at v4.14 26 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Linux Socket Filter Data Structures 4 */ 5#ifndef __LINUX_FILTER_H__ 6#define __LINUX_FILTER_H__ 7 8#include <stdarg.h> 9 10#include <linux/atomic.h> 11#include <linux/refcount.h> 12#include <linux/compat.h> 13#include <linux/skbuff.h> 14#include <linux/linkage.h> 15#include <linux/printk.h> 16#include <linux/workqueue.h> 17#include <linux/sched.h> 18#include <linux/capability.h> 19#include <linux/cryptohash.h> 20#include <linux/set_memory.h> 21 22#include <net/sch_generic.h> 23 24#include <uapi/linux/filter.h> 25#include <uapi/linux/bpf.h> 26 27struct sk_buff; 28struct sock; 29struct seccomp_data; 30struct bpf_prog_aux; 31 32/* ArgX, context and stack frame pointer register positions. Note, 33 * Arg1, Arg2, Arg3, etc are used as argument mappings of function 34 * calls in BPF_CALL instruction. 35 */ 36#define BPF_REG_ARG1 BPF_REG_1 37#define BPF_REG_ARG2 BPF_REG_2 38#define BPF_REG_ARG3 BPF_REG_3 39#define BPF_REG_ARG4 BPF_REG_4 40#define BPF_REG_ARG5 BPF_REG_5 41#define BPF_REG_CTX BPF_REG_6 42#define BPF_REG_FP BPF_REG_10 43 44/* Additional register mappings for converted user programs. */ 45#define BPF_REG_A BPF_REG_0 46#define BPF_REG_X BPF_REG_7 47#define BPF_REG_TMP BPF_REG_8 48 49/* Kernel hidden auxiliary/helper register for hardening step. 50 * Only used by eBPF JITs. It's nothing more than a temporary 51 * register that JITs use internally, only that here it's part 52 * of eBPF instructions that have been rewritten for blinding 53 * constants. See JIT pre-step in bpf_jit_blind_constants(). 54 */ 55#define BPF_REG_AX MAX_BPF_REG 56#define MAX_BPF_JIT_REG (MAX_BPF_REG + 1) 57 58/* unused opcode to mark special call to bpf_tail_call() helper */ 59#define BPF_TAIL_CALL 0xf0 60 61/* As per nm, we expose JITed images as text (code) section for 62 * kallsyms. That way, tools like perf can find it to match 63 * addresses. 64 */ 65#define BPF_SYM_ELF_TYPE 't' 66 67/* BPF program can access up to 512 bytes of stack space. */ 68#define MAX_BPF_STACK 512 69 70/* Helper macros for filter block array initializers. */ 71 72/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ 73 74#define BPF_ALU64_REG(OP, DST, SRC) \ 75 ((struct bpf_insn) { \ 76 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ 77 .dst_reg = DST, \ 78 .src_reg = SRC, \ 79 .off = 0, \ 80 .imm = 0 }) 81 82#define BPF_ALU32_REG(OP, DST, SRC) \ 83 ((struct bpf_insn) { \ 84 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ 85 .dst_reg = DST, \ 86 .src_reg = SRC, \ 87 .off = 0, \ 88 .imm = 0 }) 89 90/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ 91 92#define BPF_ALU64_IMM(OP, DST, IMM) \ 93 ((struct bpf_insn) { \ 94 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ 95 .dst_reg = DST, \ 96 .src_reg = 0, \ 97 .off = 0, \ 98 .imm = IMM }) 99 100#define BPF_ALU32_IMM(OP, DST, IMM) \ 101 ((struct bpf_insn) { \ 102 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ 103 .dst_reg = DST, \ 104 .src_reg = 0, \ 105 .off = 0, \ 106 .imm = IMM }) 107 108/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ 109 110#define BPF_ENDIAN(TYPE, DST, LEN) \ 111 ((struct bpf_insn) { \ 112 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ 113 .dst_reg = DST, \ 114 .src_reg = 0, \ 115 .off = 0, \ 116 .imm = LEN }) 117 118/* Short form of mov, dst_reg = src_reg */ 119 120#define BPF_MOV64_REG(DST, SRC) \ 121 ((struct bpf_insn) { \ 122 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 123 .dst_reg = DST, \ 124 .src_reg = SRC, \ 125 .off = 0, \ 126 .imm = 0 }) 127 128#define BPF_MOV32_REG(DST, SRC) \ 129 ((struct bpf_insn) { \ 130 .code = BPF_ALU | BPF_MOV | BPF_X, \ 131 .dst_reg = DST, \ 132 .src_reg = SRC, \ 133 .off = 0, \ 134 .imm = 0 }) 135 136/* Short form of mov, dst_reg = imm32 */ 137 138#define BPF_MOV64_IMM(DST, IMM) \ 139 ((struct bpf_insn) { \ 140 .code = BPF_ALU64 | BPF_MOV | BPF_K, \ 141 .dst_reg = DST, \ 142 .src_reg = 0, \ 143 .off = 0, \ 144 .imm = IMM }) 145 146#define BPF_MOV32_IMM(DST, IMM) \ 147 ((struct bpf_insn) { \ 148 .code = BPF_ALU | BPF_MOV | BPF_K, \ 149 .dst_reg = DST, \ 150 .src_reg = 0, \ 151 .off = 0, \ 152 .imm = IMM }) 153 154/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ 155#define BPF_LD_IMM64(DST, IMM) \ 156 BPF_LD_IMM64_RAW(DST, 0, IMM) 157 158#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ 159 ((struct bpf_insn) { \ 160 .code = BPF_LD | BPF_DW | BPF_IMM, \ 161 .dst_reg = DST, \ 162 .src_reg = SRC, \ 163 .off = 0, \ 164 .imm = (__u32) (IMM) }), \ 165 ((struct bpf_insn) { \ 166 .code = 0, /* zero is reserved opcode */ \ 167 .dst_reg = 0, \ 168 .src_reg = 0, \ 169 .off = 0, \ 170 .imm = ((__u64) (IMM)) >> 32 }) 171 172/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ 173#define BPF_LD_MAP_FD(DST, MAP_FD) \ 174 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) 175 176/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ 177 178#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ 179 ((struct bpf_insn) { \ 180 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ 181 .dst_reg = DST, \ 182 .src_reg = SRC, \ 183 .off = 0, \ 184 .imm = IMM }) 185 186#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ 187 ((struct bpf_insn) { \ 188 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ 189 .dst_reg = DST, \ 190 .src_reg = SRC, \ 191 .off = 0, \ 192 .imm = IMM }) 193 194/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ 195 196#define BPF_LD_ABS(SIZE, IMM) \ 197 ((struct bpf_insn) { \ 198 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ 199 .dst_reg = 0, \ 200 .src_reg = 0, \ 201 .off = 0, \ 202 .imm = IMM }) 203 204/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ 205 206#define BPF_LD_IND(SIZE, SRC, IMM) \ 207 ((struct bpf_insn) { \ 208 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ 209 .dst_reg = 0, \ 210 .src_reg = SRC, \ 211 .off = 0, \ 212 .imm = IMM }) 213 214/* Memory load, dst_reg = *(uint *) (src_reg + off16) */ 215 216#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ 217 ((struct bpf_insn) { \ 218 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ 219 .dst_reg = DST, \ 220 .src_reg = SRC, \ 221 .off = OFF, \ 222 .imm = 0 }) 223 224/* Memory store, *(uint *) (dst_reg + off16) = src_reg */ 225 226#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ 227 ((struct bpf_insn) { \ 228 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ 229 .dst_reg = DST, \ 230 .src_reg = SRC, \ 231 .off = OFF, \ 232 .imm = 0 }) 233 234/* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */ 235 236#define BPF_STX_XADD(SIZE, DST, SRC, OFF) \ 237 ((struct bpf_insn) { \ 238 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD, \ 239 .dst_reg = DST, \ 240 .src_reg = SRC, \ 241 .off = OFF, \ 242 .imm = 0 }) 243 244/* Memory store, *(uint *) (dst_reg + off16) = imm32 */ 245 246#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ 247 ((struct bpf_insn) { \ 248 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ 249 .dst_reg = DST, \ 250 .src_reg = 0, \ 251 .off = OFF, \ 252 .imm = IMM }) 253 254/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ 255 256#define BPF_JMP_REG(OP, DST, SRC, OFF) \ 257 ((struct bpf_insn) { \ 258 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ 259 .dst_reg = DST, \ 260 .src_reg = SRC, \ 261 .off = OFF, \ 262 .imm = 0 }) 263 264/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ 265 266#define BPF_JMP_IMM(OP, DST, IMM, OFF) \ 267 ((struct bpf_insn) { \ 268 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ 269 .dst_reg = DST, \ 270 .src_reg = 0, \ 271 .off = OFF, \ 272 .imm = IMM }) 273 274/* Unconditional jumps, goto pc + off16 */ 275 276#define BPF_JMP_A(OFF) \ 277 ((struct bpf_insn) { \ 278 .code = BPF_JMP | BPF_JA, \ 279 .dst_reg = 0, \ 280 .src_reg = 0, \ 281 .off = OFF, \ 282 .imm = 0 }) 283 284/* Function call */ 285 286#define BPF_EMIT_CALL(FUNC) \ 287 ((struct bpf_insn) { \ 288 .code = BPF_JMP | BPF_CALL, \ 289 .dst_reg = 0, \ 290 .src_reg = 0, \ 291 .off = 0, \ 292 .imm = ((FUNC) - __bpf_call_base) }) 293 294/* Raw code statement block */ 295 296#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ 297 ((struct bpf_insn) { \ 298 .code = CODE, \ 299 .dst_reg = DST, \ 300 .src_reg = SRC, \ 301 .off = OFF, \ 302 .imm = IMM }) 303 304/* Program exit */ 305 306#define BPF_EXIT_INSN() \ 307 ((struct bpf_insn) { \ 308 .code = BPF_JMP | BPF_EXIT, \ 309 .dst_reg = 0, \ 310 .src_reg = 0, \ 311 .off = 0, \ 312 .imm = 0 }) 313 314/* Internal classic blocks for direct assignment */ 315 316#define __BPF_STMT(CODE, K) \ 317 ((struct sock_filter) BPF_STMT(CODE, K)) 318 319#define __BPF_JUMP(CODE, K, JT, JF) \ 320 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) 321 322#define bytes_to_bpf_size(bytes) \ 323({ \ 324 int bpf_size = -EINVAL; \ 325 \ 326 if (bytes == sizeof(u8)) \ 327 bpf_size = BPF_B; \ 328 else if (bytes == sizeof(u16)) \ 329 bpf_size = BPF_H; \ 330 else if (bytes == sizeof(u32)) \ 331 bpf_size = BPF_W; \ 332 else if (bytes == sizeof(u64)) \ 333 bpf_size = BPF_DW; \ 334 \ 335 bpf_size; \ 336}) 337 338#define bpf_size_to_bytes(bpf_size) \ 339({ \ 340 int bytes = -EINVAL; \ 341 \ 342 if (bpf_size == BPF_B) \ 343 bytes = sizeof(u8); \ 344 else if (bpf_size == BPF_H) \ 345 bytes = sizeof(u16); \ 346 else if (bpf_size == BPF_W) \ 347 bytes = sizeof(u32); \ 348 else if (bpf_size == BPF_DW) \ 349 bytes = sizeof(u64); \ 350 \ 351 bytes; \ 352}) 353 354#define BPF_SIZEOF(type) \ 355 ({ \ 356 const int __size = bytes_to_bpf_size(sizeof(type)); \ 357 BUILD_BUG_ON(__size < 0); \ 358 __size; \ 359 }) 360 361#define BPF_FIELD_SIZEOF(type, field) \ 362 ({ \ 363 const int __size = bytes_to_bpf_size(FIELD_SIZEOF(type, field)); \ 364 BUILD_BUG_ON(__size < 0); \ 365 __size; \ 366 }) 367 368#define BPF_LDST_BYTES(insn) \ 369 ({ \ 370 const int __size = bpf_size_to_bytes(BPF_SIZE(insn->code)); \ 371 WARN_ON(__size < 0); \ 372 __size; \ 373 }) 374 375#define __BPF_MAP_0(m, v, ...) v 376#define __BPF_MAP_1(m, v, t, a, ...) m(t, a) 377#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) 378#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) 379#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) 380#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) 381 382#define __BPF_REG_0(...) __BPF_PAD(5) 383#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) 384#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) 385#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) 386#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) 387#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) 388 389#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) 390#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) 391 392#define __BPF_CAST(t, a) \ 393 (__force t) \ 394 (__force \ 395 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ 396 (unsigned long)0, (t)0))) a 397#define __BPF_V void 398#define __BPF_N 399 400#define __BPF_DECL_ARGS(t, a) t a 401#define __BPF_DECL_REGS(t, a) u64 a 402 403#define __BPF_PAD(n) \ 404 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ 405 u64, __ur_3, u64, __ur_4, u64, __ur_5) 406 407#define BPF_CALL_x(x, name, ...) \ 408 static __always_inline \ 409 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 410 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ 411 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ 412 { \ 413 return ____##name(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ 414 } \ 415 static __always_inline \ 416 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) 417 418#define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__) 419#define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__) 420#define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__) 421#define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__) 422#define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__) 423#define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__) 424 425#define bpf_ctx_range(TYPE, MEMBER) \ 426 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 427#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ 428 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 429 430#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ 431 ({ \ 432 BUILD_BUG_ON(FIELD_SIZEOF(TYPE, MEMBER) != (SIZE)); \ 433 *(PTR_SIZE) = (SIZE); \ 434 offsetof(TYPE, MEMBER); \ 435 }) 436 437#ifdef CONFIG_COMPAT 438/* A struct sock_filter is architecture independent. */ 439struct compat_sock_fprog { 440 u16 len; 441 compat_uptr_t filter; /* struct sock_filter * */ 442}; 443#endif 444 445struct sock_fprog_kern { 446 u16 len; 447 struct sock_filter *filter; 448}; 449 450struct bpf_binary_header { 451 unsigned int pages; 452 u8 image[]; 453}; 454 455struct bpf_prog { 456 u16 pages; /* Number of allocated pages */ 457 kmemcheck_bitfield_begin(meta); 458 u16 jited:1, /* Is our filter JIT'ed? */ 459 locked:1, /* Program image locked? */ 460 gpl_compatible:1, /* Is filter GPL compatible? */ 461 cb_access:1, /* Is control block accessed? */ 462 dst_needed:1; /* Do we need dst entry? */ 463 kmemcheck_bitfield_end(meta); 464 enum bpf_prog_type type; /* Type of BPF program */ 465 u32 len; /* Number of filter blocks */ 466 u32 jited_len; /* Size of jited insns in bytes */ 467 u8 tag[BPF_TAG_SIZE]; 468 struct bpf_prog_aux *aux; /* Auxiliary fields */ 469 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 470 unsigned int (*bpf_func)(const void *ctx, 471 const struct bpf_insn *insn); 472 /* Instructions for interpreter */ 473 union { 474 struct sock_filter insns[0]; 475 struct bpf_insn insnsi[0]; 476 }; 477}; 478 479struct sk_filter { 480 refcount_t refcnt; 481 struct rcu_head rcu; 482 struct bpf_prog *prog; 483}; 484 485#define BPF_PROG_RUN(filter, ctx) (*filter->bpf_func)(ctx, filter->insnsi) 486 487#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN 488 489struct bpf_skb_data_end { 490 struct qdisc_skb_cb qdisc_cb; 491 void *data_end; 492}; 493 494struct xdp_buff { 495 void *data; 496 void *data_end; 497 void *data_hard_start; 498}; 499 500/* compute the linear packet data range [data, data_end) which 501 * will be accessed by cls_bpf, act_bpf and lwt programs 502 */ 503static inline void bpf_compute_data_end(struct sk_buff *skb) 504{ 505 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 506 507 BUILD_BUG_ON(sizeof(*cb) > FIELD_SIZEOF(struct sk_buff, cb)); 508 cb->data_end = skb->data + skb_headlen(skb); 509} 510 511static inline u8 *bpf_skb_cb(struct sk_buff *skb) 512{ 513 /* eBPF programs may read/write skb->cb[] area to transfer meta 514 * data between tail calls. Since this also needs to work with 515 * tc, that scratch memory is mapped to qdisc_skb_cb's data area. 516 * 517 * In some socket filter cases, the cb unfortunately needs to be 518 * saved/restored so that protocol specific skb->cb[] data won't 519 * be lost. In any case, due to unpriviledged eBPF programs 520 * attached to sockets, we need to clear the bpf_skb_cb() area 521 * to not leak previous contents to user space. 522 */ 523 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != BPF_SKB_CB_LEN); 524 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != 525 FIELD_SIZEOF(struct qdisc_skb_cb, data)); 526 527 return qdisc_skb_cb(skb)->data; 528} 529 530static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, 531 struct sk_buff *skb) 532{ 533 u8 *cb_data = bpf_skb_cb(skb); 534 u8 cb_saved[BPF_SKB_CB_LEN]; 535 u32 res; 536 537 if (unlikely(prog->cb_access)) { 538 memcpy(cb_saved, cb_data, sizeof(cb_saved)); 539 memset(cb_data, 0, sizeof(cb_saved)); 540 } 541 542 res = BPF_PROG_RUN(prog, skb); 543 544 if (unlikely(prog->cb_access)) 545 memcpy(cb_data, cb_saved, sizeof(cb_saved)); 546 547 return res; 548} 549 550static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, 551 struct sk_buff *skb) 552{ 553 u8 *cb_data = bpf_skb_cb(skb); 554 555 if (unlikely(prog->cb_access)) 556 memset(cb_data, 0, BPF_SKB_CB_LEN); 557 558 return BPF_PROG_RUN(prog, skb); 559} 560 561static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog, 562 struct xdp_buff *xdp) 563{ 564 /* Caller needs to hold rcu_read_lock() (!), otherwise program 565 * can be released while still running, or map elements could be 566 * freed early while still having concurrent users. XDP fastpath 567 * already takes rcu_read_lock() when fetching the program, so 568 * it's not necessary here anymore. 569 */ 570 return BPF_PROG_RUN(prog, xdp); 571} 572 573static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) 574{ 575 return prog->len * sizeof(struct bpf_insn); 576} 577 578static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog) 579{ 580 return round_up(bpf_prog_insn_size(prog) + 581 sizeof(__be64) + 1, SHA_MESSAGE_BYTES); 582} 583 584static inline unsigned int bpf_prog_size(unsigned int proglen) 585{ 586 return max(sizeof(struct bpf_prog), 587 offsetof(struct bpf_prog, insns[proglen])); 588} 589 590static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) 591{ 592 /* When classic BPF programs have been loaded and the arch 593 * does not have a classic BPF JIT (anymore), they have been 594 * converted via bpf_migrate_filter() to eBPF and thus always 595 * have an unspec program type. 596 */ 597 return prog->type == BPF_PROG_TYPE_UNSPEC; 598} 599 600static inline bool 601bpf_ctx_narrow_access_ok(u32 off, u32 size, const u32 size_default) 602{ 603 bool off_ok; 604#ifdef __LITTLE_ENDIAN 605 off_ok = (off & (size_default - 1)) == 0; 606#else 607 off_ok = (off & (size_default - 1)) + size == size_default; 608#endif 609 return off_ok && size <= size_default && (size & (size - 1)) == 0; 610} 611 612#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) 613 614#ifdef CONFIG_ARCH_HAS_SET_MEMORY 615static inline void bpf_prog_lock_ro(struct bpf_prog *fp) 616{ 617 fp->locked = 1; 618 WARN_ON_ONCE(set_memory_ro((unsigned long)fp, fp->pages)); 619} 620 621static inline void bpf_prog_unlock_ro(struct bpf_prog *fp) 622{ 623 if (fp->locked) { 624 WARN_ON_ONCE(set_memory_rw((unsigned long)fp, fp->pages)); 625 /* In case set_memory_rw() fails, we want to be the first 626 * to crash here instead of some random place later on. 627 */ 628 fp->locked = 0; 629 } 630} 631 632static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) 633{ 634 WARN_ON_ONCE(set_memory_ro((unsigned long)hdr, hdr->pages)); 635} 636 637static inline void bpf_jit_binary_unlock_ro(struct bpf_binary_header *hdr) 638{ 639 WARN_ON_ONCE(set_memory_rw((unsigned long)hdr, hdr->pages)); 640} 641#else 642static inline void bpf_prog_lock_ro(struct bpf_prog *fp) 643{ 644} 645 646static inline void bpf_prog_unlock_ro(struct bpf_prog *fp) 647{ 648} 649 650static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) 651{ 652} 653 654static inline void bpf_jit_binary_unlock_ro(struct bpf_binary_header *hdr) 655{ 656} 657#endif /* CONFIG_ARCH_HAS_SET_MEMORY */ 658 659static inline struct bpf_binary_header * 660bpf_jit_binary_hdr(const struct bpf_prog *fp) 661{ 662 unsigned long real_start = (unsigned long)fp->bpf_func; 663 unsigned long addr = real_start & PAGE_MASK; 664 665 return (void *)addr; 666} 667 668int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap); 669static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 670{ 671 return sk_filter_trim_cap(sk, skb, 1); 672} 673 674struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); 675void bpf_prog_free(struct bpf_prog *fp); 676 677struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); 678struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 679 gfp_t gfp_extra_flags); 680void __bpf_prog_free(struct bpf_prog *fp); 681 682static inline void bpf_prog_unlock_free(struct bpf_prog *fp) 683{ 684 bpf_prog_unlock_ro(fp); 685 __bpf_prog_free(fp); 686} 687 688typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, 689 unsigned int flen); 690 691int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); 692int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 693 bpf_aux_classic_check_t trans, bool save_orig); 694void bpf_prog_destroy(struct bpf_prog *fp); 695 696int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); 697int sk_attach_bpf(u32 ufd, struct sock *sk); 698int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); 699int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); 700int sk_detach_filter(struct sock *sk); 701int sk_get_filter(struct sock *sk, struct sock_filter __user *filter, 702 unsigned int len); 703 704bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); 705void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); 706 707u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 708 709struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); 710void bpf_jit_compile(struct bpf_prog *prog); 711bool bpf_helper_changes_pkt_data(void *func); 712 713struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 714 const struct bpf_insn *patch, u32 len); 715 716/* The pair of xdp_do_redirect and xdp_do_flush_map MUST be called in the 717 * same cpu context. Further for best results no more than a single map 718 * for the do_redirect/do_flush pair should be used. This limitation is 719 * because we only track one map and force a flush when the map changes. 720 * This does not appear to be a real limitation for existing software. 721 */ 722int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 723 struct bpf_prog *prog); 724int xdp_do_redirect(struct net_device *dev, 725 struct xdp_buff *xdp, 726 struct bpf_prog *prog); 727void xdp_do_flush_map(void); 728 729void bpf_warn_invalid_xdp_action(u32 act); 730void bpf_warn_invalid_xdp_redirect(u32 ifindex); 731 732struct sock *do_sk_redirect_map(struct sk_buff *skb); 733 734#ifdef CONFIG_BPF_JIT 735extern int bpf_jit_enable; 736extern int bpf_jit_harden; 737extern int bpf_jit_kallsyms; 738 739typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); 740 741struct bpf_binary_header * 742bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 743 unsigned int alignment, 744 bpf_jit_fill_hole_t bpf_fill_ill_insns); 745void bpf_jit_binary_free(struct bpf_binary_header *hdr); 746 747void bpf_jit_free(struct bpf_prog *fp); 748 749struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); 750void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); 751 752static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, 753 u32 pass, void *image) 754{ 755 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen, 756 proglen, pass, image, current->comm, task_pid_nr(current)); 757 758 if (image) 759 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 760 16, 1, image, proglen, false); 761} 762 763static inline bool bpf_jit_is_ebpf(void) 764{ 765# ifdef CONFIG_HAVE_EBPF_JIT 766 return true; 767# else 768 return false; 769# endif 770} 771 772static inline bool ebpf_jit_enabled(void) 773{ 774 return bpf_jit_enable && bpf_jit_is_ebpf(); 775} 776 777static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 778{ 779 return fp->jited && bpf_jit_is_ebpf(); 780} 781 782static inline bool bpf_jit_blinding_enabled(void) 783{ 784 /* These are the prerequisites, should someone ever have the 785 * idea to call blinding outside of them, we make sure to 786 * bail out. 787 */ 788 if (!bpf_jit_is_ebpf()) 789 return false; 790 if (!bpf_jit_enable) 791 return false; 792 if (!bpf_jit_harden) 793 return false; 794 if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN)) 795 return false; 796 797 return true; 798} 799 800static inline bool bpf_jit_kallsyms_enabled(void) 801{ 802 /* There are a couple of corner cases where kallsyms should 803 * not be enabled f.e. on hardening. 804 */ 805 if (bpf_jit_harden) 806 return false; 807 if (!bpf_jit_kallsyms) 808 return false; 809 if (bpf_jit_kallsyms == 1) 810 return true; 811 812 return false; 813} 814 815const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, 816 unsigned long *off, char *sym); 817bool is_bpf_text_address(unsigned long addr); 818int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 819 char *sym); 820 821static inline const char * 822bpf_address_lookup(unsigned long addr, unsigned long *size, 823 unsigned long *off, char **modname, char *sym) 824{ 825 const char *ret = __bpf_address_lookup(addr, size, off, sym); 826 827 if (ret && modname) 828 *modname = NULL; 829 return ret; 830} 831 832void bpf_prog_kallsyms_add(struct bpf_prog *fp); 833void bpf_prog_kallsyms_del(struct bpf_prog *fp); 834 835#else /* CONFIG_BPF_JIT */ 836 837static inline bool ebpf_jit_enabled(void) 838{ 839 return false; 840} 841 842static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 843{ 844 return false; 845} 846 847static inline void bpf_jit_free(struct bpf_prog *fp) 848{ 849 bpf_prog_unlock_free(fp); 850} 851 852static inline bool bpf_jit_kallsyms_enabled(void) 853{ 854 return false; 855} 856 857static inline const char * 858__bpf_address_lookup(unsigned long addr, unsigned long *size, 859 unsigned long *off, char *sym) 860{ 861 return NULL; 862} 863 864static inline bool is_bpf_text_address(unsigned long addr) 865{ 866 return false; 867} 868 869static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, 870 char *type, char *sym) 871{ 872 return -ERANGE; 873} 874 875static inline const char * 876bpf_address_lookup(unsigned long addr, unsigned long *size, 877 unsigned long *off, char **modname, char *sym) 878{ 879 return NULL; 880} 881 882static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) 883{ 884} 885 886static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) 887{ 888} 889#endif /* CONFIG_BPF_JIT */ 890 891#define BPF_ANC BIT(15) 892 893static inline bool bpf_needs_clear_a(const struct sock_filter *first) 894{ 895 switch (first->code) { 896 case BPF_RET | BPF_K: 897 case BPF_LD | BPF_W | BPF_LEN: 898 return false; 899 900 case BPF_LD | BPF_W | BPF_ABS: 901 case BPF_LD | BPF_H | BPF_ABS: 902 case BPF_LD | BPF_B | BPF_ABS: 903 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) 904 return true; 905 return false; 906 907 default: 908 return true; 909 } 910} 911 912static inline u16 bpf_anc_helper(const struct sock_filter *ftest) 913{ 914 BUG_ON(ftest->code & BPF_ANC); 915 916 switch (ftest->code) { 917 case BPF_LD | BPF_W | BPF_ABS: 918 case BPF_LD | BPF_H | BPF_ABS: 919 case BPF_LD | BPF_B | BPF_ABS: 920#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ 921 return BPF_ANC | SKF_AD_##CODE 922 switch (ftest->k) { 923 BPF_ANCILLARY(PROTOCOL); 924 BPF_ANCILLARY(PKTTYPE); 925 BPF_ANCILLARY(IFINDEX); 926 BPF_ANCILLARY(NLATTR); 927 BPF_ANCILLARY(NLATTR_NEST); 928 BPF_ANCILLARY(MARK); 929 BPF_ANCILLARY(QUEUE); 930 BPF_ANCILLARY(HATYPE); 931 BPF_ANCILLARY(RXHASH); 932 BPF_ANCILLARY(CPU); 933 BPF_ANCILLARY(ALU_XOR_X); 934 BPF_ANCILLARY(VLAN_TAG); 935 BPF_ANCILLARY(VLAN_TAG_PRESENT); 936 BPF_ANCILLARY(PAY_OFFSET); 937 BPF_ANCILLARY(RANDOM); 938 BPF_ANCILLARY(VLAN_TPID); 939 } 940 /* Fallthrough. */ 941 default: 942 return ftest->code; 943 } 944} 945 946void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, 947 int k, unsigned int size); 948 949static inline void *bpf_load_pointer(const struct sk_buff *skb, int k, 950 unsigned int size, void *buffer) 951{ 952 if (k >= 0) 953 return skb_header_pointer(skb, k, size, buffer); 954 955 return bpf_internal_load_pointer_neg_helper(skb, k, size); 956} 957 958static inline int bpf_tell_extensions(void) 959{ 960 return SKF_AD_MAX; 961} 962 963struct bpf_sock_ops_kern { 964 struct sock *sk; 965 u32 op; 966 union { 967 u32 reply; 968 u32 replylong[4]; 969 }; 970}; 971 972#endif /* __LINUX_FILTER_H__ */