Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MMZONE_H
3#define _LINUX_MMZONE_H
4
5#ifndef __ASSEMBLY__
6#ifndef __GENERATING_BOUNDS_H
7
8#include <linux/spinlock.h>
9#include <linux/list.h>
10#include <linux/wait.h>
11#include <linux/bitops.h>
12#include <linux/cache.h>
13#include <linux/threads.h>
14#include <linux/numa.h>
15#include <linux/init.h>
16#include <linux/seqlock.h>
17#include <linux/nodemask.h>
18#include <linux/pageblock-flags.h>
19#include <linux/page-flags-layout.h>
20#include <linux/atomic.h>
21#include <asm/page.h>
22
23/* Free memory management - zoned buddy allocator. */
24#ifndef CONFIG_FORCE_MAX_ZONEORDER
25#define MAX_ORDER 11
26#else
27#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
28#endif
29#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
30
31/*
32 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
33 * costly to service. That is between allocation orders which should
34 * coalesce naturally under reasonable reclaim pressure and those which
35 * will not.
36 */
37#define PAGE_ALLOC_COSTLY_ORDER 3
38
39enum migratetype {
40 MIGRATE_UNMOVABLE,
41 MIGRATE_MOVABLE,
42 MIGRATE_RECLAIMABLE,
43 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
44 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
45#ifdef CONFIG_CMA
46 /*
47 * MIGRATE_CMA migration type is designed to mimic the way
48 * ZONE_MOVABLE works. Only movable pages can be allocated
49 * from MIGRATE_CMA pageblocks and page allocator never
50 * implicitly change migration type of MIGRATE_CMA pageblock.
51 *
52 * The way to use it is to change migratetype of a range of
53 * pageblocks to MIGRATE_CMA which can be done by
54 * __free_pageblock_cma() function. What is important though
55 * is that a range of pageblocks must be aligned to
56 * MAX_ORDER_NR_PAGES should biggest page be bigger then
57 * a single pageblock.
58 */
59 MIGRATE_CMA,
60#endif
61#ifdef CONFIG_MEMORY_ISOLATION
62 MIGRATE_ISOLATE, /* can't allocate from here */
63#endif
64 MIGRATE_TYPES
65};
66
67/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
68extern char * const migratetype_names[MIGRATE_TYPES];
69
70#ifdef CONFIG_CMA
71# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
72# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
73#else
74# define is_migrate_cma(migratetype) false
75# define is_migrate_cma_page(_page) false
76#endif
77
78static inline bool is_migrate_movable(int mt)
79{
80 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
81}
82
83#define for_each_migratetype_order(order, type) \
84 for (order = 0; order < MAX_ORDER; order++) \
85 for (type = 0; type < MIGRATE_TYPES; type++)
86
87extern int page_group_by_mobility_disabled;
88
89#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
90#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
91
92#define get_pageblock_migratetype(page) \
93 get_pfnblock_flags_mask(page, page_to_pfn(page), \
94 PB_migrate_end, MIGRATETYPE_MASK)
95
96struct free_area {
97 struct list_head free_list[MIGRATE_TYPES];
98 unsigned long nr_free;
99};
100
101struct pglist_data;
102
103/*
104 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
105 * So add a wild amount of padding here to ensure that they fall into separate
106 * cachelines. There are very few zone structures in the machine, so space
107 * consumption is not a concern here.
108 */
109#if defined(CONFIG_SMP)
110struct zone_padding {
111 char x[0];
112} ____cacheline_internodealigned_in_smp;
113#define ZONE_PADDING(name) struct zone_padding name;
114#else
115#define ZONE_PADDING(name)
116#endif
117
118#ifdef CONFIG_NUMA
119enum numa_stat_item {
120 NUMA_HIT, /* allocated in intended node */
121 NUMA_MISS, /* allocated in non intended node */
122 NUMA_FOREIGN, /* was intended here, hit elsewhere */
123 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
124 NUMA_LOCAL, /* allocation from local node */
125 NUMA_OTHER, /* allocation from other node */
126 NR_VM_NUMA_STAT_ITEMS
127};
128#else
129#define NR_VM_NUMA_STAT_ITEMS 0
130#endif
131
132enum zone_stat_item {
133 /* First 128 byte cacheline (assuming 64 bit words) */
134 NR_FREE_PAGES,
135 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
136 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
137 NR_ZONE_ACTIVE_ANON,
138 NR_ZONE_INACTIVE_FILE,
139 NR_ZONE_ACTIVE_FILE,
140 NR_ZONE_UNEVICTABLE,
141 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
142 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
143 NR_PAGETABLE, /* used for pagetables */
144 NR_KERNEL_STACK_KB, /* measured in KiB */
145 /* Second 128 byte cacheline */
146 NR_BOUNCE,
147#if IS_ENABLED(CONFIG_ZSMALLOC)
148 NR_ZSPAGES, /* allocated in zsmalloc */
149#endif
150 NR_FREE_CMA_PAGES,
151 NR_VM_ZONE_STAT_ITEMS };
152
153enum node_stat_item {
154 NR_LRU_BASE,
155 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
156 NR_ACTIVE_ANON, /* " " " " " */
157 NR_INACTIVE_FILE, /* " " " " " */
158 NR_ACTIVE_FILE, /* " " " " " */
159 NR_UNEVICTABLE, /* " " " " " */
160 NR_SLAB_RECLAIMABLE,
161 NR_SLAB_UNRECLAIMABLE,
162 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
163 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
164 WORKINGSET_REFAULT,
165 WORKINGSET_ACTIVATE,
166 WORKINGSET_NODERECLAIM,
167 NR_ANON_MAPPED, /* Mapped anonymous pages */
168 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
169 only modified from process context */
170 NR_FILE_PAGES,
171 NR_FILE_DIRTY,
172 NR_WRITEBACK,
173 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
174 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
175 NR_SHMEM_THPS,
176 NR_SHMEM_PMDMAPPED,
177 NR_ANON_THPS,
178 NR_UNSTABLE_NFS, /* NFS unstable pages */
179 NR_VMSCAN_WRITE,
180 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
181 NR_DIRTIED, /* page dirtyings since bootup */
182 NR_WRITTEN, /* page writings since bootup */
183 NR_VM_NODE_STAT_ITEMS
184};
185
186/*
187 * We do arithmetic on the LRU lists in various places in the code,
188 * so it is important to keep the active lists LRU_ACTIVE higher in
189 * the array than the corresponding inactive lists, and to keep
190 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
191 *
192 * This has to be kept in sync with the statistics in zone_stat_item
193 * above and the descriptions in vmstat_text in mm/vmstat.c
194 */
195#define LRU_BASE 0
196#define LRU_ACTIVE 1
197#define LRU_FILE 2
198
199enum lru_list {
200 LRU_INACTIVE_ANON = LRU_BASE,
201 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
202 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
203 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
204 LRU_UNEVICTABLE,
205 NR_LRU_LISTS
206};
207
208#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
209
210#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
211
212static inline int is_file_lru(enum lru_list lru)
213{
214 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
215}
216
217static inline int is_active_lru(enum lru_list lru)
218{
219 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
220}
221
222struct zone_reclaim_stat {
223 /*
224 * The pageout code in vmscan.c keeps track of how many of the
225 * mem/swap backed and file backed pages are referenced.
226 * The higher the rotated/scanned ratio, the more valuable
227 * that cache is.
228 *
229 * The anon LRU stats live in [0], file LRU stats in [1]
230 */
231 unsigned long recent_rotated[2];
232 unsigned long recent_scanned[2];
233};
234
235struct lruvec {
236 struct list_head lists[NR_LRU_LISTS];
237 struct zone_reclaim_stat reclaim_stat;
238 /* Evictions & activations on the inactive file list */
239 atomic_long_t inactive_age;
240 /* Refaults at the time of last reclaim cycle */
241 unsigned long refaults;
242#ifdef CONFIG_MEMCG
243 struct pglist_data *pgdat;
244#endif
245};
246
247/* Mask used at gathering information at once (see memcontrol.c) */
248#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
249#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
250#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
251
252/* Isolate unmapped file */
253#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
254/* Isolate for asynchronous migration */
255#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
256/* Isolate unevictable pages */
257#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
258
259/* LRU Isolation modes. */
260typedef unsigned __bitwise isolate_mode_t;
261
262enum zone_watermarks {
263 WMARK_MIN,
264 WMARK_LOW,
265 WMARK_HIGH,
266 NR_WMARK
267};
268
269#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
270#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
271#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
272
273struct per_cpu_pages {
274 int count; /* number of pages in the list */
275 int high; /* high watermark, emptying needed */
276 int batch; /* chunk size for buddy add/remove */
277
278 /* Lists of pages, one per migrate type stored on the pcp-lists */
279 struct list_head lists[MIGRATE_PCPTYPES];
280};
281
282struct per_cpu_pageset {
283 struct per_cpu_pages pcp;
284#ifdef CONFIG_NUMA
285 s8 expire;
286 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
287#endif
288#ifdef CONFIG_SMP
289 s8 stat_threshold;
290 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
291#endif
292};
293
294struct per_cpu_nodestat {
295 s8 stat_threshold;
296 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
297};
298
299#endif /* !__GENERATING_BOUNDS.H */
300
301enum zone_type {
302#ifdef CONFIG_ZONE_DMA
303 /*
304 * ZONE_DMA is used when there are devices that are not able
305 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
306 * carve out the portion of memory that is needed for these devices.
307 * The range is arch specific.
308 *
309 * Some examples
310 *
311 * Architecture Limit
312 * ---------------------------
313 * parisc, ia64, sparc <4G
314 * s390 <2G
315 * arm Various
316 * alpha Unlimited or 0-16MB.
317 *
318 * i386, x86_64 and multiple other arches
319 * <16M.
320 */
321 ZONE_DMA,
322#endif
323#ifdef CONFIG_ZONE_DMA32
324 /*
325 * x86_64 needs two ZONE_DMAs because it supports devices that are
326 * only able to do DMA to the lower 16M but also 32 bit devices that
327 * can only do DMA areas below 4G.
328 */
329 ZONE_DMA32,
330#endif
331 /*
332 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
333 * performed on pages in ZONE_NORMAL if the DMA devices support
334 * transfers to all addressable memory.
335 */
336 ZONE_NORMAL,
337#ifdef CONFIG_HIGHMEM
338 /*
339 * A memory area that is only addressable by the kernel through
340 * mapping portions into its own address space. This is for example
341 * used by i386 to allow the kernel to address the memory beyond
342 * 900MB. The kernel will set up special mappings (page
343 * table entries on i386) for each page that the kernel needs to
344 * access.
345 */
346 ZONE_HIGHMEM,
347#endif
348 ZONE_MOVABLE,
349#ifdef CONFIG_ZONE_DEVICE
350 ZONE_DEVICE,
351#endif
352 __MAX_NR_ZONES
353
354};
355
356#ifndef __GENERATING_BOUNDS_H
357
358struct zone {
359 /* Read-mostly fields */
360
361 /* zone watermarks, access with *_wmark_pages(zone) macros */
362 unsigned long watermark[NR_WMARK];
363
364 unsigned long nr_reserved_highatomic;
365
366 /*
367 * We don't know if the memory that we're going to allocate will be
368 * freeable or/and it will be released eventually, so to avoid totally
369 * wasting several GB of ram we must reserve some of the lower zone
370 * memory (otherwise we risk to run OOM on the lower zones despite
371 * there being tons of freeable ram on the higher zones). This array is
372 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
373 * changes.
374 */
375 long lowmem_reserve[MAX_NR_ZONES];
376
377#ifdef CONFIG_NUMA
378 int node;
379#endif
380 struct pglist_data *zone_pgdat;
381 struct per_cpu_pageset __percpu *pageset;
382
383#ifndef CONFIG_SPARSEMEM
384 /*
385 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
386 * In SPARSEMEM, this map is stored in struct mem_section
387 */
388 unsigned long *pageblock_flags;
389#endif /* CONFIG_SPARSEMEM */
390
391 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
392 unsigned long zone_start_pfn;
393
394 /*
395 * spanned_pages is the total pages spanned by the zone, including
396 * holes, which is calculated as:
397 * spanned_pages = zone_end_pfn - zone_start_pfn;
398 *
399 * present_pages is physical pages existing within the zone, which
400 * is calculated as:
401 * present_pages = spanned_pages - absent_pages(pages in holes);
402 *
403 * managed_pages is present pages managed by the buddy system, which
404 * is calculated as (reserved_pages includes pages allocated by the
405 * bootmem allocator):
406 * managed_pages = present_pages - reserved_pages;
407 *
408 * So present_pages may be used by memory hotplug or memory power
409 * management logic to figure out unmanaged pages by checking
410 * (present_pages - managed_pages). And managed_pages should be used
411 * by page allocator and vm scanner to calculate all kinds of watermarks
412 * and thresholds.
413 *
414 * Locking rules:
415 *
416 * zone_start_pfn and spanned_pages are protected by span_seqlock.
417 * It is a seqlock because it has to be read outside of zone->lock,
418 * and it is done in the main allocator path. But, it is written
419 * quite infrequently.
420 *
421 * The span_seq lock is declared along with zone->lock because it is
422 * frequently read in proximity to zone->lock. It's good to
423 * give them a chance of being in the same cacheline.
424 *
425 * Write access to present_pages at runtime should be protected by
426 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
427 * present_pages should get_online_mems() to get a stable value.
428 *
429 * Read access to managed_pages should be safe because it's unsigned
430 * long. Write access to zone->managed_pages and totalram_pages are
431 * protected by managed_page_count_lock at runtime. Idealy only
432 * adjust_managed_page_count() should be used instead of directly
433 * touching zone->managed_pages and totalram_pages.
434 */
435 unsigned long managed_pages;
436 unsigned long spanned_pages;
437 unsigned long present_pages;
438
439 const char *name;
440
441#ifdef CONFIG_MEMORY_ISOLATION
442 /*
443 * Number of isolated pageblock. It is used to solve incorrect
444 * freepage counting problem due to racy retrieving migratetype
445 * of pageblock. Protected by zone->lock.
446 */
447 unsigned long nr_isolate_pageblock;
448#endif
449
450#ifdef CONFIG_MEMORY_HOTPLUG
451 /* see spanned/present_pages for more description */
452 seqlock_t span_seqlock;
453#endif
454
455 int initialized;
456
457 /* Write-intensive fields used from the page allocator */
458 ZONE_PADDING(_pad1_)
459
460 /* free areas of different sizes */
461 struct free_area free_area[MAX_ORDER];
462
463 /* zone flags, see below */
464 unsigned long flags;
465
466 /* Primarily protects free_area */
467 spinlock_t lock;
468
469 /* Write-intensive fields used by compaction and vmstats. */
470 ZONE_PADDING(_pad2_)
471
472 /*
473 * When free pages are below this point, additional steps are taken
474 * when reading the number of free pages to avoid per-cpu counter
475 * drift allowing watermarks to be breached
476 */
477 unsigned long percpu_drift_mark;
478
479#if defined CONFIG_COMPACTION || defined CONFIG_CMA
480 /* pfn where compaction free scanner should start */
481 unsigned long compact_cached_free_pfn;
482 /* pfn where async and sync compaction migration scanner should start */
483 unsigned long compact_cached_migrate_pfn[2];
484#endif
485
486#ifdef CONFIG_COMPACTION
487 /*
488 * On compaction failure, 1<<compact_defer_shift compactions
489 * are skipped before trying again. The number attempted since
490 * last failure is tracked with compact_considered.
491 */
492 unsigned int compact_considered;
493 unsigned int compact_defer_shift;
494 int compact_order_failed;
495#endif
496
497#if defined CONFIG_COMPACTION || defined CONFIG_CMA
498 /* Set to true when the PG_migrate_skip bits should be cleared */
499 bool compact_blockskip_flush;
500#endif
501
502 bool contiguous;
503
504 ZONE_PADDING(_pad3_)
505 /* Zone statistics */
506 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
507 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
508} ____cacheline_internodealigned_in_smp;
509
510enum pgdat_flags {
511 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
512 * a congested BDI
513 */
514 PGDAT_DIRTY, /* reclaim scanning has recently found
515 * many dirty file pages at the tail
516 * of the LRU.
517 */
518 PGDAT_WRITEBACK, /* reclaim scanning has recently found
519 * many pages under writeback
520 */
521 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
522};
523
524static inline unsigned long zone_end_pfn(const struct zone *zone)
525{
526 return zone->zone_start_pfn + zone->spanned_pages;
527}
528
529static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
530{
531 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
532}
533
534static inline bool zone_is_initialized(struct zone *zone)
535{
536 return zone->initialized;
537}
538
539static inline bool zone_is_empty(struct zone *zone)
540{
541 return zone->spanned_pages == 0;
542}
543
544/*
545 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
546 * intersection with the given zone
547 */
548static inline bool zone_intersects(struct zone *zone,
549 unsigned long start_pfn, unsigned long nr_pages)
550{
551 if (zone_is_empty(zone))
552 return false;
553 if (start_pfn >= zone_end_pfn(zone) ||
554 start_pfn + nr_pages <= zone->zone_start_pfn)
555 return false;
556
557 return true;
558}
559
560/*
561 * The "priority" of VM scanning is how much of the queues we will scan in one
562 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
563 * queues ("queue_length >> 12") during an aging round.
564 */
565#define DEF_PRIORITY 12
566
567/* Maximum number of zones on a zonelist */
568#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
569
570enum {
571 ZONELIST_FALLBACK, /* zonelist with fallback */
572#ifdef CONFIG_NUMA
573 /*
574 * The NUMA zonelists are doubled because we need zonelists that
575 * restrict the allocations to a single node for __GFP_THISNODE.
576 */
577 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
578#endif
579 MAX_ZONELISTS
580};
581
582/*
583 * This struct contains information about a zone in a zonelist. It is stored
584 * here to avoid dereferences into large structures and lookups of tables
585 */
586struct zoneref {
587 struct zone *zone; /* Pointer to actual zone */
588 int zone_idx; /* zone_idx(zoneref->zone) */
589};
590
591/*
592 * One allocation request operates on a zonelist. A zonelist
593 * is a list of zones, the first one is the 'goal' of the
594 * allocation, the other zones are fallback zones, in decreasing
595 * priority.
596 *
597 * To speed the reading of the zonelist, the zonerefs contain the zone index
598 * of the entry being read. Helper functions to access information given
599 * a struct zoneref are
600 *
601 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
602 * zonelist_zone_idx() - Return the index of the zone for an entry
603 * zonelist_node_idx() - Return the index of the node for an entry
604 */
605struct zonelist {
606 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
607};
608
609#ifndef CONFIG_DISCONTIGMEM
610/* The array of struct pages - for discontigmem use pgdat->lmem_map */
611extern struct page *mem_map;
612#endif
613
614/*
615 * On NUMA machines, each NUMA node would have a pg_data_t to describe
616 * it's memory layout. On UMA machines there is a single pglist_data which
617 * describes the whole memory.
618 *
619 * Memory statistics and page replacement data structures are maintained on a
620 * per-zone basis.
621 */
622struct bootmem_data;
623typedef struct pglist_data {
624 struct zone node_zones[MAX_NR_ZONES];
625 struct zonelist node_zonelists[MAX_ZONELISTS];
626 int nr_zones;
627#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
628 struct page *node_mem_map;
629#ifdef CONFIG_PAGE_EXTENSION
630 struct page_ext *node_page_ext;
631#endif
632#endif
633#ifndef CONFIG_NO_BOOTMEM
634 struct bootmem_data *bdata;
635#endif
636#ifdef CONFIG_MEMORY_HOTPLUG
637 /*
638 * Must be held any time you expect node_start_pfn, node_present_pages
639 * or node_spanned_pages stay constant. Holding this will also
640 * guarantee that any pfn_valid() stays that way.
641 *
642 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
643 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
644 *
645 * Nests above zone->lock and zone->span_seqlock
646 */
647 spinlock_t node_size_lock;
648#endif
649 unsigned long node_start_pfn;
650 unsigned long node_present_pages; /* total number of physical pages */
651 unsigned long node_spanned_pages; /* total size of physical page
652 range, including holes */
653 int node_id;
654 wait_queue_head_t kswapd_wait;
655 wait_queue_head_t pfmemalloc_wait;
656 struct task_struct *kswapd; /* Protected by
657 mem_hotplug_begin/end() */
658 int kswapd_order;
659 enum zone_type kswapd_classzone_idx;
660
661 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
662
663#ifdef CONFIG_COMPACTION
664 int kcompactd_max_order;
665 enum zone_type kcompactd_classzone_idx;
666 wait_queue_head_t kcompactd_wait;
667 struct task_struct *kcompactd;
668#endif
669#ifdef CONFIG_NUMA_BALANCING
670 /* Lock serializing the migrate rate limiting window */
671 spinlock_t numabalancing_migrate_lock;
672
673 /* Rate limiting time interval */
674 unsigned long numabalancing_migrate_next_window;
675
676 /* Number of pages migrated during the rate limiting time interval */
677 unsigned long numabalancing_migrate_nr_pages;
678#endif
679 /*
680 * This is a per-node reserve of pages that are not available
681 * to userspace allocations.
682 */
683 unsigned long totalreserve_pages;
684
685#ifdef CONFIG_NUMA
686 /*
687 * zone reclaim becomes active if more unmapped pages exist.
688 */
689 unsigned long min_unmapped_pages;
690 unsigned long min_slab_pages;
691#endif /* CONFIG_NUMA */
692
693 /* Write-intensive fields used by page reclaim */
694 ZONE_PADDING(_pad1_)
695 spinlock_t lru_lock;
696
697#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
698 /*
699 * If memory initialisation on large machines is deferred then this
700 * is the first PFN that needs to be initialised.
701 */
702 unsigned long first_deferred_pfn;
703 unsigned long static_init_size;
704#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
705
706#ifdef CONFIG_TRANSPARENT_HUGEPAGE
707 spinlock_t split_queue_lock;
708 struct list_head split_queue;
709 unsigned long split_queue_len;
710#endif
711
712 /* Fields commonly accessed by the page reclaim scanner */
713 struct lruvec lruvec;
714
715 /*
716 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
717 * this node's LRU. Maintained by the pageout code.
718 */
719 unsigned int inactive_ratio;
720
721 unsigned long flags;
722
723 ZONE_PADDING(_pad2_)
724
725 /* Per-node vmstats */
726 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
727 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
728} pg_data_t;
729
730#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
731#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
732#ifdef CONFIG_FLAT_NODE_MEM_MAP
733#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
734#else
735#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
736#endif
737#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
738
739#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
740#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
741static inline spinlock_t *zone_lru_lock(struct zone *zone)
742{
743 return &zone->zone_pgdat->lru_lock;
744}
745
746static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
747{
748 return &pgdat->lruvec;
749}
750
751static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
752{
753 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
754}
755
756static inline bool pgdat_is_empty(pg_data_t *pgdat)
757{
758 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
759}
760
761static inline int zone_id(const struct zone *zone)
762{
763 struct pglist_data *pgdat = zone->zone_pgdat;
764
765 return zone - pgdat->node_zones;
766}
767
768#ifdef CONFIG_ZONE_DEVICE
769static inline bool is_dev_zone(const struct zone *zone)
770{
771 return zone_id(zone) == ZONE_DEVICE;
772}
773#else
774static inline bool is_dev_zone(const struct zone *zone)
775{
776 return false;
777}
778#endif
779
780#include <linux/memory_hotplug.h>
781
782void build_all_zonelists(pg_data_t *pgdat);
783void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
784bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
785 int classzone_idx, unsigned int alloc_flags,
786 long free_pages);
787bool zone_watermark_ok(struct zone *z, unsigned int order,
788 unsigned long mark, int classzone_idx,
789 unsigned int alloc_flags);
790bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
791 unsigned long mark, int classzone_idx);
792enum memmap_context {
793 MEMMAP_EARLY,
794 MEMMAP_HOTPLUG,
795};
796extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
797 unsigned long size);
798
799extern void lruvec_init(struct lruvec *lruvec);
800
801static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
802{
803#ifdef CONFIG_MEMCG
804 return lruvec->pgdat;
805#else
806 return container_of(lruvec, struct pglist_data, lruvec);
807#endif
808}
809
810extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
811
812#ifdef CONFIG_HAVE_MEMORY_PRESENT
813void memory_present(int nid, unsigned long start, unsigned long end);
814#else
815static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
816#endif
817
818#ifdef CONFIG_HAVE_MEMORYLESS_NODES
819int local_memory_node(int node_id);
820#else
821static inline int local_memory_node(int node_id) { return node_id; };
822#endif
823
824#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
825unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
826#endif
827
828/*
829 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
830 */
831#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
832
833/*
834 * Returns true if a zone has pages managed by the buddy allocator.
835 * All the reclaim decisions have to use this function rather than
836 * populated_zone(). If the whole zone is reserved then we can easily
837 * end up with populated_zone() && !managed_zone().
838 */
839static inline bool managed_zone(struct zone *zone)
840{
841 return zone->managed_pages;
842}
843
844/* Returns true if a zone has memory */
845static inline bool populated_zone(struct zone *zone)
846{
847 return zone->present_pages;
848}
849
850extern int movable_zone;
851
852#ifdef CONFIG_HIGHMEM
853static inline int zone_movable_is_highmem(void)
854{
855#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
856 return movable_zone == ZONE_HIGHMEM;
857#else
858 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
859#endif
860}
861#endif
862
863static inline int is_highmem_idx(enum zone_type idx)
864{
865#ifdef CONFIG_HIGHMEM
866 return (idx == ZONE_HIGHMEM ||
867 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
868#else
869 return 0;
870#endif
871}
872
873/**
874 * is_highmem - helper function to quickly check if a struct zone is a
875 * highmem zone or not. This is an attempt to keep references
876 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
877 * @zone - pointer to struct zone variable
878 */
879static inline int is_highmem(struct zone *zone)
880{
881#ifdef CONFIG_HIGHMEM
882 return is_highmem_idx(zone_idx(zone));
883#else
884 return 0;
885#endif
886}
887
888/* These two functions are used to setup the per zone pages min values */
889struct ctl_table;
890int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
891 void __user *, size_t *, loff_t *);
892int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
893 void __user *, size_t *, loff_t *);
894extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
895int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
896 void __user *, size_t *, loff_t *);
897int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
898 void __user *, size_t *, loff_t *);
899int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
900 void __user *, size_t *, loff_t *);
901int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
902 void __user *, size_t *, loff_t *);
903
904extern int numa_zonelist_order_handler(struct ctl_table *, int,
905 void __user *, size_t *, loff_t *);
906extern char numa_zonelist_order[];
907#define NUMA_ZONELIST_ORDER_LEN 16
908
909#ifndef CONFIG_NEED_MULTIPLE_NODES
910
911extern struct pglist_data contig_page_data;
912#define NODE_DATA(nid) (&contig_page_data)
913#define NODE_MEM_MAP(nid) mem_map
914
915#else /* CONFIG_NEED_MULTIPLE_NODES */
916
917#include <asm/mmzone.h>
918
919#endif /* !CONFIG_NEED_MULTIPLE_NODES */
920
921extern struct pglist_data *first_online_pgdat(void);
922extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
923extern struct zone *next_zone(struct zone *zone);
924
925/**
926 * for_each_online_pgdat - helper macro to iterate over all online nodes
927 * @pgdat - pointer to a pg_data_t variable
928 */
929#define for_each_online_pgdat(pgdat) \
930 for (pgdat = first_online_pgdat(); \
931 pgdat; \
932 pgdat = next_online_pgdat(pgdat))
933/**
934 * for_each_zone - helper macro to iterate over all memory zones
935 * @zone - pointer to struct zone variable
936 *
937 * The user only needs to declare the zone variable, for_each_zone
938 * fills it in.
939 */
940#define for_each_zone(zone) \
941 for (zone = (first_online_pgdat())->node_zones; \
942 zone; \
943 zone = next_zone(zone))
944
945#define for_each_populated_zone(zone) \
946 for (zone = (first_online_pgdat())->node_zones; \
947 zone; \
948 zone = next_zone(zone)) \
949 if (!populated_zone(zone)) \
950 ; /* do nothing */ \
951 else
952
953static inline struct zone *zonelist_zone(struct zoneref *zoneref)
954{
955 return zoneref->zone;
956}
957
958static inline int zonelist_zone_idx(struct zoneref *zoneref)
959{
960 return zoneref->zone_idx;
961}
962
963static inline int zonelist_node_idx(struct zoneref *zoneref)
964{
965#ifdef CONFIG_NUMA
966 /* zone_to_nid not available in this context */
967 return zoneref->zone->node;
968#else
969 return 0;
970#endif /* CONFIG_NUMA */
971}
972
973struct zoneref *__next_zones_zonelist(struct zoneref *z,
974 enum zone_type highest_zoneidx,
975 nodemask_t *nodes);
976
977/**
978 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
979 * @z - The cursor used as a starting point for the search
980 * @highest_zoneidx - The zone index of the highest zone to return
981 * @nodes - An optional nodemask to filter the zonelist with
982 *
983 * This function returns the next zone at or below a given zone index that is
984 * within the allowed nodemask using a cursor as the starting point for the
985 * search. The zoneref returned is a cursor that represents the current zone
986 * being examined. It should be advanced by one before calling
987 * next_zones_zonelist again.
988 */
989static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
990 enum zone_type highest_zoneidx,
991 nodemask_t *nodes)
992{
993 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
994 return z;
995 return __next_zones_zonelist(z, highest_zoneidx, nodes);
996}
997
998/**
999 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1000 * @zonelist - The zonelist to search for a suitable zone
1001 * @highest_zoneidx - The zone index of the highest zone to return
1002 * @nodes - An optional nodemask to filter the zonelist with
1003 * @return - Zoneref pointer for the first suitable zone found (see below)
1004 *
1005 * This function returns the first zone at or below a given zone index that is
1006 * within the allowed nodemask. The zoneref returned is a cursor that can be
1007 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1008 * one before calling.
1009 *
1010 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1011 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1012 * update due to cpuset modification.
1013 */
1014static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1015 enum zone_type highest_zoneidx,
1016 nodemask_t *nodes)
1017{
1018 return next_zones_zonelist(zonelist->_zonerefs,
1019 highest_zoneidx, nodes);
1020}
1021
1022/**
1023 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1024 * @zone - The current zone in the iterator
1025 * @z - The current pointer within zonelist->zones being iterated
1026 * @zlist - The zonelist being iterated
1027 * @highidx - The zone index of the highest zone to return
1028 * @nodemask - Nodemask allowed by the allocator
1029 *
1030 * This iterator iterates though all zones at or below a given zone index and
1031 * within a given nodemask
1032 */
1033#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1034 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1035 zone; \
1036 z = next_zones_zonelist(++z, highidx, nodemask), \
1037 zone = zonelist_zone(z))
1038
1039#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1040 for (zone = z->zone; \
1041 zone; \
1042 z = next_zones_zonelist(++z, highidx, nodemask), \
1043 zone = zonelist_zone(z))
1044
1045
1046/**
1047 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1048 * @zone - The current zone in the iterator
1049 * @z - The current pointer within zonelist->zones being iterated
1050 * @zlist - The zonelist being iterated
1051 * @highidx - The zone index of the highest zone to return
1052 *
1053 * This iterator iterates though all zones at or below a given zone index.
1054 */
1055#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1056 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1057
1058#ifdef CONFIG_SPARSEMEM
1059#include <asm/sparsemem.h>
1060#endif
1061
1062#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1063 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1064static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1065{
1066 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1067 return 0;
1068}
1069#endif
1070
1071#ifdef CONFIG_FLATMEM
1072#define pfn_to_nid(pfn) (0)
1073#endif
1074
1075#ifdef CONFIG_SPARSEMEM
1076
1077/*
1078 * SECTION_SHIFT #bits space required to store a section #
1079 *
1080 * PA_SECTION_SHIFT physical address to/from section number
1081 * PFN_SECTION_SHIFT pfn to/from section number
1082 */
1083#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1084#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1085
1086#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1087
1088#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1089#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1090
1091#define SECTION_BLOCKFLAGS_BITS \
1092 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1093
1094#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1095#error Allocator MAX_ORDER exceeds SECTION_SIZE
1096#endif
1097
1098static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1099{
1100 return pfn >> PFN_SECTION_SHIFT;
1101}
1102static inline unsigned long section_nr_to_pfn(unsigned long sec)
1103{
1104 return sec << PFN_SECTION_SHIFT;
1105}
1106
1107#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1108#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1109
1110struct page;
1111struct page_ext;
1112struct mem_section {
1113 /*
1114 * This is, logically, a pointer to an array of struct
1115 * pages. However, it is stored with some other magic.
1116 * (see sparse.c::sparse_init_one_section())
1117 *
1118 * Additionally during early boot we encode node id of
1119 * the location of the section here to guide allocation.
1120 * (see sparse.c::memory_present())
1121 *
1122 * Making it a UL at least makes someone do a cast
1123 * before using it wrong.
1124 */
1125 unsigned long section_mem_map;
1126
1127 /* See declaration of similar field in struct zone */
1128 unsigned long *pageblock_flags;
1129#ifdef CONFIG_PAGE_EXTENSION
1130 /*
1131 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1132 * section. (see page_ext.h about this.)
1133 */
1134 struct page_ext *page_ext;
1135 unsigned long pad;
1136#endif
1137 /*
1138 * WARNING: mem_section must be a power-of-2 in size for the
1139 * calculation and use of SECTION_ROOT_MASK to make sense.
1140 */
1141};
1142
1143#ifdef CONFIG_SPARSEMEM_EXTREME
1144#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1145#else
1146#define SECTIONS_PER_ROOT 1
1147#endif
1148
1149#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1150#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1151#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1152
1153#ifdef CONFIG_SPARSEMEM_EXTREME
1154extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1155#else
1156extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1157#endif
1158
1159static inline struct mem_section *__nr_to_section(unsigned long nr)
1160{
1161 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1162 return NULL;
1163 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1164}
1165extern int __section_nr(struct mem_section* ms);
1166extern unsigned long usemap_size(void);
1167
1168/*
1169 * We use the lower bits of the mem_map pointer to store
1170 * a little bit of information. There should be at least
1171 * 3 bits here due to 32-bit alignment.
1172 */
1173#define SECTION_MARKED_PRESENT (1UL<<0)
1174#define SECTION_HAS_MEM_MAP (1UL<<1)
1175#define SECTION_IS_ONLINE (1UL<<2)
1176#define SECTION_MAP_LAST_BIT (1UL<<3)
1177#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1178#define SECTION_NID_SHIFT 3
1179
1180static inline struct page *__section_mem_map_addr(struct mem_section *section)
1181{
1182 unsigned long map = section->section_mem_map;
1183 map &= SECTION_MAP_MASK;
1184 return (struct page *)map;
1185}
1186
1187static inline int present_section(struct mem_section *section)
1188{
1189 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1190}
1191
1192static inline int present_section_nr(unsigned long nr)
1193{
1194 return present_section(__nr_to_section(nr));
1195}
1196
1197static inline int valid_section(struct mem_section *section)
1198{
1199 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1200}
1201
1202static inline int valid_section_nr(unsigned long nr)
1203{
1204 return valid_section(__nr_to_section(nr));
1205}
1206
1207static inline int online_section(struct mem_section *section)
1208{
1209 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1210}
1211
1212static inline int online_section_nr(unsigned long nr)
1213{
1214 return online_section(__nr_to_section(nr));
1215}
1216
1217#ifdef CONFIG_MEMORY_HOTPLUG
1218void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1219#ifdef CONFIG_MEMORY_HOTREMOVE
1220void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1221#endif
1222#endif
1223
1224static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1225{
1226 return __nr_to_section(pfn_to_section_nr(pfn));
1227}
1228
1229extern int __highest_present_section_nr;
1230
1231#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1232static inline int pfn_valid(unsigned long pfn)
1233{
1234 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1235 return 0;
1236 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1237}
1238#endif
1239
1240static inline int pfn_present(unsigned long pfn)
1241{
1242 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1243 return 0;
1244 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1245}
1246
1247/*
1248 * These are _only_ used during initialisation, therefore they
1249 * can use __initdata ... They could have names to indicate
1250 * this restriction.
1251 */
1252#ifdef CONFIG_NUMA
1253#define pfn_to_nid(pfn) \
1254({ \
1255 unsigned long __pfn_to_nid_pfn = (pfn); \
1256 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1257})
1258#else
1259#define pfn_to_nid(pfn) (0)
1260#endif
1261
1262#define early_pfn_valid(pfn) pfn_valid(pfn)
1263void sparse_init(void);
1264#else
1265#define sparse_init() do {} while (0)
1266#define sparse_index_init(_sec, _nid) do {} while (0)
1267#endif /* CONFIG_SPARSEMEM */
1268
1269/*
1270 * During memory init memblocks map pfns to nids. The search is expensive and
1271 * this caches recent lookups. The implementation of __early_pfn_to_nid
1272 * may treat start/end as pfns or sections.
1273 */
1274struct mminit_pfnnid_cache {
1275 unsigned long last_start;
1276 unsigned long last_end;
1277 int last_nid;
1278};
1279
1280#ifndef early_pfn_valid
1281#define early_pfn_valid(pfn) (1)
1282#endif
1283
1284void memory_present(int nid, unsigned long start, unsigned long end);
1285unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1286
1287/*
1288 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1289 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1290 * pfn_valid_within() should be used in this case; we optimise this away
1291 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1292 */
1293#ifdef CONFIG_HOLES_IN_ZONE
1294#define pfn_valid_within(pfn) pfn_valid(pfn)
1295#else
1296#define pfn_valid_within(pfn) (1)
1297#endif
1298
1299#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1300/*
1301 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1302 * associated with it or not. This means that a struct page exists for this
1303 * pfn. The caller cannot assume the page is fully initialized in general.
1304 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1305 * will ensure the struct page is fully online and initialized. Special pages
1306 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1307 *
1308 * In FLATMEM, it is expected that holes always have valid memmap as long as
1309 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1310 * that a valid section has a memmap for the entire section.
1311 *
1312 * However, an ARM, and maybe other embedded architectures in the future
1313 * free memmap backing holes to save memory on the assumption the memmap is
1314 * never used. The page_zone linkages are then broken even though pfn_valid()
1315 * returns true. A walker of the full memmap must then do this additional
1316 * check to ensure the memmap they are looking at is sane by making sure
1317 * the zone and PFN linkages are still valid. This is expensive, but walkers
1318 * of the full memmap are extremely rare.
1319 */
1320bool memmap_valid_within(unsigned long pfn,
1321 struct page *page, struct zone *zone);
1322#else
1323static inline bool memmap_valid_within(unsigned long pfn,
1324 struct page *page, struct zone *zone)
1325{
1326 return true;
1327}
1328#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1329
1330#endif /* !__GENERATING_BOUNDS.H */
1331#endif /* !__ASSEMBLY__ */
1332#endif /* _LINUX_MMZONE_H */