Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
9#include <linux/mmdebug.h>
10#include <linux/gfp.h>
11#include <linux/bug.h>
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
15#include <linux/atomic.h>
16#include <linux/debug_locks.h>
17#include <linux/mm_types.h>
18#include <linux/range.h>
19#include <linux/pfn.h>
20#include <linux/percpu-refcount.h>
21#include <linux/bit_spinlock.h>
22#include <linux/shrinker.h>
23#include <linux/resource.h>
24#include <linux/page_ext.h>
25#include <linux/err.h>
26#include <linux/page_ref.h>
27#include <linux/memremap.h>
28
29struct mempolicy;
30struct anon_vma;
31struct anon_vma_chain;
32struct file_ra_state;
33struct user_struct;
34struct writeback_control;
35struct bdi_writeback;
36
37void init_mm_internals(void);
38
39#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
40extern unsigned long max_mapnr;
41
42static inline void set_max_mapnr(unsigned long limit)
43{
44 max_mapnr = limit;
45}
46#else
47static inline void set_max_mapnr(unsigned long limit) { }
48#endif
49
50extern unsigned long totalram_pages;
51extern void * high_memory;
52extern int page_cluster;
53
54#ifdef CONFIG_SYSCTL
55extern int sysctl_legacy_va_layout;
56#else
57#define sysctl_legacy_va_layout 0
58#endif
59
60#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61extern const int mmap_rnd_bits_min;
62extern const int mmap_rnd_bits_max;
63extern int mmap_rnd_bits __read_mostly;
64#endif
65#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66extern const int mmap_rnd_compat_bits_min;
67extern const int mmap_rnd_compat_bits_max;
68extern int mmap_rnd_compat_bits __read_mostly;
69#endif
70
71#include <asm/page.h>
72#include <asm/pgtable.h>
73#include <asm/processor.h>
74
75#ifndef __pa_symbol
76#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
77#endif
78
79#ifndef page_to_virt
80#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
81#endif
82
83#ifndef lm_alias
84#define lm_alias(x) __va(__pa_symbol(x))
85#endif
86
87/*
88 * To prevent common memory management code establishing
89 * a zero page mapping on a read fault.
90 * This macro should be defined within <asm/pgtable.h>.
91 * s390 does this to prevent multiplexing of hardware bits
92 * related to the physical page in case of virtualization.
93 */
94#ifndef mm_forbids_zeropage
95#define mm_forbids_zeropage(X) (0)
96#endif
97
98/*
99 * Default maximum number of active map areas, this limits the number of vmas
100 * per mm struct. Users can overwrite this number by sysctl but there is a
101 * problem.
102 *
103 * When a program's coredump is generated as ELF format, a section is created
104 * per a vma. In ELF, the number of sections is represented in unsigned short.
105 * This means the number of sections should be smaller than 65535 at coredump.
106 * Because the kernel adds some informative sections to a image of program at
107 * generating coredump, we need some margin. The number of extra sections is
108 * 1-3 now and depends on arch. We use "5" as safe margin, here.
109 *
110 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
111 * not a hard limit any more. Although some userspace tools can be surprised by
112 * that.
113 */
114#define MAPCOUNT_ELF_CORE_MARGIN (5)
115#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
116
117extern int sysctl_max_map_count;
118
119extern unsigned long sysctl_user_reserve_kbytes;
120extern unsigned long sysctl_admin_reserve_kbytes;
121
122extern int sysctl_overcommit_memory;
123extern int sysctl_overcommit_ratio;
124extern unsigned long sysctl_overcommit_kbytes;
125
126extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
127 size_t *, loff_t *);
128extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
129 size_t *, loff_t *);
130
131#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
132
133/* to align the pointer to the (next) page boundary */
134#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
135
136/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
137#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
138
139/*
140 * Linux kernel virtual memory manager primitives.
141 * The idea being to have a "virtual" mm in the same way
142 * we have a virtual fs - giving a cleaner interface to the
143 * mm details, and allowing different kinds of memory mappings
144 * (from shared memory to executable loading to arbitrary
145 * mmap() functions).
146 */
147
148extern struct kmem_cache *vm_area_cachep;
149
150#ifndef CONFIG_MMU
151extern struct rb_root nommu_region_tree;
152extern struct rw_semaphore nommu_region_sem;
153
154extern unsigned int kobjsize(const void *objp);
155#endif
156
157/*
158 * vm_flags in vm_area_struct, see mm_types.h.
159 * When changing, update also include/trace/events/mmflags.h
160 */
161#define VM_NONE 0x00000000
162
163#define VM_READ 0x00000001 /* currently active flags */
164#define VM_WRITE 0x00000002
165#define VM_EXEC 0x00000004
166#define VM_SHARED 0x00000008
167
168/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
169#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
170#define VM_MAYWRITE 0x00000020
171#define VM_MAYEXEC 0x00000040
172#define VM_MAYSHARE 0x00000080
173
174#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
175#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
176#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
177#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
178#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
179
180#define VM_LOCKED 0x00002000
181#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
182
183 /* Used by sys_madvise() */
184#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
185#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
186
187#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
188#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
189#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
190#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
191#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
192#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
193#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
194#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
195#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
196
197#ifdef CONFIG_MEM_SOFT_DIRTY
198# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
199#else
200# define VM_SOFTDIRTY 0
201#endif
202
203#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
204#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
205#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
206#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
207
208#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
209#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
210#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
211#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
212#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
213#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
214#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
215#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
216#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
217#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
218#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
219#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
220
221#if defined(CONFIG_X86)
222# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
223#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
224# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
225# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
226# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
227# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
228# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
229#endif
230#elif defined(CONFIG_PPC)
231# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
232#elif defined(CONFIG_PARISC)
233# define VM_GROWSUP VM_ARCH_1
234#elif defined(CONFIG_METAG)
235# define VM_GROWSUP VM_ARCH_1
236#elif defined(CONFIG_IA64)
237# define VM_GROWSUP VM_ARCH_1
238#elif !defined(CONFIG_MMU)
239# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
240#endif
241
242#if defined(CONFIG_X86_INTEL_MPX)
243/* MPX specific bounds table or bounds directory */
244# define VM_MPX VM_HIGH_ARCH_4
245#else
246# define VM_MPX VM_NONE
247#endif
248
249#ifndef VM_GROWSUP
250# define VM_GROWSUP VM_NONE
251#endif
252
253/* Bits set in the VMA until the stack is in its final location */
254#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
255
256#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
257#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
258#endif
259
260#ifdef CONFIG_STACK_GROWSUP
261#define VM_STACK VM_GROWSUP
262#else
263#define VM_STACK VM_GROWSDOWN
264#endif
265
266#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
267
268/*
269 * Special vmas that are non-mergable, non-mlock()able.
270 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
271 */
272#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
273
274/* This mask defines which mm->def_flags a process can inherit its parent */
275#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
276
277/* This mask is used to clear all the VMA flags used by mlock */
278#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
279
280/*
281 * mapping from the currently active vm_flags protection bits (the
282 * low four bits) to a page protection mask..
283 */
284extern pgprot_t protection_map[16];
285
286#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
287#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
288#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
289#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
290#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
291#define FAULT_FLAG_TRIED 0x20 /* Second try */
292#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
293#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
294#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
295
296#define FAULT_FLAG_TRACE \
297 { FAULT_FLAG_WRITE, "WRITE" }, \
298 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
299 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
300 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
301 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
302 { FAULT_FLAG_TRIED, "TRIED" }, \
303 { FAULT_FLAG_USER, "USER" }, \
304 { FAULT_FLAG_REMOTE, "REMOTE" }, \
305 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
306
307/*
308 * vm_fault is filled by the the pagefault handler and passed to the vma's
309 * ->fault function. The vma's ->fault is responsible for returning a bitmask
310 * of VM_FAULT_xxx flags that give details about how the fault was handled.
311 *
312 * MM layer fills up gfp_mask for page allocations but fault handler might
313 * alter it if its implementation requires a different allocation context.
314 *
315 * pgoff should be used in favour of virtual_address, if possible.
316 */
317struct vm_fault {
318 struct vm_area_struct *vma; /* Target VMA */
319 unsigned int flags; /* FAULT_FLAG_xxx flags */
320 gfp_t gfp_mask; /* gfp mask to be used for allocations */
321 pgoff_t pgoff; /* Logical page offset based on vma */
322 unsigned long address; /* Faulting virtual address */
323 pmd_t *pmd; /* Pointer to pmd entry matching
324 * the 'address' */
325 pud_t *pud; /* Pointer to pud entry matching
326 * the 'address'
327 */
328 pte_t orig_pte; /* Value of PTE at the time of fault */
329
330 struct page *cow_page; /* Page handler may use for COW fault */
331 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
332 struct page *page; /* ->fault handlers should return a
333 * page here, unless VM_FAULT_NOPAGE
334 * is set (which is also implied by
335 * VM_FAULT_ERROR).
336 */
337 /* These three entries are valid only while holding ptl lock */
338 pte_t *pte; /* Pointer to pte entry matching
339 * the 'address'. NULL if the page
340 * table hasn't been allocated.
341 */
342 spinlock_t *ptl; /* Page table lock.
343 * Protects pte page table if 'pte'
344 * is not NULL, otherwise pmd.
345 */
346 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
347 * vm_ops->map_pages() calls
348 * alloc_set_pte() from atomic context.
349 * do_fault_around() pre-allocates
350 * page table to avoid allocation from
351 * atomic context.
352 */
353};
354
355/* page entry size for vm->huge_fault() */
356enum page_entry_size {
357 PE_SIZE_PTE = 0,
358 PE_SIZE_PMD,
359 PE_SIZE_PUD,
360};
361
362/*
363 * These are the virtual MM functions - opening of an area, closing and
364 * unmapping it (needed to keep files on disk up-to-date etc), pointer
365 * to the functions called when a no-page or a wp-page exception occurs.
366 */
367struct vm_operations_struct {
368 void (*open)(struct vm_area_struct * area);
369 void (*close)(struct vm_area_struct * area);
370 int (*mremap)(struct vm_area_struct * area);
371 int (*fault)(struct vm_fault *vmf);
372 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
373 void (*map_pages)(struct vm_fault *vmf,
374 pgoff_t start_pgoff, pgoff_t end_pgoff);
375
376 /* notification that a previously read-only page is about to become
377 * writable, if an error is returned it will cause a SIGBUS */
378 int (*page_mkwrite)(struct vm_fault *vmf);
379
380 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
381 int (*pfn_mkwrite)(struct vm_fault *vmf);
382
383 /* called by access_process_vm when get_user_pages() fails, typically
384 * for use by special VMAs that can switch between memory and hardware
385 */
386 int (*access)(struct vm_area_struct *vma, unsigned long addr,
387 void *buf, int len, int write);
388
389 /* Called by the /proc/PID/maps code to ask the vma whether it
390 * has a special name. Returning non-NULL will also cause this
391 * vma to be dumped unconditionally. */
392 const char *(*name)(struct vm_area_struct *vma);
393
394#ifdef CONFIG_NUMA
395 /*
396 * set_policy() op must add a reference to any non-NULL @new mempolicy
397 * to hold the policy upon return. Caller should pass NULL @new to
398 * remove a policy and fall back to surrounding context--i.e. do not
399 * install a MPOL_DEFAULT policy, nor the task or system default
400 * mempolicy.
401 */
402 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
403
404 /*
405 * get_policy() op must add reference [mpol_get()] to any policy at
406 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
407 * in mm/mempolicy.c will do this automatically.
408 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
409 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
410 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
411 * must return NULL--i.e., do not "fallback" to task or system default
412 * policy.
413 */
414 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
415 unsigned long addr);
416#endif
417 /*
418 * Called by vm_normal_page() for special PTEs to find the
419 * page for @addr. This is useful if the default behavior
420 * (using pte_page()) would not find the correct page.
421 */
422 struct page *(*find_special_page)(struct vm_area_struct *vma,
423 unsigned long addr);
424};
425
426struct mmu_gather;
427struct inode;
428
429#define page_private(page) ((page)->private)
430#define set_page_private(page, v) ((page)->private = (v))
431
432#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
433static inline int pmd_devmap(pmd_t pmd)
434{
435 return 0;
436}
437static inline int pud_devmap(pud_t pud)
438{
439 return 0;
440}
441static inline int pgd_devmap(pgd_t pgd)
442{
443 return 0;
444}
445#endif
446
447/*
448 * FIXME: take this include out, include page-flags.h in
449 * files which need it (119 of them)
450 */
451#include <linux/page-flags.h>
452#include <linux/huge_mm.h>
453
454/*
455 * Methods to modify the page usage count.
456 *
457 * What counts for a page usage:
458 * - cache mapping (page->mapping)
459 * - private data (page->private)
460 * - page mapped in a task's page tables, each mapping
461 * is counted separately
462 *
463 * Also, many kernel routines increase the page count before a critical
464 * routine so they can be sure the page doesn't go away from under them.
465 */
466
467/*
468 * Drop a ref, return true if the refcount fell to zero (the page has no users)
469 */
470static inline int put_page_testzero(struct page *page)
471{
472 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
473 return page_ref_dec_and_test(page);
474}
475
476/*
477 * Try to grab a ref unless the page has a refcount of zero, return false if
478 * that is the case.
479 * This can be called when MMU is off so it must not access
480 * any of the virtual mappings.
481 */
482static inline int get_page_unless_zero(struct page *page)
483{
484 return page_ref_add_unless(page, 1, 0);
485}
486
487extern int page_is_ram(unsigned long pfn);
488
489enum {
490 REGION_INTERSECTS,
491 REGION_DISJOINT,
492 REGION_MIXED,
493};
494
495int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
496 unsigned long desc);
497
498/* Support for virtually mapped pages */
499struct page *vmalloc_to_page(const void *addr);
500unsigned long vmalloc_to_pfn(const void *addr);
501
502/*
503 * Determine if an address is within the vmalloc range
504 *
505 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
506 * is no special casing required.
507 */
508static inline bool is_vmalloc_addr(const void *x)
509{
510#ifdef CONFIG_MMU
511 unsigned long addr = (unsigned long)x;
512
513 return addr >= VMALLOC_START && addr < VMALLOC_END;
514#else
515 return false;
516#endif
517}
518#ifdef CONFIG_MMU
519extern int is_vmalloc_or_module_addr(const void *x);
520#else
521static inline int is_vmalloc_or_module_addr(const void *x)
522{
523 return 0;
524}
525#endif
526
527extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
528static inline void *kvmalloc(size_t size, gfp_t flags)
529{
530 return kvmalloc_node(size, flags, NUMA_NO_NODE);
531}
532static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
533{
534 return kvmalloc_node(size, flags | __GFP_ZERO, node);
535}
536static inline void *kvzalloc(size_t size, gfp_t flags)
537{
538 return kvmalloc(size, flags | __GFP_ZERO);
539}
540
541static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
542{
543 if (size != 0 && n > SIZE_MAX / size)
544 return NULL;
545
546 return kvmalloc(n * size, flags);
547}
548
549extern void kvfree(const void *addr);
550
551static inline atomic_t *compound_mapcount_ptr(struct page *page)
552{
553 return &page[1].compound_mapcount;
554}
555
556static inline int compound_mapcount(struct page *page)
557{
558 VM_BUG_ON_PAGE(!PageCompound(page), page);
559 page = compound_head(page);
560 return atomic_read(compound_mapcount_ptr(page)) + 1;
561}
562
563/*
564 * The atomic page->_mapcount, starts from -1: so that transitions
565 * both from it and to it can be tracked, using atomic_inc_and_test
566 * and atomic_add_negative(-1).
567 */
568static inline void page_mapcount_reset(struct page *page)
569{
570 atomic_set(&(page)->_mapcount, -1);
571}
572
573int __page_mapcount(struct page *page);
574
575static inline int page_mapcount(struct page *page)
576{
577 VM_BUG_ON_PAGE(PageSlab(page), page);
578
579 if (unlikely(PageCompound(page)))
580 return __page_mapcount(page);
581 return atomic_read(&page->_mapcount) + 1;
582}
583
584#ifdef CONFIG_TRANSPARENT_HUGEPAGE
585int total_mapcount(struct page *page);
586int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
587#else
588static inline int total_mapcount(struct page *page)
589{
590 return page_mapcount(page);
591}
592static inline int page_trans_huge_mapcount(struct page *page,
593 int *total_mapcount)
594{
595 int mapcount = page_mapcount(page);
596 if (total_mapcount)
597 *total_mapcount = mapcount;
598 return mapcount;
599}
600#endif
601
602static inline struct page *virt_to_head_page(const void *x)
603{
604 struct page *page = virt_to_page(x);
605
606 return compound_head(page);
607}
608
609void __put_page(struct page *page);
610
611void put_pages_list(struct list_head *pages);
612
613void split_page(struct page *page, unsigned int order);
614
615/*
616 * Compound pages have a destructor function. Provide a
617 * prototype for that function and accessor functions.
618 * These are _only_ valid on the head of a compound page.
619 */
620typedef void compound_page_dtor(struct page *);
621
622/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
623enum compound_dtor_id {
624 NULL_COMPOUND_DTOR,
625 COMPOUND_PAGE_DTOR,
626#ifdef CONFIG_HUGETLB_PAGE
627 HUGETLB_PAGE_DTOR,
628#endif
629#ifdef CONFIG_TRANSPARENT_HUGEPAGE
630 TRANSHUGE_PAGE_DTOR,
631#endif
632 NR_COMPOUND_DTORS,
633};
634extern compound_page_dtor * const compound_page_dtors[];
635
636static inline void set_compound_page_dtor(struct page *page,
637 enum compound_dtor_id compound_dtor)
638{
639 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
640 page[1].compound_dtor = compound_dtor;
641}
642
643static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
644{
645 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
646 return compound_page_dtors[page[1].compound_dtor];
647}
648
649static inline unsigned int compound_order(struct page *page)
650{
651 if (!PageHead(page))
652 return 0;
653 return page[1].compound_order;
654}
655
656static inline void set_compound_order(struct page *page, unsigned int order)
657{
658 page[1].compound_order = order;
659}
660
661void free_compound_page(struct page *page);
662
663#ifdef CONFIG_MMU
664/*
665 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
666 * servicing faults for write access. In the normal case, do always want
667 * pte_mkwrite. But get_user_pages can cause write faults for mappings
668 * that do not have writing enabled, when used by access_process_vm.
669 */
670static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
671{
672 if (likely(vma->vm_flags & VM_WRITE))
673 pte = pte_mkwrite(pte);
674 return pte;
675}
676
677int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
678 struct page *page);
679int finish_fault(struct vm_fault *vmf);
680int finish_mkwrite_fault(struct vm_fault *vmf);
681#endif
682
683/*
684 * Multiple processes may "see" the same page. E.g. for untouched
685 * mappings of /dev/null, all processes see the same page full of
686 * zeroes, and text pages of executables and shared libraries have
687 * only one copy in memory, at most, normally.
688 *
689 * For the non-reserved pages, page_count(page) denotes a reference count.
690 * page_count() == 0 means the page is free. page->lru is then used for
691 * freelist management in the buddy allocator.
692 * page_count() > 0 means the page has been allocated.
693 *
694 * Pages are allocated by the slab allocator in order to provide memory
695 * to kmalloc and kmem_cache_alloc. In this case, the management of the
696 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
697 * unless a particular usage is carefully commented. (the responsibility of
698 * freeing the kmalloc memory is the caller's, of course).
699 *
700 * A page may be used by anyone else who does a __get_free_page().
701 * In this case, page_count still tracks the references, and should only
702 * be used through the normal accessor functions. The top bits of page->flags
703 * and page->virtual store page management information, but all other fields
704 * are unused and could be used privately, carefully. The management of this
705 * page is the responsibility of the one who allocated it, and those who have
706 * subsequently been given references to it.
707 *
708 * The other pages (we may call them "pagecache pages") are completely
709 * managed by the Linux memory manager: I/O, buffers, swapping etc.
710 * The following discussion applies only to them.
711 *
712 * A pagecache page contains an opaque `private' member, which belongs to the
713 * page's address_space. Usually, this is the address of a circular list of
714 * the page's disk buffers. PG_private must be set to tell the VM to call
715 * into the filesystem to release these pages.
716 *
717 * A page may belong to an inode's memory mapping. In this case, page->mapping
718 * is the pointer to the inode, and page->index is the file offset of the page,
719 * in units of PAGE_SIZE.
720 *
721 * If pagecache pages are not associated with an inode, they are said to be
722 * anonymous pages. These may become associated with the swapcache, and in that
723 * case PG_swapcache is set, and page->private is an offset into the swapcache.
724 *
725 * In either case (swapcache or inode backed), the pagecache itself holds one
726 * reference to the page. Setting PG_private should also increment the
727 * refcount. The each user mapping also has a reference to the page.
728 *
729 * The pagecache pages are stored in a per-mapping radix tree, which is
730 * rooted at mapping->page_tree, and indexed by offset.
731 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
732 * lists, we instead now tag pages as dirty/writeback in the radix tree.
733 *
734 * All pagecache pages may be subject to I/O:
735 * - inode pages may need to be read from disk,
736 * - inode pages which have been modified and are MAP_SHARED may need
737 * to be written back to the inode on disk,
738 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
739 * modified may need to be swapped out to swap space and (later) to be read
740 * back into memory.
741 */
742
743/*
744 * The zone field is never updated after free_area_init_core()
745 * sets it, so none of the operations on it need to be atomic.
746 */
747
748/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
749#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
750#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
751#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
752#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
753
754/*
755 * Define the bit shifts to access each section. For non-existent
756 * sections we define the shift as 0; that plus a 0 mask ensures
757 * the compiler will optimise away reference to them.
758 */
759#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
760#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
761#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
762#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
763
764/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
765#ifdef NODE_NOT_IN_PAGE_FLAGS
766#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
767#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
768 SECTIONS_PGOFF : ZONES_PGOFF)
769#else
770#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
771#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
772 NODES_PGOFF : ZONES_PGOFF)
773#endif
774
775#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
776
777#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
778#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
779#endif
780
781#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
782#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
783#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
784#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
785#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
786
787static inline enum zone_type page_zonenum(const struct page *page)
788{
789 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
790}
791
792#ifdef CONFIG_ZONE_DEVICE
793static inline bool is_zone_device_page(const struct page *page)
794{
795 return page_zonenum(page) == ZONE_DEVICE;
796}
797#else
798static inline bool is_zone_device_page(const struct page *page)
799{
800 return false;
801}
802#endif
803
804#if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
805void put_zone_device_private_or_public_page(struct page *page);
806DECLARE_STATIC_KEY_FALSE(device_private_key);
807#define IS_HMM_ENABLED static_branch_unlikely(&device_private_key)
808static inline bool is_device_private_page(const struct page *page);
809static inline bool is_device_public_page(const struct page *page);
810#else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
811static inline void put_zone_device_private_or_public_page(struct page *page)
812{
813}
814#define IS_HMM_ENABLED 0
815static inline bool is_device_private_page(const struct page *page)
816{
817 return false;
818}
819static inline bool is_device_public_page(const struct page *page)
820{
821 return false;
822}
823#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
824
825
826static inline void get_page(struct page *page)
827{
828 page = compound_head(page);
829 /*
830 * Getting a normal page or the head of a compound page
831 * requires to already have an elevated page->_refcount.
832 */
833 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
834 page_ref_inc(page);
835}
836
837static inline void put_page(struct page *page)
838{
839 page = compound_head(page);
840
841 /*
842 * For private device pages we need to catch refcount transition from
843 * 2 to 1, when refcount reach one it means the private device page is
844 * free and we need to inform the device driver through callback. See
845 * include/linux/memremap.h and HMM for details.
846 */
847 if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) ||
848 unlikely(is_device_public_page(page)))) {
849 put_zone_device_private_or_public_page(page);
850 return;
851 }
852
853 if (put_page_testzero(page))
854 __put_page(page);
855}
856
857#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
858#define SECTION_IN_PAGE_FLAGS
859#endif
860
861/*
862 * The identification function is mainly used by the buddy allocator for
863 * determining if two pages could be buddies. We are not really identifying
864 * the zone since we could be using the section number id if we do not have
865 * node id available in page flags.
866 * We only guarantee that it will return the same value for two combinable
867 * pages in a zone.
868 */
869static inline int page_zone_id(struct page *page)
870{
871 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
872}
873
874static inline int zone_to_nid(struct zone *zone)
875{
876#ifdef CONFIG_NUMA
877 return zone->node;
878#else
879 return 0;
880#endif
881}
882
883#ifdef NODE_NOT_IN_PAGE_FLAGS
884extern int page_to_nid(const struct page *page);
885#else
886static inline int page_to_nid(const struct page *page)
887{
888 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
889}
890#endif
891
892#ifdef CONFIG_NUMA_BALANCING
893static inline int cpu_pid_to_cpupid(int cpu, int pid)
894{
895 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
896}
897
898static inline int cpupid_to_pid(int cpupid)
899{
900 return cpupid & LAST__PID_MASK;
901}
902
903static inline int cpupid_to_cpu(int cpupid)
904{
905 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
906}
907
908static inline int cpupid_to_nid(int cpupid)
909{
910 return cpu_to_node(cpupid_to_cpu(cpupid));
911}
912
913static inline bool cpupid_pid_unset(int cpupid)
914{
915 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
916}
917
918static inline bool cpupid_cpu_unset(int cpupid)
919{
920 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
921}
922
923static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
924{
925 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
926}
927
928#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
929#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
930static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
931{
932 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
933}
934
935static inline int page_cpupid_last(struct page *page)
936{
937 return page->_last_cpupid;
938}
939static inline void page_cpupid_reset_last(struct page *page)
940{
941 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
942}
943#else
944static inline int page_cpupid_last(struct page *page)
945{
946 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
947}
948
949extern int page_cpupid_xchg_last(struct page *page, int cpupid);
950
951static inline void page_cpupid_reset_last(struct page *page)
952{
953 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
954}
955#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
956#else /* !CONFIG_NUMA_BALANCING */
957static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
958{
959 return page_to_nid(page); /* XXX */
960}
961
962static inline int page_cpupid_last(struct page *page)
963{
964 return page_to_nid(page); /* XXX */
965}
966
967static inline int cpupid_to_nid(int cpupid)
968{
969 return -1;
970}
971
972static inline int cpupid_to_pid(int cpupid)
973{
974 return -1;
975}
976
977static inline int cpupid_to_cpu(int cpupid)
978{
979 return -1;
980}
981
982static inline int cpu_pid_to_cpupid(int nid, int pid)
983{
984 return -1;
985}
986
987static inline bool cpupid_pid_unset(int cpupid)
988{
989 return 1;
990}
991
992static inline void page_cpupid_reset_last(struct page *page)
993{
994}
995
996static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
997{
998 return false;
999}
1000#endif /* CONFIG_NUMA_BALANCING */
1001
1002static inline struct zone *page_zone(const struct page *page)
1003{
1004 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1005}
1006
1007static inline pg_data_t *page_pgdat(const struct page *page)
1008{
1009 return NODE_DATA(page_to_nid(page));
1010}
1011
1012#ifdef SECTION_IN_PAGE_FLAGS
1013static inline void set_page_section(struct page *page, unsigned long section)
1014{
1015 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1016 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1017}
1018
1019static inline unsigned long page_to_section(const struct page *page)
1020{
1021 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1022}
1023#endif
1024
1025static inline void set_page_zone(struct page *page, enum zone_type zone)
1026{
1027 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1028 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1029}
1030
1031static inline void set_page_node(struct page *page, unsigned long node)
1032{
1033 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1034 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1035}
1036
1037static inline void set_page_links(struct page *page, enum zone_type zone,
1038 unsigned long node, unsigned long pfn)
1039{
1040 set_page_zone(page, zone);
1041 set_page_node(page, node);
1042#ifdef SECTION_IN_PAGE_FLAGS
1043 set_page_section(page, pfn_to_section_nr(pfn));
1044#endif
1045}
1046
1047#ifdef CONFIG_MEMCG
1048static inline struct mem_cgroup *page_memcg(struct page *page)
1049{
1050 return page->mem_cgroup;
1051}
1052static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1053{
1054 WARN_ON_ONCE(!rcu_read_lock_held());
1055 return READ_ONCE(page->mem_cgroup);
1056}
1057#else
1058static inline struct mem_cgroup *page_memcg(struct page *page)
1059{
1060 return NULL;
1061}
1062static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1063{
1064 WARN_ON_ONCE(!rcu_read_lock_held());
1065 return NULL;
1066}
1067#endif
1068
1069/*
1070 * Some inline functions in vmstat.h depend on page_zone()
1071 */
1072#include <linux/vmstat.h>
1073
1074static __always_inline void *lowmem_page_address(const struct page *page)
1075{
1076 return page_to_virt(page);
1077}
1078
1079#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1080#define HASHED_PAGE_VIRTUAL
1081#endif
1082
1083#if defined(WANT_PAGE_VIRTUAL)
1084static inline void *page_address(const struct page *page)
1085{
1086 return page->virtual;
1087}
1088static inline void set_page_address(struct page *page, void *address)
1089{
1090 page->virtual = address;
1091}
1092#define page_address_init() do { } while(0)
1093#endif
1094
1095#if defined(HASHED_PAGE_VIRTUAL)
1096void *page_address(const struct page *page);
1097void set_page_address(struct page *page, void *virtual);
1098void page_address_init(void);
1099#endif
1100
1101#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1102#define page_address(page) lowmem_page_address(page)
1103#define set_page_address(page, address) do { } while(0)
1104#define page_address_init() do { } while(0)
1105#endif
1106
1107extern void *page_rmapping(struct page *page);
1108extern struct anon_vma *page_anon_vma(struct page *page);
1109extern struct address_space *page_mapping(struct page *page);
1110
1111extern struct address_space *__page_file_mapping(struct page *);
1112
1113static inline
1114struct address_space *page_file_mapping(struct page *page)
1115{
1116 if (unlikely(PageSwapCache(page)))
1117 return __page_file_mapping(page);
1118
1119 return page->mapping;
1120}
1121
1122extern pgoff_t __page_file_index(struct page *page);
1123
1124/*
1125 * Return the pagecache index of the passed page. Regular pagecache pages
1126 * use ->index whereas swapcache pages use swp_offset(->private)
1127 */
1128static inline pgoff_t page_index(struct page *page)
1129{
1130 if (unlikely(PageSwapCache(page)))
1131 return __page_file_index(page);
1132 return page->index;
1133}
1134
1135bool page_mapped(struct page *page);
1136struct address_space *page_mapping(struct page *page);
1137
1138/*
1139 * Return true only if the page has been allocated with
1140 * ALLOC_NO_WATERMARKS and the low watermark was not
1141 * met implying that the system is under some pressure.
1142 */
1143static inline bool page_is_pfmemalloc(struct page *page)
1144{
1145 /*
1146 * Page index cannot be this large so this must be
1147 * a pfmemalloc page.
1148 */
1149 return page->index == -1UL;
1150}
1151
1152/*
1153 * Only to be called by the page allocator on a freshly allocated
1154 * page.
1155 */
1156static inline void set_page_pfmemalloc(struct page *page)
1157{
1158 page->index = -1UL;
1159}
1160
1161static inline void clear_page_pfmemalloc(struct page *page)
1162{
1163 page->index = 0;
1164}
1165
1166/*
1167 * Different kinds of faults, as returned by handle_mm_fault().
1168 * Used to decide whether a process gets delivered SIGBUS or
1169 * just gets major/minor fault counters bumped up.
1170 */
1171
1172#define VM_FAULT_OOM 0x0001
1173#define VM_FAULT_SIGBUS 0x0002
1174#define VM_FAULT_MAJOR 0x0004
1175#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1176#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1177#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1178#define VM_FAULT_SIGSEGV 0x0040
1179
1180#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1181#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1182#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1183#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1184#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1185
1186#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1187
1188#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1189 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1190 VM_FAULT_FALLBACK)
1191
1192#define VM_FAULT_RESULT_TRACE \
1193 { VM_FAULT_OOM, "OOM" }, \
1194 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1195 { VM_FAULT_MAJOR, "MAJOR" }, \
1196 { VM_FAULT_WRITE, "WRITE" }, \
1197 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1198 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1199 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1200 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1201 { VM_FAULT_LOCKED, "LOCKED" }, \
1202 { VM_FAULT_RETRY, "RETRY" }, \
1203 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1204 { VM_FAULT_DONE_COW, "DONE_COW" }
1205
1206/* Encode hstate index for a hwpoisoned large page */
1207#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1208#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1209
1210/*
1211 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1212 */
1213extern void pagefault_out_of_memory(void);
1214
1215#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1216
1217/*
1218 * Flags passed to show_mem() and show_free_areas() to suppress output in
1219 * various contexts.
1220 */
1221#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1222
1223extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1224
1225extern bool can_do_mlock(void);
1226extern int user_shm_lock(size_t, struct user_struct *);
1227extern void user_shm_unlock(size_t, struct user_struct *);
1228
1229/*
1230 * Parameter block passed down to zap_pte_range in exceptional cases.
1231 */
1232struct zap_details {
1233 struct address_space *check_mapping; /* Check page->mapping if set */
1234 pgoff_t first_index; /* Lowest page->index to unmap */
1235 pgoff_t last_index; /* Highest page->index to unmap */
1236};
1237
1238struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1239 pte_t pte, bool with_public_device);
1240#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1241
1242struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1243 pmd_t pmd);
1244
1245int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1246 unsigned long size);
1247void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1248 unsigned long size);
1249void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1250 unsigned long start, unsigned long end);
1251
1252/**
1253 * mm_walk - callbacks for walk_page_range
1254 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1255 * this handler should only handle pud_trans_huge() puds.
1256 * the pmd_entry or pte_entry callbacks will be used for
1257 * regular PUDs.
1258 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1259 * this handler is required to be able to handle
1260 * pmd_trans_huge() pmds. They may simply choose to
1261 * split_huge_page() instead of handling it explicitly.
1262 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1263 * @pte_hole: if set, called for each hole at all levels
1264 * @hugetlb_entry: if set, called for each hugetlb entry
1265 * @test_walk: caller specific callback function to determine whether
1266 * we walk over the current vma or not. Returning 0
1267 * value means "do page table walk over the current vma,"
1268 * and a negative one means "abort current page table walk
1269 * right now." 1 means "skip the current vma."
1270 * @mm: mm_struct representing the target process of page table walk
1271 * @vma: vma currently walked (NULL if walking outside vmas)
1272 * @private: private data for callbacks' usage
1273 *
1274 * (see the comment on walk_page_range() for more details)
1275 */
1276struct mm_walk {
1277 int (*pud_entry)(pud_t *pud, unsigned long addr,
1278 unsigned long next, struct mm_walk *walk);
1279 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1280 unsigned long next, struct mm_walk *walk);
1281 int (*pte_entry)(pte_t *pte, unsigned long addr,
1282 unsigned long next, struct mm_walk *walk);
1283 int (*pte_hole)(unsigned long addr, unsigned long next,
1284 struct mm_walk *walk);
1285 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1286 unsigned long addr, unsigned long next,
1287 struct mm_walk *walk);
1288 int (*test_walk)(unsigned long addr, unsigned long next,
1289 struct mm_walk *walk);
1290 struct mm_struct *mm;
1291 struct vm_area_struct *vma;
1292 void *private;
1293};
1294
1295int walk_page_range(unsigned long addr, unsigned long end,
1296 struct mm_walk *walk);
1297int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1298void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1299 unsigned long end, unsigned long floor, unsigned long ceiling);
1300int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1301 struct vm_area_struct *vma);
1302void unmap_mapping_range(struct address_space *mapping,
1303 loff_t const holebegin, loff_t const holelen, int even_cows);
1304int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1305 unsigned long *start, unsigned long *end,
1306 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1307int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1308 unsigned long *pfn);
1309int follow_phys(struct vm_area_struct *vma, unsigned long address,
1310 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1311int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1312 void *buf, int len, int write);
1313
1314static inline void unmap_shared_mapping_range(struct address_space *mapping,
1315 loff_t const holebegin, loff_t const holelen)
1316{
1317 unmap_mapping_range(mapping, holebegin, holelen, 0);
1318}
1319
1320extern void truncate_pagecache(struct inode *inode, loff_t new);
1321extern void truncate_setsize(struct inode *inode, loff_t newsize);
1322void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1323void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1324int truncate_inode_page(struct address_space *mapping, struct page *page);
1325int generic_error_remove_page(struct address_space *mapping, struct page *page);
1326int invalidate_inode_page(struct page *page);
1327
1328#ifdef CONFIG_MMU
1329extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1330 unsigned int flags);
1331extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1332 unsigned long address, unsigned int fault_flags,
1333 bool *unlocked);
1334#else
1335static inline int handle_mm_fault(struct vm_area_struct *vma,
1336 unsigned long address, unsigned int flags)
1337{
1338 /* should never happen if there's no MMU */
1339 BUG();
1340 return VM_FAULT_SIGBUS;
1341}
1342static inline int fixup_user_fault(struct task_struct *tsk,
1343 struct mm_struct *mm, unsigned long address,
1344 unsigned int fault_flags, bool *unlocked)
1345{
1346 /* should never happen if there's no MMU */
1347 BUG();
1348 return -EFAULT;
1349}
1350#endif
1351
1352extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1353 unsigned int gup_flags);
1354extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1355 void *buf, int len, unsigned int gup_flags);
1356extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1357 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1358
1359long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1360 unsigned long start, unsigned long nr_pages,
1361 unsigned int gup_flags, struct page **pages,
1362 struct vm_area_struct **vmas, int *locked);
1363long get_user_pages(unsigned long start, unsigned long nr_pages,
1364 unsigned int gup_flags, struct page **pages,
1365 struct vm_area_struct **vmas);
1366long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1367 unsigned int gup_flags, struct page **pages, int *locked);
1368long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1369 struct page **pages, unsigned int gup_flags);
1370int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1371 struct page **pages);
1372
1373/* Container for pinned pfns / pages */
1374struct frame_vector {
1375 unsigned int nr_allocated; /* Number of frames we have space for */
1376 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1377 bool got_ref; /* Did we pin pages by getting page ref? */
1378 bool is_pfns; /* Does array contain pages or pfns? */
1379 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1380 * pfns_vector_pages() or pfns_vector_pfns()
1381 * for access */
1382};
1383
1384struct frame_vector *frame_vector_create(unsigned int nr_frames);
1385void frame_vector_destroy(struct frame_vector *vec);
1386int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1387 unsigned int gup_flags, struct frame_vector *vec);
1388void put_vaddr_frames(struct frame_vector *vec);
1389int frame_vector_to_pages(struct frame_vector *vec);
1390void frame_vector_to_pfns(struct frame_vector *vec);
1391
1392static inline unsigned int frame_vector_count(struct frame_vector *vec)
1393{
1394 return vec->nr_frames;
1395}
1396
1397static inline struct page **frame_vector_pages(struct frame_vector *vec)
1398{
1399 if (vec->is_pfns) {
1400 int err = frame_vector_to_pages(vec);
1401
1402 if (err)
1403 return ERR_PTR(err);
1404 }
1405 return (struct page **)(vec->ptrs);
1406}
1407
1408static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1409{
1410 if (!vec->is_pfns)
1411 frame_vector_to_pfns(vec);
1412 return (unsigned long *)(vec->ptrs);
1413}
1414
1415struct kvec;
1416int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1417 struct page **pages);
1418int get_kernel_page(unsigned long start, int write, struct page **pages);
1419struct page *get_dump_page(unsigned long addr);
1420
1421extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1422extern void do_invalidatepage(struct page *page, unsigned int offset,
1423 unsigned int length);
1424
1425int __set_page_dirty_nobuffers(struct page *page);
1426int __set_page_dirty_no_writeback(struct page *page);
1427int redirty_page_for_writepage(struct writeback_control *wbc,
1428 struct page *page);
1429void account_page_dirtied(struct page *page, struct address_space *mapping);
1430void account_page_cleaned(struct page *page, struct address_space *mapping,
1431 struct bdi_writeback *wb);
1432int set_page_dirty(struct page *page);
1433int set_page_dirty_lock(struct page *page);
1434void cancel_dirty_page(struct page *page);
1435int clear_page_dirty_for_io(struct page *page);
1436
1437int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1438
1439static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1440{
1441 return !vma->vm_ops;
1442}
1443
1444#ifdef CONFIG_SHMEM
1445/*
1446 * The vma_is_shmem is not inline because it is used only by slow
1447 * paths in userfault.
1448 */
1449bool vma_is_shmem(struct vm_area_struct *vma);
1450#else
1451static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1452#endif
1453
1454int vma_is_stack_for_current(struct vm_area_struct *vma);
1455
1456extern unsigned long move_page_tables(struct vm_area_struct *vma,
1457 unsigned long old_addr, struct vm_area_struct *new_vma,
1458 unsigned long new_addr, unsigned long len,
1459 bool need_rmap_locks);
1460extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1461 unsigned long end, pgprot_t newprot,
1462 int dirty_accountable, int prot_numa);
1463extern int mprotect_fixup(struct vm_area_struct *vma,
1464 struct vm_area_struct **pprev, unsigned long start,
1465 unsigned long end, unsigned long newflags);
1466
1467/*
1468 * doesn't attempt to fault and will return short.
1469 */
1470int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1471 struct page **pages);
1472/*
1473 * per-process(per-mm_struct) statistics.
1474 */
1475static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1476{
1477 long val = atomic_long_read(&mm->rss_stat.count[member]);
1478
1479#ifdef SPLIT_RSS_COUNTING
1480 /*
1481 * counter is updated in asynchronous manner and may go to minus.
1482 * But it's never be expected number for users.
1483 */
1484 if (val < 0)
1485 val = 0;
1486#endif
1487 return (unsigned long)val;
1488}
1489
1490static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1491{
1492 atomic_long_add(value, &mm->rss_stat.count[member]);
1493}
1494
1495static inline void inc_mm_counter(struct mm_struct *mm, int member)
1496{
1497 atomic_long_inc(&mm->rss_stat.count[member]);
1498}
1499
1500static inline void dec_mm_counter(struct mm_struct *mm, int member)
1501{
1502 atomic_long_dec(&mm->rss_stat.count[member]);
1503}
1504
1505/* Optimized variant when page is already known not to be PageAnon */
1506static inline int mm_counter_file(struct page *page)
1507{
1508 if (PageSwapBacked(page))
1509 return MM_SHMEMPAGES;
1510 return MM_FILEPAGES;
1511}
1512
1513static inline int mm_counter(struct page *page)
1514{
1515 if (PageAnon(page))
1516 return MM_ANONPAGES;
1517 return mm_counter_file(page);
1518}
1519
1520static inline unsigned long get_mm_rss(struct mm_struct *mm)
1521{
1522 return get_mm_counter(mm, MM_FILEPAGES) +
1523 get_mm_counter(mm, MM_ANONPAGES) +
1524 get_mm_counter(mm, MM_SHMEMPAGES);
1525}
1526
1527static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1528{
1529 return max(mm->hiwater_rss, get_mm_rss(mm));
1530}
1531
1532static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1533{
1534 return max(mm->hiwater_vm, mm->total_vm);
1535}
1536
1537static inline void update_hiwater_rss(struct mm_struct *mm)
1538{
1539 unsigned long _rss = get_mm_rss(mm);
1540
1541 if ((mm)->hiwater_rss < _rss)
1542 (mm)->hiwater_rss = _rss;
1543}
1544
1545static inline void update_hiwater_vm(struct mm_struct *mm)
1546{
1547 if (mm->hiwater_vm < mm->total_vm)
1548 mm->hiwater_vm = mm->total_vm;
1549}
1550
1551static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1552{
1553 mm->hiwater_rss = get_mm_rss(mm);
1554}
1555
1556static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1557 struct mm_struct *mm)
1558{
1559 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1560
1561 if (*maxrss < hiwater_rss)
1562 *maxrss = hiwater_rss;
1563}
1564
1565#if defined(SPLIT_RSS_COUNTING)
1566void sync_mm_rss(struct mm_struct *mm);
1567#else
1568static inline void sync_mm_rss(struct mm_struct *mm)
1569{
1570}
1571#endif
1572
1573#ifndef __HAVE_ARCH_PTE_DEVMAP
1574static inline int pte_devmap(pte_t pte)
1575{
1576 return 0;
1577}
1578#endif
1579
1580int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1581
1582extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1583 spinlock_t **ptl);
1584static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1585 spinlock_t **ptl)
1586{
1587 pte_t *ptep;
1588 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1589 return ptep;
1590}
1591
1592#ifdef __PAGETABLE_P4D_FOLDED
1593static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1594 unsigned long address)
1595{
1596 return 0;
1597}
1598#else
1599int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1600#endif
1601
1602#ifdef __PAGETABLE_PUD_FOLDED
1603static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1604 unsigned long address)
1605{
1606 return 0;
1607}
1608#else
1609int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1610#endif
1611
1612#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1613static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1614 unsigned long address)
1615{
1616 return 0;
1617}
1618
1619static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1620
1621static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1622{
1623 return 0;
1624}
1625
1626static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1627static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1628
1629#else
1630int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1631
1632static inline void mm_nr_pmds_init(struct mm_struct *mm)
1633{
1634 atomic_long_set(&mm->nr_pmds, 0);
1635}
1636
1637static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1638{
1639 return atomic_long_read(&mm->nr_pmds);
1640}
1641
1642static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1643{
1644 atomic_long_inc(&mm->nr_pmds);
1645}
1646
1647static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1648{
1649 atomic_long_dec(&mm->nr_pmds);
1650}
1651#endif
1652
1653int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1654int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1655
1656/*
1657 * The following ifdef needed to get the 4level-fixup.h header to work.
1658 * Remove it when 4level-fixup.h has been removed.
1659 */
1660#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1661
1662#ifndef __ARCH_HAS_5LEVEL_HACK
1663static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1664 unsigned long address)
1665{
1666 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1667 NULL : p4d_offset(pgd, address);
1668}
1669
1670static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1671 unsigned long address)
1672{
1673 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1674 NULL : pud_offset(p4d, address);
1675}
1676#endif /* !__ARCH_HAS_5LEVEL_HACK */
1677
1678static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1679{
1680 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1681 NULL: pmd_offset(pud, address);
1682}
1683#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1684
1685#if USE_SPLIT_PTE_PTLOCKS
1686#if ALLOC_SPLIT_PTLOCKS
1687void __init ptlock_cache_init(void);
1688extern bool ptlock_alloc(struct page *page);
1689extern void ptlock_free(struct page *page);
1690
1691static inline spinlock_t *ptlock_ptr(struct page *page)
1692{
1693 return page->ptl;
1694}
1695#else /* ALLOC_SPLIT_PTLOCKS */
1696static inline void ptlock_cache_init(void)
1697{
1698}
1699
1700static inline bool ptlock_alloc(struct page *page)
1701{
1702 return true;
1703}
1704
1705static inline void ptlock_free(struct page *page)
1706{
1707}
1708
1709static inline spinlock_t *ptlock_ptr(struct page *page)
1710{
1711 return &page->ptl;
1712}
1713#endif /* ALLOC_SPLIT_PTLOCKS */
1714
1715static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1716{
1717 return ptlock_ptr(pmd_page(*pmd));
1718}
1719
1720static inline bool ptlock_init(struct page *page)
1721{
1722 /*
1723 * prep_new_page() initialize page->private (and therefore page->ptl)
1724 * with 0. Make sure nobody took it in use in between.
1725 *
1726 * It can happen if arch try to use slab for page table allocation:
1727 * slab code uses page->slab_cache, which share storage with page->ptl.
1728 */
1729 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1730 if (!ptlock_alloc(page))
1731 return false;
1732 spin_lock_init(ptlock_ptr(page));
1733 return true;
1734}
1735
1736/* Reset page->mapping so free_pages_check won't complain. */
1737static inline void pte_lock_deinit(struct page *page)
1738{
1739 page->mapping = NULL;
1740 ptlock_free(page);
1741}
1742
1743#else /* !USE_SPLIT_PTE_PTLOCKS */
1744/*
1745 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1746 */
1747static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1748{
1749 return &mm->page_table_lock;
1750}
1751static inline void ptlock_cache_init(void) {}
1752static inline bool ptlock_init(struct page *page) { return true; }
1753static inline void pte_lock_deinit(struct page *page) {}
1754#endif /* USE_SPLIT_PTE_PTLOCKS */
1755
1756static inline void pgtable_init(void)
1757{
1758 ptlock_cache_init();
1759 pgtable_cache_init();
1760}
1761
1762static inline bool pgtable_page_ctor(struct page *page)
1763{
1764 if (!ptlock_init(page))
1765 return false;
1766 inc_zone_page_state(page, NR_PAGETABLE);
1767 return true;
1768}
1769
1770static inline void pgtable_page_dtor(struct page *page)
1771{
1772 pte_lock_deinit(page);
1773 dec_zone_page_state(page, NR_PAGETABLE);
1774}
1775
1776#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1777({ \
1778 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1779 pte_t *__pte = pte_offset_map(pmd, address); \
1780 *(ptlp) = __ptl; \
1781 spin_lock(__ptl); \
1782 __pte; \
1783})
1784
1785#define pte_unmap_unlock(pte, ptl) do { \
1786 spin_unlock(ptl); \
1787 pte_unmap(pte); \
1788} while (0)
1789
1790#define pte_alloc(mm, pmd, address) \
1791 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1792
1793#define pte_alloc_map(mm, pmd, address) \
1794 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1795
1796#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1797 (pte_alloc(mm, pmd, address) ? \
1798 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1799
1800#define pte_alloc_kernel(pmd, address) \
1801 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1802 NULL: pte_offset_kernel(pmd, address))
1803
1804#if USE_SPLIT_PMD_PTLOCKS
1805
1806static struct page *pmd_to_page(pmd_t *pmd)
1807{
1808 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1809 return virt_to_page((void *)((unsigned long) pmd & mask));
1810}
1811
1812static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1813{
1814 return ptlock_ptr(pmd_to_page(pmd));
1815}
1816
1817static inline bool pgtable_pmd_page_ctor(struct page *page)
1818{
1819#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1820 page->pmd_huge_pte = NULL;
1821#endif
1822 return ptlock_init(page);
1823}
1824
1825static inline void pgtable_pmd_page_dtor(struct page *page)
1826{
1827#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1828 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1829#endif
1830 ptlock_free(page);
1831}
1832
1833#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1834
1835#else
1836
1837static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1838{
1839 return &mm->page_table_lock;
1840}
1841
1842static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1843static inline void pgtable_pmd_page_dtor(struct page *page) {}
1844
1845#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1846
1847#endif
1848
1849static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1850{
1851 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1852 spin_lock(ptl);
1853 return ptl;
1854}
1855
1856/*
1857 * No scalability reason to split PUD locks yet, but follow the same pattern
1858 * as the PMD locks to make it easier if we decide to. The VM should not be
1859 * considered ready to switch to split PUD locks yet; there may be places
1860 * which need to be converted from page_table_lock.
1861 */
1862static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1863{
1864 return &mm->page_table_lock;
1865}
1866
1867static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1868{
1869 spinlock_t *ptl = pud_lockptr(mm, pud);
1870
1871 spin_lock(ptl);
1872 return ptl;
1873}
1874
1875extern void __init pagecache_init(void);
1876extern void free_area_init(unsigned long * zones_size);
1877extern void free_area_init_node(int nid, unsigned long * zones_size,
1878 unsigned long zone_start_pfn, unsigned long *zholes_size);
1879extern void free_initmem(void);
1880
1881/*
1882 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1883 * into the buddy system. The freed pages will be poisoned with pattern
1884 * "poison" if it's within range [0, UCHAR_MAX].
1885 * Return pages freed into the buddy system.
1886 */
1887extern unsigned long free_reserved_area(void *start, void *end,
1888 int poison, char *s);
1889
1890#ifdef CONFIG_HIGHMEM
1891/*
1892 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1893 * and totalram_pages.
1894 */
1895extern void free_highmem_page(struct page *page);
1896#endif
1897
1898extern void adjust_managed_page_count(struct page *page, long count);
1899extern void mem_init_print_info(const char *str);
1900
1901extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
1902
1903/* Free the reserved page into the buddy system, so it gets managed. */
1904static inline void __free_reserved_page(struct page *page)
1905{
1906 ClearPageReserved(page);
1907 init_page_count(page);
1908 __free_page(page);
1909}
1910
1911static inline void free_reserved_page(struct page *page)
1912{
1913 __free_reserved_page(page);
1914 adjust_managed_page_count(page, 1);
1915}
1916
1917static inline void mark_page_reserved(struct page *page)
1918{
1919 SetPageReserved(page);
1920 adjust_managed_page_count(page, -1);
1921}
1922
1923/*
1924 * Default method to free all the __init memory into the buddy system.
1925 * The freed pages will be poisoned with pattern "poison" if it's within
1926 * range [0, UCHAR_MAX].
1927 * Return pages freed into the buddy system.
1928 */
1929static inline unsigned long free_initmem_default(int poison)
1930{
1931 extern char __init_begin[], __init_end[];
1932
1933 return free_reserved_area(&__init_begin, &__init_end,
1934 poison, "unused kernel");
1935}
1936
1937static inline unsigned long get_num_physpages(void)
1938{
1939 int nid;
1940 unsigned long phys_pages = 0;
1941
1942 for_each_online_node(nid)
1943 phys_pages += node_present_pages(nid);
1944
1945 return phys_pages;
1946}
1947
1948#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1949/*
1950 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1951 * zones, allocate the backing mem_map and account for memory holes in a more
1952 * architecture independent manner. This is a substitute for creating the
1953 * zone_sizes[] and zholes_size[] arrays and passing them to
1954 * free_area_init_node()
1955 *
1956 * An architecture is expected to register range of page frames backed by
1957 * physical memory with memblock_add[_node]() before calling
1958 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1959 * usage, an architecture is expected to do something like
1960 *
1961 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1962 * max_highmem_pfn};
1963 * for_each_valid_physical_page_range()
1964 * memblock_add_node(base, size, nid)
1965 * free_area_init_nodes(max_zone_pfns);
1966 *
1967 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1968 * registered physical page range. Similarly
1969 * sparse_memory_present_with_active_regions() calls memory_present() for
1970 * each range when SPARSEMEM is enabled.
1971 *
1972 * See mm/page_alloc.c for more information on each function exposed by
1973 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1974 */
1975extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1976unsigned long node_map_pfn_alignment(void);
1977unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1978 unsigned long end_pfn);
1979extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1980 unsigned long end_pfn);
1981extern void get_pfn_range_for_nid(unsigned int nid,
1982 unsigned long *start_pfn, unsigned long *end_pfn);
1983extern unsigned long find_min_pfn_with_active_regions(void);
1984extern void free_bootmem_with_active_regions(int nid,
1985 unsigned long max_low_pfn);
1986extern void sparse_memory_present_with_active_regions(int nid);
1987
1988#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1989
1990#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1991 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1992static inline int __early_pfn_to_nid(unsigned long pfn,
1993 struct mminit_pfnnid_cache *state)
1994{
1995 return 0;
1996}
1997#else
1998/* please see mm/page_alloc.c */
1999extern int __meminit early_pfn_to_nid(unsigned long pfn);
2000/* there is a per-arch backend function. */
2001extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2002 struct mminit_pfnnid_cache *state);
2003#endif
2004
2005extern void set_dma_reserve(unsigned long new_dma_reserve);
2006extern void memmap_init_zone(unsigned long, int, unsigned long,
2007 unsigned long, enum memmap_context);
2008extern void setup_per_zone_wmarks(void);
2009extern int __meminit init_per_zone_wmark_min(void);
2010extern void mem_init(void);
2011extern void __init mmap_init(void);
2012extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2013extern long si_mem_available(void);
2014extern void si_meminfo(struct sysinfo * val);
2015extern void si_meminfo_node(struct sysinfo *val, int nid);
2016#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2017extern unsigned long arch_reserved_kernel_pages(void);
2018#endif
2019
2020extern __printf(3, 4)
2021void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2022
2023extern void setup_per_cpu_pageset(void);
2024
2025extern void zone_pcp_update(struct zone *zone);
2026extern void zone_pcp_reset(struct zone *zone);
2027
2028/* page_alloc.c */
2029extern int min_free_kbytes;
2030extern int watermark_scale_factor;
2031
2032/* nommu.c */
2033extern atomic_long_t mmap_pages_allocated;
2034extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2035
2036/* interval_tree.c */
2037void vma_interval_tree_insert(struct vm_area_struct *node,
2038 struct rb_root_cached *root);
2039void vma_interval_tree_insert_after(struct vm_area_struct *node,
2040 struct vm_area_struct *prev,
2041 struct rb_root_cached *root);
2042void vma_interval_tree_remove(struct vm_area_struct *node,
2043 struct rb_root_cached *root);
2044struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2045 unsigned long start, unsigned long last);
2046struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2047 unsigned long start, unsigned long last);
2048
2049#define vma_interval_tree_foreach(vma, root, start, last) \
2050 for (vma = vma_interval_tree_iter_first(root, start, last); \
2051 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2052
2053void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2054 struct rb_root_cached *root);
2055void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2056 struct rb_root_cached *root);
2057struct anon_vma_chain *
2058anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2059 unsigned long start, unsigned long last);
2060struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2061 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2062#ifdef CONFIG_DEBUG_VM_RB
2063void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2064#endif
2065
2066#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2067 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2068 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2069
2070/* mmap.c */
2071extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2072extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2073 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2074 struct vm_area_struct *expand);
2075static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2076 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2077{
2078 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2079}
2080extern struct vm_area_struct *vma_merge(struct mm_struct *,
2081 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2082 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2083 struct mempolicy *, struct vm_userfaultfd_ctx);
2084extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2085extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2086 unsigned long addr, int new_below);
2087extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2088 unsigned long addr, int new_below);
2089extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2090extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2091 struct rb_node **, struct rb_node *);
2092extern void unlink_file_vma(struct vm_area_struct *);
2093extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2094 unsigned long addr, unsigned long len, pgoff_t pgoff,
2095 bool *need_rmap_locks);
2096extern void exit_mmap(struct mm_struct *);
2097
2098static inline int check_data_rlimit(unsigned long rlim,
2099 unsigned long new,
2100 unsigned long start,
2101 unsigned long end_data,
2102 unsigned long start_data)
2103{
2104 if (rlim < RLIM_INFINITY) {
2105 if (((new - start) + (end_data - start_data)) > rlim)
2106 return -ENOSPC;
2107 }
2108
2109 return 0;
2110}
2111
2112extern int mm_take_all_locks(struct mm_struct *mm);
2113extern void mm_drop_all_locks(struct mm_struct *mm);
2114
2115extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2116extern struct file *get_mm_exe_file(struct mm_struct *mm);
2117extern struct file *get_task_exe_file(struct task_struct *task);
2118
2119extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2120extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2121
2122extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2123 const struct vm_special_mapping *sm);
2124extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2125 unsigned long addr, unsigned long len,
2126 unsigned long flags,
2127 const struct vm_special_mapping *spec);
2128/* This is an obsolete alternative to _install_special_mapping. */
2129extern int install_special_mapping(struct mm_struct *mm,
2130 unsigned long addr, unsigned long len,
2131 unsigned long flags, struct page **pages);
2132
2133extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2134
2135extern unsigned long mmap_region(struct file *file, unsigned long addr,
2136 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2137 struct list_head *uf);
2138extern unsigned long do_mmap(struct file *file, unsigned long addr,
2139 unsigned long len, unsigned long prot, unsigned long flags,
2140 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2141 struct list_head *uf);
2142extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2143 struct list_head *uf);
2144
2145static inline unsigned long
2146do_mmap_pgoff(struct file *file, unsigned long addr,
2147 unsigned long len, unsigned long prot, unsigned long flags,
2148 unsigned long pgoff, unsigned long *populate,
2149 struct list_head *uf)
2150{
2151 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2152}
2153
2154#ifdef CONFIG_MMU
2155extern int __mm_populate(unsigned long addr, unsigned long len,
2156 int ignore_errors);
2157static inline void mm_populate(unsigned long addr, unsigned long len)
2158{
2159 /* Ignore errors */
2160 (void) __mm_populate(addr, len, 1);
2161}
2162#else
2163static inline void mm_populate(unsigned long addr, unsigned long len) {}
2164#endif
2165
2166/* These take the mm semaphore themselves */
2167extern int __must_check vm_brk(unsigned long, unsigned long);
2168extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2169extern int vm_munmap(unsigned long, size_t);
2170extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2171 unsigned long, unsigned long,
2172 unsigned long, unsigned long);
2173
2174struct vm_unmapped_area_info {
2175#define VM_UNMAPPED_AREA_TOPDOWN 1
2176 unsigned long flags;
2177 unsigned long length;
2178 unsigned long low_limit;
2179 unsigned long high_limit;
2180 unsigned long align_mask;
2181 unsigned long align_offset;
2182};
2183
2184extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2185extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2186
2187/*
2188 * Search for an unmapped address range.
2189 *
2190 * We are looking for a range that:
2191 * - does not intersect with any VMA;
2192 * - is contained within the [low_limit, high_limit) interval;
2193 * - is at least the desired size.
2194 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2195 */
2196static inline unsigned long
2197vm_unmapped_area(struct vm_unmapped_area_info *info)
2198{
2199 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2200 return unmapped_area_topdown(info);
2201 else
2202 return unmapped_area(info);
2203}
2204
2205/* truncate.c */
2206extern void truncate_inode_pages(struct address_space *, loff_t);
2207extern void truncate_inode_pages_range(struct address_space *,
2208 loff_t lstart, loff_t lend);
2209extern void truncate_inode_pages_final(struct address_space *);
2210
2211/* generic vm_area_ops exported for stackable file systems */
2212extern int filemap_fault(struct vm_fault *vmf);
2213extern void filemap_map_pages(struct vm_fault *vmf,
2214 pgoff_t start_pgoff, pgoff_t end_pgoff);
2215extern int filemap_page_mkwrite(struct vm_fault *vmf);
2216
2217/* mm/page-writeback.c */
2218int __must_check write_one_page(struct page *page);
2219void task_dirty_inc(struct task_struct *tsk);
2220
2221/* readahead.c */
2222#define VM_MAX_READAHEAD 128 /* kbytes */
2223#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2224
2225int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2226 pgoff_t offset, unsigned long nr_to_read);
2227
2228void page_cache_sync_readahead(struct address_space *mapping,
2229 struct file_ra_state *ra,
2230 struct file *filp,
2231 pgoff_t offset,
2232 unsigned long size);
2233
2234void page_cache_async_readahead(struct address_space *mapping,
2235 struct file_ra_state *ra,
2236 struct file *filp,
2237 struct page *pg,
2238 pgoff_t offset,
2239 unsigned long size);
2240
2241extern unsigned long stack_guard_gap;
2242/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2243extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2244
2245/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2246extern int expand_downwards(struct vm_area_struct *vma,
2247 unsigned long address);
2248#if VM_GROWSUP
2249extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2250#else
2251 #define expand_upwards(vma, address) (0)
2252#endif
2253
2254/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2255extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2256extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2257 struct vm_area_struct **pprev);
2258
2259/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2260 NULL if none. Assume start_addr < end_addr. */
2261static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2262{
2263 struct vm_area_struct * vma = find_vma(mm,start_addr);
2264
2265 if (vma && end_addr <= vma->vm_start)
2266 vma = NULL;
2267 return vma;
2268}
2269
2270static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2271{
2272 unsigned long vm_start = vma->vm_start;
2273
2274 if (vma->vm_flags & VM_GROWSDOWN) {
2275 vm_start -= stack_guard_gap;
2276 if (vm_start > vma->vm_start)
2277 vm_start = 0;
2278 }
2279 return vm_start;
2280}
2281
2282static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2283{
2284 unsigned long vm_end = vma->vm_end;
2285
2286 if (vma->vm_flags & VM_GROWSUP) {
2287 vm_end += stack_guard_gap;
2288 if (vm_end < vma->vm_end)
2289 vm_end = -PAGE_SIZE;
2290 }
2291 return vm_end;
2292}
2293
2294static inline unsigned long vma_pages(struct vm_area_struct *vma)
2295{
2296 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2297}
2298
2299/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2300static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2301 unsigned long vm_start, unsigned long vm_end)
2302{
2303 struct vm_area_struct *vma = find_vma(mm, vm_start);
2304
2305 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2306 vma = NULL;
2307
2308 return vma;
2309}
2310
2311#ifdef CONFIG_MMU
2312pgprot_t vm_get_page_prot(unsigned long vm_flags);
2313void vma_set_page_prot(struct vm_area_struct *vma);
2314#else
2315static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2316{
2317 return __pgprot(0);
2318}
2319static inline void vma_set_page_prot(struct vm_area_struct *vma)
2320{
2321 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2322}
2323#endif
2324
2325#ifdef CONFIG_NUMA_BALANCING
2326unsigned long change_prot_numa(struct vm_area_struct *vma,
2327 unsigned long start, unsigned long end);
2328#endif
2329
2330struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2331int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2332 unsigned long pfn, unsigned long size, pgprot_t);
2333int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2334int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2335 unsigned long pfn);
2336int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2337 unsigned long pfn, pgprot_t pgprot);
2338int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2339 pfn_t pfn);
2340int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
2341 pfn_t pfn);
2342int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2343
2344
2345struct page *follow_page_mask(struct vm_area_struct *vma,
2346 unsigned long address, unsigned int foll_flags,
2347 unsigned int *page_mask);
2348
2349static inline struct page *follow_page(struct vm_area_struct *vma,
2350 unsigned long address, unsigned int foll_flags)
2351{
2352 unsigned int unused_page_mask;
2353 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2354}
2355
2356#define FOLL_WRITE 0x01 /* check pte is writable */
2357#define FOLL_TOUCH 0x02 /* mark page accessed */
2358#define FOLL_GET 0x04 /* do get_page on page */
2359#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2360#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2361#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2362 * and return without waiting upon it */
2363#define FOLL_POPULATE 0x40 /* fault in page */
2364#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2365#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2366#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2367#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2368#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2369#define FOLL_MLOCK 0x1000 /* lock present pages */
2370#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2371#define FOLL_COW 0x4000 /* internal GUP flag */
2372
2373static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2374{
2375 if (vm_fault & VM_FAULT_OOM)
2376 return -ENOMEM;
2377 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2378 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2379 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2380 return -EFAULT;
2381 return 0;
2382}
2383
2384typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2385 void *data);
2386extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2387 unsigned long size, pte_fn_t fn, void *data);
2388
2389
2390#ifdef CONFIG_PAGE_POISONING
2391extern bool page_poisoning_enabled(void);
2392extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2393extern bool page_is_poisoned(struct page *page);
2394#else
2395static inline bool page_poisoning_enabled(void) { return false; }
2396static inline void kernel_poison_pages(struct page *page, int numpages,
2397 int enable) { }
2398static inline bool page_is_poisoned(struct page *page) { return false; }
2399#endif
2400
2401#ifdef CONFIG_DEBUG_PAGEALLOC
2402extern bool _debug_pagealloc_enabled;
2403extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2404
2405static inline bool debug_pagealloc_enabled(void)
2406{
2407 return _debug_pagealloc_enabled;
2408}
2409
2410static inline void
2411kernel_map_pages(struct page *page, int numpages, int enable)
2412{
2413 if (!debug_pagealloc_enabled())
2414 return;
2415
2416 __kernel_map_pages(page, numpages, enable);
2417}
2418#ifdef CONFIG_HIBERNATION
2419extern bool kernel_page_present(struct page *page);
2420#endif /* CONFIG_HIBERNATION */
2421#else /* CONFIG_DEBUG_PAGEALLOC */
2422static inline void
2423kernel_map_pages(struct page *page, int numpages, int enable) {}
2424#ifdef CONFIG_HIBERNATION
2425static inline bool kernel_page_present(struct page *page) { return true; }
2426#endif /* CONFIG_HIBERNATION */
2427static inline bool debug_pagealloc_enabled(void)
2428{
2429 return false;
2430}
2431#endif /* CONFIG_DEBUG_PAGEALLOC */
2432
2433#ifdef __HAVE_ARCH_GATE_AREA
2434extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2435extern int in_gate_area_no_mm(unsigned long addr);
2436extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2437#else
2438static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2439{
2440 return NULL;
2441}
2442static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2443static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2444{
2445 return 0;
2446}
2447#endif /* __HAVE_ARCH_GATE_AREA */
2448
2449extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2450
2451#ifdef CONFIG_SYSCTL
2452extern int sysctl_drop_caches;
2453int drop_caches_sysctl_handler(struct ctl_table *, int,
2454 void __user *, size_t *, loff_t *);
2455#endif
2456
2457void drop_slab(void);
2458void drop_slab_node(int nid);
2459
2460#ifndef CONFIG_MMU
2461#define randomize_va_space 0
2462#else
2463extern int randomize_va_space;
2464#endif
2465
2466const char * arch_vma_name(struct vm_area_struct *vma);
2467void print_vma_addr(char *prefix, unsigned long rip);
2468
2469void sparse_mem_maps_populate_node(struct page **map_map,
2470 unsigned long pnum_begin,
2471 unsigned long pnum_end,
2472 unsigned long map_count,
2473 int nodeid);
2474
2475struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2476pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2477p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2478pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2479pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2480pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2481void *vmemmap_alloc_block(unsigned long size, int node);
2482struct vmem_altmap;
2483void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2484 struct vmem_altmap *altmap);
2485static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2486{
2487 return __vmemmap_alloc_block_buf(size, node, NULL);
2488}
2489
2490void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2491int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2492 int node);
2493int vmemmap_populate(unsigned long start, unsigned long end, int node);
2494void vmemmap_populate_print_last(void);
2495#ifdef CONFIG_MEMORY_HOTPLUG
2496void vmemmap_free(unsigned long start, unsigned long end);
2497#endif
2498void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2499 unsigned long size);
2500
2501enum mf_flags {
2502 MF_COUNT_INCREASED = 1 << 0,
2503 MF_ACTION_REQUIRED = 1 << 1,
2504 MF_MUST_KILL = 1 << 2,
2505 MF_SOFT_OFFLINE = 1 << 3,
2506};
2507extern int memory_failure(unsigned long pfn, int trapno, int flags);
2508extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2509extern int unpoison_memory(unsigned long pfn);
2510extern int get_hwpoison_page(struct page *page);
2511#define put_hwpoison_page(page) put_page(page)
2512extern int sysctl_memory_failure_early_kill;
2513extern int sysctl_memory_failure_recovery;
2514extern void shake_page(struct page *p, int access);
2515extern atomic_long_t num_poisoned_pages;
2516extern int soft_offline_page(struct page *page, int flags);
2517
2518
2519/*
2520 * Error handlers for various types of pages.
2521 */
2522enum mf_result {
2523 MF_IGNORED, /* Error: cannot be handled */
2524 MF_FAILED, /* Error: handling failed */
2525 MF_DELAYED, /* Will be handled later */
2526 MF_RECOVERED, /* Successfully recovered */
2527};
2528
2529enum mf_action_page_type {
2530 MF_MSG_KERNEL,
2531 MF_MSG_KERNEL_HIGH_ORDER,
2532 MF_MSG_SLAB,
2533 MF_MSG_DIFFERENT_COMPOUND,
2534 MF_MSG_POISONED_HUGE,
2535 MF_MSG_HUGE,
2536 MF_MSG_FREE_HUGE,
2537 MF_MSG_UNMAP_FAILED,
2538 MF_MSG_DIRTY_SWAPCACHE,
2539 MF_MSG_CLEAN_SWAPCACHE,
2540 MF_MSG_DIRTY_MLOCKED_LRU,
2541 MF_MSG_CLEAN_MLOCKED_LRU,
2542 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2543 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2544 MF_MSG_DIRTY_LRU,
2545 MF_MSG_CLEAN_LRU,
2546 MF_MSG_TRUNCATED_LRU,
2547 MF_MSG_BUDDY,
2548 MF_MSG_BUDDY_2ND,
2549 MF_MSG_UNKNOWN,
2550};
2551
2552#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2553extern void clear_huge_page(struct page *page,
2554 unsigned long addr_hint,
2555 unsigned int pages_per_huge_page);
2556extern void copy_user_huge_page(struct page *dst, struct page *src,
2557 unsigned long addr, struct vm_area_struct *vma,
2558 unsigned int pages_per_huge_page);
2559extern long copy_huge_page_from_user(struct page *dst_page,
2560 const void __user *usr_src,
2561 unsigned int pages_per_huge_page,
2562 bool allow_pagefault);
2563#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2564
2565extern struct page_ext_operations debug_guardpage_ops;
2566
2567#ifdef CONFIG_DEBUG_PAGEALLOC
2568extern unsigned int _debug_guardpage_minorder;
2569extern bool _debug_guardpage_enabled;
2570
2571static inline unsigned int debug_guardpage_minorder(void)
2572{
2573 return _debug_guardpage_minorder;
2574}
2575
2576static inline bool debug_guardpage_enabled(void)
2577{
2578 return _debug_guardpage_enabled;
2579}
2580
2581static inline bool page_is_guard(struct page *page)
2582{
2583 struct page_ext *page_ext;
2584
2585 if (!debug_guardpage_enabled())
2586 return false;
2587
2588 page_ext = lookup_page_ext(page);
2589 if (unlikely(!page_ext))
2590 return false;
2591
2592 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2593}
2594#else
2595static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2596static inline bool debug_guardpage_enabled(void) { return false; }
2597static inline bool page_is_guard(struct page *page) { return false; }
2598#endif /* CONFIG_DEBUG_PAGEALLOC */
2599
2600#if MAX_NUMNODES > 1
2601void __init setup_nr_node_ids(void);
2602#else
2603static inline void setup_nr_node_ids(void) {}
2604#endif
2605
2606#endif /* __KERNEL__ */
2607#endif /* _LINUX_MM_H */