \
220static __always_inline int TestSetPage##uname(struct page *page) \
221 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
222
223#define TESTCLEARFLAG(uname, lname, policy) \
224static __always_inline int TestClearPage##uname(struct page *page) \
225 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
226
227#define PAGEFLAG(uname, lname, policy) \
228 TESTPAGEFLAG(uname, lname, policy) \
229 SETPAGEFLAG(uname, lname, policy) \
230 CLEARPAGEFLAG(uname, lname, policy)
231
232#define __PAGEFLAG(uname, lname, policy) \
233 TESTPAGEFLAG(uname, lname, policy) \
234 __SETPAGEFLAG(uname, lname, policy) \
235 __CLEARPAGEFLAG(uname, lname, policy)
236
237#define TESTSCFLAG(uname, lname, policy) \
238 TESTSETFLAG(uname, lname, policy) \
239 TESTCLEARFLAG(uname, lname, policy)
240
241#define TESTPAGEFLAG_FALSE(uname) \
242static inline int Page##uname(const struct page *page) { return 0; }
243
244#define SETPAGEFLAG_NOOP(uname) \
245static inline void SetPage##uname(struct page *page) { }
246
247#define CLEARPAGEFLAG_NOOP(uname) \
248static inline void ClearPage##uname(struct page *page) { }
249
250#define __CLEARPAGEFLAG_NOOP(uname) \
251static inline void __ClearPage##uname(struct page *page) { }
252
253#define TESTSETFLAG_FALSE(uname) \
254static inline int TestSetPage##uname(struct page *page) { return 0; }
255
256#define TESTCLEARFLAG_FALSE(uname) \
257static inline int TestClearPage##uname(struct page *page) { return 0; }
258
259#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \
260 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
261
262#define TESTSCFLAG_FALSE(uname) \
263 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
264
265__PAGEFLAG(Locked, locked, PF_NO_TAIL)
266PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
267PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND)
268PAGEFLAG(Referenced, referenced, PF_HEAD)
269 TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
270 __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
271PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
272 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
273PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
274PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
275 TESTCLEARFLAG(Active, active, PF_HEAD)
276__PAGEFLAG(Slab, slab, PF_NO_TAIL)
277__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
278PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */
279
280/* Xen */
281PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
282 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
283PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
284PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
285
286PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
287 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
288PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
289 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
290 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
291
292/*
293 * Private page markings that may be used by the filesystem that owns the page
294 * for its own purposes.
295 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
296 */
297PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY)
298 __CLEARPAGEFLAG(Private, private, PF_ANY)
299PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
300PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
301 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
302
303/*
304 * Only test-and-set exist for PG_writeback. The unconditional operators are
305 * risky: they bypass page accounting.
306 */
307TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
308 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
309PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
310
311/* PG_readahead is only used for reads; PG_reclaim is only for writes */
312PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
313 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
314PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
315 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
316
317#ifdef CONFIG_HIGHMEM
318/*
319 * Must use a macro here due to header dependency issues. page_zone() is not
320 * available at this point.
321 */
322#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
323#else
324PAGEFLAG_FALSE(HighMem)
325#endif
326
327#ifdef CONFIG_SWAP
328static __always_inline int PageSwapCache(struct page *page)
329{
330#ifdef CONFIG_THP_SWAP
331 page = compound_head(page);
332#endif
333 return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
334
335}
336SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
337CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
338#else
339PAGEFLAG_FALSE(SwapCache)
340#endif
341
342PAGEFLAG(Unevictable, unevictable, PF_HEAD)
343 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
344 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
345
346#ifdef CONFIG_MMU
347PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
348 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
349 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
350#else
351PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
352 TESTSCFLAG_FALSE(Mlocked)
353#endif
354
355#ifdef CONFIG_ARCH_USES_PG_UNCACHED
356PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
357#else
358PAGEFLAG_FALSE(Uncached)
359#endif
360
361#ifdef CONFIG_MEMORY_FAILURE
362PAGEFLAG(HWPoison, hwpoison, PF_ANY)
363TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
364#define __PG_HWPOISON (1UL << PG_hwpoison)
365#else
366PAGEFLAG_FALSE(HWPoison)
367#define __PG_HWPOISON 0
368#endif
369
370#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
371TESTPAGEFLAG(Young, young, PF_ANY)
372SETPAGEFLAG(Young, young, PF_ANY)
373TESTCLEARFLAG(Young, young, PF_ANY)
374PAGEFLAG(Idle, idle, PF_ANY)
375#endif
376
377/*
378 * On an anonymous page mapped into a user virtual memory area,
379 * page->mapping points to its anon_vma, not to a struct address_space;
380 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
381 *
382 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
383 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
384 * bit; and then page->mapping points, not to an anon_vma, but to a private
385 * structure which KSM associates with that merged page. See ksm.h.
386 *
387 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
388 * page and then page->mapping points a struct address_space.
389 *
390 * Please note that, confusingly, "page_mapping" refers to the inode
391 * address_space which maps the page from disk; whereas "page_mapped"
392 * refers to user virtual address space into which the page is mapped.
393 */
394#define PAGE_MAPPING_ANON 0x1
395#define PAGE_MAPPING_MOVABLE 0x2
396#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
397#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
398
399static __always_inline int PageMappingFlags(struct page *page)
400{
401 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
402}
403
404static __always_inline int PageAnon(struct page *page)
405{
406 page = compound_head(page);
407 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
408}
409
410static __always_inline int __PageMovable(struct page *page)
411{
412 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
413 PAGE_MAPPING_MOVABLE;
414}
415
416#ifdef CONFIG_KSM
417/*
418 * A KSM page is one of those write-protected "shared pages" or "merged pages"
419 * which KSM maps into multiple mms, wherever identical anonymous page content
420 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any
421 * anon_vma, but to that page's node of the stable tree.
422 */
423static __always_inline int PageKsm(struct page *page)
424{
425 page = compound_head(page);
426 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
427 PAGE_MAPPING_KSM;
428}
429#else
430TESTPAGEFLAG_FALSE(Ksm)
431#endif
432
433u64 stable_page_flags(struct page *page);
434
435static inline int PageUptodate(struct page *page)
436{
437 int ret;
438 page = compound_head(page);
439 ret = test_bit(PG_uptodate, &(page)->flags);
440 /*
441 * Must ensure that the data we read out of the page is loaded
442 * _after_ we've loaded page->flags to check for PageUptodate.
443 * We can skip the barrier if the page is not uptodate, because
444 * we wouldn't be reading anything from it.
445 *
446 * See SetPageUptodate() for the other side of the story.
447 */
448 if (ret)
449 smp_rmb();
450
451 return ret;
452}
453
454static __always_inline void __SetPageUptodate(struct page *page)
455{
456 VM_BUG_ON_PAGE(PageTail(page), page);
457 smp_wmb();
458 __set_bit(PG_uptodate, &page->flags);
459}
460
461static __always_inline void SetPageUptodate(struct page *page)
462{
463 VM_BUG_ON_PAGE(PageTail(page), page);
464 /*
465 * Memory barrier must be issued before setting the PG_uptodate bit,
466 * so that all previous stores issued in order to bring the page
467 * uptodate are actually visible before PageUptodate becomes true.
468 */
469 smp_wmb();
470 set_bit(PG_uptodate, &page->flags);
471}
472
473CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
474
475int test_clear_page_writeback(struct page *page);
476int __test_set_page_writeback(struct page *page, bool keep_write);
477
478#define test_set_page_writeback(page) \
479 __test_set_page_writeback(page, false)
480#define test_set_page_writeback_keepwrite(page) \
481 __test_set_page_writeback(page, true)
482
483static inline void set_page_writeback(struct page *page)
484{
485 test_set_page_writeback(page);
486}
487
488static inline void set_page_writeback_keepwrite(struct page *page)
489{
490 test_set_page_writeback_keepwrite(page);
491}
492
493__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
494
495static __always_inline void set_compound_head(struct page *page, struct page *head)
496{
497 WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
498}
499
500static __always_inline void clear_compound_head(struct page *page)
501{
502 WRITE_ONCE(page->compound_head, 0);
503}
504
505#ifdef CONFIG_TRANSPARENT_HUGEPAGE
506static inline void ClearPageCompound(struct page *page)
507{
508 BUG_ON(!PageHead(page));
509 ClearPageHead(page);
510}
511#endif
512
513#define PG_head_mask ((1UL << PG_head))
514
515#ifdef CONFIG_HUGETLB_PAGE
516int PageHuge(struct page *page);
517int PageHeadHuge(struct page *page);
518bool page_huge_active(struct page *page);
519#else
520TESTPAGEFLAG_FALSE(Huge)
521TESTPAGEFLAG_FALSE(HeadHuge)
522
523static inline bool page_huge_active(struct page *page)
524{
525 return 0;
526}
527#endif
528
529
530#ifdef CONFIG_TRANSPARENT_HUGEPAGE
531/*
532 * PageHuge() only returns true for hugetlbfs pages, but not for
533 * normal or transparent huge pages.
534 *
535 * PageTransHuge() returns true for both transparent huge and
536 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
537 * called only in the core VM paths where hugetlbfs pages can't exist.
538 */
539static inline int PageTransHuge(struct page *page)
540{
541 VM_BUG_ON_PAGE(PageTail(page), page);
542 return PageHead(page);
543}
544
545/*
546 * PageTransCompound returns true for both transparent huge pages
547 * and hugetlbfs pages, so it should only be called when it's known
548 * that hugetlbfs pages aren't involved.
549 */
550static inline int PageTransCompound(struct page *page)
551{
552 return PageCompound(page);
553}
554
555/*
556 * PageTransCompoundMap is the same as PageTransCompound, but it also
557 * guarantees the primary MMU has the entire compound page mapped
558 * through pmd_trans_huge, which in turn guarantees the secondary MMUs
559 * can also map the entire compound page. This allows the secondary
560 * MMUs to call get_user_pages() only once for each compound page and
561 * to immediately map the entire compound page with a single secondary
562 * MMU fault. If there will be a pmd split later, the secondary MMUs
563 * will get an update through the MMU notifier invalidation through
564 * split_huge_pmd().
565 *
566 * Unlike PageTransCompound, this is safe to be called only while
567 * split_huge_pmd() cannot run from under us, like if protected by the
568 * MMU notifier, otherwise it may result in page->_mapcount < 0 false
569 * positives.
570 */
571static inline int PageTransCompoundMap(struct page *page)
572{
573 return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0;
574}
575
576/*
577 * PageTransTail returns true for both transparent huge pages
578 * and hugetlbfs pages, so it should only be called when it's known
579 * that hugetlbfs pages aren't involved.
580 */
581static inline int PageTransTail(struct page *page)
582{
583 return PageTail(page);
584}
585
586/*
587 * PageDoubleMap indicates that the compound page is mapped with PTEs as well
588 * as PMDs.
589 *
590 * This is required for optimization of rmap operations for THP: we can postpone
591 * per small page mapcount accounting (and its overhead from atomic operations)
592 * until the first PMD split.
593 *
594 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
595 * by one. This reference will go away with last compound_mapcount.
596 *
597 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
598 */
599static inline int PageDoubleMap(struct page *page)
600{
601 return PageHead(page) && test_bit(PG_double_map, &page[1].flags);
602}
603
604static inline void SetPageDoubleMap(struct page *page)
605{
606 VM_BUG_ON_PAGE(!PageHead(page), page);
607 set_bit(PG_double_map, &page[1].flags);
608}
609
610static inline void ClearPageDoubleMap(struct page *page)
611{
612 VM_BUG_ON_PAGE(!PageHead(page), page);
613 clear_bit(PG_double_map, &page[1].flags);
614}
615static inline int TestSetPageDoubleMap(struct page *page)
616{
617 VM_BUG_ON_PAGE(!PageHead(page), page);
618 return test_and_set_bit(PG_double_map, &page[1].flags);
619}
620
621static inline int TestClearPageDoubleMap(struct page *page)
622{
623 VM_BUG_ON_PAGE(!PageHead(page), page);
624 return test_and_clear_bit(PG_double_map, &page[1].flags);
625}
626
627#else
628TESTPAGEFLAG_FALSE(TransHuge)
629TESTPAGEFLAG_FALSE(TransCompound)
630TESTPAGEFLAG_FALSE(TransCompoundMap)
631TESTPAGEFLAG_FALSE(TransTail)
632PAGEFLAG_FALSE(DoubleMap)
633 TESTSETFLAG_FALSE(DoubleMap)
634 TESTCLEARFLAG_FALSE(DoubleMap)
635#endif
636
637/*
638 * For pages that are never mapped to userspace, page->mapcount may be
639 * used for storing extra information about page type. Any value used
640 * for this purpose must be <= -2, but it's better start not too close
641 * to -2 so that an underflow of the page_mapcount() won't be mistaken
642 * for a special page.
643 */
644#define PAGE_MAPCOUNT_OPS(uname, lname) \
645static __always_inline int Page##uname(struct page *page) \
646{ \
647 return atomic_read(&page->_mapcount) == \
648 PAGE_##lname##_MAPCOUNT_VALUE; \
649} \
650static __always_inline void __SetPage##uname(struct page *page) \
651{ \
652 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); \
653 atomic_set(&page->_mapcount, PAGE_##lname##_MAPCOUNT_VALUE); \
654} \
655static __always_inline void __ClearPage##uname(struct page *page) \
656{ \
657 VM_BUG_ON_PAGE(!Page##uname(page), page); \
658 atomic_set(&page->_mapcount, -1); \
659}
660
661/*
662 * PageBuddy() indicate that the page is free and in the buddy system
663 * (see mm/page_alloc.c).
664 */
665#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
666PAGE_MAPCOUNT_OPS(Buddy, BUDDY)
667
668/*
669 * PageBalloon() is set on pages that are on the balloon page list
670 * (see mm/balloon_compaction.c).
671 */
672#define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
673PAGE_MAPCOUNT_OPS(Balloon, BALLOON)
674
675/*
676 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on
677 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free.
678 */
679#define PAGE_KMEMCG_MAPCOUNT_VALUE (-512)
680PAGE_MAPCOUNT_OPS(Kmemcg, KMEMCG)
681
682extern bool is_free_buddy_page(struct page *page);
683
684__PAGEFLAG(Isolated, isolated, PF_ANY);
685
686/*
687 * If network-based swap is enabled, sl*b must keep track of whether pages
688 * were allocated from pfmemalloc reserves.
689 */
690static inline int PageSlabPfmemalloc(struct page *page)
691{
692 VM_BUG_ON_PAGE(!PageSlab(page), page);
693 return PageActive(page);
694}
695
696static inline void SetPageSlabPfmemalloc(struct page *page)
697{
698 VM_BUG_ON_PAGE(!PageSlab(page), page);
699 SetPageActive(page);
700}
701
702static inline void __ClearPageSlabPfmemalloc(struct page *page)
703{
704 VM_BUG_ON_PAGE(!PageSlab(page), page);
705 __ClearPageActive(page);
706}
707
708static inline void ClearPageSlabPfmemalloc(struct page *page)
709{
710 VM_BUG_ON_PAGE(!PageSlab(page), page);
711 ClearPageActive(page);
712}
713
714#ifdef CONFIG_MMU
715#define __PG_MLOCKED (1UL << PG_mlocked)
716#else
717#define __PG_MLOCKED 0
718#endif
719
720/*
721 * Flags checked when a page is freed. Pages being freed should not have
722 * these flags set. It they are, there is a problem.
723 */
724#define PAGE_FLAGS_CHECK_AT_FREE \
725 (1UL << PG_lru | 1UL << PG_locked | \
726 1UL << PG_private | 1UL << PG_private_2 | \
727 1UL << PG_writeback | 1UL << PG_reserved | \
728 1UL << PG_slab | 1UL << PG_active | \
729 1UL << PG_unevictable | __PG_MLOCKED)
730
731/*
732 * Flags checked when a page is prepped for return by the page allocator.
733 * Pages being prepped should not have these flags set. It they are set,
734 * there has been a kernel bug or struct page corruption.
735 *
736 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
737 * alloc-free cycle to prevent from reusing the page.
738 */
739#define PAGE_FLAGS_CHECK_AT_PREP \
740 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
741
742#define PAGE_FLAGS_PRIVATE \
743 (1UL << PG_private | 1UL << PG_private_2)
744/**
745 * page_has_private - Determine if page has private stuff
746 * @page: The page to be checked
747 *
748 * Determine if a page has private stuff, indicating that release routines
749 * should be invoked upon it.
750 */
751static inline int page_has_private(struct page *page)
752{
753 return !!(page->flags & PAGE_FLAGS_PRIVATE);
754}
755
756#undef PF_ANY
757#undef PF_HEAD
758#undef PF_ONLY_HEAD
759#undef PF_NO_TAIL
760#undef PF_NO_COMPOUND
761#endif /* !__GENERATING_BOUNDS_H */
762
763#endif /* PAGE_FLAGS_H */