at v4.14 1034 lines 28 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _ASM_GENERIC_PGTABLE_H 3#define _ASM_GENERIC_PGTABLE_H 4 5#include <linux/pfn.h> 6 7#ifndef __ASSEMBLY__ 8#ifdef CONFIG_MMU 9 10#include <linux/mm_types.h> 11#include <linux/bug.h> 12#include <linux/errno.h> 13 14#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ 15 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS 16#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED 17#endif 18 19/* 20 * On almost all architectures and configurations, 0 can be used as the 21 * upper ceiling to free_pgtables(): on many architectures it has the same 22 * effect as using TASK_SIZE. However, there is one configuration which 23 * must impose a more careful limit, to avoid freeing kernel pgtables. 24 */ 25#ifndef USER_PGTABLES_CEILING 26#define USER_PGTABLES_CEILING 0UL 27#endif 28 29#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 30extern int ptep_set_access_flags(struct vm_area_struct *vma, 31 unsigned long address, pte_t *ptep, 32 pte_t entry, int dirty); 33#endif 34 35#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 36#ifdef CONFIG_TRANSPARENT_HUGEPAGE 37extern int pmdp_set_access_flags(struct vm_area_struct *vma, 38 unsigned long address, pmd_t *pmdp, 39 pmd_t entry, int dirty); 40extern int pudp_set_access_flags(struct vm_area_struct *vma, 41 unsigned long address, pud_t *pudp, 42 pud_t entry, int dirty); 43#else 44static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 45 unsigned long address, pmd_t *pmdp, 46 pmd_t entry, int dirty) 47{ 48 BUILD_BUG(); 49 return 0; 50} 51static inline int pudp_set_access_flags(struct vm_area_struct *vma, 52 unsigned long address, pud_t *pudp, 53 pud_t entry, int dirty) 54{ 55 BUILD_BUG(); 56 return 0; 57} 58#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 59#endif 60 61#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 62static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 63 unsigned long address, 64 pte_t *ptep) 65{ 66 pte_t pte = *ptep; 67 int r = 1; 68 if (!pte_young(pte)) 69 r = 0; 70 else 71 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 72 return r; 73} 74#endif 75 76#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 77#ifdef CONFIG_TRANSPARENT_HUGEPAGE 78static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 79 unsigned long address, 80 pmd_t *pmdp) 81{ 82 pmd_t pmd = *pmdp; 83 int r = 1; 84 if (!pmd_young(pmd)) 85 r = 0; 86 else 87 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 88 return r; 89} 90#else 91static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 92 unsigned long address, 93 pmd_t *pmdp) 94{ 95 BUILD_BUG(); 96 return 0; 97} 98#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 99#endif 100 101#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 102int ptep_clear_flush_young(struct vm_area_struct *vma, 103 unsigned long address, pte_t *ptep); 104#endif 105 106#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 107#ifdef CONFIG_TRANSPARENT_HUGEPAGE 108extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 109 unsigned long address, pmd_t *pmdp); 110#else 111/* 112 * Despite relevant to THP only, this API is called from generic rmap code 113 * under PageTransHuge(), hence needs a dummy implementation for !THP 114 */ 115static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 116 unsigned long address, pmd_t *pmdp) 117{ 118 BUILD_BUG(); 119 return 0; 120} 121#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 122#endif 123 124#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 125static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 126 unsigned long address, 127 pte_t *ptep) 128{ 129 pte_t pte = *ptep; 130 pte_clear(mm, address, ptep); 131 return pte; 132} 133#endif 134 135#ifdef CONFIG_TRANSPARENT_HUGEPAGE 136#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 137static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 138 unsigned long address, 139 pmd_t *pmdp) 140{ 141 pmd_t pmd = *pmdp; 142 pmd_clear(pmdp); 143 return pmd; 144} 145#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ 146#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 147static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 148 unsigned long address, 149 pud_t *pudp) 150{ 151 pud_t pud = *pudp; 152 153 pud_clear(pudp); 154 return pud; 155} 156#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ 157#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 158 159#ifdef CONFIG_TRANSPARENT_HUGEPAGE 160#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 161static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm, 162 unsigned long address, pmd_t *pmdp, 163 int full) 164{ 165 return pmdp_huge_get_and_clear(mm, address, pmdp); 166} 167#endif 168 169#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL 170static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm, 171 unsigned long address, pud_t *pudp, 172 int full) 173{ 174 return pudp_huge_get_and_clear(mm, address, pudp); 175} 176#endif 177#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 178 179#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 180static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 181 unsigned long address, pte_t *ptep, 182 int full) 183{ 184 pte_t pte; 185 pte = ptep_get_and_clear(mm, address, ptep); 186 return pte; 187} 188#endif 189 190/* 191 * Some architectures may be able to avoid expensive synchronization 192 * primitives when modifications are made to PTE's which are already 193 * not present, or in the process of an address space destruction. 194 */ 195#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 196static inline void pte_clear_not_present_full(struct mm_struct *mm, 197 unsigned long address, 198 pte_t *ptep, 199 int full) 200{ 201 pte_clear(mm, address, ptep); 202} 203#endif 204 205#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 206extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 207 unsigned long address, 208 pte_t *ptep); 209#endif 210 211#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 212extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 213 unsigned long address, 214 pmd_t *pmdp); 215extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, 216 unsigned long address, 217 pud_t *pudp); 218#endif 219 220#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 221struct mm_struct; 222static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 223{ 224 pte_t old_pte = *ptep; 225 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 226} 227#endif 228 229#ifndef pte_savedwrite 230#define pte_savedwrite pte_write 231#endif 232 233#ifndef pte_mk_savedwrite 234#define pte_mk_savedwrite pte_mkwrite 235#endif 236 237#ifndef pte_clear_savedwrite 238#define pte_clear_savedwrite pte_wrprotect 239#endif 240 241#ifndef pmd_savedwrite 242#define pmd_savedwrite pmd_write 243#endif 244 245#ifndef pmd_mk_savedwrite 246#define pmd_mk_savedwrite pmd_mkwrite 247#endif 248 249#ifndef pmd_clear_savedwrite 250#define pmd_clear_savedwrite pmd_wrprotect 251#endif 252 253#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 254#ifdef CONFIG_TRANSPARENT_HUGEPAGE 255static inline void pmdp_set_wrprotect(struct mm_struct *mm, 256 unsigned long address, pmd_t *pmdp) 257{ 258 pmd_t old_pmd = *pmdp; 259 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 260} 261#else 262static inline void pmdp_set_wrprotect(struct mm_struct *mm, 263 unsigned long address, pmd_t *pmdp) 264{ 265 BUILD_BUG(); 266} 267#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 268#endif 269#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT 270#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 271static inline void pudp_set_wrprotect(struct mm_struct *mm, 272 unsigned long address, pud_t *pudp) 273{ 274 pud_t old_pud = *pudp; 275 276 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); 277} 278#else 279static inline void pudp_set_wrprotect(struct mm_struct *mm, 280 unsigned long address, pud_t *pudp) 281{ 282 BUILD_BUG(); 283} 284#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 285#endif 286 287#ifndef pmdp_collapse_flush 288#ifdef CONFIG_TRANSPARENT_HUGEPAGE 289extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 290 unsigned long address, pmd_t *pmdp); 291#else 292static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 293 unsigned long address, 294 pmd_t *pmdp) 295{ 296 BUILD_BUG(); 297 return *pmdp; 298} 299#define pmdp_collapse_flush pmdp_collapse_flush 300#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 301#endif 302 303#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 304extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 305 pgtable_t pgtable); 306#endif 307 308#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 309extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 310#endif 311 312#ifndef __HAVE_ARCH_PMDP_INVALIDATE 313extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 314 pmd_t *pmdp); 315#endif 316 317#ifndef __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE 318static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma, 319 unsigned long address, pmd_t *pmdp) 320{ 321 322} 323#endif 324 325#ifndef __HAVE_ARCH_PTE_SAME 326static inline int pte_same(pte_t pte_a, pte_t pte_b) 327{ 328 return pte_val(pte_a) == pte_val(pte_b); 329} 330#endif 331 332#ifndef __HAVE_ARCH_PTE_UNUSED 333/* 334 * Some architectures provide facilities to virtualization guests 335 * so that they can flag allocated pages as unused. This allows the 336 * host to transparently reclaim unused pages. This function returns 337 * whether the pte's page is unused. 338 */ 339static inline int pte_unused(pte_t pte) 340{ 341 return 0; 342} 343#endif 344 345#ifndef pte_access_permitted 346#define pte_access_permitted(pte, write) \ 347 (pte_present(pte) && (!(write) || pte_write(pte))) 348#endif 349 350#ifndef pmd_access_permitted 351#define pmd_access_permitted(pmd, write) \ 352 (pmd_present(pmd) && (!(write) || pmd_write(pmd))) 353#endif 354 355#ifndef pud_access_permitted 356#define pud_access_permitted(pud, write) \ 357 (pud_present(pud) && (!(write) || pud_write(pud))) 358#endif 359 360#ifndef p4d_access_permitted 361#define p4d_access_permitted(p4d, write) \ 362 (p4d_present(p4d) && (!(write) || p4d_write(p4d))) 363#endif 364 365#ifndef pgd_access_permitted 366#define pgd_access_permitted(pgd, write) \ 367 (pgd_present(pgd) && (!(write) || pgd_write(pgd))) 368#endif 369 370#ifndef __HAVE_ARCH_PMD_SAME 371#ifdef CONFIG_TRANSPARENT_HUGEPAGE 372static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 373{ 374 return pmd_val(pmd_a) == pmd_val(pmd_b); 375} 376 377static inline int pud_same(pud_t pud_a, pud_t pud_b) 378{ 379 return pud_val(pud_a) == pud_val(pud_b); 380} 381#else /* CONFIG_TRANSPARENT_HUGEPAGE */ 382static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 383{ 384 BUILD_BUG(); 385 return 0; 386} 387 388static inline int pud_same(pud_t pud_a, pud_t pud_b) 389{ 390 BUILD_BUG(); 391 return 0; 392} 393#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 394#endif 395 396#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 397#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 398#endif 399 400#ifndef __HAVE_ARCH_MOVE_PTE 401#define move_pte(pte, prot, old_addr, new_addr) (pte) 402#endif 403 404#ifndef pte_accessible 405# define pte_accessible(mm, pte) ((void)(pte), 1) 406#endif 407 408#ifndef flush_tlb_fix_spurious_fault 409#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) 410#endif 411 412#ifndef pgprot_noncached 413#define pgprot_noncached(prot) (prot) 414#endif 415 416#ifndef pgprot_writecombine 417#define pgprot_writecombine pgprot_noncached 418#endif 419 420#ifndef pgprot_writethrough 421#define pgprot_writethrough pgprot_noncached 422#endif 423 424#ifndef pgprot_device 425#define pgprot_device pgprot_noncached 426#endif 427 428#ifndef pgprot_modify 429#define pgprot_modify pgprot_modify 430static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 431{ 432 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) 433 newprot = pgprot_noncached(newprot); 434 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) 435 newprot = pgprot_writecombine(newprot); 436 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) 437 newprot = pgprot_device(newprot); 438 return newprot; 439} 440#endif 441 442/* 443 * When walking page tables, get the address of the next boundary, 444 * or the end address of the range if that comes earlier. Although no 445 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 446 */ 447 448#define pgd_addr_end(addr, end) \ 449({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 450 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 451}) 452 453#ifndef p4d_addr_end 454#define p4d_addr_end(addr, end) \ 455({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ 456 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 457}) 458#endif 459 460#ifndef pud_addr_end 461#define pud_addr_end(addr, end) \ 462({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 463 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 464}) 465#endif 466 467#ifndef pmd_addr_end 468#define pmd_addr_end(addr, end) \ 469({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 470 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 471}) 472#endif 473 474/* 475 * When walking page tables, we usually want to skip any p?d_none entries; 476 * and any p?d_bad entries - reporting the error before resetting to none. 477 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 478 */ 479void pgd_clear_bad(pgd_t *); 480void p4d_clear_bad(p4d_t *); 481void pud_clear_bad(pud_t *); 482void pmd_clear_bad(pmd_t *); 483 484static inline int pgd_none_or_clear_bad(pgd_t *pgd) 485{ 486 if (pgd_none(*pgd)) 487 return 1; 488 if (unlikely(pgd_bad(*pgd))) { 489 pgd_clear_bad(pgd); 490 return 1; 491 } 492 return 0; 493} 494 495static inline int p4d_none_or_clear_bad(p4d_t *p4d) 496{ 497 if (p4d_none(*p4d)) 498 return 1; 499 if (unlikely(p4d_bad(*p4d))) { 500 p4d_clear_bad(p4d); 501 return 1; 502 } 503 return 0; 504} 505 506static inline int pud_none_or_clear_bad(pud_t *pud) 507{ 508 if (pud_none(*pud)) 509 return 1; 510 if (unlikely(pud_bad(*pud))) { 511 pud_clear_bad(pud); 512 return 1; 513 } 514 return 0; 515} 516 517static inline int pmd_none_or_clear_bad(pmd_t *pmd) 518{ 519 if (pmd_none(*pmd)) 520 return 1; 521 if (unlikely(pmd_bad(*pmd))) { 522 pmd_clear_bad(pmd); 523 return 1; 524 } 525 return 0; 526} 527 528static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm, 529 unsigned long addr, 530 pte_t *ptep) 531{ 532 /* 533 * Get the current pte state, but zero it out to make it 534 * non-present, preventing the hardware from asynchronously 535 * updating it. 536 */ 537 return ptep_get_and_clear(mm, addr, ptep); 538} 539 540static inline void __ptep_modify_prot_commit(struct mm_struct *mm, 541 unsigned long addr, 542 pte_t *ptep, pte_t pte) 543{ 544 /* 545 * The pte is non-present, so there's no hardware state to 546 * preserve. 547 */ 548 set_pte_at(mm, addr, ptep, pte); 549} 550 551#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 552/* 553 * Start a pte protection read-modify-write transaction, which 554 * protects against asynchronous hardware modifications to the pte. 555 * The intention is not to prevent the hardware from making pte 556 * updates, but to prevent any updates it may make from being lost. 557 * 558 * This does not protect against other software modifications of the 559 * pte; the appropriate pte lock must be held over the transation. 560 * 561 * Note that this interface is intended to be batchable, meaning that 562 * ptep_modify_prot_commit may not actually update the pte, but merely 563 * queue the update to be done at some later time. The update must be 564 * actually committed before the pte lock is released, however. 565 */ 566static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, 567 unsigned long addr, 568 pte_t *ptep) 569{ 570 return __ptep_modify_prot_start(mm, addr, ptep); 571} 572 573/* 574 * Commit an update to a pte, leaving any hardware-controlled bits in 575 * the PTE unmodified. 576 */ 577static inline void ptep_modify_prot_commit(struct mm_struct *mm, 578 unsigned long addr, 579 pte_t *ptep, pte_t pte) 580{ 581 __ptep_modify_prot_commit(mm, addr, ptep, pte); 582} 583#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 584#endif /* CONFIG_MMU */ 585 586/* 587 * No-op macros that just return the current protection value. Defined here 588 * because these macros can be used used even if CONFIG_MMU is not defined. 589 */ 590#ifndef pgprot_encrypted 591#define pgprot_encrypted(prot) (prot) 592#endif 593 594#ifndef pgprot_decrypted 595#define pgprot_decrypted(prot) (prot) 596#endif 597 598/* 599 * A facility to provide lazy MMU batching. This allows PTE updates and 600 * page invalidations to be delayed until a call to leave lazy MMU mode 601 * is issued. Some architectures may benefit from doing this, and it is 602 * beneficial for both shadow and direct mode hypervisors, which may batch 603 * the PTE updates which happen during this window. Note that using this 604 * interface requires that read hazards be removed from the code. A read 605 * hazard could result in the direct mode hypervisor case, since the actual 606 * write to the page tables may not yet have taken place, so reads though 607 * a raw PTE pointer after it has been modified are not guaranteed to be 608 * up to date. This mode can only be entered and left under the protection of 609 * the page table locks for all page tables which may be modified. In the UP 610 * case, this is required so that preemption is disabled, and in the SMP case, 611 * it must synchronize the delayed page table writes properly on other CPUs. 612 */ 613#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 614#define arch_enter_lazy_mmu_mode() do {} while (0) 615#define arch_leave_lazy_mmu_mode() do {} while (0) 616#define arch_flush_lazy_mmu_mode() do {} while (0) 617#endif 618 619/* 620 * A facility to provide batching of the reload of page tables and 621 * other process state with the actual context switch code for 622 * paravirtualized guests. By convention, only one of the batched 623 * update (lazy) modes (CPU, MMU) should be active at any given time, 624 * entry should never be nested, and entry and exits should always be 625 * paired. This is for sanity of maintaining and reasoning about the 626 * kernel code. In this case, the exit (end of the context switch) is 627 * in architecture-specific code, and so doesn't need a generic 628 * definition. 629 */ 630#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 631#define arch_start_context_switch(prev) do {} while (0) 632#endif 633 634#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 635#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION 636static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 637{ 638 return pmd; 639} 640 641static inline int pmd_swp_soft_dirty(pmd_t pmd) 642{ 643 return 0; 644} 645 646static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 647{ 648 return pmd; 649} 650#endif 651#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ 652static inline int pte_soft_dirty(pte_t pte) 653{ 654 return 0; 655} 656 657static inline int pmd_soft_dirty(pmd_t pmd) 658{ 659 return 0; 660} 661 662static inline pte_t pte_mksoft_dirty(pte_t pte) 663{ 664 return pte; 665} 666 667static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 668{ 669 return pmd; 670} 671 672static inline pte_t pte_clear_soft_dirty(pte_t pte) 673{ 674 return pte; 675} 676 677static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 678{ 679 return pmd; 680} 681 682static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 683{ 684 return pte; 685} 686 687static inline int pte_swp_soft_dirty(pte_t pte) 688{ 689 return 0; 690} 691 692static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 693{ 694 return pte; 695} 696 697static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 698{ 699 return pmd; 700} 701 702static inline int pmd_swp_soft_dirty(pmd_t pmd) 703{ 704 return 0; 705} 706 707static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 708{ 709 return pmd; 710} 711#endif 712 713#ifndef __HAVE_PFNMAP_TRACKING 714/* 715 * Interfaces that can be used by architecture code to keep track of 716 * memory type of pfn mappings specified by the remap_pfn_range, 717 * vm_insert_pfn. 718 */ 719 720/* 721 * track_pfn_remap is called when a _new_ pfn mapping is being established 722 * by remap_pfn_range() for physical range indicated by pfn and size. 723 */ 724static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 725 unsigned long pfn, unsigned long addr, 726 unsigned long size) 727{ 728 return 0; 729} 730 731/* 732 * track_pfn_insert is called when a _new_ single pfn is established 733 * by vm_insert_pfn(). 734 */ 735static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 736 pfn_t pfn) 737{ 738} 739 740/* 741 * track_pfn_copy is called when vma that is covering the pfnmap gets 742 * copied through copy_page_range(). 743 */ 744static inline int track_pfn_copy(struct vm_area_struct *vma) 745{ 746 return 0; 747} 748 749/* 750 * untrack_pfn is called while unmapping a pfnmap for a region. 751 * untrack can be called for a specific region indicated by pfn and size or 752 * can be for the entire vma (in which case pfn, size are zero). 753 */ 754static inline void untrack_pfn(struct vm_area_struct *vma, 755 unsigned long pfn, unsigned long size) 756{ 757} 758 759/* 760 * untrack_pfn_moved is called while mremapping a pfnmap for a new region. 761 */ 762static inline void untrack_pfn_moved(struct vm_area_struct *vma) 763{ 764} 765#else 766extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 767 unsigned long pfn, unsigned long addr, 768 unsigned long size); 769extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 770 pfn_t pfn); 771extern int track_pfn_copy(struct vm_area_struct *vma); 772extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 773 unsigned long size); 774extern void untrack_pfn_moved(struct vm_area_struct *vma); 775#endif 776 777#ifdef __HAVE_COLOR_ZERO_PAGE 778static inline int is_zero_pfn(unsigned long pfn) 779{ 780 extern unsigned long zero_pfn; 781 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 782 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 783} 784 785#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 786 787#else 788static inline int is_zero_pfn(unsigned long pfn) 789{ 790 extern unsigned long zero_pfn; 791 return pfn == zero_pfn; 792} 793 794static inline unsigned long my_zero_pfn(unsigned long addr) 795{ 796 extern unsigned long zero_pfn; 797 return zero_pfn; 798} 799#endif 800 801#ifdef CONFIG_MMU 802 803#ifndef CONFIG_TRANSPARENT_HUGEPAGE 804static inline int pmd_trans_huge(pmd_t pmd) 805{ 806 return 0; 807} 808#ifndef __HAVE_ARCH_PMD_WRITE 809static inline int pmd_write(pmd_t pmd) 810{ 811 BUG(); 812 return 0; 813} 814#endif /* __HAVE_ARCH_PMD_WRITE */ 815#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 816 817#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ 818 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 819 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)) 820static inline int pud_trans_huge(pud_t pud) 821{ 822 return 0; 823} 824#endif 825 826#ifndef pmd_read_atomic 827static inline pmd_t pmd_read_atomic(pmd_t *pmdp) 828{ 829 /* 830 * Depend on compiler for an atomic pmd read. NOTE: this is 831 * only going to work, if the pmdval_t isn't larger than 832 * an unsigned long. 833 */ 834 return *pmdp; 835} 836#endif 837 838#ifndef arch_needs_pgtable_deposit 839#define arch_needs_pgtable_deposit() (false) 840#endif 841/* 842 * This function is meant to be used by sites walking pagetables with 843 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and 844 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd 845 * into a null pmd and the transhuge page fault can convert a null pmd 846 * into an hugepmd or into a regular pmd (if the hugepage allocation 847 * fails). While holding the mmap_sem in read mode the pmd becomes 848 * stable and stops changing under us only if it's not null and not a 849 * transhuge pmd. When those races occurs and this function makes a 850 * difference vs the standard pmd_none_or_clear_bad, the result is 851 * undefined so behaving like if the pmd was none is safe (because it 852 * can return none anyway). The compiler level barrier() is critically 853 * important to compute the two checks atomically on the same pmdval. 854 * 855 * For 32bit kernels with a 64bit large pmd_t this automatically takes 856 * care of reading the pmd atomically to avoid SMP race conditions 857 * against pmd_populate() when the mmap_sem is hold for reading by the 858 * caller (a special atomic read not done by "gcc" as in the generic 859 * version above, is also needed when THP is disabled because the page 860 * fault can populate the pmd from under us). 861 */ 862static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) 863{ 864 pmd_t pmdval = pmd_read_atomic(pmd); 865 /* 866 * The barrier will stabilize the pmdval in a register or on 867 * the stack so that it will stop changing under the code. 868 * 869 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, 870 * pmd_read_atomic is allowed to return a not atomic pmdval 871 * (for example pointing to an hugepage that has never been 872 * mapped in the pmd). The below checks will only care about 873 * the low part of the pmd with 32bit PAE x86 anyway, with the 874 * exception of pmd_none(). So the important thing is that if 875 * the low part of the pmd is found null, the high part will 876 * be also null or the pmd_none() check below would be 877 * confused. 878 */ 879#ifdef CONFIG_TRANSPARENT_HUGEPAGE 880 barrier(); 881#endif 882 /* 883 * !pmd_present() checks for pmd migration entries 884 * 885 * The complete check uses is_pmd_migration_entry() in linux/swapops.h 886 * But using that requires moving current function and pmd_trans_unstable() 887 * to linux/swapops.h to resovle dependency, which is too much code move. 888 * 889 * !pmd_present() is equivalent to is_pmd_migration_entry() currently, 890 * because !pmd_present() pages can only be under migration not swapped 891 * out. 892 * 893 * pmd_none() is preseved for future condition checks on pmd migration 894 * entries and not confusing with this function name, although it is 895 * redundant with !pmd_present(). 896 */ 897 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) || 898 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval))) 899 return 1; 900 if (unlikely(pmd_bad(pmdval))) { 901 pmd_clear_bad(pmd); 902 return 1; 903 } 904 return 0; 905} 906 907/* 908 * This is a noop if Transparent Hugepage Support is not built into 909 * the kernel. Otherwise it is equivalent to 910 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in 911 * places that already verified the pmd is not none and they want to 912 * walk ptes while holding the mmap sem in read mode (write mode don't 913 * need this). If THP is not enabled, the pmd can't go away under the 914 * code even if MADV_DONTNEED runs, but if THP is enabled we need to 915 * run a pmd_trans_unstable before walking the ptes after 916 * split_huge_page_pmd returns (because it may have run when the pmd 917 * become null, but then a page fault can map in a THP and not a 918 * regular page). 919 */ 920static inline int pmd_trans_unstable(pmd_t *pmd) 921{ 922#ifdef CONFIG_TRANSPARENT_HUGEPAGE 923 return pmd_none_or_trans_huge_or_clear_bad(pmd); 924#else 925 return 0; 926#endif 927} 928 929#ifndef CONFIG_NUMA_BALANCING 930/* 931 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but 932 * the only case the kernel cares is for NUMA balancing and is only ever set 933 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked 934 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It 935 * is the responsibility of the caller to distinguish between PROT_NONE 936 * protections and NUMA hinting fault protections. 937 */ 938static inline int pte_protnone(pte_t pte) 939{ 940 return 0; 941} 942 943static inline int pmd_protnone(pmd_t pmd) 944{ 945 return 0; 946} 947#endif /* CONFIG_NUMA_BALANCING */ 948 949#endif /* CONFIG_MMU */ 950 951#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 952 953#ifndef __PAGETABLE_P4D_FOLDED 954int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); 955int p4d_clear_huge(p4d_t *p4d); 956#else 957static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 958{ 959 return 0; 960} 961static inline int p4d_clear_huge(p4d_t *p4d) 962{ 963 return 0; 964} 965#endif /* !__PAGETABLE_P4D_FOLDED */ 966 967int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); 968int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); 969int pud_clear_huge(pud_t *pud); 970int pmd_clear_huge(pmd_t *pmd); 971#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ 972static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 973{ 974 return 0; 975} 976static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 977{ 978 return 0; 979} 980static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 981{ 982 return 0; 983} 984static inline int p4d_clear_huge(p4d_t *p4d) 985{ 986 return 0; 987} 988static inline int pud_clear_huge(pud_t *pud) 989{ 990 return 0; 991} 992static inline int pmd_clear_huge(pmd_t *pmd) 993{ 994 return 0; 995} 996#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 997 998#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 999#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1000/* 1001 * ARCHes with special requirements for evicting THP backing TLB entries can 1002 * implement this. Otherwise also, it can help optimize normal TLB flush in 1003 * THP regime. stock flush_tlb_range() typically has optimization to nuke the 1004 * entire TLB TLB if flush span is greater than a threshold, which will 1005 * likely be true for a single huge page. Thus a single thp flush will 1006 * invalidate the entire TLB which is not desitable. 1007 * e.g. see arch/arc: flush_pmd_tlb_range 1008 */ 1009#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1010#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1011#else 1012#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() 1013#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() 1014#endif 1015#endif 1016 1017struct file; 1018int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, 1019 unsigned long size, pgprot_t *vma_prot); 1020#endif /* !__ASSEMBLY__ */ 1021 1022#ifndef io_remap_pfn_range 1023#define io_remap_pfn_range remap_pfn_range 1024#endif 1025 1026#ifndef has_transparent_hugepage 1027#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1028#define has_transparent_hugepage() 1 1029#else 1030#define has_transparent_hugepage() 0 1031#endif 1032#endif 1033 1034#endif /* _ASM_GENERIC_PGTABLE_H */