at v4.14 83 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6 7#ifdef __KERNEL__ 8 9#include <linux/mmdebug.h> 10#include <linux/gfp.h> 11#include <linux/bug.h> 12#include <linux/list.h> 13#include <linux/mmzone.h> 14#include <linux/rbtree.h> 15#include <linux/atomic.h> 16#include <linux/debug_locks.h> 17#include <linux/mm_types.h> 18#include <linux/range.h> 19#include <linux/pfn.h> 20#include <linux/percpu-refcount.h> 21#include <linux/bit_spinlock.h> 22#include <linux/shrinker.h> 23#include <linux/resource.h> 24#include <linux/page_ext.h> 25#include <linux/err.h> 26#include <linux/page_ref.h> 27#include <linux/memremap.h> 28 29struct mempolicy; 30struct anon_vma; 31struct anon_vma_chain; 32struct file_ra_state; 33struct user_struct; 34struct writeback_control; 35struct bdi_writeback; 36 37void init_mm_internals(void); 38 39#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 40extern unsigned long max_mapnr; 41 42static inline void set_max_mapnr(unsigned long limit) 43{ 44 max_mapnr = limit; 45} 46#else 47static inline void set_max_mapnr(unsigned long limit) { } 48#endif 49 50extern unsigned long totalram_pages; 51extern void * high_memory; 52extern int page_cluster; 53 54#ifdef CONFIG_SYSCTL 55extern int sysctl_legacy_va_layout; 56#else 57#define sysctl_legacy_va_layout 0 58#endif 59 60#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 61extern const int mmap_rnd_bits_min; 62extern const int mmap_rnd_bits_max; 63extern int mmap_rnd_bits __read_mostly; 64#endif 65#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 66extern const int mmap_rnd_compat_bits_min; 67extern const int mmap_rnd_compat_bits_max; 68extern int mmap_rnd_compat_bits __read_mostly; 69#endif 70 71#include <asm/page.h> 72#include <asm/pgtable.h> 73#include <asm/processor.h> 74 75#ifndef __pa_symbol 76#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 77#endif 78 79#ifndef page_to_virt 80#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 81#endif 82 83#ifndef lm_alias 84#define lm_alias(x) __va(__pa_symbol(x)) 85#endif 86 87/* 88 * To prevent common memory management code establishing 89 * a zero page mapping on a read fault. 90 * This macro should be defined within <asm/pgtable.h>. 91 * s390 does this to prevent multiplexing of hardware bits 92 * related to the physical page in case of virtualization. 93 */ 94#ifndef mm_forbids_zeropage 95#define mm_forbids_zeropage(X) (0) 96#endif 97 98/* 99 * Default maximum number of active map areas, this limits the number of vmas 100 * per mm struct. Users can overwrite this number by sysctl but there is a 101 * problem. 102 * 103 * When a program's coredump is generated as ELF format, a section is created 104 * per a vma. In ELF, the number of sections is represented in unsigned short. 105 * This means the number of sections should be smaller than 65535 at coredump. 106 * Because the kernel adds some informative sections to a image of program at 107 * generating coredump, we need some margin. The number of extra sections is 108 * 1-3 now and depends on arch. We use "5" as safe margin, here. 109 * 110 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 111 * not a hard limit any more. Although some userspace tools can be surprised by 112 * that. 113 */ 114#define MAPCOUNT_ELF_CORE_MARGIN (5) 115#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 116 117extern int sysctl_max_map_count; 118 119extern unsigned long sysctl_user_reserve_kbytes; 120extern unsigned long sysctl_admin_reserve_kbytes; 121 122extern int sysctl_overcommit_memory; 123extern int sysctl_overcommit_ratio; 124extern unsigned long sysctl_overcommit_kbytes; 125 126extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 127 size_t *, loff_t *); 128extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 129 size_t *, loff_t *); 130 131#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 132 133/* to align the pointer to the (next) page boundary */ 134#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 135 136/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 137#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 138 139/* 140 * Linux kernel virtual memory manager primitives. 141 * The idea being to have a "virtual" mm in the same way 142 * we have a virtual fs - giving a cleaner interface to the 143 * mm details, and allowing different kinds of memory mappings 144 * (from shared memory to executable loading to arbitrary 145 * mmap() functions). 146 */ 147 148extern struct kmem_cache *vm_area_cachep; 149 150#ifndef CONFIG_MMU 151extern struct rb_root nommu_region_tree; 152extern struct rw_semaphore nommu_region_sem; 153 154extern unsigned int kobjsize(const void *objp); 155#endif 156 157/* 158 * vm_flags in vm_area_struct, see mm_types.h. 159 * When changing, update also include/trace/events/mmflags.h 160 */ 161#define VM_NONE 0x00000000 162 163#define VM_READ 0x00000001 /* currently active flags */ 164#define VM_WRITE 0x00000002 165#define VM_EXEC 0x00000004 166#define VM_SHARED 0x00000008 167 168/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 169#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 170#define VM_MAYWRITE 0x00000020 171#define VM_MAYEXEC 0x00000040 172#define VM_MAYSHARE 0x00000080 173 174#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 175#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 176#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 177#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 178#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 179 180#define VM_LOCKED 0x00002000 181#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 182 183 /* Used by sys_madvise() */ 184#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 185#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 186 187#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 188#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 189#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 190#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 191#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 192#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 193#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 194#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 195#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 196 197#ifdef CONFIG_MEM_SOFT_DIRTY 198# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 199#else 200# define VM_SOFTDIRTY 0 201#endif 202 203#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 204#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 205#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 206#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 207 208#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 209#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 210#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 211#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 212#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 213#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 214#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 215#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 216#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 217#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 218#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 219#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 220 221#if defined(CONFIG_X86) 222# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 223#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) 224# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 225# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 226# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 227# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 228# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 229#endif 230#elif defined(CONFIG_PPC) 231# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 232#elif defined(CONFIG_PARISC) 233# define VM_GROWSUP VM_ARCH_1 234#elif defined(CONFIG_METAG) 235# define VM_GROWSUP VM_ARCH_1 236#elif defined(CONFIG_IA64) 237# define VM_GROWSUP VM_ARCH_1 238#elif !defined(CONFIG_MMU) 239# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 240#endif 241 242#if defined(CONFIG_X86_INTEL_MPX) 243/* MPX specific bounds table or bounds directory */ 244# define VM_MPX VM_HIGH_ARCH_4 245#else 246# define VM_MPX VM_NONE 247#endif 248 249#ifndef VM_GROWSUP 250# define VM_GROWSUP VM_NONE 251#endif 252 253/* Bits set in the VMA until the stack is in its final location */ 254#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 255 256#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 257#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 258#endif 259 260#ifdef CONFIG_STACK_GROWSUP 261#define VM_STACK VM_GROWSUP 262#else 263#define VM_STACK VM_GROWSDOWN 264#endif 265 266#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 267 268/* 269 * Special vmas that are non-mergable, non-mlock()able. 270 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 271 */ 272#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 273 274/* This mask defines which mm->def_flags a process can inherit its parent */ 275#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 276 277/* This mask is used to clear all the VMA flags used by mlock */ 278#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 279 280/* 281 * mapping from the currently active vm_flags protection bits (the 282 * low four bits) to a page protection mask.. 283 */ 284extern pgprot_t protection_map[16]; 285 286#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 287#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 288#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 289#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 290#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 291#define FAULT_FLAG_TRIED 0x20 /* Second try */ 292#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 293#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 294#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 295 296#define FAULT_FLAG_TRACE \ 297 { FAULT_FLAG_WRITE, "WRITE" }, \ 298 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 299 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 300 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 301 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 302 { FAULT_FLAG_TRIED, "TRIED" }, \ 303 { FAULT_FLAG_USER, "USER" }, \ 304 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 305 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 306 307/* 308 * vm_fault is filled by the the pagefault handler and passed to the vma's 309 * ->fault function. The vma's ->fault is responsible for returning a bitmask 310 * of VM_FAULT_xxx flags that give details about how the fault was handled. 311 * 312 * MM layer fills up gfp_mask for page allocations but fault handler might 313 * alter it if its implementation requires a different allocation context. 314 * 315 * pgoff should be used in favour of virtual_address, if possible. 316 */ 317struct vm_fault { 318 struct vm_area_struct *vma; /* Target VMA */ 319 unsigned int flags; /* FAULT_FLAG_xxx flags */ 320 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 321 pgoff_t pgoff; /* Logical page offset based on vma */ 322 unsigned long address; /* Faulting virtual address */ 323 pmd_t *pmd; /* Pointer to pmd entry matching 324 * the 'address' */ 325 pud_t *pud; /* Pointer to pud entry matching 326 * the 'address' 327 */ 328 pte_t orig_pte; /* Value of PTE at the time of fault */ 329 330 struct page *cow_page; /* Page handler may use for COW fault */ 331 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 332 struct page *page; /* ->fault handlers should return a 333 * page here, unless VM_FAULT_NOPAGE 334 * is set (which is also implied by 335 * VM_FAULT_ERROR). 336 */ 337 /* These three entries are valid only while holding ptl lock */ 338 pte_t *pte; /* Pointer to pte entry matching 339 * the 'address'. NULL if the page 340 * table hasn't been allocated. 341 */ 342 spinlock_t *ptl; /* Page table lock. 343 * Protects pte page table if 'pte' 344 * is not NULL, otherwise pmd. 345 */ 346 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 347 * vm_ops->map_pages() calls 348 * alloc_set_pte() from atomic context. 349 * do_fault_around() pre-allocates 350 * page table to avoid allocation from 351 * atomic context. 352 */ 353}; 354 355/* page entry size for vm->huge_fault() */ 356enum page_entry_size { 357 PE_SIZE_PTE = 0, 358 PE_SIZE_PMD, 359 PE_SIZE_PUD, 360}; 361 362/* 363 * These are the virtual MM functions - opening of an area, closing and 364 * unmapping it (needed to keep files on disk up-to-date etc), pointer 365 * to the functions called when a no-page or a wp-page exception occurs. 366 */ 367struct vm_operations_struct { 368 void (*open)(struct vm_area_struct * area); 369 void (*close)(struct vm_area_struct * area); 370 int (*mremap)(struct vm_area_struct * area); 371 int (*fault)(struct vm_fault *vmf); 372 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size); 373 void (*map_pages)(struct vm_fault *vmf, 374 pgoff_t start_pgoff, pgoff_t end_pgoff); 375 376 /* notification that a previously read-only page is about to become 377 * writable, if an error is returned it will cause a SIGBUS */ 378 int (*page_mkwrite)(struct vm_fault *vmf); 379 380 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 381 int (*pfn_mkwrite)(struct vm_fault *vmf); 382 383 /* called by access_process_vm when get_user_pages() fails, typically 384 * for use by special VMAs that can switch between memory and hardware 385 */ 386 int (*access)(struct vm_area_struct *vma, unsigned long addr, 387 void *buf, int len, int write); 388 389 /* Called by the /proc/PID/maps code to ask the vma whether it 390 * has a special name. Returning non-NULL will also cause this 391 * vma to be dumped unconditionally. */ 392 const char *(*name)(struct vm_area_struct *vma); 393 394#ifdef CONFIG_NUMA 395 /* 396 * set_policy() op must add a reference to any non-NULL @new mempolicy 397 * to hold the policy upon return. Caller should pass NULL @new to 398 * remove a policy and fall back to surrounding context--i.e. do not 399 * install a MPOL_DEFAULT policy, nor the task or system default 400 * mempolicy. 401 */ 402 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 403 404 /* 405 * get_policy() op must add reference [mpol_get()] to any policy at 406 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 407 * in mm/mempolicy.c will do this automatically. 408 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 409 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 410 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 411 * must return NULL--i.e., do not "fallback" to task or system default 412 * policy. 413 */ 414 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 415 unsigned long addr); 416#endif 417 /* 418 * Called by vm_normal_page() for special PTEs to find the 419 * page for @addr. This is useful if the default behavior 420 * (using pte_page()) would not find the correct page. 421 */ 422 struct page *(*find_special_page)(struct vm_area_struct *vma, 423 unsigned long addr); 424}; 425 426struct mmu_gather; 427struct inode; 428 429#define page_private(page) ((page)->private) 430#define set_page_private(page, v) ((page)->private = (v)) 431 432#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 433static inline int pmd_devmap(pmd_t pmd) 434{ 435 return 0; 436} 437static inline int pud_devmap(pud_t pud) 438{ 439 return 0; 440} 441static inline int pgd_devmap(pgd_t pgd) 442{ 443 return 0; 444} 445#endif 446 447/* 448 * FIXME: take this include out, include page-flags.h in 449 * files which need it (119 of them) 450 */ 451#include <linux/page-flags.h> 452#include <linux/huge_mm.h> 453 454/* 455 * Methods to modify the page usage count. 456 * 457 * What counts for a page usage: 458 * - cache mapping (page->mapping) 459 * - private data (page->private) 460 * - page mapped in a task's page tables, each mapping 461 * is counted separately 462 * 463 * Also, many kernel routines increase the page count before a critical 464 * routine so they can be sure the page doesn't go away from under them. 465 */ 466 467/* 468 * Drop a ref, return true if the refcount fell to zero (the page has no users) 469 */ 470static inline int put_page_testzero(struct page *page) 471{ 472 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 473 return page_ref_dec_and_test(page); 474} 475 476/* 477 * Try to grab a ref unless the page has a refcount of zero, return false if 478 * that is the case. 479 * This can be called when MMU is off so it must not access 480 * any of the virtual mappings. 481 */ 482static inline int get_page_unless_zero(struct page *page) 483{ 484 return page_ref_add_unless(page, 1, 0); 485} 486 487extern int page_is_ram(unsigned long pfn); 488 489enum { 490 REGION_INTERSECTS, 491 REGION_DISJOINT, 492 REGION_MIXED, 493}; 494 495int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 496 unsigned long desc); 497 498/* Support for virtually mapped pages */ 499struct page *vmalloc_to_page(const void *addr); 500unsigned long vmalloc_to_pfn(const void *addr); 501 502/* 503 * Determine if an address is within the vmalloc range 504 * 505 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 506 * is no special casing required. 507 */ 508static inline bool is_vmalloc_addr(const void *x) 509{ 510#ifdef CONFIG_MMU 511 unsigned long addr = (unsigned long)x; 512 513 return addr >= VMALLOC_START && addr < VMALLOC_END; 514#else 515 return false; 516#endif 517} 518#ifdef CONFIG_MMU 519extern int is_vmalloc_or_module_addr(const void *x); 520#else 521static inline int is_vmalloc_or_module_addr(const void *x) 522{ 523 return 0; 524} 525#endif 526 527extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 528static inline void *kvmalloc(size_t size, gfp_t flags) 529{ 530 return kvmalloc_node(size, flags, NUMA_NO_NODE); 531} 532static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 533{ 534 return kvmalloc_node(size, flags | __GFP_ZERO, node); 535} 536static inline void *kvzalloc(size_t size, gfp_t flags) 537{ 538 return kvmalloc(size, flags | __GFP_ZERO); 539} 540 541static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 542{ 543 if (size != 0 && n > SIZE_MAX / size) 544 return NULL; 545 546 return kvmalloc(n * size, flags); 547} 548 549extern void kvfree(const void *addr); 550 551static inline atomic_t *compound_mapcount_ptr(struct page *page) 552{ 553 return &page[1].compound_mapcount; 554} 555 556static inline int compound_mapcount(struct page *page) 557{ 558 VM_BUG_ON_PAGE(!PageCompound(page), page); 559 page = compound_head(page); 560 return atomic_read(compound_mapcount_ptr(page)) + 1; 561} 562 563/* 564 * The atomic page->_mapcount, starts from -1: so that transitions 565 * both from it and to it can be tracked, using atomic_inc_and_test 566 * and atomic_add_negative(-1). 567 */ 568static inline void page_mapcount_reset(struct page *page) 569{ 570 atomic_set(&(page)->_mapcount, -1); 571} 572 573int __page_mapcount(struct page *page); 574 575static inline int page_mapcount(struct page *page) 576{ 577 VM_BUG_ON_PAGE(PageSlab(page), page); 578 579 if (unlikely(PageCompound(page))) 580 return __page_mapcount(page); 581 return atomic_read(&page->_mapcount) + 1; 582} 583 584#ifdef CONFIG_TRANSPARENT_HUGEPAGE 585int total_mapcount(struct page *page); 586int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 587#else 588static inline int total_mapcount(struct page *page) 589{ 590 return page_mapcount(page); 591} 592static inline int page_trans_huge_mapcount(struct page *page, 593 int *total_mapcount) 594{ 595 int mapcount = page_mapcount(page); 596 if (total_mapcount) 597 *total_mapcount = mapcount; 598 return mapcount; 599} 600#endif 601 602static inline struct page *virt_to_head_page(const void *x) 603{ 604 struct page *page = virt_to_page(x); 605 606 return compound_head(page); 607} 608 609void __put_page(struct page *page); 610 611void put_pages_list(struct list_head *pages); 612 613void split_page(struct page *page, unsigned int order); 614 615/* 616 * Compound pages have a destructor function. Provide a 617 * prototype for that function and accessor functions. 618 * These are _only_ valid on the head of a compound page. 619 */ 620typedef void compound_page_dtor(struct page *); 621 622/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 623enum compound_dtor_id { 624 NULL_COMPOUND_DTOR, 625 COMPOUND_PAGE_DTOR, 626#ifdef CONFIG_HUGETLB_PAGE 627 HUGETLB_PAGE_DTOR, 628#endif 629#ifdef CONFIG_TRANSPARENT_HUGEPAGE 630 TRANSHUGE_PAGE_DTOR, 631#endif 632 NR_COMPOUND_DTORS, 633}; 634extern compound_page_dtor * const compound_page_dtors[]; 635 636static inline void set_compound_page_dtor(struct page *page, 637 enum compound_dtor_id compound_dtor) 638{ 639 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 640 page[1].compound_dtor = compound_dtor; 641} 642 643static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 644{ 645 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 646 return compound_page_dtors[page[1].compound_dtor]; 647} 648 649static inline unsigned int compound_order(struct page *page) 650{ 651 if (!PageHead(page)) 652 return 0; 653 return page[1].compound_order; 654} 655 656static inline void set_compound_order(struct page *page, unsigned int order) 657{ 658 page[1].compound_order = order; 659} 660 661void free_compound_page(struct page *page); 662 663#ifdef CONFIG_MMU 664/* 665 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 666 * servicing faults for write access. In the normal case, do always want 667 * pte_mkwrite. But get_user_pages can cause write faults for mappings 668 * that do not have writing enabled, when used by access_process_vm. 669 */ 670static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 671{ 672 if (likely(vma->vm_flags & VM_WRITE)) 673 pte = pte_mkwrite(pte); 674 return pte; 675} 676 677int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 678 struct page *page); 679int finish_fault(struct vm_fault *vmf); 680int finish_mkwrite_fault(struct vm_fault *vmf); 681#endif 682 683/* 684 * Multiple processes may "see" the same page. E.g. for untouched 685 * mappings of /dev/null, all processes see the same page full of 686 * zeroes, and text pages of executables and shared libraries have 687 * only one copy in memory, at most, normally. 688 * 689 * For the non-reserved pages, page_count(page) denotes a reference count. 690 * page_count() == 0 means the page is free. page->lru is then used for 691 * freelist management in the buddy allocator. 692 * page_count() > 0 means the page has been allocated. 693 * 694 * Pages are allocated by the slab allocator in order to provide memory 695 * to kmalloc and kmem_cache_alloc. In this case, the management of the 696 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 697 * unless a particular usage is carefully commented. (the responsibility of 698 * freeing the kmalloc memory is the caller's, of course). 699 * 700 * A page may be used by anyone else who does a __get_free_page(). 701 * In this case, page_count still tracks the references, and should only 702 * be used through the normal accessor functions. The top bits of page->flags 703 * and page->virtual store page management information, but all other fields 704 * are unused and could be used privately, carefully. The management of this 705 * page is the responsibility of the one who allocated it, and those who have 706 * subsequently been given references to it. 707 * 708 * The other pages (we may call them "pagecache pages") are completely 709 * managed by the Linux memory manager: I/O, buffers, swapping etc. 710 * The following discussion applies only to them. 711 * 712 * A pagecache page contains an opaque `private' member, which belongs to the 713 * page's address_space. Usually, this is the address of a circular list of 714 * the page's disk buffers. PG_private must be set to tell the VM to call 715 * into the filesystem to release these pages. 716 * 717 * A page may belong to an inode's memory mapping. In this case, page->mapping 718 * is the pointer to the inode, and page->index is the file offset of the page, 719 * in units of PAGE_SIZE. 720 * 721 * If pagecache pages are not associated with an inode, they are said to be 722 * anonymous pages. These may become associated with the swapcache, and in that 723 * case PG_swapcache is set, and page->private is an offset into the swapcache. 724 * 725 * In either case (swapcache or inode backed), the pagecache itself holds one 726 * reference to the page. Setting PG_private should also increment the 727 * refcount. The each user mapping also has a reference to the page. 728 * 729 * The pagecache pages are stored in a per-mapping radix tree, which is 730 * rooted at mapping->page_tree, and indexed by offset. 731 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 732 * lists, we instead now tag pages as dirty/writeback in the radix tree. 733 * 734 * All pagecache pages may be subject to I/O: 735 * - inode pages may need to be read from disk, 736 * - inode pages which have been modified and are MAP_SHARED may need 737 * to be written back to the inode on disk, 738 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 739 * modified may need to be swapped out to swap space and (later) to be read 740 * back into memory. 741 */ 742 743/* 744 * The zone field is never updated after free_area_init_core() 745 * sets it, so none of the operations on it need to be atomic. 746 */ 747 748/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 749#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 750#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 751#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 752#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 753 754/* 755 * Define the bit shifts to access each section. For non-existent 756 * sections we define the shift as 0; that plus a 0 mask ensures 757 * the compiler will optimise away reference to them. 758 */ 759#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 760#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 761#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 762#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 763 764/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 765#ifdef NODE_NOT_IN_PAGE_FLAGS 766#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 767#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 768 SECTIONS_PGOFF : ZONES_PGOFF) 769#else 770#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 771#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 772 NODES_PGOFF : ZONES_PGOFF) 773#endif 774 775#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 776 777#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 778#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 779#endif 780 781#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 782#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 783#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 784#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 785#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 786 787static inline enum zone_type page_zonenum(const struct page *page) 788{ 789 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 790} 791 792#ifdef CONFIG_ZONE_DEVICE 793static inline bool is_zone_device_page(const struct page *page) 794{ 795 return page_zonenum(page) == ZONE_DEVICE; 796} 797#else 798static inline bool is_zone_device_page(const struct page *page) 799{ 800 return false; 801} 802#endif 803 804#if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC) 805void put_zone_device_private_or_public_page(struct page *page); 806DECLARE_STATIC_KEY_FALSE(device_private_key); 807#define IS_HMM_ENABLED static_branch_unlikely(&device_private_key) 808static inline bool is_device_private_page(const struct page *page); 809static inline bool is_device_public_page(const struct page *page); 810#else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */ 811static inline void put_zone_device_private_or_public_page(struct page *page) 812{ 813} 814#define IS_HMM_ENABLED 0 815static inline bool is_device_private_page(const struct page *page) 816{ 817 return false; 818} 819static inline bool is_device_public_page(const struct page *page) 820{ 821 return false; 822} 823#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */ 824 825 826static inline void get_page(struct page *page) 827{ 828 page = compound_head(page); 829 /* 830 * Getting a normal page or the head of a compound page 831 * requires to already have an elevated page->_refcount. 832 */ 833 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 834 page_ref_inc(page); 835} 836 837static inline void put_page(struct page *page) 838{ 839 page = compound_head(page); 840 841 /* 842 * For private device pages we need to catch refcount transition from 843 * 2 to 1, when refcount reach one it means the private device page is 844 * free and we need to inform the device driver through callback. See 845 * include/linux/memremap.h and HMM for details. 846 */ 847 if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) || 848 unlikely(is_device_public_page(page)))) { 849 put_zone_device_private_or_public_page(page); 850 return; 851 } 852 853 if (put_page_testzero(page)) 854 __put_page(page); 855} 856 857#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 858#define SECTION_IN_PAGE_FLAGS 859#endif 860 861/* 862 * The identification function is mainly used by the buddy allocator for 863 * determining if two pages could be buddies. We are not really identifying 864 * the zone since we could be using the section number id if we do not have 865 * node id available in page flags. 866 * We only guarantee that it will return the same value for two combinable 867 * pages in a zone. 868 */ 869static inline int page_zone_id(struct page *page) 870{ 871 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 872} 873 874static inline int zone_to_nid(struct zone *zone) 875{ 876#ifdef CONFIG_NUMA 877 return zone->node; 878#else 879 return 0; 880#endif 881} 882 883#ifdef NODE_NOT_IN_PAGE_FLAGS 884extern int page_to_nid(const struct page *page); 885#else 886static inline int page_to_nid(const struct page *page) 887{ 888 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 889} 890#endif 891 892#ifdef CONFIG_NUMA_BALANCING 893static inline int cpu_pid_to_cpupid(int cpu, int pid) 894{ 895 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 896} 897 898static inline int cpupid_to_pid(int cpupid) 899{ 900 return cpupid & LAST__PID_MASK; 901} 902 903static inline int cpupid_to_cpu(int cpupid) 904{ 905 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 906} 907 908static inline int cpupid_to_nid(int cpupid) 909{ 910 return cpu_to_node(cpupid_to_cpu(cpupid)); 911} 912 913static inline bool cpupid_pid_unset(int cpupid) 914{ 915 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 916} 917 918static inline bool cpupid_cpu_unset(int cpupid) 919{ 920 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 921} 922 923static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 924{ 925 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 926} 927 928#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 929#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 930static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 931{ 932 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 933} 934 935static inline int page_cpupid_last(struct page *page) 936{ 937 return page->_last_cpupid; 938} 939static inline void page_cpupid_reset_last(struct page *page) 940{ 941 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 942} 943#else 944static inline int page_cpupid_last(struct page *page) 945{ 946 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 947} 948 949extern int page_cpupid_xchg_last(struct page *page, int cpupid); 950 951static inline void page_cpupid_reset_last(struct page *page) 952{ 953 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 954} 955#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 956#else /* !CONFIG_NUMA_BALANCING */ 957static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 958{ 959 return page_to_nid(page); /* XXX */ 960} 961 962static inline int page_cpupid_last(struct page *page) 963{ 964 return page_to_nid(page); /* XXX */ 965} 966 967static inline int cpupid_to_nid(int cpupid) 968{ 969 return -1; 970} 971 972static inline int cpupid_to_pid(int cpupid) 973{ 974 return -1; 975} 976 977static inline int cpupid_to_cpu(int cpupid) 978{ 979 return -1; 980} 981 982static inline int cpu_pid_to_cpupid(int nid, int pid) 983{ 984 return -1; 985} 986 987static inline bool cpupid_pid_unset(int cpupid) 988{ 989 return 1; 990} 991 992static inline void page_cpupid_reset_last(struct page *page) 993{ 994} 995 996static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 997{ 998 return false; 999} 1000#endif /* CONFIG_NUMA_BALANCING */ 1001 1002static inline struct zone *page_zone(const struct page *page) 1003{ 1004 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1005} 1006 1007static inline pg_data_t *page_pgdat(const struct page *page) 1008{ 1009 return NODE_DATA(page_to_nid(page)); 1010} 1011 1012#ifdef SECTION_IN_PAGE_FLAGS 1013static inline void set_page_section(struct page *page, unsigned long section) 1014{ 1015 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1016 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1017} 1018 1019static inline unsigned long page_to_section(const struct page *page) 1020{ 1021 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1022} 1023#endif 1024 1025static inline void set_page_zone(struct page *page, enum zone_type zone) 1026{ 1027 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1028 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1029} 1030 1031static inline void set_page_node(struct page *page, unsigned long node) 1032{ 1033 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1034 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1035} 1036 1037static inline void set_page_links(struct page *page, enum zone_type zone, 1038 unsigned long node, unsigned long pfn) 1039{ 1040 set_page_zone(page, zone); 1041 set_page_node(page, node); 1042#ifdef SECTION_IN_PAGE_FLAGS 1043 set_page_section(page, pfn_to_section_nr(pfn)); 1044#endif 1045} 1046 1047#ifdef CONFIG_MEMCG 1048static inline struct mem_cgroup *page_memcg(struct page *page) 1049{ 1050 return page->mem_cgroup; 1051} 1052static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1053{ 1054 WARN_ON_ONCE(!rcu_read_lock_held()); 1055 return READ_ONCE(page->mem_cgroup); 1056} 1057#else 1058static inline struct mem_cgroup *page_memcg(struct page *page) 1059{ 1060 return NULL; 1061} 1062static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1063{ 1064 WARN_ON_ONCE(!rcu_read_lock_held()); 1065 return NULL; 1066} 1067#endif 1068 1069/* 1070 * Some inline functions in vmstat.h depend on page_zone() 1071 */ 1072#include <linux/vmstat.h> 1073 1074static __always_inline void *lowmem_page_address(const struct page *page) 1075{ 1076 return page_to_virt(page); 1077} 1078 1079#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1080#define HASHED_PAGE_VIRTUAL 1081#endif 1082 1083#if defined(WANT_PAGE_VIRTUAL) 1084static inline void *page_address(const struct page *page) 1085{ 1086 return page->virtual; 1087} 1088static inline void set_page_address(struct page *page, void *address) 1089{ 1090 page->virtual = address; 1091} 1092#define page_address_init() do { } while(0) 1093#endif 1094 1095#if defined(HASHED_PAGE_VIRTUAL) 1096void *page_address(const struct page *page); 1097void set_page_address(struct page *page, void *virtual); 1098void page_address_init(void); 1099#endif 1100 1101#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1102#define page_address(page) lowmem_page_address(page) 1103#define set_page_address(page, address) do { } while(0) 1104#define page_address_init() do { } while(0) 1105#endif 1106 1107extern void *page_rmapping(struct page *page); 1108extern struct anon_vma *page_anon_vma(struct page *page); 1109extern struct address_space *page_mapping(struct page *page); 1110 1111extern struct address_space *__page_file_mapping(struct page *); 1112 1113static inline 1114struct address_space *page_file_mapping(struct page *page) 1115{ 1116 if (unlikely(PageSwapCache(page))) 1117 return __page_file_mapping(page); 1118 1119 return page->mapping; 1120} 1121 1122extern pgoff_t __page_file_index(struct page *page); 1123 1124/* 1125 * Return the pagecache index of the passed page. Regular pagecache pages 1126 * use ->index whereas swapcache pages use swp_offset(->private) 1127 */ 1128static inline pgoff_t page_index(struct page *page) 1129{ 1130 if (unlikely(PageSwapCache(page))) 1131 return __page_file_index(page); 1132 return page->index; 1133} 1134 1135bool page_mapped(struct page *page); 1136struct address_space *page_mapping(struct page *page); 1137 1138/* 1139 * Return true only if the page has been allocated with 1140 * ALLOC_NO_WATERMARKS and the low watermark was not 1141 * met implying that the system is under some pressure. 1142 */ 1143static inline bool page_is_pfmemalloc(struct page *page) 1144{ 1145 /* 1146 * Page index cannot be this large so this must be 1147 * a pfmemalloc page. 1148 */ 1149 return page->index == -1UL; 1150} 1151 1152/* 1153 * Only to be called by the page allocator on a freshly allocated 1154 * page. 1155 */ 1156static inline void set_page_pfmemalloc(struct page *page) 1157{ 1158 page->index = -1UL; 1159} 1160 1161static inline void clear_page_pfmemalloc(struct page *page) 1162{ 1163 page->index = 0; 1164} 1165 1166/* 1167 * Different kinds of faults, as returned by handle_mm_fault(). 1168 * Used to decide whether a process gets delivered SIGBUS or 1169 * just gets major/minor fault counters bumped up. 1170 */ 1171 1172#define VM_FAULT_OOM 0x0001 1173#define VM_FAULT_SIGBUS 0x0002 1174#define VM_FAULT_MAJOR 0x0004 1175#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1176#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1177#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1178#define VM_FAULT_SIGSEGV 0x0040 1179 1180#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1181#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1182#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1183#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1184#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */ 1185 1186#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1187 1188#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1189 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1190 VM_FAULT_FALLBACK) 1191 1192#define VM_FAULT_RESULT_TRACE \ 1193 { VM_FAULT_OOM, "OOM" }, \ 1194 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1195 { VM_FAULT_MAJOR, "MAJOR" }, \ 1196 { VM_FAULT_WRITE, "WRITE" }, \ 1197 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1198 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1199 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1200 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1201 { VM_FAULT_LOCKED, "LOCKED" }, \ 1202 { VM_FAULT_RETRY, "RETRY" }, \ 1203 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1204 { VM_FAULT_DONE_COW, "DONE_COW" } 1205 1206/* Encode hstate index for a hwpoisoned large page */ 1207#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1208#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1209 1210/* 1211 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1212 */ 1213extern void pagefault_out_of_memory(void); 1214 1215#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1216 1217/* 1218 * Flags passed to show_mem() and show_free_areas() to suppress output in 1219 * various contexts. 1220 */ 1221#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1222 1223extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1224 1225extern bool can_do_mlock(void); 1226extern int user_shm_lock(size_t, struct user_struct *); 1227extern void user_shm_unlock(size_t, struct user_struct *); 1228 1229/* 1230 * Parameter block passed down to zap_pte_range in exceptional cases. 1231 */ 1232struct zap_details { 1233 struct address_space *check_mapping; /* Check page->mapping if set */ 1234 pgoff_t first_index; /* Lowest page->index to unmap */ 1235 pgoff_t last_index; /* Highest page->index to unmap */ 1236}; 1237 1238struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1239 pte_t pte, bool with_public_device); 1240#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false) 1241 1242struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1243 pmd_t pmd); 1244 1245int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1246 unsigned long size); 1247void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1248 unsigned long size); 1249void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1250 unsigned long start, unsigned long end); 1251 1252/** 1253 * mm_walk - callbacks for walk_page_range 1254 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1255 * this handler should only handle pud_trans_huge() puds. 1256 * the pmd_entry or pte_entry callbacks will be used for 1257 * regular PUDs. 1258 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1259 * this handler is required to be able to handle 1260 * pmd_trans_huge() pmds. They may simply choose to 1261 * split_huge_page() instead of handling it explicitly. 1262 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1263 * @pte_hole: if set, called for each hole at all levels 1264 * @hugetlb_entry: if set, called for each hugetlb entry 1265 * @test_walk: caller specific callback function to determine whether 1266 * we walk over the current vma or not. Returning 0 1267 * value means "do page table walk over the current vma," 1268 * and a negative one means "abort current page table walk 1269 * right now." 1 means "skip the current vma." 1270 * @mm: mm_struct representing the target process of page table walk 1271 * @vma: vma currently walked (NULL if walking outside vmas) 1272 * @private: private data for callbacks' usage 1273 * 1274 * (see the comment on walk_page_range() for more details) 1275 */ 1276struct mm_walk { 1277 int (*pud_entry)(pud_t *pud, unsigned long addr, 1278 unsigned long next, struct mm_walk *walk); 1279 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1280 unsigned long next, struct mm_walk *walk); 1281 int (*pte_entry)(pte_t *pte, unsigned long addr, 1282 unsigned long next, struct mm_walk *walk); 1283 int (*pte_hole)(unsigned long addr, unsigned long next, 1284 struct mm_walk *walk); 1285 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1286 unsigned long addr, unsigned long next, 1287 struct mm_walk *walk); 1288 int (*test_walk)(unsigned long addr, unsigned long next, 1289 struct mm_walk *walk); 1290 struct mm_struct *mm; 1291 struct vm_area_struct *vma; 1292 void *private; 1293}; 1294 1295int walk_page_range(unsigned long addr, unsigned long end, 1296 struct mm_walk *walk); 1297int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1298void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1299 unsigned long end, unsigned long floor, unsigned long ceiling); 1300int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1301 struct vm_area_struct *vma); 1302void unmap_mapping_range(struct address_space *mapping, 1303 loff_t const holebegin, loff_t const holelen, int even_cows); 1304int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1305 unsigned long *start, unsigned long *end, 1306 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1307int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1308 unsigned long *pfn); 1309int follow_phys(struct vm_area_struct *vma, unsigned long address, 1310 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1311int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1312 void *buf, int len, int write); 1313 1314static inline void unmap_shared_mapping_range(struct address_space *mapping, 1315 loff_t const holebegin, loff_t const holelen) 1316{ 1317 unmap_mapping_range(mapping, holebegin, holelen, 0); 1318} 1319 1320extern void truncate_pagecache(struct inode *inode, loff_t new); 1321extern void truncate_setsize(struct inode *inode, loff_t newsize); 1322void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1323void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1324int truncate_inode_page(struct address_space *mapping, struct page *page); 1325int generic_error_remove_page(struct address_space *mapping, struct page *page); 1326int invalidate_inode_page(struct page *page); 1327 1328#ifdef CONFIG_MMU 1329extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 1330 unsigned int flags); 1331extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1332 unsigned long address, unsigned int fault_flags, 1333 bool *unlocked); 1334#else 1335static inline int handle_mm_fault(struct vm_area_struct *vma, 1336 unsigned long address, unsigned int flags) 1337{ 1338 /* should never happen if there's no MMU */ 1339 BUG(); 1340 return VM_FAULT_SIGBUS; 1341} 1342static inline int fixup_user_fault(struct task_struct *tsk, 1343 struct mm_struct *mm, unsigned long address, 1344 unsigned int fault_flags, bool *unlocked) 1345{ 1346 /* should never happen if there's no MMU */ 1347 BUG(); 1348 return -EFAULT; 1349} 1350#endif 1351 1352extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1353 unsigned int gup_flags); 1354extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1355 void *buf, int len, unsigned int gup_flags); 1356extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1357 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1358 1359long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1360 unsigned long start, unsigned long nr_pages, 1361 unsigned int gup_flags, struct page **pages, 1362 struct vm_area_struct **vmas, int *locked); 1363long get_user_pages(unsigned long start, unsigned long nr_pages, 1364 unsigned int gup_flags, struct page **pages, 1365 struct vm_area_struct **vmas); 1366long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1367 unsigned int gup_flags, struct page **pages, int *locked); 1368long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1369 struct page **pages, unsigned int gup_flags); 1370int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1371 struct page **pages); 1372 1373/* Container for pinned pfns / pages */ 1374struct frame_vector { 1375 unsigned int nr_allocated; /* Number of frames we have space for */ 1376 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1377 bool got_ref; /* Did we pin pages by getting page ref? */ 1378 bool is_pfns; /* Does array contain pages or pfns? */ 1379 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1380 * pfns_vector_pages() or pfns_vector_pfns() 1381 * for access */ 1382}; 1383 1384struct frame_vector *frame_vector_create(unsigned int nr_frames); 1385void frame_vector_destroy(struct frame_vector *vec); 1386int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1387 unsigned int gup_flags, struct frame_vector *vec); 1388void put_vaddr_frames(struct frame_vector *vec); 1389int frame_vector_to_pages(struct frame_vector *vec); 1390void frame_vector_to_pfns(struct frame_vector *vec); 1391 1392static inline unsigned int frame_vector_count(struct frame_vector *vec) 1393{ 1394 return vec->nr_frames; 1395} 1396 1397static inline struct page **frame_vector_pages(struct frame_vector *vec) 1398{ 1399 if (vec->is_pfns) { 1400 int err = frame_vector_to_pages(vec); 1401 1402 if (err) 1403 return ERR_PTR(err); 1404 } 1405 return (struct page **)(vec->ptrs); 1406} 1407 1408static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1409{ 1410 if (!vec->is_pfns) 1411 frame_vector_to_pfns(vec); 1412 return (unsigned long *)(vec->ptrs); 1413} 1414 1415struct kvec; 1416int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1417 struct page **pages); 1418int get_kernel_page(unsigned long start, int write, struct page **pages); 1419struct page *get_dump_page(unsigned long addr); 1420 1421extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1422extern void do_invalidatepage(struct page *page, unsigned int offset, 1423 unsigned int length); 1424 1425int __set_page_dirty_nobuffers(struct page *page); 1426int __set_page_dirty_no_writeback(struct page *page); 1427int redirty_page_for_writepage(struct writeback_control *wbc, 1428 struct page *page); 1429void account_page_dirtied(struct page *page, struct address_space *mapping); 1430void account_page_cleaned(struct page *page, struct address_space *mapping, 1431 struct bdi_writeback *wb); 1432int set_page_dirty(struct page *page); 1433int set_page_dirty_lock(struct page *page); 1434void cancel_dirty_page(struct page *page); 1435int clear_page_dirty_for_io(struct page *page); 1436 1437int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1438 1439static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1440{ 1441 return !vma->vm_ops; 1442} 1443 1444#ifdef CONFIG_SHMEM 1445/* 1446 * The vma_is_shmem is not inline because it is used only by slow 1447 * paths in userfault. 1448 */ 1449bool vma_is_shmem(struct vm_area_struct *vma); 1450#else 1451static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1452#endif 1453 1454int vma_is_stack_for_current(struct vm_area_struct *vma); 1455 1456extern unsigned long move_page_tables(struct vm_area_struct *vma, 1457 unsigned long old_addr, struct vm_area_struct *new_vma, 1458 unsigned long new_addr, unsigned long len, 1459 bool need_rmap_locks); 1460extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1461 unsigned long end, pgprot_t newprot, 1462 int dirty_accountable, int prot_numa); 1463extern int mprotect_fixup(struct vm_area_struct *vma, 1464 struct vm_area_struct **pprev, unsigned long start, 1465 unsigned long end, unsigned long newflags); 1466 1467/* 1468 * doesn't attempt to fault and will return short. 1469 */ 1470int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1471 struct page **pages); 1472/* 1473 * per-process(per-mm_struct) statistics. 1474 */ 1475static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1476{ 1477 long val = atomic_long_read(&mm->rss_stat.count[member]); 1478 1479#ifdef SPLIT_RSS_COUNTING 1480 /* 1481 * counter is updated in asynchronous manner and may go to minus. 1482 * But it's never be expected number for users. 1483 */ 1484 if (val < 0) 1485 val = 0; 1486#endif 1487 return (unsigned long)val; 1488} 1489 1490static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1491{ 1492 atomic_long_add(value, &mm->rss_stat.count[member]); 1493} 1494 1495static inline void inc_mm_counter(struct mm_struct *mm, int member) 1496{ 1497 atomic_long_inc(&mm->rss_stat.count[member]); 1498} 1499 1500static inline void dec_mm_counter(struct mm_struct *mm, int member) 1501{ 1502 atomic_long_dec(&mm->rss_stat.count[member]); 1503} 1504 1505/* Optimized variant when page is already known not to be PageAnon */ 1506static inline int mm_counter_file(struct page *page) 1507{ 1508 if (PageSwapBacked(page)) 1509 return MM_SHMEMPAGES; 1510 return MM_FILEPAGES; 1511} 1512 1513static inline int mm_counter(struct page *page) 1514{ 1515 if (PageAnon(page)) 1516 return MM_ANONPAGES; 1517 return mm_counter_file(page); 1518} 1519 1520static inline unsigned long get_mm_rss(struct mm_struct *mm) 1521{ 1522 return get_mm_counter(mm, MM_FILEPAGES) + 1523 get_mm_counter(mm, MM_ANONPAGES) + 1524 get_mm_counter(mm, MM_SHMEMPAGES); 1525} 1526 1527static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1528{ 1529 return max(mm->hiwater_rss, get_mm_rss(mm)); 1530} 1531 1532static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1533{ 1534 return max(mm->hiwater_vm, mm->total_vm); 1535} 1536 1537static inline void update_hiwater_rss(struct mm_struct *mm) 1538{ 1539 unsigned long _rss = get_mm_rss(mm); 1540 1541 if ((mm)->hiwater_rss < _rss) 1542 (mm)->hiwater_rss = _rss; 1543} 1544 1545static inline void update_hiwater_vm(struct mm_struct *mm) 1546{ 1547 if (mm->hiwater_vm < mm->total_vm) 1548 mm->hiwater_vm = mm->total_vm; 1549} 1550 1551static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1552{ 1553 mm->hiwater_rss = get_mm_rss(mm); 1554} 1555 1556static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1557 struct mm_struct *mm) 1558{ 1559 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1560 1561 if (*maxrss < hiwater_rss) 1562 *maxrss = hiwater_rss; 1563} 1564 1565#if defined(SPLIT_RSS_COUNTING) 1566void sync_mm_rss(struct mm_struct *mm); 1567#else 1568static inline void sync_mm_rss(struct mm_struct *mm) 1569{ 1570} 1571#endif 1572 1573#ifndef __HAVE_ARCH_PTE_DEVMAP 1574static inline int pte_devmap(pte_t pte) 1575{ 1576 return 0; 1577} 1578#endif 1579 1580int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1581 1582extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1583 spinlock_t **ptl); 1584static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1585 spinlock_t **ptl) 1586{ 1587 pte_t *ptep; 1588 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1589 return ptep; 1590} 1591 1592#ifdef __PAGETABLE_P4D_FOLDED 1593static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1594 unsigned long address) 1595{ 1596 return 0; 1597} 1598#else 1599int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1600#endif 1601 1602#ifdef __PAGETABLE_PUD_FOLDED 1603static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1604 unsigned long address) 1605{ 1606 return 0; 1607} 1608#else 1609int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1610#endif 1611 1612#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1613static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1614 unsigned long address) 1615{ 1616 return 0; 1617} 1618 1619static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1620 1621static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1622{ 1623 return 0; 1624} 1625 1626static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1627static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1628 1629#else 1630int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1631 1632static inline void mm_nr_pmds_init(struct mm_struct *mm) 1633{ 1634 atomic_long_set(&mm->nr_pmds, 0); 1635} 1636 1637static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1638{ 1639 return atomic_long_read(&mm->nr_pmds); 1640} 1641 1642static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1643{ 1644 atomic_long_inc(&mm->nr_pmds); 1645} 1646 1647static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1648{ 1649 atomic_long_dec(&mm->nr_pmds); 1650} 1651#endif 1652 1653int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1654int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1655 1656/* 1657 * The following ifdef needed to get the 4level-fixup.h header to work. 1658 * Remove it when 4level-fixup.h has been removed. 1659 */ 1660#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1661 1662#ifndef __ARCH_HAS_5LEVEL_HACK 1663static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1664 unsigned long address) 1665{ 1666 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1667 NULL : p4d_offset(pgd, address); 1668} 1669 1670static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1671 unsigned long address) 1672{ 1673 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1674 NULL : pud_offset(p4d, address); 1675} 1676#endif /* !__ARCH_HAS_5LEVEL_HACK */ 1677 1678static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1679{ 1680 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1681 NULL: pmd_offset(pud, address); 1682} 1683#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1684 1685#if USE_SPLIT_PTE_PTLOCKS 1686#if ALLOC_SPLIT_PTLOCKS 1687void __init ptlock_cache_init(void); 1688extern bool ptlock_alloc(struct page *page); 1689extern void ptlock_free(struct page *page); 1690 1691static inline spinlock_t *ptlock_ptr(struct page *page) 1692{ 1693 return page->ptl; 1694} 1695#else /* ALLOC_SPLIT_PTLOCKS */ 1696static inline void ptlock_cache_init(void) 1697{ 1698} 1699 1700static inline bool ptlock_alloc(struct page *page) 1701{ 1702 return true; 1703} 1704 1705static inline void ptlock_free(struct page *page) 1706{ 1707} 1708 1709static inline spinlock_t *ptlock_ptr(struct page *page) 1710{ 1711 return &page->ptl; 1712} 1713#endif /* ALLOC_SPLIT_PTLOCKS */ 1714 1715static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1716{ 1717 return ptlock_ptr(pmd_page(*pmd)); 1718} 1719 1720static inline bool ptlock_init(struct page *page) 1721{ 1722 /* 1723 * prep_new_page() initialize page->private (and therefore page->ptl) 1724 * with 0. Make sure nobody took it in use in between. 1725 * 1726 * It can happen if arch try to use slab for page table allocation: 1727 * slab code uses page->slab_cache, which share storage with page->ptl. 1728 */ 1729 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1730 if (!ptlock_alloc(page)) 1731 return false; 1732 spin_lock_init(ptlock_ptr(page)); 1733 return true; 1734} 1735 1736/* Reset page->mapping so free_pages_check won't complain. */ 1737static inline void pte_lock_deinit(struct page *page) 1738{ 1739 page->mapping = NULL; 1740 ptlock_free(page); 1741} 1742 1743#else /* !USE_SPLIT_PTE_PTLOCKS */ 1744/* 1745 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1746 */ 1747static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1748{ 1749 return &mm->page_table_lock; 1750} 1751static inline void ptlock_cache_init(void) {} 1752static inline bool ptlock_init(struct page *page) { return true; } 1753static inline void pte_lock_deinit(struct page *page) {} 1754#endif /* USE_SPLIT_PTE_PTLOCKS */ 1755 1756static inline void pgtable_init(void) 1757{ 1758 ptlock_cache_init(); 1759 pgtable_cache_init(); 1760} 1761 1762static inline bool pgtable_page_ctor(struct page *page) 1763{ 1764 if (!ptlock_init(page)) 1765 return false; 1766 inc_zone_page_state(page, NR_PAGETABLE); 1767 return true; 1768} 1769 1770static inline void pgtable_page_dtor(struct page *page) 1771{ 1772 pte_lock_deinit(page); 1773 dec_zone_page_state(page, NR_PAGETABLE); 1774} 1775 1776#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1777({ \ 1778 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1779 pte_t *__pte = pte_offset_map(pmd, address); \ 1780 *(ptlp) = __ptl; \ 1781 spin_lock(__ptl); \ 1782 __pte; \ 1783}) 1784 1785#define pte_unmap_unlock(pte, ptl) do { \ 1786 spin_unlock(ptl); \ 1787 pte_unmap(pte); \ 1788} while (0) 1789 1790#define pte_alloc(mm, pmd, address) \ 1791 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1792 1793#define pte_alloc_map(mm, pmd, address) \ 1794 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1795 1796#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1797 (pte_alloc(mm, pmd, address) ? \ 1798 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1799 1800#define pte_alloc_kernel(pmd, address) \ 1801 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1802 NULL: pte_offset_kernel(pmd, address)) 1803 1804#if USE_SPLIT_PMD_PTLOCKS 1805 1806static struct page *pmd_to_page(pmd_t *pmd) 1807{ 1808 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1809 return virt_to_page((void *)((unsigned long) pmd & mask)); 1810} 1811 1812static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1813{ 1814 return ptlock_ptr(pmd_to_page(pmd)); 1815} 1816 1817static inline bool pgtable_pmd_page_ctor(struct page *page) 1818{ 1819#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1820 page->pmd_huge_pte = NULL; 1821#endif 1822 return ptlock_init(page); 1823} 1824 1825static inline void pgtable_pmd_page_dtor(struct page *page) 1826{ 1827#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1828 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1829#endif 1830 ptlock_free(page); 1831} 1832 1833#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1834 1835#else 1836 1837static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1838{ 1839 return &mm->page_table_lock; 1840} 1841 1842static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1843static inline void pgtable_pmd_page_dtor(struct page *page) {} 1844 1845#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1846 1847#endif 1848 1849static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1850{ 1851 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1852 spin_lock(ptl); 1853 return ptl; 1854} 1855 1856/* 1857 * No scalability reason to split PUD locks yet, but follow the same pattern 1858 * as the PMD locks to make it easier if we decide to. The VM should not be 1859 * considered ready to switch to split PUD locks yet; there may be places 1860 * which need to be converted from page_table_lock. 1861 */ 1862static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 1863{ 1864 return &mm->page_table_lock; 1865} 1866 1867static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 1868{ 1869 spinlock_t *ptl = pud_lockptr(mm, pud); 1870 1871 spin_lock(ptl); 1872 return ptl; 1873} 1874 1875extern void __init pagecache_init(void); 1876extern void free_area_init(unsigned long * zones_size); 1877extern void free_area_init_node(int nid, unsigned long * zones_size, 1878 unsigned long zone_start_pfn, unsigned long *zholes_size); 1879extern void free_initmem(void); 1880 1881/* 1882 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1883 * into the buddy system. The freed pages will be poisoned with pattern 1884 * "poison" if it's within range [0, UCHAR_MAX]. 1885 * Return pages freed into the buddy system. 1886 */ 1887extern unsigned long free_reserved_area(void *start, void *end, 1888 int poison, char *s); 1889 1890#ifdef CONFIG_HIGHMEM 1891/* 1892 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1893 * and totalram_pages. 1894 */ 1895extern void free_highmem_page(struct page *page); 1896#endif 1897 1898extern void adjust_managed_page_count(struct page *page, long count); 1899extern void mem_init_print_info(const char *str); 1900 1901extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 1902 1903/* Free the reserved page into the buddy system, so it gets managed. */ 1904static inline void __free_reserved_page(struct page *page) 1905{ 1906 ClearPageReserved(page); 1907 init_page_count(page); 1908 __free_page(page); 1909} 1910 1911static inline void free_reserved_page(struct page *page) 1912{ 1913 __free_reserved_page(page); 1914 adjust_managed_page_count(page, 1); 1915} 1916 1917static inline void mark_page_reserved(struct page *page) 1918{ 1919 SetPageReserved(page); 1920 adjust_managed_page_count(page, -1); 1921} 1922 1923/* 1924 * Default method to free all the __init memory into the buddy system. 1925 * The freed pages will be poisoned with pattern "poison" if it's within 1926 * range [0, UCHAR_MAX]. 1927 * Return pages freed into the buddy system. 1928 */ 1929static inline unsigned long free_initmem_default(int poison) 1930{ 1931 extern char __init_begin[], __init_end[]; 1932 1933 return free_reserved_area(&__init_begin, &__init_end, 1934 poison, "unused kernel"); 1935} 1936 1937static inline unsigned long get_num_physpages(void) 1938{ 1939 int nid; 1940 unsigned long phys_pages = 0; 1941 1942 for_each_online_node(nid) 1943 phys_pages += node_present_pages(nid); 1944 1945 return phys_pages; 1946} 1947 1948#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1949/* 1950 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1951 * zones, allocate the backing mem_map and account for memory holes in a more 1952 * architecture independent manner. This is a substitute for creating the 1953 * zone_sizes[] and zholes_size[] arrays and passing them to 1954 * free_area_init_node() 1955 * 1956 * An architecture is expected to register range of page frames backed by 1957 * physical memory with memblock_add[_node]() before calling 1958 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1959 * usage, an architecture is expected to do something like 1960 * 1961 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1962 * max_highmem_pfn}; 1963 * for_each_valid_physical_page_range() 1964 * memblock_add_node(base, size, nid) 1965 * free_area_init_nodes(max_zone_pfns); 1966 * 1967 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1968 * registered physical page range. Similarly 1969 * sparse_memory_present_with_active_regions() calls memory_present() for 1970 * each range when SPARSEMEM is enabled. 1971 * 1972 * See mm/page_alloc.c for more information on each function exposed by 1973 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1974 */ 1975extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1976unsigned long node_map_pfn_alignment(void); 1977unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1978 unsigned long end_pfn); 1979extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1980 unsigned long end_pfn); 1981extern void get_pfn_range_for_nid(unsigned int nid, 1982 unsigned long *start_pfn, unsigned long *end_pfn); 1983extern unsigned long find_min_pfn_with_active_regions(void); 1984extern void free_bootmem_with_active_regions(int nid, 1985 unsigned long max_low_pfn); 1986extern void sparse_memory_present_with_active_regions(int nid); 1987 1988#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1989 1990#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1991 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1992static inline int __early_pfn_to_nid(unsigned long pfn, 1993 struct mminit_pfnnid_cache *state) 1994{ 1995 return 0; 1996} 1997#else 1998/* please see mm/page_alloc.c */ 1999extern int __meminit early_pfn_to_nid(unsigned long pfn); 2000/* there is a per-arch backend function. */ 2001extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2002 struct mminit_pfnnid_cache *state); 2003#endif 2004 2005extern void set_dma_reserve(unsigned long new_dma_reserve); 2006extern void memmap_init_zone(unsigned long, int, unsigned long, 2007 unsigned long, enum memmap_context); 2008extern void setup_per_zone_wmarks(void); 2009extern int __meminit init_per_zone_wmark_min(void); 2010extern void mem_init(void); 2011extern void __init mmap_init(void); 2012extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2013extern long si_mem_available(void); 2014extern void si_meminfo(struct sysinfo * val); 2015extern void si_meminfo_node(struct sysinfo *val, int nid); 2016#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2017extern unsigned long arch_reserved_kernel_pages(void); 2018#endif 2019 2020extern __printf(3, 4) 2021void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2022 2023extern void setup_per_cpu_pageset(void); 2024 2025extern void zone_pcp_update(struct zone *zone); 2026extern void zone_pcp_reset(struct zone *zone); 2027 2028/* page_alloc.c */ 2029extern int min_free_kbytes; 2030extern int watermark_scale_factor; 2031 2032/* nommu.c */ 2033extern atomic_long_t mmap_pages_allocated; 2034extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2035 2036/* interval_tree.c */ 2037void vma_interval_tree_insert(struct vm_area_struct *node, 2038 struct rb_root_cached *root); 2039void vma_interval_tree_insert_after(struct vm_area_struct *node, 2040 struct vm_area_struct *prev, 2041 struct rb_root_cached *root); 2042void vma_interval_tree_remove(struct vm_area_struct *node, 2043 struct rb_root_cached *root); 2044struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2045 unsigned long start, unsigned long last); 2046struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2047 unsigned long start, unsigned long last); 2048 2049#define vma_interval_tree_foreach(vma, root, start, last) \ 2050 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2051 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2052 2053void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2054 struct rb_root_cached *root); 2055void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2056 struct rb_root_cached *root); 2057struct anon_vma_chain * 2058anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2059 unsigned long start, unsigned long last); 2060struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2061 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2062#ifdef CONFIG_DEBUG_VM_RB 2063void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2064#endif 2065 2066#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2067 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2068 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2069 2070/* mmap.c */ 2071extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2072extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2073 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2074 struct vm_area_struct *expand); 2075static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2076 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2077{ 2078 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2079} 2080extern struct vm_area_struct *vma_merge(struct mm_struct *, 2081 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2082 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2083 struct mempolicy *, struct vm_userfaultfd_ctx); 2084extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2085extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2086 unsigned long addr, int new_below); 2087extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2088 unsigned long addr, int new_below); 2089extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2090extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2091 struct rb_node **, struct rb_node *); 2092extern void unlink_file_vma(struct vm_area_struct *); 2093extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2094 unsigned long addr, unsigned long len, pgoff_t pgoff, 2095 bool *need_rmap_locks); 2096extern void exit_mmap(struct mm_struct *); 2097 2098static inline int check_data_rlimit(unsigned long rlim, 2099 unsigned long new, 2100 unsigned long start, 2101 unsigned long end_data, 2102 unsigned long start_data) 2103{ 2104 if (rlim < RLIM_INFINITY) { 2105 if (((new - start) + (end_data - start_data)) > rlim) 2106 return -ENOSPC; 2107 } 2108 2109 return 0; 2110} 2111 2112extern int mm_take_all_locks(struct mm_struct *mm); 2113extern void mm_drop_all_locks(struct mm_struct *mm); 2114 2115extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2116extern struct file *get_mm_exe_file(struct mm_struct *mm); 2117extern struct file *get_task_exe_file(struct task_struct *task); 2118 2119extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2120extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2121 2122extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2123 const struct vm_special_mapping *sm); 2124extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2125 unsigned long addr, unsigned long len, 2126 unsigned long flags, 2127 const struct vm_special_mapping *spec); 2128/* This is an obsolete alternative to _install_special_mapping. */ 2129extern int install_special_mapping(struct mm_struct *mm, 2130 unsigned long addr, unsigned long len, 2131 unsigned long flags, struct page **pages); 2132 2133extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2134 2135extern unsigned long mmap_region(struct file *file, unsigned long addr, 2136 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2137 struct list_head *uf); 2138extern unsigned long do_mmap(struct file *file, unsigned long addr, 2139 unsigned long len, unsigned long prot, unsigned long flags, 2140 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2141 struct list_head *uf); 2142extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2143 struct list_head *uf); 2144 2145static inline unsigned long 2146do_mmap_pgoff(struct file *file, unsigned long addr, 2147 unsigned long len, unsigned long prot, unsigned long flags, 2148 unsigned long pgoff, unsigned long *populate, 2149 struct list_head *uf) 2150{ 2151 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2152} 2153 2154#ifdef CONFIG_MMU 2155extern int __mm_populate(unsigned long addr, unsigned long len, 2156 int ignore_errors); 2157static inline void mm_populate(unsigned long addr, unsigned long len) 2158{ 2159 /* Ignore errors */ 2160 (void) __mm_populate(addr, len, 1); 2161} 2162#else 2163static inline void mm_populate(unsigned long addr, unsigned long len) {} 2164#endif 2165 2166/* These take the mm semaphore themselves */ 2167extern int __must_check vm_brk(unsigned long, unsigned long); 2168extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2169extern int vm_munmap(unsigned long, size_t); 2170extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2171 unsigned long, unsigned long, 2172 unsigned long, unsigned long); 2173 2174struct vm_unmapped_area_info { 2175#define VM_UNMAPPED_AREA_TOPDOWN 1 2176 unsigned long flags; 2177 unsigned long length; 2178 unsigned long low_limit; 2179 unsigned long high_limit; 2180 unsigned long align_mask; 2181 unsigned long align_offset; 2182}; 2183 2184extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2185extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2186 2187/* 2188 * Search for an unmapped address range. 2189 * 2190 * We are looking for a range that: 2191 * - does not intersect with any VMA; 2192 * - is contained within the [low_limit, high_limit) interval; 2193 * - is at least the desired size. 2194 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2195 */ 2196static inline unsigned long 2197vm_unmapped_area(struct vm_unmapped_area_info *info) 2198{ 2199 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2200 return unmapped_area_topdown(info); 2201 else 2202 return unmapped_area(info); 2203} 2204 2205/* truncate.c */ 2206extern void truncate_inode_pages(struct address_space *, loff_t); 2207extern void truncate_inode_pages_range(struct address_space *, 2208 loff_t lstart, loff_t lend); 2209extern void truncate_inode_pages_final(struct address_space *); 2210 2211/* generic vm_area_ops exported for stackable file systems */ 2212extern int filemap_fault(struct vm_fault *vmf); 2213extern void filemap_map_pages(struct vm_fault *vmf, 2214 pgoff_t start_pgoff, pgoff_t end_pgoff); 2215extern int filemap_page_mkwrite(struct vm_fault *vmf); 2216 2217/* mm/page-writeback.c */ 2218int __must_check write_one_page(struct page *page); 2219void task_dirty_inc(struct task_struct *tsk); 2220 2221/* readahead.c */ 2222#define VM_MAX_READAHEAD 128 /* kbytes */ 2223#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2224 2225int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2226 pgoff_t offset, unsigned long nr_to_read); 2227 2228void page_cache_sync_readahead(struct address_space *mapping, 2229 struct file_ra_state *ra, 2230 struct file *filp, 2231 pgoff_t offset, 2232 unsigned long size); 2233 2234void page_cache_async_readahead(struct address_space *mapping, 2235 struct file_ra_state *ra, 2236 struct file *filp, 2237 struct page *pg, 2238 pgoff_t offset, 2239 unsigned long size); 2240 2241extern unsigned long stack_guard_gap; 2242/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2243extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2244 2245/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2246extern int expand_downwards(struct vm_area_struct *vma, 2247 unsigned long address); 2248#if VM_GROWSUP 2249extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2250#else 2251 #define expand_upwards(vma, address) (0) 2252#endif 2253 2254/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2255extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2256extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2257 struct vm_area_struct **pprev); 2258 2259/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2260 NULL if none. Assume start_addr < end_addr. */ 2261static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2262{ 2263 struct vm_area_struct * vma = find_vma(mm,start_addr); 2264 2265 if (vma && end_addr <= vma->vm_start) 2266 vma = NULL; 2267 return vma; 2268} 2269 2270static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2271{ 2272 unsigned long vm_start = vma->vm_start; 2273 2274 if (vma->vm_flags & VM_GROWSDOWN) { 2275 vm_start -= stack_guard_gap; 2276 if (vm_start > vma->vm_start) 2277 vm_start = 0; 2278 } 2279 return vm_start; 2280} 2281 2282static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2283{ 2284 unsigned long vm_end = vma->vm_end; 2285 2286 if (vma->vm_flags & VM_GROWSUP) { 2287 vm_end += stack_guard_gap; 2288 if (vm_end < vma->vm_end) 2289 vm_end = -PAGE_SIZE; 2290 } 2291 return vm_end; 2292} 2293 2294static inline unsigned long vma_pages(struct vm_area_struct *vma) 2295{ 2296 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2297} 2298 2299/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2300static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2301 unsigned long vm_start, unsigned long vm_end) 2302{ 2303 struct vm_area_struct *vma = find_vma(mm, vm_start); 2304 2305 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2306 vma = NULL; 2307 2308 return vma; 2309} 2310 2311#ifdef CONFIG_MMU 2312pgprot_t vm_get_page_prot(unsigned long vm_flags); 2313void vma_set_page_prot(struct vm_area_struct *vma); 2314#else 2315static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2316{ 2317 return __pgprot(0); 2318} 2319static inline void vma_set_page_prot(struct vm_area_struct *vma) 2320{ 2321 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2322} 2323#endif 2324 2325#ifdef CONFIG_NUMA_BALANCING 2326unsigned long change_prot_numa(struct vm_area_struct *vma, 2327 unsigned long start, unsigned long end); 2328#endif 2329 2330struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2331int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2332 unsigned long pfn, unsigned long size, pgprot_t); 2333int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2334int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2335 unsigned long pfn); 2336int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2337 unsigned long pfn, pgprot_t pgprot); 2338int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2339 pfn_t pfn); 2340int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr, 2341 pfn_t pfn); 2342int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2343 2344 2345struct page *follow_page_mask(struct vm_area_struct *vma, 2346 unsigned long address, unsigned int foll_flags, 2347 unsigned int *page_mask); 2348 2349static inline struct page *follow_page(struct vm_area_struct *vma, 2350 unsigned long address, unsigned int foll_flags) 2351{ 2352 unsigned int unused_page_mask; 2353 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2354} 2355 2356#define FOLL_WRITE 0x01 /* check pte is writable */ 2357#define FOLL_TOUCH 0x02 /* mark page accessed */ 2358#define FOLL_GET 0x04 /* do get_page on page */ 2359#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2360#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2361#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2362 * and return without waiting upon it */ 2363#define FOLL_POPULATE 0x40 /* fault in page */ 2364#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2365#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2366#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2367#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2368#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2369#define FOLL_MLOCK 0x1000 /* lock present pages */ 2370#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2371#define FOLL_COW 0x4000 /* internal GUP flag */ 2372 2373static inline int vm_fault_to_errno(int vm_fault, int foll_flags) 2374{ 2375 if (vm_fault & VM_FAULT_OOM) 2376 return -ENOMEM; 2377 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2378 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2379 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2380 return -EFAULT; 2381 return 0; 2382} 2383 2384typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2385 void *data); 2386extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2387 unsigned long size, pte_fn_t fn, void *data); 2388 2389 2390#ifdef CONFIG_PAGE_POISONING 2391extern bool page_poisoning_enabled(void); 2392extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2393extern bool page_is_poisoned(struct page *page); 2394#else 2395static inline bool page_poisoning_enabled(void) { return false; } 2396static inline void kernel_poison_pages(struct page *page, int numpages, 2397 int enable) { } 2398static inline bool page_is_poisoned(struct page *page) { return false; } 2399#endif 2400 2401#ifdef CONFIG_DEBUG_PAGEALLOC 2402extern bool _debug_pagealloc_enabled; 2403extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2404 2405static inline bool debug_pagealloc_enabled(void) 2406{ 2407 return _debug_pagealloc_enabled; 2408} 2409 2410static inline void 2411kernel_map_pages(struct page *page, int numpages, int enable) 2412{ 2413 if (!debug_pagealloc_enabled()) 2414 return; 2415 2416 __kernel_map_pages(page, numpages, enable); 2417} 2418#ifdef CONFIG_HIBERNATION 2419extern bool kernel_page_present(struct page *page); 2420#endif /* CONFIG_HIBERNATION */ 2421#else /* CONFIG_DEBUG_PAGEALLOC */ 2422static inline void 2423kernel_map_pages(struct page *page, int numpages, int enable) {} 2424#ifdef CONFIG_HIBERNATION 2425static inline bool kernel_page_present(struct page *page) { return true; } 2426#endif /* CONFIG_HIBERNATION */ 2427static inline bool debug_pagealloc_enabled(void) 2428{ 2429 return false; 2430} 2431#endif /* CONFIG_DEBUG_PAGEALLOC */ 2432 2433#ifdef __HAVE_ARCH_GATE_AREA 2434extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2435extern int in_gate_area_no_mm(unsigned long addr); 2436extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2437#else 2438static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2439{ 2440 return NULL; 2441} 2442static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2443static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2444{ 2445 return 0; 2446} 2447#endif /* __HAVE_ARCH_GATE_AREA */ 2448 2449extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2450 2451#ifdef CONFIG_SYSCTL 2452extern int sysctl_drop_caches; 2453int drop_caches_sysctl_handler(struct ctl_table *, int, 2454 void __user *, size_t *, loff_t *); 2455#endif 2456 2457void drop_slab(void); 2458void drop_slab_node(int nid); 2459 2460#ifndef CONFIG_MMU 2461#define randomize_va_space 0 2462#else 2463extern int randomize_va_space; 2464#endif 2465 2466const char * arch_vma_name(struct vm_area_struct *vma); 2467void print_vma_addr(char *prefix, unsigned long rip); 2468 2469void sparse_mem_maps_populate_node(struct page **map_map, 2470 unsigned long pnum_begin, 2471 unsigned long pnum_end, 2472 unsigned long map_count, 2473 int nodeid); 2474 2475struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2476pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2477p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2478pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2479pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2480pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2481void *vmemmap_alloc_block(unsigned long size, int node); 2482struct vmem_altmap; 2483void *__vmemmap_alloc_block_buf(unsigned long size, int node, 2484 struct vmem_altmap *altmap); 2485static inline void *vmemmap_alloc_block_buf(unsigned long size, int node) 2486{ 2487 return __vmemmap_alloc_block_buf(size, node, NULL); 2488} 2489 2490void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2491int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2492 int node); 2493int vmemmap_populate(unsigned long start, unsigned long end, int node); 2494void vmemmap_populate_print_last(void); 2495#ifdef CONFIG_MEMORY_HOTPLUG 2496void vmemmap_free(unsigned long start, unsigned long end); 2497#endif 2498void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2499 unsigned long size); 2500 2501enum mf_flags { 2502 MF_COUNT_INCREASED = 1 << 0, 2503 MF_ACTION_REQUIRED = 1 << 1, 2504 MF_MUST_KILL = 1 << 2, 2505 MF_SOFT_OFFLINE = 1 << 3, 2506}; 2507extern int memory_failure(unsigned long pfn, int trapno, int flags); 2508extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2509extern int unpoison_memory(unsigned long pfn); 2510extern int get_hwpoison_page(struct page *page); 2511#define put_hwpoison_page(page) put_page(page) 2512extern int sysctl_memory_failure_early_kill; 2513extern int sysctl_memory_failure_recovery; 2514extern void shake_page(struct page *p, int access); 2515extern atomic_long_t num_poisoned_pages; 2516extern int soft_offline_page(struct page *page, int flags); 2517 2518 2519/* 2520 * Error handlers for various types of pages. 2521 */ 2522enum mf_result { 2523 MF_IGNORED, /* Error: cannot be handled */ 2524 MF_FAILED, /* Error: handling failed */ 2525 MF_DELAYED, /* Will be handled later */ 2526 MF_RECOVERED, /* Successfully recovered */ 2527}; 2528 2529enum mf_action_page_type { 2530 MF_MSG_KERNEL, 2531 MF_MSG_KERNEL_HIGH_ORDER, 2532 MF_MSG_SLAB, 2533 MF_MSG_DIFFERENT_COMPOUND, 2534 MF_MSG_POISONED_HUGE, 2535 MF_MSG_HUGE, 2536 MF_MSG_FREE_HUGE, 2537 MF_MSG_UNMAP_FAILED, 2538 MF_MSG_DIRTY_SWAPCACHE, 2539 MF_MSG_CLEAN_SWAPCACHE, 2540 MF_MSG_DIRTY_MLOCKED_LRU, 2541 MF_MSG_CLEAN_MLOCKED_LRU, 2542 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2543 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2544 MF_MSG_DIRTY_LRU, 2545 MF_MSG_CLEAN_LRU, 2546 MF_MSG_TRUNCATED_LRU, 2547 MF_MSG_BUDDY, 2548 MF_MSG_BUDDY_2ND, 2549 MF_MSG_UNKNOWN, 2550}; 2551 2552#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2553extern void clear_huge_page(struct page *page, 2554 unsigned long addr_hint, 2555 unsigned int pages_per_huge_page); 2556extern void copy_user_huge_page(struct page *dst, struct page *src, 2557 unsigned long addr, struct vm_area_struct *vma, 2558 unsigned int pages_per_huge_page); 2559extern long copy_huge_page_from_user(struct page *dst_page, 2560 const void __user *usr_src, 2561 unsigned int pages_per_huge_page, 2562 bool allow_pagefault); 2563#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2564 2565extern struct page_ext_operations debug_guardpage_ops; 2566 2567#ifdef CONFIG_DEBUG_PAGEALLOC 2568extern unsigned int _debug_guardpage_minorder; 2569extern bool _debug_guardpage_enabled; 2570 2571static inline unsigned int debug_guardpage_minorder(void) 2572{ 2573 return _debug_guardpage_minorder; 2574} 2575 2576static inline bool debug_guardpage_enabled(void) 2577{ 2578 return _debug_guardpage_enabled; 2579} 2580 2581static inline bool page_is_guard(struct page *page) 2582{ 2583 struct page_ext *page_ext; 2584 2585 if (!debug_guardpage_enabled()) 2586 return false; 2587 2588 page_ext = lookup_page_ext(page); 2589 if (unlikely(!page_ext)) 2590 return false; 2591 2592 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2593} 2594#else 2595static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2596static inline bool debug_guardpage_enabled(void) { return false; } 2597static inline bool page_is_guard(struct page *page) { return false; } 2598#endif /* CONFIG_DEBUG_PAGEALLOC */ 2599 2600#if MAX_NUMNODES > 1 2601void __init setup_nr_node_ids(void); 2602#else 2603static inline void setup_nr_node_ids(void) {} 2604#endif 2605 2606#endif /* __KERNEL__ */ 2607#endif /* _LINUX_MM_H */