at v4.14 465 lines 16 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MMU_NOTIFIER_H 3#define _LINUX_MMU_NOTIFIER_H 4 5#include <linux/list.h> 6#include <linux/spinlock.h> 7#include <linux/mm_types.h> 8#include <linux/srcu.h> 9 10struct mmu_notifier; 11struct mmu_notifier_ops; 12 13#ifdef CONFIG_MMU_NOTIFIER 14 15/* 16 * The mmu notifier_mm structure is allocated and installed in 17 * mm->mmu_notifier_mm inside the mm_take_all_locks() protected 18 * critical section and it's released only when mm_count reaches zero 19 * in mmdrop(). 20 */ 21struct mmu_notifier_mm { 22 /* all mmu notifiers registerd in this mm are queued in this list */ 23 struct hlist_head list; 24 /* to serialize the list modifications and hlist_unhashed */ 25 spinlock_t lock; 26}; 27 28struct mmu_notifier_ops { 29 /* 30 * Called either by mmu_notifier_unregister or when the mm is 31 * being destroyed by exit_mmap, always before all pages are 32 * freed. This can run concurrently with other mmu notifier 33 * methods (the ones invoked outside the mm context) and it 34 * should tear down all secondary mmu mappings and freeze the 35 * secondary mmu. If this method isn't implemented you've to 36 * be sure that nothing could possibly write to the pages 37 * through the secondary mmu by the time the last thread with 38 * tsk->mm == mm exits. 39 * 40 * As side note: the pages freed after ->release returns could 41 * be immediately reallocated by the gart at an alias physical 42 * address with a different cache model, so if ->release isn't 43 * implemented because all _software_ driven memory accesses 44 * through the secondary mmu are terminated by the time the 45 * last thread of this mm quits, you've also to be sure that 46 * speculative _hardware_ operations can't allocate dirty 47 * cachelines in the cpu that could not be snooped and made 48 * coherent with the other read and write operations happening 49 * through the gart alias address, so leading to memory 50 * corruption. 51 */ 52 void (*release)(struct mmu_notifier *mn, 53 struct mm_struct *mm); 54 55 /* 56 * clear_flush_young is called after the VM is 57 * test-and-clearing the young/accessed bitflag in the 58 * pte. This way the VM will provide proper aging to the 59 * accesses to the page through the secondary MMUs and not 60 * only to the ones through the Linux pte. 61 * Start-end is necessary in case the secondary MMU is mapping the page 62 * at a smaller granularity than the primary MMU. 63 */ 64 int (*clear_flush_young)(struct mmu_notifier *mn, 65 struct mm_struct *mm, 66 unsigned long start, 67 unsigned long end); 68 69 /* 70 * clear_young is a lightweight version of clear_flush_young. Like the 71 * latter, it is supposed to test-and-clear the young/accessed bitflag 72 * in the secondary pte, but it may omit flushing the secondary tlb. 73 */ 74 int (*clear_young)(struct mmu_notifier *mn, 75 struct mm_struct *mm, 76 unsigned long start, 77 unsigned long end); 78 79 /* 80 * test_young is called to check the young/accessed bitflag in 81 * the secondary pte. This is used to know if the page is 82 * frequently used without actually clearing the flag or tearing 83 * down the secondary mapping on the page. 84 */ 85 int (*test_young)(struct mmu_notifier *mn, 86 struct mm_struct *mm, 87 unsigned long address); 88 89 /* 90 * change_pte is called in cases that pte mapping to page is changed: 91 * for example, when ksm remaps pte to point to a new shared page. 92 */ 93 void (*change_pte)(struct mmu_notifier *mn, 94 struct mm_struct *mm, 95 unsigned long address, 96 pte_t pte); 97 98 /* 99 * invalidate_range_start() and invalidate_range_end() must be 100 * paired and are called only when the mmap_sem and/or the 101 * locks protecting the reverse maps are held. If the subsystem 102 * can't guarantee that no additional references are taken to 103 * the pages in the range, it has to implement the 104 * invalidate_range() notifier to remove any references taken 105 * after invalidate_range_start(). 106 * 107 * Invalidation of multiple concurrent ranges may be 108 * optionally permitted by the driver. Either way the 109 * establishment of sptes is forbidden in the range passed to 110 * invalidate_range_begin/end for the whole duration of the 111 * invalidate_range_begin/end critical section. 112 * 113 * invalidate_range_start() is called when all pages in the 114 * range are still mapped and have at least a refcount of one. 115 * 116 * invalidate_range_end() is called when all pages in the 117 * range have been unmapped and the pages have been freed by 118 * the VM. 119 * 120 * The VM will remove the page table entries and potentially 121 * the page between invalidate_range_start() and 122 * invalidate_range_end(). If the page must not be freed 123 * because of pending I/O or other circumstances then the 124 * invalidate_range_start() callback (or the initial mapping 125 * by the driver) must make sure that the refcount is kept 126 * elevated. 127 * 128 * If the driver increases the refcount when the pages are 129 * initially mapped into an address space then either 130 * invalidate_range_start() or invalidate_range_end() may 131 * decrease the refcount. If the refcount is decreased on 132 * invalidate_range_start() then the VM can free pages as page 133 * table entries are removed. If the refcount is only 134 * droppped on invalidate_range_end() then the driver itself 135 * will drop the last refcount but it must take care to flush 136 * any secondary tlb before doing the final free on the 137 * page. Pages will no longer be referenced by the linux 138 * address space but may still be referenced by sptes until 139 * the last refcount is dropped. 140 */ 141 void (*invalidate_range_start)(struct mmu_notifier *mn, 142 struct mm_struct *mm, 143 unsigned long start, unsigned long end); 144 void (*invalidate_range_end)(struct mmu_notifier *mn, 145 struct mm_struct *mm, 146 unsigned long start, unsigned long end); 147 148 /* 149 * invalidate_range() is either called between 150 * invalidate_range_start() and invalidate_range_end() when the 151 * VM has to free pages that where unmapped, but before the 152 * pages are actually freed, or outside of _start()/_end() when 153 * a (remote) TLB is necessary. 154 * 155 * If invalidate_range() is used to manage a non-CPU TLB with 156 * shared page-tables, it not necessary to implement the 157 * invalidate_range_start()/end() notifiers, as 158 * invalidate_range() alread catches the points in time when an 159 * external TLB range needs to be flushed. 160 * 161 * The invalidate_range() function is called under the ptl 162 * spin-lock and not allowed to sleep. 163 * 164 * Note that this function might be called with just a sub-range 165 * of what was passed to invalidate_range_start()/end(), if 166 * called between those functions. 167 */ 168 void (*invalidate_range)(struct mmu_notifier *mn, struct mm_struct *mm, 169 unsigned long start, unsigned long end); 170}; 171 172/* 173 * The notifier chains are protected by mmap_sem and/or the reverse map 174 * semaphores. Notifier chains are only changed when all reverse maps and 175 * the mmap_sem locks are taken. 176 * 177 * Therefore notifier chains can only be traversed when either 178 * 179 * 1. mmap_sem is held. 180 * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem). 181 * 3. No other concurrent thread can access the list (release) 182 */ 183struct mmu_notifier { 184 struct hlist_node hlist; 185 const struct mmu_notifier_ops *ops; 186}; 187 188static inline int mm_has_notifiers(struct mm_struct *mm) 189{ 190 return unlikely(mm->mmu_notifier_mm); 191} 192 193extern int mmu_notifier_register(struct mmu_notifier *mn, 194 struct mm_struct *mm); 195extern int __mmu_notifier_register(struct mmu_notifier *mn, 196 struct mm_struct *mm); 197extern void mmu_notifier_unregister(struct mmu_notifier *mn, 198 struct mm_struct *mm); 199extern void mmu_notifier_unregister_no_release(struct mmu_notifier *mn, 200 struct mm_struct *mm); 201extern void __mmu_notifier_mm_destroy(struct mm_struct *mm); 202extern void __mmu_notifier_release(struct mm_struct *mm); 203extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm, 204 unsigned long start, 205 unsigned long end); 206extern int __mmu_notifier_clear_young(struct mm_struct *mm, 207 unsigned long start, 208 unsigned long end); 209extern int __mmu_notifier_test_young(struct mm_struct *mm, 210 unsigned long address); 211extern void __mmu_notifier_change_pte(struct mm_struct *mm, 212 unsigned long address, pte_t pte); 213extern void __mmu_notifier_invalidate_range_start(struct mm_struct *mm, 214 unsigned long start, unsigned long end); 215extern void __mmu_notifier_invalidate_range_end(struct mm_struct *mm, 216 unsigned long start, unsigned long end); 217extern void __mmu_notifier_invalidate_range(struct mm_struct *mm, 218 unsigned long start, unsigned long end); 219 220static inline void mmu_notifier_release(struct mm_struct *mm) 221{ 222 if (mm_has_notifiers(mm)) 223 __mmu_notifier_release(mm); 224} 225 226static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, 227 unsigned long start, 228 unsigned long end) 229{ 230 if (mm_has_notifiers(mm)) 231 return __mmu_notifier_clear_flush_young(mm, start, end); 232 return 0; 233} 234 235static inline int mmu_notifier_clear_young(struct mm_struct *mm, 236 unsigned long start, 237 unsigned long end) 238{ 239 if (mm_has_notifiers(mm)) 240 return __mmu_notifier_clear_young(mm, start, end); 241 return 0; 242} 243 244static inline int mmu_notifier_test_young(struct mm_struct *mm, 245 unsigned long address) 246{ 247 if (mm_has_notifiers(mm)) 248 return __mmu_notifier_test_young(mm, address); 249 return 0; 250} 251 252static inline void mmu_notifier_change_pte(struct mm_struct *mm, 253 unsigned long address, pte_t pte) 254{ 255 if (mm_has_notifiers(mm)) 256 __mmu_notifier_change_pte(mm, address, pte); 257} 258 259static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm, 260 unsigned long start, unsigned long end) 261{ 262 if (mm_has_notifiers(mm)) 263 __mmu_notifier_invalidate_range_start(mm, start, end); 264} 265 266static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm, 267 unsigned long start, unsigned long end) 268{ 269 if (mm_has_notifiers(mm)) 270 __mmu_notifier_invalidate_range_end(mm, start, end); 271} 272 273static inline void mmu_notifier_invalidate_range(struct mm_struct *mm, 274 unsigned long start, unsigned long end) 275{ 276 if (mm_has_notifiers(mm)) 277 __mmu_notifier_invalidate_range(mm, start, end); 278} 279 280static inline void mmu_notifier_mm_init(struct mm_struct *mm) 281{ 282 mm->mmu_notifier_mm = NULL; 283} 284 285static inline void mmu_notifier_mm_destroy(struct mm_struct *mm) 286{ 287 if (mm_has_notifiers(mm)) 288 __mmu_notifier_mm_destroy(mm); 289} 290 291#define ptep_clear_flush_young_notify(__vma, __address, __ptep) \ 292({ \ 293 int __young; \ 294 struct vm_area_struct *___vma = __vma; \ 295 unsigned long ___address = __address; \ 296 __young = ptep_clear_flush_young(___vma, ___address, __ptep); \ 297 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ 298 ___address, \ 299 ___address + \ 300 PAGE_SIZE); \ 301 __young; \ 302}) 303 304#define pmdp_clear_flush_young_notify(__vma, __address, __pmdp) \ 305({ \ 306 int __young; \ 307 struct vm_area_struct *___vma = __vma; \ 308 unsigned long ___address = __address; \ 309 __young = pmdp_clear_flush_young(___vma, ___address, __pmdp); \ 310 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ 311 ___address, \ 312 ___address + \ 313 PMD_SIZE); \ 314 __young; \ 315}) 316 317#define ptep_clear_young_notify(__vma, __address, __ptep) \ 318({ \ 319 int __young; \ 320 struct vm_area_struct *___vma = __vma; \ 321 unsigned long ___address = __address; \ 322 __young = ptep_test_and_clear_young(___vma, ___address, __ptep);\ 323 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \ 324 ___address + PAGE_SIZE); \ 325 __young; \ 326}) 327 328#define pmdp_clear_young_notify(__vma, __address, __pmdp) \ 329({ \ 330 int __young; \ 331 struct vm_area_struct *___vma = __vma; \ 332 unsigned long ___address = __address; \ 333 __young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\ 334 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \ 335 ___address + PMD_SIZE); \ 336 __young; \ 337}) 338 339#define ptep_clear_flush_notify(__vma, __address, __ptep) \ 340({ \ 341 unsigned long ___addr = __address & PAGE_MASK; \ 342 struct mm_struct *___mm = (__vma)->vm_mm; \ 343 pte_t ___pte; \ 344 \ 345 ___pte = ptep_clear_flush(__vma, __address, __ptep); \ 346 mmu_notifier_invalidate_range(___mm, ___addr, \ 347 ___addr + PAGE_SIZE); \ 348 \ 349 ___pte; \ 350}) 351 352#define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd) \ 353({ \ 354 unsigned long ___haddr = __haddr & HPAGE_PMD_MASK; \ 355 struct mm_struct *___mm = (__vma)->vm_mm; \ 356 pmd_t ___pmd; \ 357 \ 358 ___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd); \ 359 mmu_notifier_invalidate_range(___mm, ___haddr, \ 360 ___haddr + HPAGE_PMD_SIZE); \ 361 \ 362 ___pmd; \ 363}) 364 365#define pudp_huge_clear_flush_notify(__vma, __haddr, __pud) \ 366({ \ 367 unsigned long ___haddr = __haddr & HPAGE_PUD_MASK; \ 368 struct mm_struct *___mm = (__vma)->vm_mm; \ 369 pud_t ___pud; \ 370 \ 371 ___pud = pudp_huge_clear_flush(__vma, __haddr, __pud); \ 372 mmu_notifier_invalidate_range(___mm, ___haddr, \ 373 ___haddr + HPAGE_PUD_SIZE); \ 374 \ 375 ___pud; \ 376}) 377 378/* 379 * set_pte_at_notify() sets the pte _after_ running the notifier. 380 * This is safe to start by updating the secondary MMUs, because the primary MMU 381 * pte invalidate must have already happened with a ptep_clear_flush() before 382 * set_pte_at_notify() has been invoked. Updating the secondary MMUs first is 383 * required when we change both the protection of the mapping from read-only to 384 * read-write and the pfn (like during copy on write page faults). Otherwise the 385 * old page would remain mapped readonly in the secondary MMUs after the new 386 * page is already writable by some CPU through the primary MMU. 387 */ 388#define set_pte_at_notify(__mm, __address, __ptep, __pte) \ 389({ \ 390 struct mm_struct *___mm = __mm; \ 391 unsigned long ___address = __address; \ 392 pte_t ___pte = __pte; \ 393 \ 394 mmu_notifier_change_pte(___mm, ___address, ___pte); \ 395 set_pte_at(___mm, ___address, __ptep, ___pte); \ 396}) 397 398extern void mmu_notifier_call_srcu(struct rcu_head *rcu, 399 void (*func)(struct rcu_head *rcu)); 400extern void mmu_notifier_synchronize(void); 401 402#else /* CONFIG_MMU_NOTIFIER */ 403 404static inline int mm_has_notifiers(struct mm_struct *mm) 405{ 406 return 0; 407} 408 409static inline void mmu_notifier_release(struct mm_struct *mm) 410{ 411} 412 413static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, 414 unsigned long start, 415 unsigned long end) 416{ 417 return 0; 418} 419 420static inline int mmu_notifier_test_young(struct mm_struct *mm, 421 unsigned long address) 422{ 423 return 0; 424} 425 426static inline void mmu_notifier_change_pte(struct mm_struct *mm, 427 unsigned long address, pte_t pte) 428{ 429} 430 431static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm, 432 unsigned long start, unsigned long end) 433{ 434} 435 436static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm, 437 unsigned long start, unsigned long end) 438{ 439} 440 441static inline void mmu_notifier_invalidate_range(struct mm_struct *mm, 442 unsigned long start, unsigned long end) 443{ 444} 445 446static inline void mmu_notifier_mm_init(struct mm_struct *mm) 447{ 448} 449 450static inline void mmu_notifier_mm_destroy(struct mm_struct *mm) 451{ 452} 453 454#define ptep_clear_flush_young_notify ptep_clear_flush_young 455#define pmdp_clear_flush_young_notify pmdp_clear_flush_young 456#define ptep_clear_young_notify ptep_test_and_clear_young 457#define pmdp_clear_young_notify pmdp_test_and_clear_young 458#define ptep_clear_flush_notify ptep_clear_flush 459#define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush 460#define pudp_huge_clear_flush_notify pudp_huge_clear_flush 461#define set_pte_at_notify set_pte_at 462 463#endif /* CONFIG_MMU_NOTIFIER */ 464 465#endif /* _LINUX_MMU_NOTIFIER_H */