at v4.14 12 kB view raw
1#include <linux/spinlock.h> 2#include <linux/slab.h> 3#include <linux/list.h> 4#include <linux/list_bl.h> 5#include <linux/module.h> 6#include <linux/sched.h> 7#include <linux/workqueue.h> 8#include <linux/mbcache.h> 9 10/* 11 * Mbcache is a simple key-value store. Keys need not be unique, however 12 * key-value pairs are expected to be unique (we use this fact in 13 * mb_cache_entry_delete()). 14 * 15 * Ext2 and ext4 use this cache for deduplication of extended attribute blocks. 16 * Ext4 also uses it for deduplication of xattr values stored in inodes. 17 * They use hash of data as a key and provide a value that may represent a 18 * block or inode number. That's why keys need not be unique (hash of different 19 * data may be the same). However user provided value always uniquely 20 * identifies a cache entry. 21 * 22 * We provide functions for creation and removal of entries, search by key, 23 * and a special "delete entry with given key-value pair" operation. Fixed 24 * size hash table is used for fast key lookups. 25 */ 26 27struct mb_cache { 28 /* Hash table of entries */ 29 struct hlist_bl_head *c_hash; 30 /* log2 of hash table size */ 31 int c_bucket_bits; 32 /* Maximum entries in cache to avoid degrading hash too much */ 33 unsigned long c_max_entries; 34 /* Protects c_list, c_entry_count */ 35 spinlock_t c_list_lock; 36 struct list_head c_list; 37 /* Number of entries in cache */ 38 unsigned long c_entry_count; 39 struct shrinker c_shrink; 40 /* Work for shrinking when the cache has too many entries */ 41 struct work_struct c_shrink_work; 42}; 43 44static struct kmem_cache *mb_entry_cache; 45 46static unsigned long mb_cache_shrink(struct mb_cache *cache, 47 unsigned long nr_to_scan); 48 49static inline struct hlist_bl_head *mb_cache_entry_head(struct mb_cache *cache, 50 u32 key) 51{ 52 return &cache->c_hash[hash_32(key, cache->c_bucket_bits)]; 53} 54 55/* 56 * Number of entries to reclaim synchronously when there are too many entries 57 * in cache 58 */ 59#define SYNC_SHRINK_BATCH 64 60 61/* 62 * mb_cache_entry_create - create entry in cache 63 * @cache - cache where the entry should be created 64 * @mask - gfp mask with which the entry should be allocated 65 * @key - key of the entry 66 * @value - value of the entry 67 * @reusable - is the entry reusable by others? 68 * 69 * Creates entry in @cache with key @key and value @value. The function returns 70 * -EBUSY if entry with the same key and value already exists in cache. 71 * Otherwise 0 is returned. 72 */ 73int mb_cache_entry_create(struct mb_cache *cache, gfp_t mask, u32 key, 74 u64 value, bool reusable) 75{ 76 struct mb_cache_entry *entry, *dup; 77 struct hlist_bl_node *dup_node; 78 struct hlist_bl_head *head; 79 80 /* Schedule background reclaim if there are too many entries */ 81 if (cache->c_entry_count >= cache->c_max_entries) 82 schedule_work(&cache->c_shrink_work); 83 /* Do some sync reclaim if background reclaim cannot keep up */ 84 if (cache->c_entry_count >= 2*cache->c_max_entries) 85 mb_cache_shrink(cache, SYNC_SHRINK_BATCH); 86 87 entry = kmem_cache_alloc(mb_entry_cache, mask); 88 if (!entry) 89 return -ENOMEM; 90 91 INIT_LIST_HEAD(&entry->e_list); 92 /* One ref for hash, one ref returned */ 93 atomic_set(&entry->e_refcnt, 1); 94 entry->e_key = key; 95 entry->e_value = value; 96 entry->e_reusable = reusable; 97 head = mb_cache_entry_head(cache, key); 98 hlist_bl_lock(head); 99 hlist_bl_for_each_entry(dup, dup_node, head, e_hash_list) { 100 if (dup->e_key == key && dup->e_value == value) { 101 hlist_bl_unlock(head); 102 kmem_cache_free(mb_entry_cache, entry); 103 return -EBUSY; 104 } 105 } 106 hlist_bl_add_head(&entry->e_hash_list, head); 107 hlist_bl_unlock(head); 108 109 spin_lock(&cache->c_list_lock); 110 list_add_tail(&entry->e_list, &cache->c_list); 111 /* Grab ref for LRU list */ 112 atomic_inc(&entry->e_refcnt); 113 cache->c_entry_count++; 114 spin_unlock(&cache->c_list_lock); 115 116 return 0; 117} 118EXPORT_SYMBOL(mb_cache_entry_create); 119 120void __mb_cache_entry_free(struct mb_cache_entry *entry) 121{ 122 kmem_cache_free(mb_entry_cache, entry); 123} 124EXPORT_SYMBOL(__mb_cache_entry_free); 125 126static struct mb_cache_entry *__entry_find(struct mb_cache *cache, 127 struct mb_cache_entry *entry, 128 u32 key) 129{ 130 struct mb_cache_entry *old_entry = entry; 131 struct hlist_bl_node *node; 132 struct hlist_bl_head *head; 133 134 head = mb_cache_entry_head(cache, key); 135 hlist_bl_lock(head); 136 if (entry && !hlist_bl_unhashed(&entry->e_hash_list)) 137 node = entry->e_hash_list.next; 138 else 139 node = hlist_bl_first(head); 140 while (node) { 141 entry = hlist_bl_entry(node, struct mb_cache_entry, 142 e_hash_list); 143 if (entry->e_key == key && entry->e_reusable) { 144 atomic_inc(&entry->e_refcnt); 145 goto out; 146 } 147 node = node->next; 148 } 149 entry = NULL; 150out: 151 hlist_bl_unlock(head); 152 if (old_entry) 153 mb_cache_entry_put(cache, old_entry); 154 155 return entry; 156} 157 158/* 159 * mb_cache_entry_find_first - find the first reusable entry with the given key 160 * @cache: cache where we should search 161 * @key: key to look for 162 * 163 * Search in @cache for a reusable entry with key @key. Grabs reference to the 164 * first reusable entry found and returns the entry. 165 */ 166struct mb_cache_entry *mb_cache_entry_find_first(struct mb_cache *cache, 167 u32 key) 168{ 169 return __entry_find(cache, NULL, key); 170} 171EXPORT_SYMBOL(mb_cache_entry_find_first); 172 173/* 174 * mb_cache_entry_find_next - find next reusable entry with the same key 175 * @cache: cache where we should search 176 * @entry: entry to start search from 177 * 178 * Finds next reusable entry in the hash chain which has the same key as @entry. 179 * If @entry is unhashed (which can happen when deletion of entry races with the 180 * search), finds the first reusable entry in the hash chain. The function drops 181 * reference to @entry and returns with a reference to the found entry. 182 */ 183struct mb_cache_entry *mb_cache_entry_find_next(struct mb_cache *cache, 184 struct mb_cache_entry *entry) 185{ 186 return __entry_find(cache, entry, entry->e_key); 187} 188EXPORT_SYMBOL(mb_cache_entry_find_next); 189 190/* 191 * mb_cache_entry_get - get a cache entry by value (and key) 192 * @cache - cache we work with 193 * @key - key 194 * @value - value 195 */ 196struct mb_cache_entry *mb_cache_entry_get(struct mb_cache *cache, u32 key, 197 u64 value) 198{ 199 struct hlist_bl_node *node; 200 struct hlist_bl_head *head; 201 struct mb_cache_entry *entry; 202 203 head = mb_cache_entry_head(cache, key); 204 hlist_bl_lock(head); 205 hlist_bl_for_each_entry(entry, node, head, e_hash_list) { 206 if (entry->e_key == key && entry->e_value == value) { 207 atomic_inc(&entry->e_refcnt); 208 goto out; 209 } 210 } 211 entry = NULL; 212out: 213 hlist_bl_unlock(head); 214 return entry; 215} 216EXPORT_SYMBOL(mb_cache_entry_get); 217 218/* mb_cache_entry_delete - remove a cache entry 219 * @cache - cache we work with 220 * @key - key 221 * @value - value 222 * 223 * Remove entry from cache @cache with key @key and value @value. 224 */ 225void mb_cache_entry_delete(struct mb_cache *cache, u32 key, u64 value) 226{ 227 struct hlist_bl_node *node; 228 struct hlist_bl_head *head; 229 struct mb_cache_entry *entry; 230 231 head = mb_cache_entry_head(cache, key); 232 hlist_bl_lock(head); 233 hlist_bl_for_each_entry(entry, node, head, e_hash_list) { 234 if (entry->e_key == key && entry->e_value == value) { 235 /* We keep hash list reference to keep entry alive */ 236 hlist_bl_del_init(&entry->e_hash_list); 237 hlist_bl_unlock(head); 238 spin_lock(&cache->c_list_lock); 239 if (!list_empty(&entry->e_list)) { 240 list_del_init(&entry->e_list); 241 cache->c_entry_count--; 242 atomic_dec(&entry->e_refcnt); 243 } 244 spin_unlock(&cache->c_list_lock); 245 mb_cache_entry_put(cache, entry); 246 return; 247 } 248 } 249 hlist_bl_unlock(head); 250} 251EXPORT_SYMBOL(mb_cache_entry_delete); 252 253/* mb_cache_entry_touch - cache entry got used 254 * @cache - cache the entry belongs to 255 * @entry - entry that got used 256 * 257 * Marks entry as used to give hit higher chances of surviving in cache. 258 */ 259void mb_cache_entry_touch(struct mb_cache *cache, 260 struct mb_cache_entry *entry) 261{ 262 entry->e_referenced = 1; 263} 264EXPORT_SYMBOL(mb_cache_entry_touch); 265 266static unsigned long mb_cache_count(struct shrinker *shrink, 267 struct shrink_control *sc) 268{ 269 struct mb_cache *cache = container_of(shrink, struct mb_cache, 270 c_shrink); 271 272 return cache->c_entry_count; 273} 274 275/* Shrink number of entries in cache */ 276static unsigned long mb_cache_shrink(struct mb_cache *cache, 277 unsigned long nr_to_scan) 278{ 279 struct mb_cache_entry *entry; 280 struct hlist_bl_head *head; 281 unsigned long shrunk = 0; 282 283 spin_lock(&cache->c_list_lock); 284 while (nr_to_scan-- && !list_empty(&cache->c_list)) { 285 entry = list_first_entry(&cache->c_list, 286 struct mb_cache_entry, e_list); 287 if (entry->e_referenced) { 288 entry->e_referenced = 0; 289 list_move_tail(&entry->e_list, &cache->c_list); 290 continue; 291 } 292 list_del_init(&entry->e_list); 293 cache->c_entry_count--; 294 /* 295 * We keep LRU list reference so that entry doesn't go away 296 * from under us. 297 */ 298 spin_unlock(&cache->c_list_lock); 299 head = mb_cache_entry_head(cache, entry->e_key); 300 hlist_bl_lock(head); 301 if (!hlist_bl_unhashed(&entry->e_hash_list)) { 302 hlist_bl_del_init(&entry->e_hash_list); 303 atomic_dec(&entry->e_refcnt); 304 } 305 hlist_bl_unlock(head); 306 if (mb_cache_entry_put(cache, entry)) 307 shrunk++; 308 cond_resched(); 309 spin_lock(&cache->c_list_lock); 310 } 311 spin_unlock(&cache->c_list_lock); 312 313 return shrunk; 314} 315 316static unsigned long mb_cache_scan(struct shrinker *shrink, 317 struct shrink_control *sc) 318{ 319 struct mb_cache *cache = container_of(shrink, struct mb_cache, 320 c_shrink); 321 return mb_cache_shrink(cache, sc->nr_to_scan); 322} 323 324/* We shrink 1/X of the cache when we have too many entries in it */ 325#define SHRINK_DIVISOR 16 326 327static void mb_cache_shrink_worker(struct work_struct *work) 328{ 329 struct mb_cache *cache = container_of(work, struct mb_cache, 330 c_shrink_work); 331 mb_cache_shrink(cache, cache->c_max_entries / SHRINK_DIVISOR); 332} 333 334/* 335 * mb_cache_create - create cache 336 * @bucket_bits: log2 of the hash table size 337 * 338 * Create cache for keys with 2^bucket_bits hash entries. 339 */ 340struct mb_cache *mb_cache_create(int bucket_bits) 341{ 342 struct mb_cache *cache; 343 unsigned long bucket_count = 1UL << bucket_bits; 344 unsigned long i; 345 346 cache = kzalloc(sizeof(struct mb_cache), GFP_KERNEL); 347 if (!cache) 348 goto err_out; 349 cache->c_bucket_bits = bucket_bits; 350 cache->c_max_entries = bucket_count << 4; 351 INIT_LIST_HEAD(&cache->c_list); 352 spin_lock_init(&cache->c_list_lock); 353 cache->c_hash = kmalloc(bucket_count * sizeof(struct hlist_bl_head), 354 GFP_KERNEL); 355 if (!cache->c_hash) { 356 kfree(cache); 357 goto err_out; 358 } 359 for (i = 0; i < bucket_count; i++) 360 INIT_HLIST_BL_HEAD(&cache->c_hash[i]); 361 362 cache->c_shrink.count_objects = mb_cache_count; 363 cache->c_shrink.scan_objects = mb_cache_scan; 364 cache->c_shrink.seeks = DEFAULT_SEEKS; 365 if (register_shrinker(&cache->c_shrink)) { 366 kfree(cache->c_hash); 367 kfree(cache); 368 goto err_out; 369 } 370 371 INIT_WORK(&cache->c_shrink_work, mb_cache_shrink_worker); 372 373 return cache; 374 375err_out: 376 return NULL; 377} 378EXPORT_SYMBOL(mb_cache_create); 379 380/* 381 * mb_cache_destroy - destroy cache 382 * @cache: the cache to destroy 383 * 384 * Free all entries in cache and cache itself. Caller must make sure nobody 385 * (except shrinker) can reach @cache when calling this. 386 */ 387void mb_cache_destroy(struct mb_cache *cache) 388{ 389 struct mb_cache_entry *entry, *next; 390 391 unregister_shrinker(&cache->c_shrink); 392 393 /* 394 * We don't bother with any locking. Cache must not be used at this 395 * point. 396 */ 397 list_for_each_entry_safe(entry, next, &cache->c_list, e_list) { 398 if (!hlist_bl_unhashed(&entry->e_hash_list)) { 399 hlist_bl_del_init(&entry->e_hash_list); 400 atomic_dec(&entry->e_refcnt); 401 } else 402 WARN_ON(1); 403 list_del(&entry->e_list); 404 WARN_ON(atomic_read(&entry->e_refcnt) != 1); 405 mb_cache_entry_put(cache, entry); 406 } 407 kfree(cache->c_hash); 408 kfree(cache); 409} 410EXPORT_SYMBOL(mb_cache_destroy); 411 412static int __init mbcache_init(void) 413{ 414 mb_entry_cache = kmem_cache_create("mbcache", 415 sizeof(struct mb_cache_entry), 0, 416 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL); 417 if (!mb_entry_cache) 418 return -ENOMEM; 419 return 0; 420} 421 422static void __exit mbcache_exit(void) 423{ 424 kmem_cache_destroy(mb_entry_cache); 425} 426 427module_init(mbcache_init) 428module_exit(mbcache_exit) 429 430MODULE_AUTHOR("Jan Kara <jack@suse.cz>"); 431MODULE_DESCRIPTION("Meta block cache (for extended attributes)"); 432MODULE_LICENSE("GPL");