Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Copyright (c) 2005 Voltaire Inc. All rights reserved.
3 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4 * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5 * Copyright (c) 2005 Intel Corporation. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/mutex.h>
37#include <linux/inetdevice.h>
38#include <linux/slab.h>
39#include <linux/workqueue.h>
40#include <linux/module.h>
41#include <net/arp.h>
42#include <net/neighbour.h>
43#include <net/route.h>
44#include <net/netevent.h>
45#include <net/addrconf.h>
46#include <net/ip6_route.h>
47#include <rdma/ib_addr.h>
48#include <rdma/ib.h>
49#include <rdma/rdma_netlink.h>
50#include <net/netlink.h>
51
52#include "core_priv.h"
53
54struct addr_req {
55 struct list_head list;
56 struct sockaddr_storage src_addr;
57 struct sockaddr_storage dst_addr;
58 struct rdma_dev_addr *addr;
59 struct rdma_addr_client *client;
60 void *context;
61 void (*callback)(int status, struct sockaddr *src_addr,
62 struct rdma_dev_addr *addr, void *context);
63 unsigned long timeout;
64 struct delayed_work work;
65 int status;
66 u32 seq;
67};
68
69static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
70
71static void process_req(struct work_struct *work);
72
73static DEFINE_MUTEX(lock);
74static LIST_HEAD(req_list);
75static DECLARE_DELAYED_WORK(work, process_req);
76static struct workqueue_struct *addr_wq;
77
78static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
79 [LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
80 .len = sizeof(struct rdma_nla_ls_gid)},
81};
82
83static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
84{
85 struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
86 int ret;
87
88 if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
89 return false;
90
91 ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
92 nlmsg_len(nlh), ib_nl_addr_policy, NULL);
93 if (ret)
94 return false;
95
96 return true;
97}
98
99static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
100{
101 const struct nlattr *head, *curr;
102 union ib_gid gid;
103 struct addr_req *req;
104 int len, rem;
105 int found = 0;
106
107 head = (const struct nlattr *)nlmsg_data(nlh);
108 len = nlmsg_len(nlh);
109
110 nla_for_each_attr(curr, head, len, rem) {
111 if (curr->nla_type == LS_NLA_TYPE_DGID)
112 memcpy(&gid, nla_data(curr), nla_len(curr));
113 }
114
115 mutex_lock(&lock);
116 list_for_each_entry(req, &req_list, list) {
117 if (nlh->nlmsg_seq != req->seq)
118 continue;
119 /* We set the DGID part, the rest was set earlier */
120 rdma_addr_set_dgid(req->addr, &gid);
121 req->status = 0;
122 found = 1;
123 break;
124 }
125 mutex_unlock(&lock);
126
127 if (!found)
128 pr_info("Couldn't find request waiting for DGID: %pI6\n",
129 &gid);
130}
131
132int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
133 struct nlmsghdr *nlh,
134 struct netlink_ext_ack *extack)
135{
136 if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
137 !(NETLINK_CB(skb).sk))
138 return -EPERM;
139
140 if (ib_nl_is_good_ip_resp(nlh))
141 ib_nl_process_good_ip_rsep(nlh);
142
143 return skb->len;
144}
145
146static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
147 const void *daddr,
148 u32 seq, u16 family)
149{
150 struct sk_buff *skb = NULL;
151 struct nlmsghdr *nlh;
152 struct rdma_ls_ip_resolve_header *header;
153 void *data;
154 size_t size;
155 int attrtype;
156 int len;
157
158 if (family == AF_INET) {
159 size = sizeof(struct in_addr);
160 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
161 } else {
162 size = sizeof(struct in6_addr);
163 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
164 }
165
166 len = nla_total_size(sizeof(size));
167 len += NLMSG_ALIGN(sizeof(*header));
168
169 skb = nlmsg_new(len, GFP_KERNEL);
170 if (!skb)
171 return -ENOMEM;
172
173 data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
174 RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
175 if (!data) {
176 nlmsg_free(skb);
177 return -ENODATA;
178 }
179
180 /* Construct the family header first */
181 header = skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
182 header->ifindex = dev_addr->bound_dev_if;
183 nla_put(skb, attrtype, size, daddr);
184
185 /* Repair the nlmsg header length */
186 nlmsg_end(skb, nlh);
187 rdma_nl_multicast(skb, RDMA_NL_GROUP_LS, GFP_KERNEL);
188
189 /* Make the request retry, so when we get the response from userspace
190 * we will have something.
191 */
192 return -ENODATA;
193}
194
195int rdma_addr_size(struct sockaddr *addr)
196{
197 switch (addr->sa_family) {
198 case AF_INET:
199 return sizeof(struct sockaddr_in);
200 case AF_INET6:
201 return sizeof(struct sockaddr_in6);
202 case AF_IB:
203 return sizeof(struct sockaddr_ib);
204 default:
205 return 0;
206 }
207}
208EXPORT_SYMBOL(rdma_addr_size);
209
210static struct rdma_addr_client self;
211
212void rdma_addr_register_client(struct rdma_addr_client *client)
213{
214 atomic_set(&client->refcount, 1);
215 init_completion(&client->comp);
216}
217EXPORT_SYMBOL(rdma_addr_register_client);
218
219static inline void put_client(struct rdma_addr_client *client)
220{
221 if (atomic_dec_and_test(&client->refcount))
222 complete(&client->comp);
223}
224
225void rdma_addr_unregister_client(struct rdma_addr_client *client)
226{
227 put_client(client);
228 wait_for_completion(&client->comp);
229}
230EXPORT_SYMBOL(rdma_addr_unregister_client);
231
232int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev,
233 const unsigned char *dst_dev_addr)
234{
235 dev_addr->dev_type = dev->type;
236 memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
237 memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
238 if (dst_dev_addr)
239 memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
240 dev_addr->bound_dev_if = dev->ifindex;
241 return 0;
242}
243EXPORT_SYMBOL(rdma_copy_addr);
244
245int rdma_translate_ip(const struct sockaddr *addr,
246 struct rdma_dev_addr *dev_addr,
247 u16 *vlan_id)
248{
249 struct net_device *dev;
250 int ret = -EADDRNOTAVAIL;
251
252 if (dev_addr->bound_dev_if) {
253 dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
254 if (!dev)
255 return -ENODEV;
256 ret = rdma_copy_addr(dev_addr, dev, NULL);
257 dev_put(dev);
258 return ret;
259 }
260
261 switch (addr->sa_family) {
262 case AF_INET:
263 dev = ip_dev_find(dev_addr->net,
264 ((const struct sockaddr_in *)addr)->sin_addr.s_addr);
265
266 if (!dev)
267 return ret;
268
269 ret = rdma_copy_addr(dev_addr, dev, NULL);
270 dev_addr->bound_dev_if = dev->ifindex;
271 if (vlan_id)
272 *vlan_id = rdma_vlan_dev_vlan_id(dev);
273 dev_put(dev);
274 break;
275#if IS_ENABLED(CONFIG_IPV6)
276 case AF_INET6:
277 rcu_read_lock();
278 for_each_netdev_rcu(dev_addr->net, dev) {
279 if (ipv6_chk_addr(dev_addr->net,
280 &((const struct sockaddr_in6 *)addr)->sin6_addr,
281 dev, 1)) {
282 ret = rdma_copy_addr(dev_addr, dev, NULL);
283 dev_addr->bound_dev_if = dev->ifindex;
284 if (vlan_id)
285 *vlan_id = rdma_vlan_dev_vlan_id(dev);
286 break;
287 }
288 }
289 rcu_read_unlock();
290 break;
291#endif
292 }
293 return ret;
294}
295EXPORT_SYMBOL(rdma_translate_ip);
296
297static void set_timeout(struct delayed_work *delayed_work, unsigned long time)
298{
299 unsigned long delay;
300
301 delay = time - jiffies;
302 if ((long)delay < 0)
303 delay = 0;
304
305 mod_delayed_work(addr_wq, delayed_work, delay);
306}
307
308static void queue_req(struct addr_req *req)
309{
310 struct addr_req *temp_req;
311
312 mutex_lock(&lock);
313 list_for_each_entry_reverse(temp_req, &req_list, list) {
314 if (time_after_eq(req->timeout, temp_req->timeout))
315 break;
316 }
317
318 list_add(&req->list, &temp_req->list);
319
320 set_timeout(&req->work, req->timeout);
321 mutex_unlock(&lock);
322}
323
324static int ib_nl_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
325 const void *daddr, u32 seq, u16 family)
326{
327 if (rdma_nl_chk_listeners(RDMA_NL_GROUP_LS))
328 return -EADDRNOTAVAIL;
329
330 /* We fill in what we can, the response will fill the rest */
331 rdma_copy_addr(dev_addr, dst->dev, NULL);
332 return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
333}
334
335static int dst_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
336 const void *daddr)
337{
338 struct neighbour *n;
339 int ret;
340
341 n = dst_neigh_lookup(dst, daddr);
342
343 rcu_read_lock();
344 if (!n || !(n->nud_state & NUD_VALID)) {
345 if (n)
346 neigh_event_send(n, NULL);
347 ret = -ENODATA;
348 } else {
349 ret = rdma_copy_addr(dev_addr, dst->dev, n->ha);
350 }
351 rcu_read_unlock();
352
353 if (n)
354 neigh_release(n);
355
356 return ret;
357}
358
359static bool has_gateway(struct dst_entry *dst, sa_family_t family)
360{
361 struct rtable *rt;
362 struct rt6_info *rt6;
363
364 if (family == AF_INET) {
365 rt = container_of(dst, struct rtable, dst);
366 return rt->rt_uses_gateway;
367 }
368
369 rt6 = container_of(dst, struct rt6_info, dst);
370 return rt6->rt6i_flags & RTF_GATEWAY;
371}
372
373static int fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
374 const struct sockaddr *dst_in, u32 seq)
375{
376 const struct sockaddr_in *dst_in4 =
377 (const struct sockaddr_in *)dst_in;
378 const struct sockaddr_in6 *dst_in6 =
379 (const struct sockaddr_in6 *)dst_in;
380 const void *daddr = (dst_in->sa_family == AF_INET) ?
381 (const void *)&dst_in4->sin_addr.s_addr :
382 (const void *)&dst_in6->sin6_addr;
383 sa_family_t family = dst_in->sa_family;
384
385 /* Gateway + ARPHRD_INFINIBAND -> IB router */
386 if (has_gateway(dst, family) && dst->dev->type == ARPHRD_INFINIBAND)
387 return ib_nl_fetch_ha(dst, dev_addr, daddr, seq, family);
388 else
389 return dst_fetch_ha(dst, dev_addr, daddr);
390}
391
392static int addr4_resolve(struct sockaddr_in *src_in,
393 const struct sockaddr_in *dst_in,
394 struct rdma_dev_addr *addr,
395 struct rtable **prt)
396{
397 __be32 src_ip = src_in->sin_addr.s_addr;
398 __be32 dst_ip = dst_in->sin_addr.s_addr;
399 struct rtable *rt;
400 struct flowi4 fl4;
401 int ret;
402
403 memset(&fl4, 0, sizeof(fl4));
404 fl4.daddr = dst_ip;
405 fl4.saddr = src_ip;
406 fl4.flowi4_oif = addr->bound_dev_if;
407 rt = ip_route_output_key(addr->net, &fl4);
408 ret = PTR_ERR_OR_ZERO(rt);
409 if (ret)
410 return ret;
411
412 src_in->sin_family = AF_INET;
413 src_in->sin_addr.s_addr = fl4.saddr;
414
415 /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
416 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
417 * type accordingly.
418 */
419 if (rt->rt_uses_gateway && rt->dst.dev->type != ARPHRD_INFINIBAND)
420 addr->network = RDMA_NETWORK_IPV4;
421
422 addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
423
424 *prt = rt;
425 return 0;
426}
427
428#if IS_ENABLED(CONFIG_IPV6)
429static int addr6_resolve(struct sockaddr_in6 *src_in,
430 const struct sockaddr_in6 *dst_in,
431 struct rdma_dev_addr *addr,
432 struct dst_entry **pdst)
433{
434 struct flowi6 fl6;
435 struct dst_entry *dst;
436 struct rt6_info *rt;
437 int ret;
438
439 memset(&fl6, 0, sizeof fl6);
440 fl6.daddr = dst_in->sin6_addr;
441 fl6.saddr = src_in->sin6_addr;
442 fl6.flowi6_oif = addr->bound_dev_if;
443
444 ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6);
445 if (ret < 0)
446 return ret;
447
448 rt = (struct rt6_info *)dst;
449 if (ipv6_addr_any(&src_in->sin6_addr)) {
450 src_in->sin6_family = AF_INET6;
451 src_in->sin6_addr = fl6.saddr;
452 }
453
454 /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
455 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
456 * type accordingly.
457 */
458 if (rt->rt6i_flags & RTF_GATEWAY &&
459 ip6_dst_idev(dst)->dev->type != ARPHRD_INFINIBAND)
460 addr->network = RDMA_NETWORK_IPV6;
461
462 addr->hoplimit = ip6_dst_hoplimit(dst);
463
464 *pdst = dst;
465 return 0;
466}
467#else
468static int addr6_resolve(struct sockaddr_in6 *src_in,
469 const struct sockaddr_in6 *dst_in,
470 struct rdma_dev_addr *addr,
471 struct dst_entry **pdst)
472{
473 return -EADDRNOTAVAIL;
474}
475#endif
476
477static int addr_resolve_neigh(struct dst_entry *dst,
478 const struct sockaddr *dst_in,
479 struct rdma_dev_addr *addr,
480 u32 seq)
481{
482 if (dst->dev->flags & IFF_LOOPBACK) {
483 int ret;
484
485 ret = rdma_translate_ip(dst_in, addr, NULL);
486 if (!ret)
487 memcpy(addr->dst_dev_addr, addr->src_dev_addr,
488 MAX_ADDR_LEN);
489
490 return ret;
491 }
492
493 /* If the device doesn't do ARP internally */
494 if (!(dst->dev->flags & IFF_NOARP))
495 return fetch_ha(dst, addr, dst_in, seq);
496
497 return rdma_copy_addr(addr, dst->dev, NULL);
498}
499
500static int addr_resolve(struct sockaddr *src_in,
501 const struct sockaddr *dst_in,
502 struct rdma_dev_addr *addr,
503 bool resolve_neigh,
504 u32 seq)
505{
506 struct net_device *ndev;
507 struct dst_entry *dst;
508 int ret;
509
510 if (!addr->net) {
511 pr_warn_ratelimited("%s: missing namespace\n", __func__);
512 return -EINVAL;
513 }
514
515 if (src_in->sa_family == AF_INET) {
516 struct rtable *rt = NULL;
517 const struct sockaddr_in *dst_in4 =
518 (const struct sockaddr_in *)dst_in;
519
520 ret = addr4_resolve((struct sockaddr_in *)src_in,
521 dst_in4, addr, &rt);
522 if (ret)
523 return ret;
524
525 if (resolve_neigh)
526 ret = addr_resolve_neigh(&rt->dst, dst_in, addr, seq);
527
528 if (addr->bound_dev_if) {
529 ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
530 } else {
531 ndev = rt->dst.dev;
532 dev_hold(ndev);
533 }
534
535 ip_rt_put(rt);
536 } else {
537 const struct sockaddr_in6 *dst_in6 =
538 (const struct sockaddr_in6 *)dst_in;
539
540 ret = addr6_resolve((struct sockaddr_in6 *)src_in,
541 dst_in6, addr,
542 &dst);
543 if (ret)
544 return ret;
545
546 if (resolve_neigh)
547 ret = addr_resolve_neigh(dst, dst_in, addr, seq);
548
549 if (addr->bound_dev_if) {
550 ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
551 } else {
552 ndev = dst->dev;
553 dev_hold(ndev);
554 }
555
556 dst_release(dst);
557 }
558
559 if (ndev->flags & IFF_LOOPBACK) {
560 ret = rdma_translate_ip(dst_in, addr, NULL);
561 /*
562 * Put the loopback device and get the translated
563 * device instead.
564 */
565 dev_put(ndev);
566 ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
567 } else {
568 addr->bound_dev_if = ndev->ifindex;
569 }
570 dev_put(ndev);
571
572 return ret;
573}
574
575static void process_one_req(struct work_struct *_work)
576{
577 struct addr_req *req;
578 struct sockaddr *src_in, *dst_in;
579
580 mutex_lock(&lock);
581 req = container_of(_work, struct addr_req, work.work);
582
583 if (req->status == -ENODATA) {
584 src_in = (struct sockaddr *)&req->src_addr;
585 dst_in = (struct sockaddr *)&req->dst_addr;
586 req->status = addr_resolve(src_in, dst_in, req->addr,
587 true, req->seq);
588 if (req->status && time_after_eq(jiffies, req->timeout)) {
589 req->status = -ETIMEDOUT;
590 } else if (req->status == -ENODATA) {
591 /* requeue the work for retrying again */
592 set_timeout(&req->work, req->timeout);
593 mutex_unlock(&lock);
594 return;
595 }
596 }
597 list_del(&req->list);
598 mutex_unlock(&lock);
599
600 req->callback(req->status, (struct sockaddr *)&req->src_addr,
601 req->addr, req->context);
602 put_client(req->client);
603 kfree(req);
604}
605
606static void process_req(struct work_struct *work)
607{
608 struct addr_req *req, *temp_req;
609 struct sockaddr *src_in, *dst_in;
610 struct list_head done_list;
611
612 INIT_LIST_HEAD(&done_list);
613
614 mutex_lock(&lock);
615 list_for_each_entry_safe(req, temp_req, &req_list, list) {
616 if (req->status == -ENODATA) {
617 src_in = (struct sockaddr *) &req->src_addr;
618 dst_in = (struct sockaddr *) &req->dst_addr;
619 req->status = addr_resolve(src_in, dst_in, req->addr,
620 true, req->seq);
621 if (req->status && time_after_eq(jiffies, req->timeout))
622 req->status = -ETIMEDOUT;
623 else if (req->status == -ENODATA) {
624 set_timeout(&req->work, req->timeout);
625 continue;
626 }
627 }
628 list_move_tail(&req->list, &done_list);
629 }
630
631 mutex_unlock(&lock);
632
633 list_for_each_entry_safe(req, temp_req, &done_list, list) {
634 list_del(&req->list);
635 /* It is safe to cancel other work items from this work item
636 * because at a time there can be only one work item running
637 * with this single threaded work queue.
638 */
639 cancel_delayed_work(&req->work);
640 req->callback(req->status, (struct sockaddr *) &req->src_addr,
641 req->addr, req->context);
642 put_client(req->client);
643 kfree(req);
644 }
645}
646
647int rdma_resolve_ip(struct rdma_addr_client *client,
648 struct sockaddr *src_addr, struct sockaddr *dst_addr,
649 struct rdma_dev_addr *addr, int timeout_ms,
650 void (*callback)(int status, struct sockaddr *src_addr,
651 struct rdma_dev_addr *addr, void *context),
652 void *context)
653{
654 struct sockaddr *src_in, *dst_in;
655 struct addr_req *req;
656 int ret = 0;
657
658 req = kzalloc(sizeof *req, GFP_KERNEL);
659 if (!req)
660 return -ENOMEM;
661
662 src_in = (struct sockaddr *) &req->src_addr;
663 dst_in = (struct sockaddr *) &req->dst_addr;
664
665 if (src_addr) {
666 if (src_addr->sa_family != dst_addr->sa_family) {
667 ret = -EINVAL;
668 goto err;
669 }
670
671 memcpy(src_in, src_addr, rdma_addr_size(src_addr));
672 } else {
673 src_in->sa_family = dst_addr->sa_family;
674 }
675
676 memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
677 req->addr = addr;
678 req->callback = callback;
679 req->context = context;
680 req->client = client;
681 atomic_inc(&client->refcount);
682 INIT_DELAYED_WORK(&req->work, process_one_req);
683 req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
684
685 req->status = addr_resolve(src_in, dst_in, addr, true, req->seq);
686 switch (req->status) {
687 case 0:
688 req->timeout = jiffies;
689 queue_req(req);
690 break;
691 case -ENODATA:
692 req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
693 queue_req(req);
694 break;
695 default:
696 ret = req->status;
697 atomic_dec(&client->refcount);
698 goto err;
699 }
700 return ret;
701err:
702 kfree(req);
703 return ret;
704}
705EXPORT_SYMBOL(rdma_resolve_ip);
706
707int rdma_resolve_ip_route(struct sockaddr *src_addr,
708 const struct sockaddr *dst_addr,
709 struct rdma_dev_addr *addr)
710{
711 struct sockaddr_storage ssrc_addr = {};
712 struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr;
713
714 if (src_addr) {
715 if (src_addr->sa_family != dst_addr->sa_family)
716 return -EINVAL;
717
718 memcpy(src_in, src_addr, rdma_addr_size(src_addr));
719 } else {
720 src_in->sa_family = dst_addr->sa_family;
721 }
722
723 return addr_resolve(src_in, dst_addr, addr, false, 0);
724}
725EXPORT_SYMBOL(rdma_resolve_ip_route);
726
727void rdma_addr_cancel(struct rdma_dev_addr *addr)
728{
729 struct addr_req *req, *temp_req;
730
731 mutex_lock(&lock);
732 list_for_each_entry_safe(req, temp_req, &req_list, list) {
733 if (req->addr == addr) {
734 req->status = -ECANCELED;
735 req->timeout = jiffies;
736 list_move(&req->list, &req_list);
737 set_timeout(&req->work, req->timeout);
738 break;
739 }
740 }
741 mutex_unlock(&lock);
742}
743EXPORT_SYMBOL(rdma_addr_cancel);
744
745struct resolve_cb_context {
746 struct rdma_dev_addr *addr;
747 struct completion comp;
748 int status;
749};
750
751static void resolve_cb(int status, struct sockaddr *src_addr,
752 struct rdma_dev_addr *addr, void *context)
753{
754 if (!status)
755 memcpy(((struct resolve_cb_context *)context)->addr,
756 addr, sizeof(struct rdma_dev_addr));
757 ((struct resolve_cb_context *)context)->status = status;
758 complete(&((struct resolve_cb_context *)context)->comp);
759}
760
761int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
762 const union ib_gid *dgid,
763 u8 *dmac, u16 *vlan_id, int *if_index,
764 int *hoplimit)
765{
766 int ret = 0;
767 struct rdma_dev_addr dev_addr;
768 struct resolve_cb_context ctx;
769 struct net_device *dev;
770
771 union {
772 struct sockaddr _sockaddr;
773 struct sockaddr_in _sockaddr_in;
774 struct sockaddr_in6 _sockaddr_in6;
775 } sgid_addr, dgid_addr;
776
777
778 rdma_gid2ip(&sgid_addr._sockaddr, sgid);
779 rdma_gid2ip(&dgid_addr._sockaddr, dgid);
780
781 memset(&dev_addr, 0, sizeof(dev_addr));
782 if (if_index)
783 dev_addr.bound_dev_if = *if_index;
784 dev_addr.net = &init_net;
785
786 ctx.addr = &dev_addr;
787 init_completion(&ctx.comp);
788 ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr,
789 &dev_addr, 1000, resolve_cb, &ctx);
790 if (ret)
791 return ret;
792
793 wait_for_completion(&ctx.comp);
794
795 ret = ctx.status;
796 if (ret)
797 return ret;
798
799 memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
800 dev = dev_get_by_index(&init_net, dev_addr.bound_dev_if);
801 if (!dev)
802 return -ENODEV;
803 if (if_index)
804 *if_index = dev_addr.bound_dev_if;
805 if (vlan_id)
806 *vlan_id = rdma_vlan_dev_vlan_id(dev);
807 if (hoplimit)
808 *hoplimit = dev_addr.hoplimit;
809 dev_put(dev);
810 return ret;
811}
812EXPORT_SYMBOL(rdma_addr_find_l2_eth_by_grh);
813
814int rdma_addr_find_smac_by_sgid(union ib_gid *sgid, u8 *smac, u16 *vlan_id)
815{
816 int ret = 0;
817 struct rdma_dev_addr dev_addr;
818 union {
819 struct sockaddr _sockaddr;
820 struct sockaddr_in _sockaddr_in;
821 struct sockaddr_in6 _sockaddr_in6;
822 } gid_addr;
823
824 rdma_gid2ip(&gid_addr._sockaddr, sgid);
825
826 memset(&dev_addr, 0, sizeof(dev_addr));
827 dev_addr.net = &init_net;
828 ret = rdma_translate_ip(&gid_addr._sockaddr, &dev_addr, vlan_id);
829 if (ret)
830 return ret;
831
832 memcpy(smac, dev_addr.src_dev_addr, ETH_ALEN);
833 return ret;
834}
835EXPORT_SYMBOL(rdma_addr_find_smac_by_sgid);
836
837static int netevent_callback(struct notifier_block *self, unsigned long event,
838 void *ctx)
839{
840 if (event == NETEVENT_NEIGH_UPDATE) {
841 struct neighbour *neigh = ctx;
842
843 if (neigh->nud_state & NUD_VALID)
844 set_timeout(&work, jiffies);
845 }
846 return 0;
847}
848
849static struct notifier_block nb = {
850 .notifier_call = netevent_callback
851};
852
853int addr_init(void)
854{
855 addr_wq = alloc_ordered_workqueue("ib_addr", WQ_MEM_RECLAIM);
856 if (!addr_wq)
857 return -ENOMEM;
858
859 register_netevent_notifier(&nb);
860 rdma_addr_register_client(&self);
861
862 return 0;
863}
864
865void addr_cleanup(void)
866{
867 rdma_addr_unregister_client(&self);
868 unregister_netevent_notifier(&nb);
869 destroy_workqueue(addr_wq);
870}