at v4.14 130 kB view raw
1/* 2 * CFQ, or complete fairness queueing, disk scheduler. 3 * 4 * Based on ideas from a previously unfinished io 5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli. 6 * 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 8 */ 9#include <linux/module.h> 10#include <linux/slab.h> 11#include <linux/sched/clock.h> 12#include <linux/blkdev.h> 13#include <linux/elevator.h> 14#include <linux/ktime.h> 15#include <linux/rbtree.h> 16#include <linux/ioprio.h> 17#include <linux/blktrace_api.h> 18#include <linux/blk-cgroup.h> 19#include "blk.h" 20#include "blk-wbt.h" 21 22/* 23 * tunables 24 */ 25/* max queue in one round of service */ 26static const int cfq_quantum = 8; 27static const u64 cfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 }; 28/* maximum backwards seek, in KiB */ 29static const int cfq_back_max = 16 * 1024; 30/* penalty of a backwards seek */ 31static const int cfq_back_penalty = 2; 32static const u64 cfq_slice_sync = NSEC_PER_SEC / 10; 33static u64 cfq_slice_async = NSEC_PER_SEC / 25; 34static const int cfq_slice_async_rq = 2; 35static u64 cfq_slice_idle = NSEC_PER_SEC / 125; 36static u64 cfq_group_idle = NSEC_PER_SEC / 125; 37static const u64 cfq_target_latency = (u64)NSEC_PER_SEC * 3/10; /* 300 ms */ 38static const int cfq_hist_divisor = 4; 39 40/* 41 * offset from end of queue service tree for idle class 42 */ 43#define CFQ_IDLE_DELAY (NSEC_PER_SEC / 5) 44/* offset from end of group service tree under time slice mode */ 45#define CFQ_SLICE_MODE_GROUP_DELAY (NSEC_PER_SEC / 5) 46/* offset from end of group service under IOPS mode */ 47#define CFQ_IOPS_MODE_GROUP_DELAY (HZ / 5) 48 49/* 50 * below this threshold, we consider thinktime immediate 51 */ 52#define CFQ_MIN_TT (2 * NSEC_PER_SEC / HZ) 53 54#define CFQ_SLICE_SCALE (5) 55#define CFQ_HW_QUEUE_MIN (5) 56#define CFQ_SERVICE_SHIFT 12 57 58#define CFQQ_SEEK_THR (sector_t)(8 * 100) 59#define CFQQ_CLOSE_THR (sector_t)(8 * 1024) 60#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32) 61#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8) 62 63#define RQ_CIC(rq) icq_to_cic((rq)->elv.icq) 64#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0]) 65#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1]) 66 67static struct kmem_cache *cfq_pool; 68 69#define CFQ_PRIO_LISTS IOPRIO_BE_NR 70#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE) 71#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT) 72 73#define sample_valid(samples) ((samples) > 80) 74#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node) 75 76/* blkio-related constants */ 77#define CFQ_WEIGHT_LEGACY_MIN 10 78#define CFQ_WEIGHT_LEGACY_DFL 500 79#define CFQ_WEIGHT_LEGACY_MAX 1000 80 81struct cfq_ttime { 82 u64 last_end_request; 83 84 u64 ttime_total; 85 u64 ttime_mean; 86 unsigned long ttime_samples; 87}; 88 89/* 90 * Most of our rbtree usage is for sorting with min extraction, so 91 * if we cache the leftmost node we don't have to walk down the tree 92 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should 93 * move this into the elevator for the rq sorting as well. 94 */ 95struct cfq_rb_root { 96 struct rb_root_cached rb; 97 struct rb_node *rb_rightmost; 98 unsigned count; 99 u64 min_vdisktime; 100 struct cfq_ttime ttime; 101}; 102#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT_CACHED, \ 103 .rb_rightmost = NULL, \ 104 .ttime = {.last_end_request = ktime_get_ns(),},} 105 106/* 107 * Per process-grouping structure 108 */ 109struct cfq_queue { 110 /* reference count */ 111 int ref; 112 /* various state flags, see below */ 113 unsigned int flags; 114 /* parent cfq_data */ 115 struct cfq_data *cfqd; 116 /* service_tree member */ 117 struct rb_node rb_node; 118 /* service_tree key */ 119 u64 rb_key; 120 /* prio tree member */ 121 struct rb_node p_node; 122 /* prio tree root we belong to, if any */ 123 struct rb_root *p_root; 124 /* sorted list of pending requests */ 125 struct rb_root sort_list; 126 /* if fifo isn't expired, next request to serve */ 127 struct request *next_rq; 128 /* requests queued in sort_list */ 129 int queued[2]; 130 /* currently allocated requests */ 131 int allocated[2]; 132 /* fifo list of requests in sort_list */ 133 struct list_head fifo; 134 135 /* time when queue got scheduled in to dispatch first request. */ 136 u64 dispatch_start; 137 u64 allocated_slice; 138 u64 slice_dispatch; 139 /* time when first request from queue completed and slice started. */ 140 u64 slice_start; 141 u64 slice_end; 142 s64 slice_resid; 143 144 /* pending priority requests */ 145 int prio_pending; 146 /* number of requests that are on the dispatch list or inside driver */ 147 int dispatched; 148 149 /* io prio of this group */ 150 unsigned short ioprio, org_ioprio; 151 unsigned short ioprio_class, org_ioprio_class; 152 153 pid_t pid; 154 155 u32 seek_history; 156 sector_t last_request_pos; 157 158 struct cfq_rb_root *service_tree; 159 struct cfq_queue *new_cfqq; 160 struct cfq_group *cfqg; 161 /* Number of sectors dispatched from queue in single dispatch round */ 162 unsigned long nr_sectors; 163}; 164 165/* 166 * First index in the service_trees. 167 * IDLE is handled separately, so it has negative index 168 */ 169enum wl_class_t { 170 BE_WORKLOAD = 0, 171 RT_WORKLOAD = 1, 172 IDLE_WORKLOAD = 2, 173 CFQ_PRIO_NR, 174}; 175 176/* 177 * Second index in the service_trees. 178 */ 179enum wl_type_t { 180 ASYNC_WORKLOAD = 0, 181 SYNC_NOIDLE_WORKLOAD = 1, 182 SYNC_WORKLOAD = 2 183}; 184 185struct cfqg_stats { 186#ifdef CONFIG_CFQ_GROUP_IOSCHED 187 /* number of ios merged */ 188 struct blkg_rwstat merged; 189 /* total time spent on device in ns, may not be accurate w/ queueing */ 190 struct blkg_rwstat service_time; 191 /* total time spent waiting in scheduler queue in ns */ 192 struct blkg_rwstat wait_time; 193 /* number of IOs queued up */ 194 struct blkg_rwstat queued; 195 /* total disk time and nr sectors dispatched by this group */ 196 struct blkg_stat time; 197#ifdef CONFIG_DEBUG_BLK_CGROUP 198 /* time not charged to this cgroup */ 199 struct blkg_stat unaccounted_time; 200 /* sum of number of ios queued across all samples */ 201 struct blkg_stat avg_queue_size_sum; 202 /* count of samples taken for average */ 203 struct blkg_stat avg_queue_size_samples; 204 /* how many times this group has been removed from service tree */ 205 struct blkg_stat dequeue; 206 /* total time spent waiting for it to be assigned a timeslice. */ 207 struct blkg_stat group_wait_time; 208 /* time spent idling for this blkcg_gq */ 209 struct blkg_stat idle_time; 210 /* total time with empty current active q with other requests queued */ 211 struct blkg_stat empty_time; 212 /* fields after this shouldn't be cleared on stat reset */ 213 uint64_t start_group_wait_time; 214 uint64_t start_idle_time; 215 uint64_t start_empty_time; 216 uint16_t flags; 217#endif /* CONFIG_DEBUG_BLK_CGROUP */ 218#endif /* CONFIG_CFQ_GROUP_IOSCHED */ 219}; 220 221/* Per-cgroup data */ 222struct cfq_group_data { 223 /* must be the first member */ 224 struct blkcg_policy_data cpd; 225 226 unsigned int weight; 227 unsigned int leaf_weight; 228}; 229 230/* This is per cgroup per device grouping structure */ 231struct cfq_group { 232 /* must be the first member */ 233 struct blkg_policy_data pd; 234 235 /* group service_tree member */ 236 struct rb_node rb_node; 237 238 /* group service_tree key */ 239 u64 vdisktime; 240 241 /* 242 * The number of active cfqgs and sum of their weights under this 243 * cfqg. This covers this cfqg's leaf_weight and all children's 244 * weights, but does not cover weights of further descendants. 245 * 246 * If a cfqg is on the service tree, it's active. An active cfqg 247 * also activates its parent and contributes to the children_weight 248 * of the parent. 249 */ 250 int nr_active; 251 unsigned int children_weight; 252 253 /* 254 * vfraction is the fraction of vdisktime that the tasks in this 255 * cfqg are entitled to. This is determined by compounding the 256 * ratios walking up from this cfqg to the root. 257 * 258 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all 259 * vfractions on a service tree is approximately 1. The sum may 260 * deviate a bit due to rounding errors and fluctuations caused by 261 * cfqgs entering and leaving the service tree. 262 */ 263 unsigned int vfraction; 264 265 /* 266 * There are two weights - (internal) weight is the weight of this 267 * cfqg against the sibling cfqgs. leaf_weight is the wight of 268 * this cfqg against the child cfqgs. For the root cfqg, both 269 * weights are kept in sync for backward compatibility. 270 */ 271 unsigned int weight; 272 unsigned int new_weight; 273 unsigned int dev_weight; 274 275 unsigned int leaf_weight; 276 unsigned int new_leaf_weight; 277 unsigned int dev_leaf_weight; 278 279 /* number of cfqq currently on this group */ 280 int nr_cfqq; 281 282 /* 283 * Per group busy queues average. Useful for workload slice calc. We 284 * create the array for each prio class but at run time it is used 285 * only for RT and BE class and slot for IDLE class remains unused. 286 * This is primarily done to avoid confusion and a gcc warning. 287 */ 288 unsigned int busy_queues_avg[CFQ_PRIO_NR]; 289 /* 290 * rr lists of queues with requests. We maintain service trees for 291 * RT and BE classes. These trees are subdivided in subclasses 292 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE 293 * class there is no subclassification and all the cfq queues go on 294 * a single tree service_tree_idle. 295 * Counts are embedded in the cfq_rb_root 296 */ 297 struct cfq_rb_root service_trees[2][3]; 298 struct cfq_rb_root service_tree_idle; 299 300 u64 saved_wl_slice; 301 enum wl_type_t saved_wl_type; 302 enum wl_class_t saved_wl_class; 303 304 /* number of requests that are on the dispatch list or inside driver */ 305 int dispatched; 306 struct cfq_ttime ttime; 307 struct cfqg_stats stats; /* stats for this cfqg */ 308 309 /* async queue for each priority case */ 310 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR]; 311 struct cfq_queue *async_idle_cfqq; 312 313}; 314 315struct cfq_io_cq { 316 struct io_cq icq; /* must be the first member */ 317 struct cfq_queue *cfqq[2]; 318 struct cfq_ttime ttime; 319 int ioprio; /* the current ioprio */ 320#ifdef CONFIG_CFQ_GROUP_IOSCHED 321 uint64_t blkcg_serial_nr; /* the current blkcg serial */ 322#endif 323}; 324 325/* 326 * Per block device queue structure 327 */ 328struct cfq_data { 329 struct request_queue *queue; 330 /* Root service tree for cfq_groups */ 331 struct cfq_rb_root grp_service_tree; 332 struct cfq_group *root_group; 333 334 /* 335 * The priority currently being served 336 */ 337 enum wl_class_t serving_wl_class; 338 enum wl_type_t serving_wl_type; 339 u64 workload_expires; 340 struct cfq_group *serving_group; 341 342 /* 343 * Each priority tree is sorted by next_request position. These 344 * trees are used when determining if two or more queues are 345 * interleaving requests (see cfq_close_cooperator). 346 */ 347 struct rb_root prio_trees[CFQ_PRIO_LISTS]; 348 349 unsigned int busy_queues; 350 unsigned int busy_sync_queues; 351 352 int rq_in_driver; 353 int rq_in_flight[2]; 354 355 /* 356 * queue-depth detection 357 */ 358 int rq_queued; 359 int hw_tag; 360 /* 361 * hw_tag can be 362 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection) 363 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth) 364 * 0 => no NCQ 365 */ 366 int hw_tag_est_depth; 367 unsigned int hw_tag_samples; 368 369 /* 370 * idle window management 371 */ 372 struct hrtimer idle_slice_timer; 373 struct work_struct unplug_work; 374 375 struct cfq_queue *active_queue; 376 struct cfq_io_cq *active_cic; 377 378 sector_t last_position; 379 380 /* 381 * tunables, see top of file 382 */ 383 unsigned int cfq_quantum; 384 unsigned int cfq_back_penalty; 385 unsigned int cfq_back_max; 386 unsigned int cfq_slice_async_rq; 387 unsigned int cfq_latency; 388 u64 cfq_fifo_expire[2]; 389 u64 cfq_slice[2]; 390 u64 cfq_slice_idle; 391 u64 cfq_group_idle; 392 u64 cfq_target_latency; 393 394 /* 395 * Fallback dummy cfqq for extreme OOM conditions 396 */ 397 struct cfq_queue oom_cfqq; 398 399 u64 last_delayed_sync; 400}; 401 402static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd); 403static void cfq_put_queue(struct cfq_queue *cfqq); 404 405static struct cfq_rb_root *st_for(struct cfq_group *cfqg, 406 enum wl_class_t class, 407 enum wl_type_t type) 408{ 409 if (!cfqg) 410 return NULL; 411 412 if (class == IDLE_WORKLOAD) 413 return &cfqg->service_tree_idle; 414 415 return &cfqg->service_trees[class][type]; 416} 417 418enum cfqq_state_flags { 419 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */ 420 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */ 421 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */ 422 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */ 423 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */ 424 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */ 425 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */ 426 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */ 427 CFQ_CFQQ_FLAG_sync, /* synchronous queue */ 428 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */ 429 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */ 430 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */ 431 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */ 432}; 433 434#define CFQ_CFQQ_FNS(name) \ 435static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \ 436{ \ 437 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \ 438} \ 439static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \ 440{ \ 441 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \ 442} \ 443static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \ 444{ \ 445 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \ 446} 447 448CFQ_CFQQ_FNS(on_rr); 449CFQ_CFQQ_FNS(wait_request); 450CFQ_CFQQ_FNS(must_dispatch); 451CFQ_CFQQ_FNS(must_alloc_slice); 452CFQ_CFQQ_FNS(fifo_expire); 453CFQ_CFQQ_FNS(idle_window); 454CFQ_CFQQ_FNS(prio_changed); 455CFQ_CFQQ_FNS(slice_new); 456CFQ_CFQQ_FNS(sync); 457CFQ_CFQQ_FNS(coop); 458CFQ_CFQQ_FNS(split_coop); 459CFQ_CFQQ_FNS(deep); 460CFQ_CFQQ_FNS(wait_busy); 461#undef CFQ_CFQQ_FNS 462 463#if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP) 464 465/* cfqg stats flags */ 466enum cfqg_stats_flags { 467 CFQG_stats_waiting = 0, 468 CFQG_stats_idling, 469 CFQG_stats_empty, 470}; 471 472#define CFQG_FLAG_FNS(name) \ 473static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \ 474{ \ 475 stats->flags |= (1 << CFQG_stats_##name); \ 476} \ 477static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \ 478{ \ 479 stats->flags &= ~(1 << CFQG_stats_##name); \ 480} \ 481static inline int cfqg_stats_##name(struct cfqg_stats *stats) \ 482{ \ 483 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \ 484} \ 485 486CFQG_FLAG_FNS(waiting) 487CFQG_FLAG_FNS(idling) 488CFQG_FLAG_FNS(empty) 489#undef CFQG_FLAG_FNS 490 491/* This should be called with the queue_lock held. */ 492static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats) 493{ 494 unsigned long long now; 495 496 if (!cfqg_stats_waiting(stats)) 497 return; 498 499 now = sched_clock(); 500 if (time_after64(now, stats->start_group_wait_time)) 501 blkg_stat_add(&stats->group_wait_time, 502 now - stats->start_group_wait_time); 503 cfqg_stats_clear_waiting(stats); 504} 505 506/* This should be called with the queue_lock held. */ 507static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, 508 struct cfq_group *curr_cfqg) 509{ 510 struct cfqg_stats *stats = &cfqg->stats; 511 512 if (cfqg_stats_waiting(stats)) 513 return; 514 if (cfqg == curr_cfqg) 515 return; 516 stats->start_group_wait_time = sched_clock(); 517 cfqg_stats_mark_waiting(stats); 518} 519 520/* This should be called with the queue_lock held. */ 521static void cfqg_stats_end_empty_time(struct cfqg_stats *stats) 522{ 523 unsigned long long now; 524 525 if (!cfqg_stats_empty(stats)) 526 return; 527 528 now = sched_clock(); 529 if (time_after64(now, stats->start_empty_time)) 530 blkg_stat_add(&stats->empty_time, 531 now - stats->start_empty_time); 532 cfqg_stats_clear_empty(stats); 533} 534 535static void cfqg_stats_update_dequeue(struct cfq_group *cfqg) 536{ 537 blkg_stat_add(&cfqg->stats.dequeue, 1); 538} 539 540static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) 541{ 542 struct cfqg_stats *stats = &cfqg->stats; 543 544 if (blkg_rwstat_total(&stats->queued)) 545 return; 546 547 /* 548 * group is already marked empty. This can happen if cfqq got new 549 * request in parent group and moved to this group while being added 550 * to service tree. Just ignore the event and move on. 551 */ 552 if (cfqg_stats_empty(stats)) 553 return; 554 555 stats->start_empty_time = sched_clock(); 556 cfqg_stats_mark_empty(stats); 557} 558 559static void cfqg_stats_update_idle_time(struct cfq_group *cfqg) 560{ 561 struct cfqg_stats *stats = &cfqg->stats; 562 563 if (cfqg_stats_idling(stats)) { 564 unsigned long long now = sched_clock(); 565 566 if (time_after64(now, stats->start_idle_time)) 567 blkg_stat_add(&stats->idle_time, 568 now - stats->start_idle_time); 569 cfqg_stats_clear_idling(stats); 570 } 571} 572 573static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) 574{ 575 struct cfqg_stats *stats = &cfqg->stats; 576 577 BUG_ON(cfqg_stats_idling(stats)); 578 579 stats->start_idle_time = sched_clock(); 580 cfqg_stats_mark_idling(stats); 581} 582 583static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) 584{ 585 struct cfqg_stats *stats = &cfqg->stats; 586 587 blkg_stat_add(&stats->avg_queue_size_sum, 588 blkg_rwstat_total(&stats->queued)); 589 blkg_stat_add(&stats->avg_queue_size_samples, 1); 590 cfqg_stats_update_group_wait_time(stats); 591} 592 593#else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */ 594 595static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { } 596static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { } 597static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { } 598static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { } 599static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { } 600static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { } 601static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { } 602 603#endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */ 604 605#ifdef CONFIG_CFQ_GROUP_IOSCHED 606 607static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd) 608{ 609 return pd ? container_of(pd, struct cfq_group, pd) : NULL; 610} 611 612static struct cfq_group_data 613*cpd_to_cfqgd(struct blkcg_policy_data *cpd) 614{ 615 return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL; 616} 617 618static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg) 619{ 620 return pd_to_blkg(&cfqg->pd); 621} 622 623static struct blkcg_policy blkcg_policy_cfq; 624 625static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg) 626{ 627 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq)); 628} 629 630static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg) 631{ 632 return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq)); 633} 634 635static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) 636{ 637 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent; 638 639 return pblkg ? blkg_to_cfqg(pblkg) : NULL; 640} 641 642static inline bool cfqg_is_descendant(struct cfq_group *cfqg, 643 struct cfq_group *ancestor) 644{ 645 return cgroup_is_descendant(cfqg_to_blkg(cfqg)->blkcg->css.cgroup, 646 cfqg_to_blkg(ancestor)->blkcg->css.cgroup); 647} 648 649static inline void cfqg_get(struct cfq_group *cfqg) 650{ 651 return blkg_get(cfqg_to_blkg(cfqg)); 652} 653 654static inline void cfqg_put(struct cfq_group *cfqg) 655{ 656 return blkg_put(cfqg_to_blkg(cfqg)); 657} 658 659#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \ 660 blk_add_cgroup_trace_msg((cfqd)->queue, \ 661 cfqg_to_blkg((cfqq)->cfqg)->blkcg, \ 662 "cfq%d%c%c " fmt, (cfqq)->pid, \ 663 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \ 664 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\ 665 ##args); \ 666} while (0) 667 668#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \ 669 blk_add_cgroup_trace_msg((cfqd)->queue, \ 670 cfqg_to_blkg(cfqg)->blkcg, fmt, ##args); \ 671} while (0) 672 673static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg, 674 struct cfq_group *curr_cfqg, 675 unsigned int op) 676{ 677 blkg_rwstat_add(&cfqg->stats.queued, op, 1); 678 cfqg_stats_end_empty_time(&cfqg->stats); 679 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg); 680} 681 682static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg, 683 uint64_t time, unsigned long unaccounted_time) 684{ 685 blkg_stat_add(&cfqg->stats.time, time); 686#ifdef CONFIG_DEBUG_BLK_CGROUP 687 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time); 688#endif 689} 690 691static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, 692 unsigned int op) 693{ 694 blkg_rwstat_add(&cfqg->stats.queued, op, -1); 695} 696 697static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, 698 unsigned int op) 699{ 700 blkg_rwstat_add(&cfqg->stats.merged, op, 1); 701} 702 703static inline void cfqg_stats_update_completion(struct cfq_group *cfqg, 704 uint64_t start_time, uint64_t io_start_time, 705 unsigned int op) 706{ 707 struct cfqg_stats *stats = &cfqg->stats; 708 unsigned long long now = sched_clock(); 709 710 if (time_after64(now, io_start_time)) 711 blkg_rwstat_add(&stats->service_time, op, now - io_start_time); 712 if (time_after64(io_start_time, start_time)) 713 blkg_rwstat_add(&stats->wait_time, op, 714 io_start_time - start_time); 715} 716 717/* @stats = 0 */ 718static void cfqg_stats_reset(struct cfqg_stats *stats) 719{ 720 /* queued stats shouldn't be cleared */ 721 blkg_rwstat_reset(&stats->merged); 722 blkg_rwstat_reset(&stats->service_time); 723 blkg_rwstat_reset(&stats->wait_time); 724 blkg_stat_reset(&stats->time); 725#ifdef CONFIG_DEBUG_BLK_CGROUP 726 blkg_stat_reset(&stats->unaccounted_time); 727 blkg_stat_reset(&stats->avg_queue_size_sum); 728 blkg_stat_reset(&stats->avg_queue_size_samples); 729 blkg_stat_reset(&stats->dequeue); 730 blkg_stat_reset(&stats->group_wait_time); 731 blkg_stat_reset(&stats->idle_time); 732 blkg_stat_reset(&stats->empty_time); 733#endif 734} 735 736/* @to += @from */ 737static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from) 738{ 739 /* queued stats shouldn't be cleared */ 740 blkg_rwstat_add_aux(&to->merged, &from->merged); 741 blkg_rwstat_add_aux(&to->service_time, &from->service_time); 742 blkg_rwstat_add_aux(&to->wait_time, &from->wait_time); 743 blkg_stat_add_aux(&from->time, &from->time); 744#ifdef CONFIG_DEBUG_BLK_CGROUP 745 blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time); 746 blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum); 747 blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples); 748 blkg_stat_add_aux(&to->dequeue, &from->dequeue); 749 blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time); 750 blkg_stat_add_aux(&to->idle_time, &from->idle_time); 751 blkg_stat_add_aux(&to->empty_time, &from->empty_time); 752#endif 753} 754 755/* 756 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors' 757 * recursive stats can still account for the amount used by this cfqg after 758 * it's gone. 759 */ 760static void cfqg_stats_xfer_dead(struct cfq_group *cfqg) 761{ 762 struct cfq_group *parent = cfqg_parent(cfqg); 763 764 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock); 765 766 if (unlikely(!parent)) 767 return; 768 769 cfqg_stats_add_aux(&parent->stats, &cfqg->stats); 770 cfqg_stats_reset(&cfqg->stats); 771} 772 773#else /* CONFIG_CFQ_GROUP_IOSCHED */ 774 775static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; } 776static inline bool cfqg_is_descendant(struct cfq_group *cfqg, 777 struct cfq_group *ancestor) 778{ 779 return true; 780} 781static inline void cfqg_get(struct cfq_group *cfqg) { } 782static inline void cfqg_put(struct cfq_group *cfqg) { } 783 784#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \ 785 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \ 786 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \ 787 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\ 788 ##args) 789#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0) 790 791static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg, 792 struct cfq_group *curr_cfqg, unsigned int op) { } 793static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg, 794 uint64_t time, unsigned long unaccounted_time) { } 795static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, 796 unsigned int op) { } 797static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, 798 unsigned int op) { } 799static inline void cfqg_stats_update_completion(struct cfq_group *cfqg, 800 uint64_t start_time, uint64_t io_start_time, 801 unsigned int op) { } 802 803#endif /* CONFIG_CFQ_GROUP_IOSCHED */ 804 805#define cfq_log(cfqd, fmt, args...) \ 806 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args) 807 808/* Traverses through cfq group service trees */ 809#define for_each_cfqg_st(cfqg, i, j, st) \ 810 for (i = 0; i <= IDLE_WORKLOAD; i++) \ 811 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\ 812 : &cfqg->service_tree_idle; \ 813 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \ 814 (i == IDLE_WORKLOAD && j == 0); \ 815 j++, st = i < IDLE_WORKLOAD ? \ 816 &cfqg->service_trees[i][j]: NULL) \ 817 818static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd, 819 struct cfq_ttime *ttime, bool group_idle) 820{ 821 u64 slice; 822 if (!sample_valid(ttime->ttime_samples)) 823 return false; 824 if (group_idle) 825 slice = cfqd->cfq_group_idle; 826 else 827 slice = cfqd->cfq_slice_idle; 828 return ttime->ttime_mean > slice; 829} 830 831static inline bool iops_mode(struct cfq_data *cfqd) 832{ 833 /* 834 * If we are not idling on queues and it is a NCQ drive, parallel 835 * execution of requests is on and measuring time is not possible 836 * in most of the cases until and unless we drive shallower queue 837 * depths and that becomes a performance bottleneck. In such cases 838 * switch to start providing fairness in terms of number of IOs. 839 */ 840 if (!cfqd->cfq_slice_idle && cfqd->hw_tag) 841 return true; 842 else 843 return false; 844} 845 846static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq) 847{ 848 if (cfq_class_idle(cfqq)) 849 return IDLE_WORKLOAD; 850 if (cfq_class_rt(cfqq)) 851 return RT_WORKLOAD; 852 return BE_WORKLOAD; 853} 854 855 856static enum wl_type_t cfqq_type(struct cfq_queue *cfqq) 857{ 858 if (!cfq_cfqq_sync(cfqq)) 859 return ASYNC_WORKLOAD; 860 if (!cfq_cfqq_idle_window(cfqq)) 861 return SYNC_NOIDLE_WORKLOAD; 862 return SYNC_WORKLOAD; 863} 864 865static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class, 866 struct cfq_data *cfqd, 867 struct cfq_group *cfqg) 868{ 869 if (wl_class == IDLE_WORKLOAD) 870 return cfqg->service_tree_idle.count; 871 872 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count + 873 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count + 874 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count; 875} 876 877static inline int cfqg_busy_async_queues(struct cfq_data *cfqd, 878 struct cfq_group *cfqg) 879{ 880 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count + 881 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count; 882} 883 884static void cfq_dispatch_insert(struct request_queue *, struct request *); 885static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync, 886 struct cfq_io_cq *cic, struct bio *bio); 887 888static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq) 889{ 890 /* cic->icq is the first member, %NULL will convert to %NULL */ 891 return container_of(icq, struct cfq_io_cq, icq); 892} 893 894static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd, 895 struct io_context *ioc) 896{ 897 if (ioc) 898 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue)); 899 return NULL; 900} 901 902static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync) 903{ 904 return cic->cfqq[is_sync]; 905} 906 907static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq, 908 bool is_sync) 909{ 910 cic->cfqq[is_sync] = cfqq; 911} 912 913static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic) 914{ 915 return cic->icq.q->elevator->elevator_data; 916} 917 918/* 919 * scheduler run of queue, if there are requests pending and no one in the 920 * driver that will restart queueing 921 */ 922static inline void cfq_schedule_dispatch(struct cfq_data *cfqd) 923{ 924 if (cfqd->busy_queues) { 925 cfq_log(cfqd, "schedule dispatch"); 926 kblockd_schedule_work(&cfqd->unplug_work); 927 } 928} 929 930/* 931 * Scale schedule slice based on io priority. Use the sync time slice only 932 * if a queue is marked sync and has sync io queued. A sync queue with async 933 * io only, should not get full sync slice length. 934 */ 935static inline u64 cfq_prio_slice(struct cfq_data *cfqd, bool sync, 936 unsigned short prio) 937{ 938 u64 base_slice = cfqd->cfq_slice[sync]; 939 u64 slice = div_u64(base_slice, CFQ_SLICE_SCALE); 940 941 WARN_ON(prio >= IOPRIO_BE_NR); 942 943 return base_slice + (slice * (4 - prio)); 944} 945 946static inline u64 947cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq) 948{ 949 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio); 950} 951 952/** 953 * cfqg_scale_charge - scale disk time charge according to cfqg weight 954 * @charge: disk time being charged 955 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT 956 * 957 * Scale @charge according to @vfraction, which is in range (0, 1]. The 958 * scaling is inversely proportional. 959 * 960 * scaled = charge / vfraction 961 * 962 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT. 963 */ 964static inline u64 cfqg_scale_charge(u64 charge, 965 unsigned int vfraction) 966{ 967 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */ 968 969 /* charge / vfraction */ 970 c <<= CFQ_SERVICE_SHIFT; 971 return div_u64(c, vfraction); 972} 973 974static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime) 975{ 976 s64 delta = (s64)(vdisktime - min_vdisktime); 977 if (delta > 0) 978 min_vdisktime = vdisktime; 979 980 return min_vdisktime; 981} 982 983static void update_min_vdisktime(struct cfq_rb_root *st) 984{ 985 if (!RB_EMPTY_ROOT(&st->rb.rb_root)) { 986 struct cfq_group *cfqg = rb_entry_cfqg(st->rb.rb_leftmost); 987 988 st->min_vdisktime = max_vdisktime(st->min_vdisktime, 989 cfqg->vdisktime); 990 } 991} 992 993/* 994 * get averaged number of queues of RT/BE priority. 995 * average is updated, with a formula that gives more weight to higher numbers, 996 * to quickly follows sudden increases and decrease slowly 997 */ 998 999static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd, 1000 struct cfq_group *cfqg, bool rt) 1001{ 1002 unsigned min_q, max_q; 1003 unsigned mult = cfq_hist_divisor - 1; 1004 unsigned round = cfq_hist_divisor / 2; 1005 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg); 1006 1007 min_q = min(cfqg->busy_queues_avg[rt], busy); 1008 max_q = max(cfqg->busy_queues_avg[rt], busy); 1009 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) / 1010 cfq_hist_divisor; 1011 return cfqg->busy_queues_avg[rt]; 1012} 1013 1014static inline u64 1015cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg) 1016{ 1017 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT; 1018} 1019 1020static inline u64 1021cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq) 1022{ 1023 u64 slice = cfq_prio_to_slice(cfqd, cfqq); 1024 if (cfqd->cfq_latency) { 1025 /* 1026 * interested queues (we consider only the ones with the same 1027 * priority class in the cfq group) 1028 */ 1029 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg, 1030 cfq_class_rt(cfqq)); 1031 u64 sync_slice = cfqd->cfq_slice[1]; 1032 u64 expect_latency = sync_slice * iq; 1033 u64 group_slice = cfq_group_slice(cfqd, cfqq->cfqg); 1034 1035 if (expect_latency > group_slice) { 1036 u64 base_low_slice = 2 * cfqd->cfq_slice_idle; 1037 u64 low_slice; 1038 1039 /* scale low_slice according to IO priority 1040 * and sync vs async */ 1041 low_slice = div64_u64(base_low_slice*slice, sync_slice); 1042 low_slice = min(slice, low_slice); 1043 /* the adapted slice value is scaled to fit all iqs 1044 * into the target latency */ 1045 slice = div64_u64(slice*group_slice, expect_latency); 1046 slice = max(slice, low_slice); 1047 } 1048 } 1049 return slice; 1050} 1051 1052static inline void 1053cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq) 1054{ 1055 u64 slice = cfq_scaled_cfqq_slice(cfqd, cfqq); 1056 u64 now = ktime_get_ns(); 1057 1058 cfqq->slice_start = now; 1059 cfqq->slice_end = now + slice; 1060 cfqq->allocated_slice = slice; 1061 cfq_log_cfqq(cfqd, cfqq, "set_slice=%llu", cfqq->slice_end - now); 1062} 1063 1064/* 1065 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end 1066 * isn't valid until the first request from the dispatch is activated 1067 * and the slice time set. 1068 */ 1069static inline bool cfq_slice_used(struct cfq_queue *cfqq) 1070{ 1071 if (cfq_cfqq_slice_new(cfqq)) 1072 return false; 1073 if (ktime_get_ns() < cfqq->slice_end) 1074 return false; 1075 1076 return true; 1077} 1078 1079/* 1080 * Lifted from AS - choose which of rq1 and rq2 that is best served now. 1081 * We choose the request that is closest to the head right now. Distance 1082 * behind the head is penalized and only allowed to a certain extent. 1083 */ 1084static struct request * 1085cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last) 1086{ 1087 sector_t s1, s2, d1 = 0, d2 = 0; 1088 unsigned long back_max; 1089#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */ 1090#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */ 1091 unsigned wrap = 0; /* bit mask: requests behind the disk head? */ 1092 1093 if (rq1 == NULL || rq1 == rq2) 1094 return rq2; 1095 if (rq2 == NULL) 1096 return rq1; 1097 1098 if (rq_is_sync(rq1) != rq_is_sync(rq2)) 1099 return rq_is_sync(rq1) ? rq1 : rq2; 1100 1101 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO) 1102 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2; 1103 1104 s1 = blk_rq_pos(rq1); 1105 s2 = blk_rq_pos(rq2); 1106 1107 /* 1108 * by definition, 1KiB is 2 sectors 1109 */ 1110 back_max = cfqd->cfq_back_max * 2; 1111 1112 /* 1113 * Strict one way elevator _except_ in the case where we allow 1114 * short backward seeks which are biased as twice the cost of a 1115 * similar forward seek. 1116 */ 1117 if (s1 >= last) 1118 d1 = s1 - last; 1119 else if (s1 + back_max >= last) 1120 d1 = (last - s1) * cfqd->cfq_back_penalty; 1121 else 1122 wrap |= CFQ_RQ1_WRAP; 1123 1124 if (s2 >= last) 1125 d2 = s2 - last; 1126 else if (s2 + back_max >= last) 1127 d2 = (last - s2) * cfqd->cfq_back_penalty; 1128 else 1129 wrap |= CFQ_RQ2_WRAP; 1130 1131 /* Found required data */ 1132 1133 /* 1134 * By doing switch() on the bit mask "wrap" we avoid having to 1135 * check two variables for all permutations: --> faster! 1136 */ 1137 switch (wrap) { 1138 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */ 1139 if (d1 < d2) 1140 return rq1; 1141 else if (d2 < d1) 1142 return rq2; 1143 else { 1144 if (s1 >= s2) 1145 return rq1; 1146 else 1147 return rq2; 1148 } 1149 1150 case CFQ_RQ2_WRAP: 1151 return rq1; 1152 case CFQ_RQ1_WRAP: 1153 return rq2; 1154 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */ 1155 default: 1156 /* 1157 * Since both rqs are wrapped, 1158 * start with the one that's further behind head 1159 * (--> only *one* back seek required), 1160 * since back seek takes more time than forward. 1161 */ 1162 if (s1 <= s2) 1163 return rq1; 1164 else 1165 return rq2; 1166 } 1167} 1168 1169static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root) 1170{ 1171 /* Service tree is empty */ 1172 if (!root->count) 1173 return NULL; 1174 1175 return rb_entry(rb_first_cached(&root->rb), struct cfq_queue, rb_node); 1176} 1177 1178static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root) 1179{ 1180 return rb_entry_cfqg(rb_first_cached(&root->rb)); 1181} 1182 1183static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root) 1184{ 1185 if (root->rb_rightmost == n) 1186 root->rb_rightmost = rb_prev(n); 1187 1188 rb_erase_cached(n, &root->rb); 1189 RB_CLEAR_NODE(n); 1190 1191 --root->count; 1192} 1193 1194/* 1195 * would be nice to take fifo expire time into account as well 1196 */ 1197static struct request * 1198cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq, 1199 struct request *last) 1200{ 1201 struct rb_node *rbnext = rb_next(&last->rb_node); 1202 struct rb_node *rbprev = rb_prev(&last->rb_node); 1203 struct request *next = NULL, *prev = NULL; 1204 1205 BUG_ON(RB_EMPTY_NODE(&last->rb_node)); 1206 1207 if (rbprev) 1208 prev = rb_entry_rq(rbprev); 1209 1210 if (rbnext) 1211 next = rb_entry_rq(rbnext); 1212 else { 1213 rbnext = rb_first(&cfqq->sort_list); 1214 if (rbnext && rbnext != &last->rb_node) 1215 next = rb_entry_rq(rbnext); 1216 } 1217 1218 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last)); 1219} 1220 1221static u64 cfq_slice_offset(struct cfq_data *cfqd, 1222 struct cfq_queue *cfqq) 1223{ 1224 /* 1225 * just an approximation, should be ok. 1226 */ 1227 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) - 1228 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio)); 1229} 1230 1231static inline s64 1232cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg) 1233{ 1234 return cfqg->vdisktime - st->min_vdisktime; 1235} 1236 1237static void 1238__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg) 1239{ 1240 struct rb_node **node = &st->rb.rb_root.rb_node; 1241 struct rb_node *parent = NULL; 1242 struct cfq_group *__cfqg; 1243 s64 key = cfqg_key(st, cfqg); 1244 bool leftmost = true, rightmost = true; 1245 1246 while (*node != NULL) { 1247 parent = *node; 1248 __cfqg = rb_entry_cfqg(parent); 1249 1250 if (key < cfqg_key(st, __cfqg)) { 1251 node = &parent->rb_left; 1252 rightmost = false; 1253 } else { 1254 node = &parent->rb_right; 1255 leftmost = false; 1256 } 1257 } 1258 1259 if (rightmost) 1260 st->rb_rightmost = &cfqg->rb_node; 1261 1262 rb_link_node(&cfqg->rb_node, parent, node); 1263 rb_insert_color_cached(&cfqg->rb_node, &st->rb, leftmost); 1264} 1265 1266/* 1267 * This has to be called only on activation of cfqg 1268 */ 1269static void 1270cfq_update_group_weight(struct cfq_group *cfqg) 1271{ 1272 if (cfqg->new_weight) { 1273 cfqg->weight = cfqg->new_weight; 1274 cfqg->new_weight = 0; 1275 } 1276} 1277 1278static void 1279cfq_update_group_leaf_weight(struct cfq_group *cfqg) 1280{ 1281 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node)); 1282 1283 if (cfqg->new_leaf_weight) { 1284 cfqg->leaf_weight = cfqg->new_leaf_weight; 1285 cfqg->new_leaf_weight = 0; 1286 } 1287} 1288 1289static void 1290cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg) 1291{ 1292 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */ 1293 struct cfq_group *pos = cfqg; 1294 struct cfq_group *parent; 1295 bool propagate; 1296 1297 /* add to the service tree */ 1298 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node)); 1299 1300 /* 1301 * Update leaf_weight. We cannot update weight at this point 1302 * because cfqg might already have been activated and is 1303 * contributing its current weight to the parent's child_weight. 1304 */ 1305 cfq_update_group_leaf_weight(cfqg); 1306 __cfq_group_service_tree_add(st, cfqg); 1307 1308 /* 1309 * Activate @cfqg and calculate the portion of vfraction @cfqg is 1310 * entitled to. vfraction is calculated by walking the tree 1311 * towards the root calculating the fraction it has at each level. 1312 * The compounded ratio is how much vfraction @cfqg owns. 1313 * 1314 * Start with the proportion tasks in this cfqg has against active 1315 * children cfqgs - its leaf_weight against children_weight. 1316 */ 1317 propagate = !pos->nr_active++; 1318 pos->children_weight += pos->leaf_weight; 1319 vfr = vfr * pos->leaf_weight / pos->children_weight; 1320 1321 /* 1322 * Compound ->weight walking up the tree. Both activation and 1323 * vfraction calculation are done in the same loop. Propagation 1324 * stops once an already activated node is met. vfraction 1325 * calculation should always continue to the root. 1326 */ 1327 while ((parent = cfqg_parent(pos))) { 1328 if (propagate) { 1329 cfq_update_group_weight(pos); 1330 propagate = !parent->nr_active++; 1331 parent->children_weight += pos->weight; 1332 } 1333 vfr = vfr * pos->weight / parent->children_weight; 1334 pos = parent; 1335 } 1336 1337 cfqg->vfraction = max_t(unsigned, vfr, 1); 1338} 1339 1340static inline u64 cfq_get_cfqg_vdisktime_delay(struct cfq_data *cfqd) 1341{ 1342 if (!iops_mode(cfqd)) 1343 return CFQ_SLICE_MODE_GROUP_DELAY; 1344 else 1345 return CFQ_IOPS_MODE_GROUP_DELAY; 1346} 1347 1348static void 1349cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg) 1350{ 1351 struct cfq_rb_root *st = &cfqd->grp_service_tree; 1352 struct cfq_group *__cfqg; 1353 struct rb_node *n; 1354 1355 cfqg->nr_cfqq++; 1356 if (!RB_EMPTY_NODE(&cfqg->rb_node)) 1357 return; 1358 1359 /* 1360 * Currently put the group at the end. Later implement something 1361 * so that groups get lesser vtime based on their weights, so that 1362 * if group does not loose all if it was not continuously backlogged. 1363 */ 1364 n = st->rb_rightmost; 1365 if (n) { 1366 __cfqg = rb_entry_cfqg(n); 1367 cfqg->vdisktime = __cfqg->vdisktime + 1368 cfq_get_cfqg_vdisktime_delay(cfqd); 1369 } else 1370 cfqg->vdisktime = st->min_vdisktime; 1371 cfq_group_service_tree_add(st, cfqg); 1372} 1373 1374static void 1375cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg) 1376{ 1377 struct cfq_group *pos = cfqg; 1378 bool propagate; 1379 1380 /* 1381 * Undo activation from cfq_group_service_tree_add(). Deactivate 1382 * @cfqg and propagate deactivation upwards. 1383 */ 1384 propagate = !--pos->nr_active; 1385 pos->children_weight -= pos->leaf_weight; 1386 1387 while (propagate) { 1388 struct cfq_group *parent = cfqg_parent(pos); 1389 1390 /* @pos has 0 nr_active at this point */ 1391 WARN_ON_ONCE(pos->children_weight); 1392 pos->vfraction = 0; 1393 1394 if (!parent) 1395 break; 1396 1397 propagate = !--parent->nr_active; 1398 parent->children_weight -= pos->weight; 1399 pos = parent; 1400 } 1401 1402 /* remove from the service tree */ 1403 if (!RB_EMPTY_NODE(&cfqg->rb_node)) 1404 cfq_rb_erase(&cfqg->rb_node, st); 1405} 1406 1407static void 1408cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg) 1409{ 1410 struct cfq_rb_root *st = &cfqd->grp_service_tree; 1411 1412 BUG_ON(cfqg->nr_cfqq < 1); 1413 cfqg->nr_cfqq--; 1414 1415 /* If there are other cfq queues under this group, don't delete it */ 1416 if (cfqg->nr_cfqq) 1417 return; 1418 1419 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group"); 1420 cfq_group_service_tree_del(st, cfqg); 1421 cfqg->saved_wl_slice = 0; 1422 cfqg_stats_update_dequeue(cfqg); 1423} 1424 1425static inline u64 cfq_cfqq_slice_usage(struct cfq_queue *cfqq, 1426 u64 *unaccounted_time) 1427{ 1428 u64 slice_used; 1429 u64 now = ktime_get_ns(); 1430 1431 /* 1432 * Queue got expired before even a single request completed or 1433 * got expired immediately after first request completion. 1434 */ 1435 if (!cfqq->slice_start || cfqq->slice_start == now) { 1436 /* 1437 * Also charge the seek time incurred to the group, otherwise 1438 * if there are mutiple queues in the group, each can dispatch 1439 * a single request on seeky media and cause lots of seek time 1440 * and group will never know it. 1441 */ 1442 slice_used = max_t(u64, (now - cfqq->dispatch_start), 1443 jiffies_to_nsecs(1)); 1444 } else { 1445 slice_used = now - cfqq->slice_start; 1446 if (slice_used > cfqq->allocated_slice) { 1447 *unaccounted_time = slice_used - cfqq->allocated_slice; 1448 slice_used = cfqq->allocated_slice; 1449 } 1450 if (cfqq->slice_start > cfqq->dispatch_start) 1451 *unaccounted_time += cfqq->slice_start - 1452 cfqq->dispatch_start; 1453 } 1454 1455 return slice_used; 1456} 1457 1458static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg, 1459 struct cfq_queue *cfqq) 1460{ 1461 struct cfq_rb_root *st = &cfqd->grp_service_tree; 1462 u64 used_sl, charge, unaccounted_sl = 0; 1463 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg) 1464 - cfqg->service_tree_idle.count; 1465 unsigned int vfr; 1466 u64 now = ktime_get_ns(); 1467 1468 BUG_ON(nr_sync < 0); 1469 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl); 1470 1471 if (iops_mode(cfqd)) 1472 charge = cfqq->slice_dispatch; 1473 else if (!cfq_cfqq_sync(cfqq) && !nr_sync) 1474 charge = cfqq->allocated_slice; 1475 1476 /* 1477 * Can't update vdisktime while on service tree and cfqg->vfraction 1478 * is valid only while on it. Cache vfr, leave the service tree, 1479 * update vdisktime and go back on. The re-addition to the tree 1480 * will also update the weights as necessary. 1481 */ 1482 vfr = cfqg->vfraction; 1483 cfq_group_service_tree_del(st, cfqg); 1484 cfqg->vdisktime += cfqg_scale_charge(charge, vfr); 1485 cfq_group_service_tree_add(st, cfqg); 1486 1487 /* This group is being expired. Save the context */ 1488 if (cfqd->workload_expires > now) { 1489 cfqg->saved_wl_slice = cfqd->workload_expires - now; 1490 cfqg->saved_wl_type = cfqd->serving_wl_type; 1491 cfqg->saved_wl_class = cfqd->serving_wl_class; 1492 } else 1493 cfqg->saved_wl_slice = 0; 1494 1495 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime, 1496 st->min_vdisktime); 1497 cfq_log_cfqq(cfqq->cfqd, cfqq, 1498 "sl_used=%llu disp=%llu charge=%llu iops=%u sect=%lu", 1499 used_sl, cfqq->slice_dispatch, charge, 1500 iops_mode(cfqd), cfqq->nr_sectors); 1501 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl); 1502 cfqg_stats_set_start_empty_time(cfqg); 1503} 1504 1505/** 1506 * cfq_init_cfqg_base - initialize base part of a cfq_group 1507 * @cfqg: cfq_group to initialize 1508 * 1509 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED 1510 * is enabled or not. 1511 */ 1512static void cfq_init_cfqg_base(struct cfq_group *cfqg) 1513{ 1514 struct cfq_rb_root *st; 1515 int i, j; 1516 1517 for_each_cfqg_st(cfqg, i, j, st) 1518 *st = CFQ_RB_ROOT; 1519 RB_CLEAR_NODE(&cfqg->rb_node); 1520 1521 cfqg->ttime.last_end_request = ktime_get_ns(); 1522} 1523 1524#ifdef CONFIG_CFQ_GROUP_IOSCHED 1525static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val, 1526 bool on_dfl, bool reset_dev, bool is_leaf_weight); 1527 1528static void cfqg_stats_exit(struct cfqg_stats *stats) 1529{ 1530 blkg_rwstat_exit(&stats->merged); 1531 blkg_rwstat_exit(&stats->service_time); 1532 blkg_rwstat_exit(&stats->wait_time); 1533 blkg_rwstat_exit(&stats->queued); 1534 blkg_stat_exit(&stats->time); 1535#ifdef CONFIG_DEBUG_BLK_CGROUP 1536 blkg_stat_exit(&stats->unaccounted_time); 1537 blkg_stat_exit(&stats->avg_queue_size_sum); 1538 blkg_stat_exit(&stats->avg_queue_size_samples); 1539 blkg_stat_exit(&stats->dequeue); 1540 blkg_stat_exit(&stats->group_wait_time); 1541 blkg_stat_exit(&stats->idle_time); 1542 blkg_stat_exit(&stats->empty_time); 1543#endif 1544} 1545 1546static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp) 1547{ 1548 if (blkg_rwstat_init(&stats->merged, gfp) || 1549 blkg_rwstat_init(&stats->service_time, gfp) || 1550 blkg_rwstat_init(&stats->wait_time, gfp) || 1551 blkg_rwstat_init(&stats->queued, gfp) || 1552 blkg_stat_init(&stats->time, gfp)) 1553 goto err; 1554 1555#ifdef CONFIG_DEBUG_BLK_CGROUP 1556 if (blkg_stat_init(&stats->unaccounted_time, gfp) || 1557 blkg_stat_init(&stats->avg_queue_size_sum, gfp) || 1558 blkg_stat_init(&stats->avg_queue_size_samples, gfp) || 1559 blkg_stat_init(&stats->dequeue, gfp) || 1560 blkg_stat_init(&stats->group_wait_time, gfp) || 1561 blkg_stat_init(&stats->idle_time, gfp) || 1562 blkg_stat_init(&stats->empty_time, gfp)) 1563 goto err; 1564#endif 1565 return 0; 1566err: 1567 cfqg_stats_exit(stats); 1568 return -ENOMEM; 1569} 1570 1571static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp) 1572{ 1573 struct cfq_group_data *cgd; 1574 1575 cgd = kzalloc(sizeof(*cgd), gfp); 1576 if (!cgd) 1577 return NULL; 1578 return &cgd->cpd; 1579} 1580 1581static void cfq_cpd_init(struct blkcg_policy_data *cpd) 1582{ 1583 struct cfq_group_data *cgd = cpd_to_cfqgd(cpd); 1584 unsigned int weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ? 1585 CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL; 1586 1587 if (cpd_to_blkcg(cpd) == &blkcg_root) 1588 weight *= 2; 1589 1590 cgd->weight = weight; 1591 cgd->leaf_weight = weight; 1592} 1593 1594static void cfq_cpd_free(struct blkcg_policy_data *cpd) 1595{ 1596 kfree(cpd_to_cfqgd(cpd)); 1597} 1598 1599static void cfq_cpd_bind(struct blkcg_policy_data *cpd) 1600{ 1601 struct blkcg *blkcg = cpd_to_blkcg(cpd); 1602 bool on_dfl = cgroup_subsys_on_dfl(io_cgrp_subsys); 1603 unsigned int weight = on_dfl ? CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL; 1604 1605 if (blkcg == &blkcg_root) 1606 weight *= 2; 1607 1608 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, false)); 1609 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, true)); 1610} 1611 1612static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node) 1613{ 1614 struct cfq_group *cfqg; 1615 1616 cfqg = kzalloc_node(sizeof(*cfqg), gfp, node); 1617 if (!cfqg) 1618 return NULL; 1619 1620 cfq_init_cfqg_base(cfqg); 1621 if (cfqg_stats_init(&cfqg->stats, gfp)) { 1622 kfree(cfqg); 1623 return NULL; 1624 } 1625 1626 return &cfqg->pd; 1627} 1628 1629static void cfq_pd_init(struct blkg_policy_data *pd) 1630{ 1631 struct cfq_group *cfqg = pd_to_cfqg(pd); 1632 struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg); 1633 1634 cfqg->weight = cgd->weight; 1635 cfqg->leaf_weight = cgd->leaf_weight; 1636} 1637 1638static void cfq_pd_offline(struct blkg_policy_data *pd) 1639{ 1640 struct cfq_group *cfqg = pd_to_cfqg(pd); 1641 int i; 1642 1643 for (i = 0; i < IOPRIO_BE_NR; i++) { 1644 if (cfqg->async_cfqq[0][i]) 1645 cfq_put_queue(cfqg->async_cfqq[0][i]); 1646 if (cfqg->async_cfqq[1][i]) 1647 cfq_put_queue(cfqg->async_cfqq[1][i]); 1648 } 1649 1650 if (cfqg->async_idle_cfqq) 1651 cfq_put_queue(cfqg->async_idle_cfqq); 1652 1653 /* 1654 * @blkg is going offline and will be ignored by 1655 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so 1656 * that they don't get lost. If IOs complete after this point, the 1657 * stats for them will be lost. Oh well... 1658 */ 1659 cfqg_stats_xfer_dead(cfqg); 1660} 1661 1662static void cfq_pd_free(struct blkg_policy_data *pd) 1663{ 1664 struct cfq_group *cfqg = pd_to_cfqg(pd); 1665 1666 cfqg_stats_exit(&cfqg->stats); 1667 return kfree(cfqg); 1668} 1669 1670static void cfq_pd_reset_stats(struct blkg_policy_data *pd) 1671{ 1672 struct cfq_group *cfqg = pd_to_cfqg(pd); 1673 1674 cfqg_stats_reset(&cfqg->stats); 1675} 1676 1677static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd, 1678 struct blkcg *blkcg) 1679{ 1680 struct blkcg_gq *blkg; 1681 1682 blkg = blkg_lookup(blkcg, cfqd->queue); 1683 if (likely(blkg)) 1684 return blkg_to_cfqg(blkg); 1685 return NULL; 1686} 1687 1688static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) 1689{ 1690 cfqq->cfqg = cfqg; 1691 /* cfqq reference on cfqg */ 1692 cfqg_get(cfqg); 1693} 1694 1695static u64 cfqg_prfill_weight_device(struct seq_file *sf, 1696 struct blkg_policy_data *pd, int off) 1697{ 1698 struct cfq_group *cfqg = pd_to_cfqg(pd); 1699 1700 if (!cfqg->dev_weight) 1701 return 0; 1702 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight); 1703} 1704 1705static int cfqg_print_weight_device(struct seq_file *sf, void *v) 1706{ 1707 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1708 cfqg_prfill_weight_device, &blkcg_policy_cfq, 1709 0, false); 1710 return 0; 1711} 1712 1713static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf, 1714 struct blkg_policy_data *pd, int off) 1715{ 1716 struct cfq_group *cfqg = pd_to_cfqg(pd); 1717 1718 if (!cfqg->dev_leaf_weight) 1719 return 0; 1720 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight); 1721} 1722 1723static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v) 1724{ 1725 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1726 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq, 1727 0, false); 1728 return 0; 1729} 1730 1731static int cfq_print_weight(struct seq_file *sf, void *v) 1732{ 1733 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 1734 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg); 1735 unsigned int val = 0; 1736 1737 if (cgd) 1738 val = cgd->weight; 1739 1740 seq_printf(sf, "%u\n", val); 1741 return 0; 1742} 1743 1744static int cfq_print_leaf_weight(struct seq_file *sf, void *v) 1745{ 1746 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 1747 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg); 1748 unsigned int val = 0; 1749 1750 if (cgd) 1751 val = cgd->leaf_weight; 1752 1753 seq_printf(sf, "%u\n", val); 1754 return 0; 1755} 1756 1757static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of, 1758 char *buf, size_t nbytes, loff_t off, 1759 bool on_dfl, bool is_leaf_weight) 1760{ 1761 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN; 1762 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX; 1763 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1764 struct blkg_conf_ctx ctx; 1765 struct cfq_group *cfqg; 1766 struct cfq_group_data *cfqgd; 1767 int ret; 1768 u64 v; 1769 1770 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx); 1771 if (ret) 1772 return ret; 1773 1774 if (sscanf(ctx.body, "%llu", &v) == 1) { 1775 /* require "default" on dfl */ 1776 ret = -ERANGE; 1777 if (!v && on_dfl) 1778 goto out_finish; 1779 } else if (!strcmp(strim(ctx.body), "default")) { 1780 v = 0; 1781 } else { 1782 ret = -EINVAL; 1783 goto out_finish; 1784 } 1785 1786 cfqg = blkg_to_cfqg(ctx.blkg); 1787 cfqgd = blkcg_to_cfqgd(blkcg); 1788 1789 ret = -ERANGE; 1790 if (!v || (v >= min && v <= max)) { 1791 if (!is_leaf_weight) { 1792 cfqg->dev_weight = v; 1793 cfqg->new_weight = v ?: cfqgd->weight; 1794 } else { 1795 cfqg->dev_leaf_weight = v; 1796 cfqg->new_leaf_weight = v ?: cfqgd->leaf_weight; 1797 } 1798 ret = 0; 1799 } 1800out_finish: 1801 blkg_conf_finish(&ctx); 1802 return ret ?: nbytes; 1803} 1804 1805static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of, 1806 char *buf, size_t nbytes, loff_t off) 1807{ 1808 return __cfqg_set_weight_device(of, buf, nbytes, off, false, false); 1809} 1810 1811static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of, 1812 char *buf, size_t nbytes, loff_t off) 1813{ 1814 return __cfqg_set_weight_device(of, buf, nbytes, off, false, true); 1815} 1816 1817static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val, 1818 bool on_dfl, bool reset_dev, bool is_leaf_weight) 1819{ 1820 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN; 1821 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX; 1822 struct blkcg *blkcg = css_to_blkcg(css); 1823 struct blkcg_gq *blkg; 1824 struct cfq_group_data *cfqgd; 1825 int ret = 0; 1826 1827 if (val < min || val > max) 1828 return -ERANGE; 1829 1830 spin_lock_irq(&blkcg->lock); 1831 cfqgd = blkcg_to_cfqgd(blkcg); 1832 if (!cfqgd) { 1833 ret = -EINVAL; 1834 goto out; 1835 } 1836 1837 if (!is_leaf_weight) 1838 cfqgd->weight = val; 1839 else 1840 cfqgd->leaf_weight = val; 1841 1842 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 1843 struct cfq_group *cfqg = blkg_to_cfqg(blkg); 1844 1845 if (!cfqg) 1846 continue; 1847 1848 if (!is_leaf_weight) { 1849 if (reset_dev) 1850 cfqg->dev_weight = 0; 1851 if (!cfqg->dev_weight) 1852 cfqg->new_weight = cfqgd->weight; 1853 } else { 1854 if (reset_dev) 1855 cfqg->dev_leaf_weight = 0; 1856 if (!cfqg->dev_leaf_weight) 1857 cfqg->new_leaf_weight = cfqgd->leaf_weight; 1858 } 1859 } 1860 1861out: 1862 spin_unlock_irq(&blkcg->lock); 1863 return ret; 1864} 1865 1866static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft, 1867 u64 val) 1868{ 1869 return __cfq_set_weight(css, val, false, false, false); 1870} 1871 1872static int cfq_set_leaf_weight(struct cgroup_subsys_state *css, 1873 struct cftype *cft, u64 val) 1874{ 1875 return __cfq_set_weight(css, val, false, false, true); 1876} 1877 1878static int cfqg_print_stat(struct seq_file *sf, void *v) 1879{ 1880 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat, 1881 &blkcg_policy_cfq, seq_cft(sf)->private, false); 1882 return 0; 1883} 1884 1885static int cfqg_print_rwstat(struct seq_file *sf, void *v) 1886{ 1887 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat, 1888 &blkcg_policy_cfq, seq_cft(sf)->private, true); 1889 return 0; 1890} 1891 1892static u64 cfqg_prfill_stat_recursive(struct seq_file *sf, 1893 struct blkg_policy_data *pd, int off) 1894{ 1895 u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd), 1896 &blkcg_policy_cfq, off); 1897 return __blkg_prfill_u64(sf, pd, sum); 1898} 1899 1900static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf, 1901 struct blkg_policy_data *pd, int off) 1902{ 1903 struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd), 1904 &blkcg_policy_cfq, off); 1905 return __blkg_prfill_rwstat(sf, pd, &sum); 1906} 1907 1908static int cfqg_print_stat_recursive(struct seq_file *sf, void *v) 1909{ 1910 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1911 cfqg_prfill_stat_recursive, &blkcg_policy_cfq, 1912 seq_cft(sf)->private, false); 1913 return 0; 1914} 1915 1916static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v) 1917{ 1918 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1919 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq, 1920 seq_cft(sf)->private, true); 1921 return 0; 1922} 1923 1924static u64 cfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd, 1925 int off) 1926{ 1927 u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes); 1928 1929 return __blkg_prfill_u64(sf, pd, sum >> 9); 1930} 1931 1932static int cfqg_print_stat_sectors(struct seq_file *sf, void *v) 1933{ 1934 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1935 cfqg_prfill_sectors, &blkcg_policy_cfq, 0, false); 1936 return 0; 1937} 1938 1939static u64 cfqg_prfill_sectors_recursive(struct seq_file *sf, 1940 struct blkg_policy_data *pd, int off) 1941{ 1942 struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL, 1943 offsetof(struct blkcg_gq, stat_bytes)); 1944 u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) + 1945 atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]); 1946 1947 return __blkg_prfill_u64(sf, pd, sum >> 9); 1948} 1949 1950static int cfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v) 1951{ 1952 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1953 cfqg_prfill_sectors_recursive, &blkcg_policy_cfq, 0, 1954 false); 1955 return 0; 1956} 1957 1958#ifdef CONFIG_DEBUG_BLK_CGROUP 1959static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf, 1960 struct blkg_policy_data *pd, int off) 1961{ 1962 struct cfq_group *cfqg = pd_to_cfqg(pd); 1963 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples); 1964 u64 v = 0; 1965 1966 if (samples) { 1967 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum); 1968 v = div64_u64(v, samples); 1969 } 1970 __blkg_prfill_u64(sf, pd, v); 1971 return 0; 1972} 1973 1974/* print avg_queue_size */ 1975static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v) 1976{ 1977 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1978 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq, 1979 0, false); 1980 return 0; 1981} 1982#endif /* CONFIG_DEBUG_BLK_CGROUP */ 1983 1984static struct cftype cfq_blkcg_legacy_files[] = { 1985 /* on root, weight is mapped to leaf_weight */ 1986 { 1987 .name = "weight_device", 1988 .flags = CFTYPE_ONLY_ON_ROOT, 1989 .seq_show = cfqg_print_leaf_weight_device, 1990 .write = cfqg_set_leaf_weight_device, 1991 }, 1992 { 1993 .name = "weight", 1994 .flags = CFTYPE_ONLY_ON_ROOT, 1995 .seq_show = cfq_print_leaf_weight, 1996 .write_u64 = cfq_set_leaf_weight, 1997 }, 1998 1999 /* no such mapping necessary for !roots */ 2000 { 2001 .name = "weight_device", 2002 .flags = CFTYPE_NOT_ON_ROOT, 2003 .seq_show = cfqg_print_weight_device, 2004 .write = cfqg_set_weight_device, 2005 }, 2006 { 2007 .name = "weight", 2008 .flags = CFTYPE_NOT_ON_ROOT, 2009 .seq_show = cfq_print_weight, 2010 .write_u64 = cfq_set_weight, 2011 }, 2012 2013 { 2014 .name = "leaf_weight_device", 2015 .seq_show = cfqg_print_leaf_weight_device, 2016 .write = cfqg_set_leaf_weight_device, 2017 }, 2018 { 2019 .name = "leaf_weight", 2020 .seq_show = cfq_print_leaf_weight, 2021 .write_u64 = cfq_set_leaf_weight, 2022 }, 2023 2024 /* statistics, covers only the tasks in the cfqg */ 2025 { 2026 .name = "time", 2027 .private = offsetof(struct cfq_group, stats.time), 2028 .seq_show = cfqg_print_stat, 2029 }, 2030 { 2031 .name = "sectors", 2032 .seq_show = cfqg_print_stat_sectors, 2033 }, 2034 { 2035 .name = "io_service_bytes", 2036 .private = (unsigned long)&blkcg_policy_cfq, 2037 .seq_show = blkg_print_stat_bytes, 2038 }, 2039 { 2040 .name = "io_serviced", 2041 .private = (unsigned long)&blkcg_policy_cfq, 2042 .seq_show = blkg_print_stat_ios, 2043 }, 2044 { 2045 .name = "io_service_time", 2046 .private = offsetof(struct cfq_group, stats.service_time), 2047 .seq_show = cfqg_print_rwstat, 2048 }, 2049 { 2050 .name = "io_wait_time", 2051 .private = offsetof(struct cfq_group, stats.wait_time), 2052 .seq_show = cfqg_print_rwstat, 2053 }, 2054 { 2055 .name = "io_merged", 2056 .private = offsetof(struct cfq_group, stats.merged), 2057 .seq_show = cfqg_print_rwstat, 2058 }, 2059 { 2060 .name = "io_queued", 2061 .private = offsetof(struct cfq_group, stats.queued), 2062 .seq_show = cfqg_print_rwstat, 2063 }, 2064 2065 /* the same statictics which cover the cfqg and its descendants */ 2066 { 2067 .name = "time_recursive", 2068 .private = offsetof(struct cfq_group, stats.time), 2069 .seq_show = cfqg_print_stat_recursive, 2070 }, 2071 { 2072 .name = "sectors_recursive", 2073 .seq_show = cfqg_print_stat_sectors_recursive, 2074 }, 2075 { 2076 .name = "io_service_bytes_recursive", 2077 .private = (unsigned long)&blkcg_policy_cfq, 2078 .seq_show = blkg_print_stat_bytes_recursive, 2079 }, 2080 { 2081 .name = "io_serviced_recursive", 2082 .private = (unsigned long)&blkcg_policy_cfq, 2083 .seq_show = blkg_print_stat_ios_recursive, 2084 }, 2085 { 2086 .name = "io_service_time_recursive", 2087 .private = offsetof(struct cfq_group, stats.service_time), 2088 .seq_show = cfqg_print_rwstat_recursive, 2089 }, 2090 { 2091 .name = "io_wait_time_recursive", 2092 .private = offsetof(struct cfq_group, stats.wait_time), 2093 .seq_show = cfqg_print_rwstat_recursive, 2094 }, 2095 { 2096 .name = "io_merged_recursive", 2097 .private = offsetof(struct cfq_group, stats.merged), 2098 .seq_show = cfqg_print_rwstat_recursive, 2099 }, 2100 { 2101 .name = "io_queued_recursive", 2102 .private = offsetof(struct cfq_group, stats.queued), 2103 .seq_show = cfqg_print_rwstat_recursive, 2104 }, 2105#ifdef CONFIG_DEBUG_BLK_CGROUP 2106 { 2107 .name = "avg_queue_size", 2108 .seq_show = cfqg_print_avg_queue_size, 2109 }, 2110 { 2111 .name = "group_wait_time", 2112 .private = offsetof(struct cfq_group, stats.group_wait_time), 2113 .seq_show = cfqg_print_stat, 2114 }, 2115 { 2116 .name = "idle_time", 2117 .private = offsetof(struct cfq_group, stats.idle_time), 2118 .seq_show = cfqg_print_stat, 2119 }, 2120 { 2121 .name = "empty_time", 2122 .private = offsetof(struct cfq_group, stats.empty_time), 2123 .seq_show = cfqg_print_stat, 2124 }, 2125 { 2126 .name = "dequeue", 2127 .private = offsetof(struct cfq_group, stats.dequeue), 2128 .seq_show = cfqg_print_stat, 2129 }, 2130 { 2131 .name = "unaccounted_time", 2132 .private = offsetof(struct cfq_group, stats.unaccounted_time), 2133 .seq_show = cfqg_print_stat, 2134 }, 2135#endif /* CONFIG_DEBUG_BLK_CGROUP */ 2136 { } /* terminate */ 2137}; 2138 2139static int cfq_print_weight_on_dfl(struct seq_file *sf, void *v) 2140{ 2141 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 2142 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg); 2143 2144 seq_printf(sf, "default %u\n", cgd->weight); 2145 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_weight_device, 2146 &blkcg_policy_cfq, 0, false); 2147 return 0; 2148} 2149 2150static ssize_t cfq_set_weight_on_dfl(struct kernfs_open_file *of, 2151 char *buf, size_t nbytes, loff_t off) 2152{ 2153 char *endp; 2154 int ret; 2155 u64 v; 2156 2157 buf = strim(buf); 2158 2159 /* "WEIGHT" or "default WEIGHT" sets the default weight */ 2160 v = simple_strtoull(buf, &endp, 0); 2161 if (*endp == '\0' || sscanf(buf, "default %llu", &v) == 1) { 2162 ret = __cfq_set_weight(of_css(of), v, true, false, false); 2163 return ret ?: nbytes; 2164 } 2165 2166 /* "MAJ:MIN WEIGHT" */ 2167 return __cfqg_set_weight_device(of, buf, nbytes, off, true, false); 2168} 2169 2170static struct cftype cfq_blkcg_files[] = { 2171 { 2172 .name = "weight", 2173 .flags = CFTYPE_NOT_ON_ROOT, 2174 .seq_show = cfq_print_weight_on_dfl, 2175 .write = cfq_set_weight_on_dfl, 2176 }, 2177 { } /* terminate */ 2178}; 2179 2180#else /* GROUP_IOSCHED */ 2181static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd, 2182 struct blkcg *blkcg) 2183{ 2184 return cfqd->root_group; 2185} 2186 2187static inline void 2188cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) { 2189 cfqq->cfqg = cfqg; 2190} 2191 2192#endif /* GROUP_IOSCHED */ 2193 2194/* 2195 * The cfqd->service_trees holds all pending cfq_queue's that have 2196 * requests waiting to be processed. It is sorted in the order that 2197 * we will service the queues. 2198 */ 2199static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq, 2200 bool add_front) 2201{ 2202 struct rb_node **p, *parent; 2203 struct cfq_queue *__cfqq; 2204 u64 rb_key; 2205 struct cfq_rb_root *st; 2206 bool leftmost = true; 2207 int new_cfqq = 1; 2208 u64 now = ktime_get_ns(); 2209 2210 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq)); 2211 if (cfq_class_idle(cfqq)) { 2212 rb_key = CFQ_IDLE_DELAY; 2213 parent = st->rb_rightmost; 2214 if (parent && parent != &cfqq->rb_node) { 2215 __cfqq = rb_entry(parent, struct cfq_queue, rb_node); 2216 rb_key += __cfqq->rb_key; 2217 } else 2218 rb_key += now; 2219 } else if (!add_front) { 2220 /* 2221 * Get our rb key offset. Subtract any residual slice 2222 * value carried from last service. A negative resid 2223 * count indicates slice overrun, and this should position 2224 * the next service time further away in the tree. 2225 */ 2226 rb_key = cfq_slice_offset(cfqd, cfqq) + now; 2227 rb_key -= cfqq->slice_resid; 2228 cfqq->slice_resid = 0; 2229 } else { 2230 rb_key = -NSEC_PER_SEC; 2231 __cfqq = cfq_rb_first(st); 2232 rb_key += __cfqq ? __cfqq->rb_key : now; 2233 } 2234 2235 if (!RB_EMPTY_NODE(&cfqq->rb_node)) { 2236 new_cfqq = 0; 2237 /* 2238 * same position, nothing more to do 2239 */ 2240 if (rb_key == cfqq->rb_key && cfqq->service_tree == st) 2241 return; 2242 2243 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree); 2244 cfqq->service_tree = NULL; 2245 } 2246 2247 parent = NULL; 2248 cfqq->service_tree = st; 2249 p = &st->rb.rb_root.rb_node; 2250 while (*p) { 2251 parent = *p; 2252 __cfqq = rb_entry(parent, struct cfq_queue, rb_node); 2253 2254 /* 2255 * sort by key, that represents service time. 2256 */ 2257 if (rb_key < __cfqq->rb_key) 2258 p = &parent->rb_left; 2259 else { 2260 p = &parent->rb_right; 2261 leftmost = false; 2262 } 2263 } 2264 2265 cfqq->rb_key = rb_key; 2266 rb_link_node(&cfqq->rb_node, parent, p); 2267 rb_insert_color_cached(&cfqq->rb_node, &st->rb, leftmost); 2268 st->count++; 2269 if (add_front || !new_cfqq) 2270 return; 2271 cfq_group_notify_queue_add(cfqd, cfqq->cfqg); 2272} 2273 2274static struct cfq_queue * 2275cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root, 2276 sector_t sector, struct rb_node **ret_parent, 2277 struct rb_node ***rb_link) 2278{ 2279 struct rb_node **p, *parent; 2280 struct cfq_queue *cfqq = NULL; 2281 2282 parent = NULL; 2283 p = &root->rb_node; 2284 while (*p) { 2285 struct rb_node **n; 2286 2287 parent = *p; 2288 cfqq = rb_entry(parent, struct cfq_queue, p_node); 2289 2290 /* 2291 * Sort strictly based on sector. Smallest to the left, 2292 * largest to the right. 2293 */ 2294 if (sector > blk_rq_pos(cfqq->next_rq)) 2295 n = &(*p)->rb_right; 2296 else if (sector < blk_rq_pos(cfqq->next_rq)) 2297 n = &(*p)->rb_left; 2298 else 2299 break; 2300 p = n; 2301 cfqq = NULL; 2302 } 2303 2304 *ret_parent = parent; 2305 if (rb_link) 2306 *rb_link = p; 2307 return cfqq; 2308} 2309 2310static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq) 2311{ 2312 struct rb_node **p, *parent; 2313 struct cfq_queue *__cfqq; 2314 2315 if (cfqq->p_root) { 2316 rb_erase(&cfqq->p_node, cfqq->p_root); 2317 cfqq->p_root = NULL; 2318 } 2319 2320 if (cfq_class_idle(cfqq)) 2321 return; 2322 if (!cfqq->next_rq) 2323 return; 2324 2325 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio]; 2326 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root, 2327 blk_rq_pos(cfqq->next_rq), &parent, &p); 2328 if (!__cfqq) { 2329 rb_link_node(&cfqq->p_node, parent, p); 2330 rb_insert_color(&cfqq->p_node, cfqq->p_root); 2331 } else 2332 cfqq->p_root = NULL; 2333} 2334 2335/* 2336 * Update cfqq's position in the service tree. 2337 */ 2338static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq) 2339{ 2340 /* 2341 * Resorting requires the cfqq to be on the RR list already. 2342 */ 2343 if (cfq_cfqq_on_rr(cfqq)) { 2344 cfq_service_tree_add(cfqd, cfqq, 0); 2345 cfq_prio_tree_add(cfqd, cfqq); 2346 } 2347} 2348 2349/* 2350 * add to busy list of queues for service, trying to be fair in ordering 2351 * the pending list according to last request service 2352 */ 2353static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq) 2354{ 2355 cfq_log_cfqq(cfqd, cfqq, "add_to_rr"); 2356 BUG_ON(cfq_cfqq_on_rr(cfqq)); 2357 cfq_mark_cfqq_on_rr(cfqq); 2358 cfqd->busy_queues++; 2359 if (cfq_cfqq_sync(cfqq)) 2360 cfqd->busy_sync_queues++; 2361 2362 cfq_resort_rr_list(cfqd, cfqq); 2363} 2364 2365/* 2366 * Called when the cfqq no longer has requests pending, remove it from 2367 * the service tree. 2368 */ 2369static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq) 2370{ 2371 cfq_log_cfqq(cfqd, cfqq, "del_from_rr"); 2372 BUG_ON(!cfq_cfqq_on_rr(cfqq)); 2373 cfq_clear_cfqq_on_rr(cfqq); 2374 2375 if (!RB_EMPTY_NODE(&cfqq->rb_node)) { 2376 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree); 2377 cfqq->service_tree = NULL; 2378 } 2379 if (cfqq->p_root) { 2380 rb_erase(&cfqq->p_node, cfqq->p_root); 2381 cfqq->p_root = NULL; 2382 } 2383 2384 cfq_group_notify_queue_del(cfqd, cfqq->cfqg); 2385 BUG_ON(!cfqd->busy_queues); 2386 cfqd->busy_queues--; 2387 if (cfq_cfqq_sync(cfqq)) 2388 cfqd->busy_sync_queues--; 2389} 2390 2391/* 2392 * rb tree support functions 2393 */ 2394static void cfq_del_rq_rb(struct request *rq) 2395{ 2396 struct cfq_queue *cfqq = RQ_CFQQ(rq); 2397 const int sync = rq_is_sync(rq); 2398 2399 BUG_ON(!cfqq->queued[sync]); 2400 cfqq->queued[sync]--; 2401 2402 elv_rb_del(&cfqq->sort_list, rq); 2403 2404 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) { 2405 /* 2406 * Queue will be deleted from service tree when we actually 2407 * expire it later. Right now just remove it from prio tree 2408 * as it is empty. 2409 */ 2410 if (cfqq->p_root) { 2411 rb_erase(&cfqq->p_node, cfqq->p_root); 2412 cfqq->p_root = NULL; 2413 } 2414 } 2415} 2416 2417static void cfq_add_rq_rb(struct request *rq) 2418{ 2419 struct cfq_queue *cfqq = RQ_CFQQ(rq); 2420 struct cfq_data *cfqd = cfqq->cfqd; 2421 struct request *prev; 2422 2423 cfqq->queued[rq_is_sync(rq)]++; 2424 2425 elv_rb_add(&cfqq->sort_list, rq); 2426 2427 if (!cfq_cfqq_on_rr(cfqq)) 2428 cfq_add_cfqq_rr(cfqd, cfqq); 2429 2430 /* 2431 * check if this request is a better next-serve candidate 2432 */ 2433 prev = cfqq->next_rq; 2434 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position); 2435 2436 /* 2437 * adjust priority tree position, if ->next_rq changes 2438 */ 2439 if (prev != cfqq->next_rq) 2440 cfq_prio_tree_add(cfqd, cfqq); 2441 2442 BUG_ON(!cfqq->next_rq); 2443} 2444 2445static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq) 2446{ 2447 elv_rb_del(&cfqq->sort_list, rq); 2448 cfqq->queued[rq_is_sync(rq)]--; 2449 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags); 2450 cfq_add_rq_rb(rq); 2451 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group, 2452 rq->cmd_flags); 2453} 2454 2455static struct request * 2456cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio) 2457{ 2458 struct task_struct *tsk = current; 2459 struct cfq_io_cq *cic; 2460 struct cfq_queue *cfqq; 2461 2462 cic = cfq_cic_lookup(cfqd, tsk->io_context); 2463 if (!cic) 2464 return NULL; 2465 2466 cfqq = cic_to_cfqq(cic, op_is_sync(bio->bi_opf)); 2467 if (cfqq) 2468 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio)); 2469 2470 return NULL; 2471} 2472 2473static void cfq_activate_request(struct request_queue *q, struct request *rq) 2474{ 2475 struct cfq_data *cfqd = q->elevator->elevator_data; 2476 2477 cfqd->rq_in_driver++; 2478 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d", 2479 cfqd->rq_in_driver); 2480 2481 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq); 2482} 2483 2484static void cfq_deactivate_request(struct request_queue *q, struct request *rq) 2485{ 2486 struct cfq_data *cfqd = q->elevator->elevator_data; 2487 2488 WARN_ON(!cfqd->rq_in_driver); 2489 cfqd->rq_in_driver--; 2490 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d", 2491 cfqd->rq_in_driver); 2492} 2493 2494static void cfq_remove_request(struct request *rq) 2495{ 2496 struct cfq_queue *cfqq = RQ_CFQQ(rq); 2497 2498 if (cfqq->next_rq == rq) 2499 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq); 2500 2501 list_del_init(&rq->queuelist); 2502 cfq_del_rq_rb(rq); 2503 2504 cfqq->cfqd->rq_queued--; 2505 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags); 2506 if (rq->cmd_flags & REQ_PRIO) { 2507 WARN_ON(!cfqq->prio_pending); 2508 cfqq->prio_pending--; 2509 } 2510} 2511 2512static enum elv_merge cfq_merge(struct request_queue *q, struct request **req, 2513 struct bio *bio) 2514{ 2515 struct cfq_data *cfqd = q->elevator->elevator_data; 2516 struct request *__rq; 2517 2518 __rq = cfq_find_rq_fmerge(cfqd, bio); 2519 if (__rq && elv_bio_merge_ok(__rq, bio)) { 2520 *req = __rq; 2521 return ELEVATOR_FRONT_MERGE; 2522 } 2523 2524 return ELEVATOR_NO_MERGE; 2525} 2526 2527static void cfq_merged_request(struct request_queue *q, struct request *req, 2528 enum elv_merge type) 2529{ 2530 if (type == ELEVATOR_FRONT_MERGE) { 2531 struct cfq_queue *cfqq = RQ_CFQQ(req); 2532 2533 cfq_reposition_rq_rb(cfqq, req); 2534 } 2535} 2536 2537static void cfq_bio_merged(struct request_queue *q, struct request *req, 2538 struct bio *bio) 2539{ 2540 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_opf); 2541} 2542 2543static void 2544cfq_merged_requests(struct request_queue *q, struct request *rq, 2545 struct request *next) 2546{ 2547 struct cfq_queue *cfqq = RQ_CFQQ(rq); 2548 struct cfq_data *cfqd = q->elevator->elevator_data; 2549 2550 /* 2551 * reposition in fifo if next is older than rq 2552 */ 2553 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) && 2554 next->fifo_time < rq->fifo_time && 2555 cfqq == RQ_CFQQ(next)) { 2556 list_move(&rq->queuelist, &next->queuelist); 2557 rq->fifo_time = next->fifo_time; 2558 } 2559 2560 if (cfqq->next_rq == next) 2561 cfqq->next_rq = rq; 2562 cfq_remove_request(next); 2563 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags); 2564 2565 cfqq = RQ_CFQQ(next); 2566 /* 2567 * all requests of this queue are merged to other queues, delete it 2568 * from the service tree. If it's the active_queue, 2569 * cfq_dispatch_requests() will choose to expire it or do idle 2570 */ 2571 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) && 2572 cfqq != cfqd->active_queue) 2573 cfq_del_cfqq_rr(cfqd, cfqq); 2574} 2575 2576static int cfq_allow_bio_merge(struct request_queue *q, struct request *rq, 2577 struct bio *bio) 2578{ 2579 struct cfq_data *cfqd = q->elevator->elevator_data; 2580 bool is_sync = op_is_sync(bio->bi_opf); 2581 struct cfq_io_cq *cic; 2582 struct cfq_queue *cfqq; 2583 2584 /* 2585 * Disallow merge of a sync bio into an async request. 2586 */ 2587 if (is_sync && !rq_is_sync(rq)) 2588 return false; 2589 2590 /* 2591 * Lookup the cfqq that this bio will be queued with and allow 2592 * merge only if rq is queued there. 2593 */ 2594 cic = cfq_cic_lookup(cfqd, current->io_context); 2595 if (!cic) 2596 return false; 2597 2598 cfqq = cic_to_cfqq(cic, is_sync); 2599 return cfqq == RQ_CFQQ(rq); 2600} 2601 2602static int cfq_allow_rq_merge(struct request_queue *q, struct request *rq, 2603 struct request *next) 2604{ 2605 return RQ_CFQQ(rq) == RQ_CFQQ(next); 2606} 2607 2608static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq) 2609{ 2610 hrtimer_try_to_cancel(&cfqd->idle_slice_timer); 2611 cfqg_stats_update_idle_time(cfqq->cfqg); 2612} 2613 2614static void __cfq_set_active_queue(struct cfq_data *cfqd, 2615 struct cfq_queue *cfqq) 2616{ 2617 if (cfqq) { 2618 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d", 2619 cfqd->serving_wl_class, cfqd->serving_wl_type); 2620 cfqg_stats_update_avg_queue_size(cfqq->cfqg); 2621 cfqq->slice_start = 0; 2622 cfqq->dispatch_start = ktime_get_ns(); 2623 cfqq->allocated_slice = 0; 2624 cfqq->slice_end = 0; 2625 cfqq->slice_dispatch = 0; 2626 cfqq->nr_sectors = 0; 2627 2628 cfq_clear_cfqq_wait_request(cfqq); 2629 cfq_clear_cfqq_must_dispatch(cfqq); 2630 cfq_clear_cfqq_must_alloc_slice(cfqq); 2631 cfq_clear_cfqq_fifo_expire(cfqq); 2632 cfq_mark_cfqq_slice_new(cfqq); 2633 2634 cfq_del_timer(cfqd, cfqq); 2635 } 2636 2637 cfqd->active_queue = cfqq; 2638} 2639 2640/* 2641 * current cfqq expired its slice (or was too idle), select new one 2642 */ 2643static void 2644__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq, 2645 bool timed_out) 2646{ 2647 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out); 2648 2649 if (cfq_cfqq_wait_request(cfqq)) 2650 cfq_del_timer(cfqd, cfqq); 2651 2652 cfq_clear_cfqq_wait_request(cfqq); 2653 cfq_clear_cfqq_wait_busy(cfqq); 2654 2655 /* 2656 * If this cfqq is shared between multiple processes, check to 2657 * make sure that those processes are still issuing I/Os within 2658 * the mean seek distance. If not, it may be time to break the 2659 * queues apart again. 2660 */ 2661 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq)) 2662 cfq_mark_cfqq_split_coop(cfqq); 2663 2664 /* 2665 * store what was left of this slice, if the queue idled/timed out 2666 */ 2667 if (timed_out) { 2668 if (cfq_cfqq_slice_new(cfqq)) 2669 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq); 2670 else 2671 cfqq->slice_resid = cfqq->slice_end - ktime_get_ns(); 2672 cfq_log_cfqq(cfqd, cfqq, "resid=%lld", cfqq->slice_resid); 2673 } 2674 2675 cfq_group_served(cfqd, cfqq->cfqg, cfqq); 2676 2677 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) 2678 cfq_del_cfqq_rr(cfqd, cfqq); 2679 2680 cfq_resort_rr_list(cfqd, cfqq); 2681 2682 if (cfqq == cfqd->active_queue) 2683 cfqd->active_queue = NULL; 2684 2685 if (cfqd->active_cic) { 2686 put_io_context(cfqd->active_cic->icq.ioc); 2687 cfqd->active_cic = NULL; 2688 } 2689} 2690 2691static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out) 2692{ 2693 struct cfq_queue *cfqq = cfqd->active_queue; 2694 2695 if (cfqq) 2696 __cfq_slice_expired(cfqd, cfqq, timed_out); 2697} 2698 2699/* 2700 * Get next queue for service. Unless we have a queue preemption, 2701 * we'll simply select the first cfqq in the service tree. 2702 */ 2703static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd) 2704{ 2705 struct cfq_rb_root *st = st_for(cfqd->serving_group, 2706 cfqd->serving_wl_class, cfqd->serving_wl_type); 2707 2708 if (!cfqd->rq_queued) 2709 return NULL; 2710 2711 /* There is nothing to dispatch */ 2712 if (!st) 2713 return NULL; 2714 if (RB_EMPTY_ROOT(&st->rb.rb_root)) 2715 return NULL; 2716 return cfq_rb_first(st); 2717} 2718 2719static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd) 2720{ 2721 struct cfq_group *cfqg; 2722 struct cfq_queue *cfqq; 2723 int i, j; 2724 struct cfq_rb_root *st; 2725 2726 if (!cfqd->rq_queued) 2727 return NULL; 2728 2729 cfqg = cfq_get_next_cfqg(cfqd); 2730 if (!cfqg) 2731 return NULL; 2732 2733 for_each_cfqg_st(cfqg, i, j, st) { 2734 cfqq = cfq_rb_first(st); 2735 if (cfqq) 2736 return cfqq; 2737 } 2738 return NULL; 2739} 2740 2741/* 2742 * Get and set a new active queue for service. 2743 */ 2744static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd, 2745 struct cfq_queue *cfqq) 2746{ 2747 if (!cfqq) 2748 cfqq = cfq_get_next_queue(cfqd); 2749 2750 __cfq_set_active_queue(cfqd, cfqq); 2751 return cfqq; 2752} 2753 2754static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd, 2755 struct request *rq) 2756{ 2757 if (blk_rq_pos(rq) >= cfqd->last_position) 2758 return blk_rq_pos(rq) - cfqd->last_position; 2759 else 2760 return cfqd->last_position - blk_rq_pos(rq); 2761} 2762 2763static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq, 2764 struct request *rq) 2765{ 2766 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR; 2767} 2768 2769static struct cfq_queue *cfqq_close(struct cfq_data *cfqd, 2770 struct cfq_queue *cur_cfqq) 2771{ 2772 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio]; 2773 struct rb_node *parent, *node; 2774 struct cfq_queue *__cfqq; 2775 sector_t sector = cfqd->last_position; 2776 2777 if (RB_EMPTY_ROOT(root)) 2778 return NULL; 2779 2780 /* 2781 * First, if we find a request starting at the end of the last 2782 * request, choose it. 2783 */ 2784 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL); 2785 if (__cfqq) 2786 return __cfqq; 2787 2788 /* 2789 * If the exact sector wasn't found, the parent of the NULL leaf 2790 * will contain the closest sector. 2791 */ 2792 __cfqq = rb_entry(parent, struct cfq_queue, p_node); 2793 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq)) 2794 return __cfqq; 2795 2796 if (blk_rq_pos(__cfqq->next_rq) < sector) 2797 node = rb_next(&__cfqq->p_node); 2798 else 2799 node = rb_prev(&__cfqq->p_node); 2800 if (!node) 2801 return NULL; 2802 2803 __cfqq = rb_entry(node, struct cfq_queue, p_node); 2804 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq)) 2805 return __cfqq; 2806 2807 return NULL; 2808} 2809 2810/* 2811 * cfqd - obvious 2812 * cur_cfqq - passed in so that we don't decide that the current queue is 2813 * closely cooperating with itself. 2814 * 2815 * So, basically we're assuming that that cur_cfqq has dispatched at least 2816 * one request, and that cfqd->last_position reflects a position on the disk 2817 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid 2818 * assumption. 2819 */ 2820static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd, 2821 struct cfq_queue *cur_cfqq) 2822{ 2823 struct cfq_queue *cfqq; 2824 2825 if (cfq_class_idle(cur_cfqq)) 2826 return NULL; 2827 if (!cfq_cfqq_sync(cur_cfqq)) 2828 return NULL; 2829 if (CFQQ_SEEKY(cur_cfqq)) 2830 return NULL; 2831 2832 /* 2833 * Don't search priority tree if it's the only queue in the group. 2834 */ 2835 if (cur_cfqq->cfqg->nr_cfqq == 1) 2836 return NULL; 2837 2838 /* 2839 * We should notice if some of the queues are cooperating, eg 2840 * working closely on the same area of the disk. In that case, 2841 * we can group them together and don't waste time idling. 2842 */ 2843 cfqq = cfqq_close(cfqd, cur_cfqq); 2844 if (!cfqq) 2845 return NULL; 2846 2847 /* If new queue belongs to different cfq_group, don't choose it */ 2848 if (cur_cfqq->cfqg != cfqq->cfqg) 2849 return NULL; 2850 2851 /* 2852 * It only makes sense to merge sync queues. 2853 */ 2854 if (!cfq_cfqq_sync(cfqq)) 2855 return NULL; 2856 if (CFQQ_SEEKY(cfqq)) 2857 return NULL; 2858 2859 /* 2860 * Do not merge queues of different priority classes 2861 */ 2862 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq)) 2863 return NULL; 2864 2865 return cfqq; 2866} 2867 2868/* 2869 * Determine whether we should enforce idle window for this queue. 2870 */ 2871 2872static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq) 2873{ 2874 enum wl_class_t wl_class = cfqq_class(cfqq); 2875 struct cfq_rb_root *st = cfqq->service_tree; 2876 2877 BUG_ON(!st); 2878 BUG_ON(!st->count); 2879 2880 if (!cfqd->cfq_slice_idle) 2881 return false; 2882 2883 /* We never do for idle class queues. */ 2884 if (wl_class == IDLE_WORKLOAD) 2885 return false; 2886 2887 /* We do for queues that were marked with idle window flag. */ 2888 if (cfq_cfqq_idle_window(cfqq) && 2889 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)) 2890 return true; 2891 2892 /* 2893 * Otherwise, we do only if they are the last ones 2894 * in their service tree. 2895 */ 2896 if (st->count == 1 && cfq_cfqq_sync(cfqq) && 2897 !cfq_io_thinktime_big(cfqd, &st->ttime, false)) 2898 return true; 2899 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count); 2900 return false; 2901} 2902 2903static void cfq_arm_slice_timer(struct cfq_data *cfqd) 2904{ 2905 struct cfq_queue *cfqq = cfqd->active_queue; 2906 struct cfq_rb_root *st = cfqq->service_tree; 2907 struct cfq_io_cq *cic; 2908 u64 sl, group_idle = 0; 2909 u64 now = ktime_get_ns(); 2910 2911 /* 2912 * SSD device without seek penalty, disable idling. But only do so 2913 * for devices that support queuing, otherwise we still have a problem 2914 * with sync vs async workloads. 2915 */ 2916 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag && 2917 !cfqd->cfq_group_idle) 2918 return; 2919 2920 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list)); 2921 WARN_ON(cfq_cfqq_slice_new(cfqq)); 2922 2923 /* 2924 * idle is disabled, either manually or by past process history 2925 */ 2926 if (!cfq_should_idle(cfqd, cfqq)) { 2927 /* no queue idling. Check for group idling */ 2928 if (cfqd->cfq_group_idle) 2929 group_idle = cfqd->cfq_group_idle; 2930 else 2931 return; 2932 } 2933 2934 /* 2935 * still active requests from this queue, don't idle 2936 */ 2937 if (cfqq->dispatched) 2938 return; 2939 2940 /* 2941 * task has exited, don't wait 2942 */ 2943 cic = cfqd->active_cic; 2944 if (!cic || !atomic_read(&cic->icq.ioc->active_ref)) 2945 return; 2946 2947 /* 2948 * If our average think time is larger than the remaining time 2949 * slice, then don't idle. This avoids overrunning the allotted 2950 * time slice. 2951 */ 2952 if (sample_valid(cic->ttime.ttime_samples) && 2953 (cfqq->slice_end - now < cic->ttime.ttime_mean)) { 2954 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%llu", 2955 cic->ttime.ttime_mean); 2956 return; 2957 } 2958 2959 /* 2960 * There are other queues in the group or this is the only group and 2961 * it has too big thinktime, don't do group idle. 2962 */ 2963 if (group_idle && 2964 (cfqq->cfqg->nr_cfqq > 1 || 2965 cfq_io_thinktime_big(cfqd, &st->ttime, true))) 2966 return; 2967 2968 cfq_mark_cfqq_wait_request(cfqq); 2969 2970 if (group_idle) 2971 sl = cfqd->cfq_group_idle; 2972 else 2973 sl = cfqd->cfq_slice_idle; 2974 2975 hrtimer_start(&cfqd->idle_slice_timer, ns_to_ktime(sl), 2976 HRTIMER_MODE_REL); 2977 cfqg_stats_set_start_idle_time(cfqq->cfqg); 2978 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %llu group_idle: %d", sl, 2979 group_idle ? 1 : 0); 2980} 2981 2982/* 2983 * Move request from internal lists to the request queue dispatch list. 2984 */ 2985static void cfq_dispatch_insert(struct request_queue *q, struct request *rq) 2986{ 2987 struct cfq_data *cfqd = q->elevator->elevator_data; 2988 struct cfq_queue *cfqq = RQ_CFQQ(rq); 2989 2990 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert"); 2991 2992 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq); 2993 cfq_remove_request(rq); 2994 cfqq->dispatched++; 2995 (RQ_CFQG(rq))->dispatched++; 2996 elv_dispatch_sort(q, rq); 2997 2998 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++; 2999 cfqq->nr_sectors += blk_rq_sectors(rq); 3000} 3001 3002/* 3003 * return expired entry, or NULL to just start from scratch in rbtree 3004 */ 3005static struct request *cfq_check_fifo(struct cfq_queue *cfqq) 3006{ 3007 struct request *rq = NULL; 3008 3009 if (cfq_cfqq_fifo_expire(cfqq)) 3010 return NULL; 3011 3012 cfq_mark_cfqq_fifo_expire(cfqq); 3013 3014 if (list_empty(&cfqq->fifo)) 3015 return NULL; 3016 3017 rq = rq_entry_fifo(cfqq->fifo.next); 3018 if (ktime_get_ns() < rq->fifo_time) 3019 rq = NULL; 3020 3021 return rq; 3022} 3023 3024static inline int 3025cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq) 3026{ 3027 const int base_rq = cfqd->cfq_slice_async_rq; 3028 3029 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR); 3030 3031 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio); 3032} 3033 3034/* 3035 * Must be called with the queue_lock held. 3036 */ 3037static int cfqq_process_refs(struct cfq_queue *cfqq) 3038{ 3039 int process_refs, io_refs; 3040 3041 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE]; 3042 process_refs = cfqq->ref - io_refs; 3043 BUG_ON(process_refs < 0); 3044 return process_refs; 3045} 3046 3047static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq) 3048{ 3049 int process_refs, new_process_refs; 3050 struct cfq_queue *__cfqq; 3051 3052 /* 3053 * If there are no process references on the new_cfqq, then it is 3054 * unsafe to follow the ->new_cfqq chain as other cfqq's in the 3055 * chain may have dropped their last reference (not just their 3056 * last process reference). 3057 */ 3058 if (!cfqq_process_refs(new_cfqq)) 3059 return; 3060 3061 /* Avoid a circular list and skip interim queue merges */ 3062 while ((__cfqq = new_cfqq->new_cfqq)) { 3063 if (__cfqq == cfqq) 3064 return; 3065 new_cfqq = __cfqq; 3066 } 3067 3068 process_refs = cfqq_process_refs(cfqq); 3069 new_process_refs = cfqq_process_refs(new_cfqq); 3070 /* 3071 * If the process for the cfqq has gone away, there is no 3072 * sense in merging the queues. 3073 */ 3074 if (process_refs == 0 || new_process_refs == 0) 3075 return; 3076 3077 /* 3078 * Merge in the direction of the lesser amount of work. 3079 */ 3080 if (new_process_refs >= process_refs) { 3081 cfqq->new_cfqq = new_cfqq; 3082 new_cfqq->ref += process_refs; 3083 } else { 3084 new_cfqq->new_cfqq = cfqq; 3085 cfqq->ref += new_process_refs; 3086 } 3087} 3088 3089static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd, 3090 struct cfq_group *cfqg, enum wl_class_t wl_class) 3091{ 3092 struct cfq_queue *queue; 3093 int i; 3094 bool key_valid = false; 3095 u64 lowest_key = 0; 3096 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD; 3097 3098 for (i = 0; i <= SYNC_WORKLOAD; ++i) { 3099 /* select the one with lowest rb_key */ 3100 queue = cfq_rb_first(st_for(cfqg, wl_class, i)); 3101 if (queue && 3102 (!key_valid || queue->rb_key < lowest_key)) { 3103 lowest_key = queue->rb_key; 3104 cur_best = i; 3105 key_valid = true; 3106 } 3107 } 3108 3109 return cur_best; 3110} 3111 3112static void 3113choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg) 3114{ 3115 u64 slice; 3116 unsigned count; 3117 struct cfq_rb_root *st; 3118 u64 group_slice; 3119 enum wl_class_t original_class = cfqd->serving_wl_class; 3120 u64 now = ktime_get_ns(); 3121 3122 /* Choose next priority. RT > BE > IDLE */ 3123 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg)) 3124 cfqd->serving_wl_class = RT_WORKLOAD; 3125 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg)) 3126 cfqd->serving_wl_class = BE_WORKLOAD; 3127 else { 3128 cfqd->serving_wl_class = IDLE_WORKLOAD; 3129 cfqd->workload_expires = now + jiffies_to_nsecs(1); 3130 return; 3131 } 3132 3133 if (original_class != cfqd->serving_wl_class) 3134 goto new_workload; 3135 3136 /* 3137 * For RT and BE, we have to choose also the type 3138 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload 3139 * expiration time 3140 */ 3141 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type); 3142 count = st->count; 3143 3144 /* 3145 * check workload expiration, and that we still have other queues ready 3146 */ 3147 if (count && !(now > cfqd->workload_expires)) 3148 return; 3149 3150new_workload: 3151 /* otherwise select new workload type */ 3152 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg, 3153 cfqd->serving_wl_class); 3154 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type); 3155 count = st->count; 3156 3157 /* 3158 * the workload slice is computed as a fraction of target latency 3159 * proportional to the number of queues in that workload, over 3160 * all the queues in the same priority class 3161 */ 3162 group_slice = cfq_group_slice(cfqd, cfqg); 3163 3164 slice = div_u64(group_slice * count, 3165 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class], 3166 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd, 3167 cfqg))); 3168 3169 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) { 3170 u64 tmp; 3171 3172 /* 3173 * Async queues are currently system wide. Just taking 3174 * proportion of queues with-in same group will lead to higher 3175 * async ratio system wide as generally root group is going 3176 * to have higher weight. A more accurate thing would be to 3177 * calculate system wide asnc/sync ratio. 3178 */ 3179 tmp = cfqd->cfq_target_latency * 3180 cfqg_busy_async_queues(cfqd, cfqg); 3181 tmp = div_u64(tmp, cfqd->busy_queues); 3182 slice = min_t(u64, slice, tmp); 3183 3184 /* async workload slice is scaled down according to 3185 * the sync/async slice ratio. */ 3186 slice = div64_u64(slice*cfqd->cfq_slice[0], cfqd->cfq_slice[1]); 3187 } else 3188 /* sync workload slice is at least 2 * cfq_slice_idle */ 3189 slice = max(slice, 2 * cfqd->cfq_slice_idle); 3190 3191 slice = max_t(u64, slice, CFQ_MIN_TT); 3192 cfq_log(cfqd, "workload slice:%llu", slice); 3193 cfqd->workload_expires = now + slice; 3194} 3195 3196static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd) 3197{ 3198 struct cfq_rb_root *st = &cfqd->grp_service_tree; 3199 struct cfq_group *cfqg; 3200 3201 if (RB_EMPTY_ROOT(&st->rb.rb_root)) 3202 return NULL; 3203 cfqg = cfq_rb_first_group(st); 3204 update_min_vdisktime(st); 3205 return cfqg; 3206} 3207 3208static void cfq_choose_cfqg(struct cfq_data *cfqd) 3209{ 3210 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd); 3211 u64 now = ktime_get_ns(); 3212 3213 cfqd->serving_group = cfqg; 3214 3215 /* Restore the workload type data */ 3216 if (cfqg->saved_wl_slice) { 3217 cfqd->workload_expires = now + cfqg->saved_wl_slice; 3218 cfqd->serving_wl_type = cfqg->saved_wl_type; 3219 cfqd->serving_wl_class = cfqg->saved_wl_class; 3220 } else 3221 cfqd->workload_expires = now - 1; 3222 3223 choose_wl_class_and_type(cfqd, cfqg); 3224} 3225 3226/* 3227 * Select a queue for service. If we have a current active queue, 3228 * check whether to continue servicing it, or retrieve and set a new one. 3229 */ 3230static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd) 3231{ 3232 struct cfq_queue *cfqq, *new_cfqq = NULL; 3233 u64 now = ktime_get_ns(); 3234 3235 cfqq = cfqd->active_queue; 3236 if (!cfqq) 3237 goto new_queue; 3238 3239 if (!cfqd->rq_queued) 3240 return NULL; 3241 3242 /* 3243 * We were waiting for group to get backlogged. Expire the queue 3244 */ 3245 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list)) 3246 goto expire; 3247 3248 /* 3249 * The active queue has run out of time, expire it and select new. 3250 */ 3251 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) { 3252 /* 3253 * If slice had not expired at the completion of last request 3254 * we might not have turned on wait_busy flag. Don't expire 3255 * the queue yet. Allow the group to get backlogged. 3256 * 3257 * The very fact that we have used the slice, that means we 3258 * have been idling all along on this queue and it should be 3259 * ok to wait for this request to complete. 3260 */ 3261 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list) 3262 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) { 3263 cfqq = NULL; 3264 goto keep_queue; 3265 } else 3266 goto check_group_idle; 3267 } 3268 3269 /* 3270 * The active queue has requests and isn't expired, allow it to 3271 * dispatch. 3272 */ 3273 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) 3274 goto keep_queue; 3275 3276 /* 3277 * If another queue has a request waiting within our mean seek 3278 * distance, let it run. The expire code will check for close 3279 * cooperators and put the close queue at the front of the service 3280 * tree. If possible, merge the expiring queue with the new cfqq. 3281 */ 3282 new_cfqq = cfq_close_cooperator(cfqd, cfqq); 3283 if (new_cfqq) { 3284 if (!cfqq->new_cfqq) 3285 cfq_setup_merge(cfqq, new_cfqq); 3286 goto expire; 3287 } 3288 3289 /* 3290 * No requests pending. If the active queue still has requests in 3291 * flight or is idling for a new request, allow either of these 3292 * conditions to happen (or time out) before selecting a new queue. 3293 */ 3294 if (hrtimer_active(&cfqd->idle_slice_timer)) { 3295 cfqq = NULL; 3296 goto keep_queue; 3297 } 3298 3299 /* 3300 * This is a deep seek queue, but the device is much faster than 3301 * the queue can deliver, don't idle 3302 **/ 3303 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) && 3304 (cfq_cfqq_slice_new(cfqq) || 3305 (cfqq->slice_end - now > now - cfqq->slice_start))) { 3306 cfq_clear_cfqq_deep(cfqq); 3307 cfq_clear_cfqq_idle_window(cfqq); 3308 } 3309 3310 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) { 3311 cfqq = NULL; 3312 goto keep_queue; 3313 } 3314 3315 /* 3316 * If group idle is enabled and there are requests dispatched from 3317 * this group, wait for requests to complete. 3318 */ 3319check_group_idle: 3320 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 && 3321 cfqq->cfqg->dispatched && 3322 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) { 3323 cfqq = NULL; 3324 goto keep_queue; 3325 } 3326 3327expire: 3328 cfq_slice_expired(cfqd, 0); 3329new_queue: 3330 /* 3331 * Current queue expired. Check if we have to switch to a new 3332 * service tree 3333 */ 3334 if (!new_cfqq) 3335 cfq_choose_cfqg(cfqd); 3336 3337 cfqq = cfq_set_active_queue(cfqd, new_cfqq); 3338keep_queue: 3339 return cfqq; 3340} 3341 3342static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq) 3343{ 3344 int dispatched = 0; 3345 3346 while (cfqq->next_rq) { 3347 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq); 3348 dispatched++; 3349 } 3350 3351 BUG_ON(!list_empty(&cfqq->fifo)); 3352 3353 /* By default cfqq is not expired if it is empty. Do it explicitly */ 3354 __cfq_slice_expired(cfqq->cfqd, cfqq, 0); 3355 return dispatched; 3356} 3357 3358/* 3359 * Drain our current requests. Used for barriers and when switching 3360 * io schedulers on-the-fly. 3361 */ 3362static int cfq_forced_dispatch(struct cfq_data *cfqd) 3363{ 3364 struct cfq_queue *cfqq; 3365 int dispatched = 0; 3366 3367 /* Expire the timeslice of the current active queue first */ 3368 cfq_slice_expired(cfqd, 0); 3369 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) { 3370 __cfq_set_active_queue(cfqd, cfqq); 3371 dispatched += __cfq_forced_dispatch_cfqq(cfqq); 3372 } 3373 3374 BUG_ON(cfqd->busy_queues); 3375 3376 cfq_log(cfqd, "forced_dispatch=%d", dispatched); 3377 return dispatched; 3378} 3379 3380static inline bool cfq_slice_used_soon(struct cfq_data *cfqd, 3381 struct cfq_queue *cfqq) 3382{ 3383 u64 now = ktime_get_ns(); 3384 3385 /* the queue hasn't finished any request, can't estimate */ 3386 if (cfq_cfqq_slice_new(cfqq)) 3387 return true; 3388 if (now + cfqd->cfq_slice_idle * cfqq->dispatched > cfqq->slice_end) 3389 return true; 3390 3391 return false; 3392} 3393 3394static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq) 3395{ 3396 unsigned int max_dispatch; 3397 3398 if (cfq_cfqq_must_dispatch(cfqq)) 3399 return true; 3400 3401 /* 3402 * Drain async requests before we start sync IO 3403 */ 3404 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC]) 3405 return false; 3406 3407 /* 3408 * If this is an async queue and we have sync IO in flight, let it wait 3409 */ 3410 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq)) 3411 return false; 3412 3413 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1); 3414 if (cfq_class_idle(cfqq)) 3415 max_dispatch = 1; 3416 3417 /* 3418 * Does this cfqq already have too much IO in flight? 3419 */ 3420 if (cfqq->dispatched >= max_dispatch) { 3421 bool promote_sync = false; 3422 /* 3423 * idle queue must always only have a single IO in flight 3424 */ 3425 if (cfq_class_idle(cfqq)) 3426 return false; 3427 3428 /* 3429 * If there is only one sync queue 3430 * we can ignore async queue here and give the sync 3431 * queue no dispatch limit. The reason is a sync queue can 3432 * preempt async queue, limiting the sync queue doesn't make 3433 * sense. This is useful for aiostress test. 3434 */ 3435 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1) 3436 promote_sync = true; 3437 3438 /* 3439 * We have other queues, don't allow more IO from this one 3440 */ 3441 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) && 3442 !promote_sync) 3443 return false; 3444 3445 /* 3446 * Sole queue user, no limit 3447 */ 3448 if (cfqd->busy_queues == 1 || promote_sync) 3449 max_dispatch = -1; 3450 else 3451 /* 3452 * Normally we start throttling cfqq when cfq_quantum/2 3453 * requests have been dispatched. But we can drive 3454 * deeper queue depths at the beginning of slice 3455 * subjected to upper limit of cfq_quantum. 3456 * */ 3457 max_dispatch = cfqd->cfq_quantum; 3458 } 3459 3460 /* 3461 * Async queues must wait a bit before being allowed dispatch. 3462 * We also ramp up the dispatch depth gradually for async IO, 3463 * based on the last sync IO we serviced 3464 */ 3465 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) { 3466 u64 last_sync = ktime_get_ns() - cfqd->last_delayed_sync; 3467 unsigned int depth; 3468 3469 depth = div64_u64(last_sync, cfqd->cfq_slice[1]); 3470 if (!depth && !cfqq->dispatched) 3471 depth = 1; 3472 if (depth < max_dispatch) 3473 max_dispatch = depth; 3474 } 3475 3476 /* 3477 * If we're below the current max, allow a dispatch 3478 */ 3479 return cfqq->dispatched < max_dispatch; 3480} 3481 3482/* 3483 * Dispatch a request from cfqq, moving them to the request queue 3484 * dispatch list. 3485 */ 3486static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq) 3487{ 3488 struct request *rq; 3489 3490 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list)); 3491 3492 rq = cfq_check_fifo(cfqq); 3493 if (rq) 3494 cfq_mark_cfqq_must_dispatch(cfqq); 3495 3496 if (!cfq_may_dispatch(cfqd, cfqq)) 3497 return false; 3498 3499 /* 3500 * follow expired path, else get first next available 3501 */ 3502 if (!rq) 3503 rq = cfqq->next_rq; 3504 else 3505 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq); 3506 3507 /* 3508 * insert request into driver dispatch list 3509 */ 3510 cfq_dispatch_insert(cfqd->queue, rq); 3511 3512 if (!cfqd->active_cic) { 3513 struct cfq_io_cq *cic = RQ_CIC(rq); 3514 3515 atomic_long_inc(&cic->icq.ioc->refcount); 3516 cfqd->active_cic = cic; 3517 } 3518 3519 return true; 3520} 3521 3522/* 3523 * Find the cfqq that we need to service and move a request from that to the 3524 * dispatch list 3525 */ 3526static int cfq_dispatch_requests(struct request_queue *q, int force) 3527{ 3528 struct cfq_data *cfqd = q->elevator->elevator_data; 3529 struct cfq_queue *cfqq; 3530 3531 if (!cfqd->busy_queues) 3532 return 0; 3533 3534 if (unlikely(force)) 3535 return cfq_forced_dispatch(cfqd); 3536 3537 cfqq = cfq_select_queue(cfqd); 3538 if (!cfqq) 3539 return 0; 3540 3541 /* 3542 * Dispatch a request from this cfqq, if it is allowed 3543 */ 3544 if (!cfq_dispatch_request(cfqd, cfqq)) 3545 return 0; 3546 3547 cfqq->slice_dispatch++; 3548 cfq_clear_cfqq_must_dispatch(cfqq); 3549 3550 /* 3551 * expire an async queue immediately if it has used up its slice. idle 3552 * queue always expire after 1 dispatch round. 3553 */ 3554 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) && 3555 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) || 3556 cfq_class_idle(cfqq))) { 3557 cfqq->slice_end = ktime_get_ns() + 1; 3558 cfq_slice_expired(cfqd, 0); 3559 } 3560 3561 cfq_log_cfqq(cfqd, cfqq, "dispatched a request"); 3562 return 1; 3563} 3564 3565/* 3566 * task holds one reference to the queue, dropped when task exits. each rq 3567 * in-flight on this queue also holds a reference, dropped when rq is freed. 3568 * 3569 * Each cfq queue took a reference on the parent group. Drop it now. 3570 * queue lock must be held here. 3571 */ 3572static void cfq_put_queue(struct cfq_queue *cfqq) 3573{ 3574 struct cfq_data *cfqd = cfqq->cfqd; 3575 struct cfq_group *cfqg; 3576 3577 BUG_ON(cfqq->ref <= 0); 3578 3579 cfqq->ref--; 3580 if (cfqq->ref) 3581 return; 3582 3583 cfq_log_cfqq(cfqd, cfqq, "put_queue"); 3584 BUG_ON(rb_first(&cfqq->sort_list)); 3585 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]); 3586 cfqg = cfqq->cfqg; 3587 3588 if (unlikely(cfqd->active_queue == cfqq)) { 3589 __cfq_slice_expired(cfqd, cfqq, 0); 3590 cfq_schedule_dispatch(cfqd); 3591 } 3592 3593 BUG_ON(cfq_cfqq_on_rr(cfqq)); 3594 kmem_cache_free(cfq_pool, cfqq); 3595 cfqg_put(cfqg); 3596} 3597 3598static void cfq_put_cooperator(struct cfq_queue *cfqq) 3599{ 3600 struct cfq_queue *__cfqq, *next; 3601 3602 /* 3603 * If this queue was scheduled to merge with another queue, be 3604 * sure to drop the reference taken on that queue (and others in 3605 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs. 3606 */ 3607 __cfqq = cfqq->new_cfqq; 3608 while (__cfqq) { 3609 if (__cfqq == cfqq) { 3610 WARN(1, "cfqq->new_cfqq loop detected\n"); 3611 break; 3612 } 3613 next = __cfqq->new_cfqq; 3614 cfq_put_queue(__cfqq); 3615 __cfqq = next; 3616 } 3617} 3618 3619static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq) 3620{ 3621 if (unlikely(cfqq == cfqd->active_queue)) { 3622 __cfq_slice_expired(cfqd, cfqq, 0); 3623 cfq_schedule_dispatch(cfqd); 3624 } 3625 3626 cfq_put_cooperator(cfqq); 3627 3628 cfq_put_queue(cfqq); 3629} 3630 3631static void cfq_init_icq(struct io_cq *icq) 3632{ 3633 struct cfq_io_cq *cic = icq_to_cic(icq); 3634 3635 cic->ttime.last_end_request = ktime_get_ns(); 3636} 3637 3638static void cfq_exit_icq(struct io_cq *icq) 3639{ 3640 struct cfq_io_cq *cic = icq_to_cic(icq); 3641 struct cfq_data *cfqd = cic_to_cfqd(cic); 3642 3643 if (cic_to_cfqq(cic, false)) { 3644 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false)); 3645 cic_set_cfqq(cic, NULL, false); 3646 } 3647 3648 if (cic_to_cfqq(cic, true)) { 3649 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true)); 3650 cic_set_cfqq(cic, NULL, true); 3651 } 3652} 3653 3654static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic) 3655{ 3656 struct task_struct *tsk = current; 3657 int ioprio_class; 3658 3659 if (!cfq_cfqq_prio_changed(cfqq)) 3660 return; 3661 3662 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio); 3663 switch (ioprio_class) { 3664 default: 3665 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class); 3666 case IOPRIO_CLASS_NONE: 3667 /* 3668 * no prio set, inherit CPU scheduling settings 3669 */ 3670 cfqq->ioprio = task_nice_ioprio(tsk); 3671 cfqq->ioprio_class = task_nice_ioclass(tsk); 3672 break; 3673 case IOPRIO_CLASS_RT: 3674 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio); 3675 cfqq->ioprio_class = IOPRIO_CLASS_RT; 3676 break; 3677 case IOPRIO_CLASS_BE: 3678 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio); 3679 cfqq->ioprio_class = IOPRIO_CLASS_BE; 3680 break; 3681 case IOPRIO_CLASS_IDLE: 3682 cfqq->ioprio_class = IOPRIO_CLASS_IDLE; 3683 cfqq->ioprio = 7; 3684 cfq_clear_cfqq_idle_window(cfqq); 3685 break; 3686 } 3687 3688 /* 3689 * keep track of original prio settings in case we have to temporarily 3690 * elevate the priority of this queue 3691 */ 3692 cfqq->org_ioprio = cfqq->ioprio; 3693 cfqq->org_ioprio_class = cfqq->ioprio_class; 3694 cfq_clear_cfqq_prio_changed(cfqq); 3695} 3696 3697static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio) 3698{ 3699 int ioprio = cic->icq.ioc->ioprio; 3700 struct cfq_data *cfqd = cic_to_cfqd(cic); 3701 struct cfq_queue *cfqq; 3702 3703 /* 3704 * Check whether ioprio has changed. The condition may trigger 3705 * spuriously on a newly created cic but there's no harm. 3706 */ 3707 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio)) 3708 return; 3709 3710 cfqq = cic_to_cfqq(cic, false); 3711 if (cfqq) { 3712 cfq_put_queue(cfqq); 3713 cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio); 3714 cic_set_cfqq(cic, cfqq, false); 3715 } 3716 3717 cfqq = cic_to_cfqq(cic, true); 3718 if (cfqq) 3719 cfq_mark_cfqq_prio_changed(cfqq); 3720 3721 cic->ioprio = ioprio; 3722} 3723 3724static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq, 3725 pid_t pid, bool is_sync) 3726{ 3727 RB_CLEAR_NODE(&cfqq->rb_node); 3728 RB_CLEAR_NODE(&cfqq->p_node); 3729 INIT_LIST_HEAD(&cfqq->fifo); 3730 3731 cfqq->ref = 0; 3732 cfqq->cfqd = cfqd; 3733 3734 cfq_mark_cfqq_prio_changed(cfqq); 3735 3736 if (is_sync) { 3737 if (!cfq_class_idle(cfqq)) 3738 cfq_mark_cfqq_idle_window(cfqq); 3739 cfq_mark_cfqq_sync(cfqq); 3740 } 3741 cfqq->pid = pid; 3742} 3743 3744#ifdef CONFIG_CFQ_GROUP_IOSCHED 3745static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) 3746{ 3747 struct cfq_data *cfqd = cic_to_cfqd(cic); 3748 struct cfq_queue *cfqq; 3749 uint64_t serial_nr; 3750 3751 rcu_read_lock(); 3752 serial_nr = bio_blkcg(bio)->css.serial_nr; 3753 rcu_read_unlock(); 3754 3755 /* 3756 * Check whether blkcg has changed. The condition may trigger 3757 * spuriously on a newly created cic but there's no harm. 3758 */ 3759 if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr)) 3760 return; 3761 3762 /* 3763 * Drop reference to queues. New queues will be assigned in new 3764 * group upon arrival of fresh requests. 3765 */ 3766 cfqq = cic_to_cfqq(cic, false); 3767 if (cfqq) { 3768 cfq_log_cfqq(cfqd, cfqq, "changed cgroup"); 3769 cic_set_cfqq(cic, NULL, false); 3770 cfq_put_queue(cfqq); 3771 } 3772 3773 cfqq = cic_to_cfqq(cic, true); 3774 if (cfqq) { 3775 cfq_log_cfqq(cfqd, cfqq, "changed cgroup"); 3776 cic_set_cfqq(cic, NULL, true); 3777 cfq_put_queue(cfqq); 3778 } 3779 3780 cic->blkcg_serial_nr = serial_nr; 3781} 3782#else 3783static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) 3784{ 3785} 3786#endif /* CONFIG_CFQ_GROUP_IOSCHED */ 3787 3788static struct cfq_queue ** 3789cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio) 3790{ 3791 switch (ioprio_class) { 3792 case IOPRIO_CLASS_RT: 3793 return &cfqg->async_cfqq[0][ioprio]; 3794 case IOPRIO_CLASS_NONE: 3795 ioprio = IOPRIO_NORM; 3796 /* fall through */ 3797 case IOPRIO_CLASS_BE: 3798 return &cfqg->async_cfqq[1][ioprio]; 3799 case IOPRIO_CLASS_IDLE: 3800 return &cfqg->async_idle_cfqq; 3801 default: 3802 BUG(); 3803 } 3804} 3805 3806static struct cfq_queue * 3807cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic, 3808 struct bio *bio) 3809{ 3810 int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio); 3811 int ioprio = IOPRIO_PRIO_DATA(cic->ioprio); 3812 struct cfq_queue **async_cfqq = NULL; 3813 struct cfq_queue *cfqq; 3814 struct cfq_group *cfqg; 3815 3816 rcu_read_lock(); 3817 cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio)); 3818 if (!cfqg) { 3819 cfqq = &cfqd->oom_cfqq; 3820 goto out; 3821 } 3822 3823 if (!is_sync) { 3824 if (!ioprio_valid(cic->ioprio)) { 3825 struct task_struct *tsk = current; 3826 ioprio = task_nice_ioprio(tsk); 3827 ioprio_class = task_nice_ioclass(tsk); 3828 } 3829 async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio); 3830 cfqq = *async_cfqq; 3831 if (cfqq) 3832 goto out; 3833 } 3834 3835 cfqq = kmem_cache_alloc_node(cfq_pool, 3836 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN, 3837 cfqd->queue->node); 3838 if (!cfqq) { 3839 cfqq = &cfqd->oom_cfqq; 3840 goto out; 3841 } 3842 3843 /* cfq_init_cfqq() assumes cfqq->ioprio_class is initialized. */ 3844 cfqq->ioprio_class = IOPRIO_CLASS_NONE; 3845 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync); 3846 cfq_init_prio_data(cfqq, cic); 3847 cfq_link_cfqq_cfqg(cfqq, cfqg); 3848 cfq_log_cfqq(cfqd, cfqq, "alloced"); 3849 3850 if (async_cfqq) { 3851 /* a new async queue is created, pin and remember */ 3852 cfqq->ref++; 3853 *async_cfqq = cfqq; 3854 } 3855out: 3856 cfqq->ref++; 3857 rcu_read_unlock(); 3858 return cfqq; 3859} 3860 3861static void 3862__cfq_update_io_thinktime(struct cfq_ttime *ttime, u64 slice_idle) 3863{ 3864 u64 elapsed = ktime_get_ns() - ttime->last_end_request; 3865 elapsed = min(elapsed, 2UL * slice_idle); 3866 3867 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8; 3868 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8); 3869 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128, 3870 ttime->ttime_samples); 3871} 3872 3873static void 3874cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq, 3875 struct cfq_io_cq *cic) 3876{ 3877 if (cfq_cfqq_sync(cfqq)) { 3878 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle); 3879 __cfq_update_io_thinktime(&cfqq->service_tree->ttime, 3880 cfqd->cfq_slice_idle); 3881 } 3882#ifdef CONFIG_CFQ_GROUP_IOSCHED 3883 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle); 3884#endif 3885} 3886 3887static void 3888cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq, 3889 struct request *rq) 3890{ 3891 sector_t sdist = 0; 3892 sector_t n_sec = blk_rq_sectors(rq); 3893 if (cfqq->last_request_pos) { 3894 if (cfqq->last_request_pos < blk_rq_pos(rq)) 3895 sdist = blk_rq_pos(rq) - cfqq->last_request_pos; 3896 else 3897 sdist = cfqq->last_request_pos - blk_rq_pos(rq); 3898 } 3899 3900 cfqq->seek_history <<= 1; 3901 if (blk_queue_nonrot(cfqd->queue)) 3902 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT); 3903 else 3904 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR); 3905} 3906 3907static inline bool req_noidle(struct request *req) 3908{ 3909 return req_op(req) == REQ_OP_WRITE && 3910 (req->cmd_flags & (REQ_SYNC | REQ_IDLE)) == REQ_SYNC; 3911} 3912 3913/* 3914 * Disable idle window if the process thinks too long or seeks so much that 3915 * it doesn't matter 3916 */ 3917static void 3918cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq, 3919 struct cfq_io_cq *cic) 3920{ 3921 int old_idle, enable_idle; 3922 3923 /* 3924 * Don't idle for async or idle io prio class 3925 */ 3926 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq)) 3927 return; 3928 3929 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq); 3930 3931 if (cfqq->queued[0] + cfqq->queued[1] >= 4) 3932 cfq_mark_cfqq_deep(cfqq); 3933 3934 if (cfqq->next_rq && req_noidle(cfqq->next_rq)) 3935 enable_idle = 0; 3936 else if (!atomic_read(&cic->icq.ioc->active_ref) || 3937 !cfqd->cfq_slice_idle || 3938 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq))) 3939 enable_idle = 0; 3940 else if (sample_valid(cic->ttime.ttime_samples)) { 3941 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle) 3942 enable_idle = 0; 3943 else 3944 enable_idle = 1; 3945 } 3946 3947 if (old_idle != enable_idle) { 3948 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle); 3949 if (enable_idle) 3950 cfq_mark_cfqq_idle_window(cfqq); 3951 else 3952 cfq_clear_cfqq_idle_window(cfqq); 3953 } 3954} 3955 3956/* 3957 * Check if new_cfqq should preempt the currently active queue. Return 0 for 3958 * no or if we aren't sure, a 1 will cause a preempt. 3959 */ 3960static bool 3961cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq, 3962 struct request *rq) 3963{ 3964 struct cfq_queue *cfqq; 3965 3966 cfqq = cfqd->active_queue; 3967 if (!cfqq) 3968 return false; 3969 3970 if (cfq_class_idle(new_cfqq)) 3971 return false; 3972 3973 if (cfq_class_idle(cfqq)) 3974 return true; 3975 3976 /* 3977 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice. 3978 */ 3979 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq)) 3980 return false; 3981 3982 /* 3983 * if the new request is sync, but the currently running queue is 3984 * not, let the sync request have priority. 3985 */ 3986 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) 3987 return true; 3988 3989 /* 3990 * Treat ancestors of current cgroup the same way as current cgroup. 3991 * For anybody else we disallow preemption to guarantee service 3992 * fairness among cgroups. 3993 */ 3994 if (!cfqg_is_descendant(cfqq->cfqg, new_cfqq->cfqg)) 3995 return false; 3996 3997 if (cfq_slice_used(cfqq)) 3998 return true; 3999 4000 /* 4001 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice. 4002 */ 4003 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq)) 4004 return true; 4005 4006 WARN_ON_ONCE(cfqq->ioprio_class != new_cfqq->ioprio_class); 4007 /* Allow preemption only if we are idling on sync-noidle tree */ 4008 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD && 4009 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD && 4010 RB_EMPTY_ROOT(&cfqq->sort_list)) 4011 return true; 4012 4013 /* 4014 * So both queues are sync. Let the new request get disk time if 4015 * it's a metadata request and the current queue is doing regular IO. 4016 */ 4017 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending) 4018 return true; 4019 4020 /* An idle queue should not be idle now for some reason */ 4021 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq)) 4022 return true; 4023 4024 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq)) 4025 return false; 4026 4027 /* 4028 * if this request is as-good as one we would expect from the 4029 * current cfqq, let it preempt 4030 */ 4031 if (cfq_rq_close(cfqd, cfqq, rq)) 4032 return true; 4033 4034 return false; 4035} 4036 4037/* 4038 * cfqq preempts the active queue. if we allowed preempt with no slice left, 4039 * let it have half of its nominal slice. 4040 */ 4041static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq) 4042{ 4043 enum wl_type_t old_type = cfqq_type(cfqd->active_queue); 4044 4045 cfq_log_cfqq(cfqd, cfqq, "preempt"); 4046 cfq_slice_expired(cfqd, 1); 4047 4048 /* 4049 * workload type is changed, don't save slice, otherwise preempt 4050 * doesn't happen 4051 */ 4052 if (old_type != cfqq_type(cfqq)) 4053 cfqq->cfqg->saved_wl_slice = 0; 4054 4055 /* 4056 * Put the new queue at the front of the of the current list, 4057 * so we know that it will be selected next. 4058 */ 4059 BUG_ON(!cfq_cfqq_on_rr(cfqq)); 4060 4061 cfq_service_tree_add(cfqd, cfqq, 1); 4062 4063 cfqq->slice_end = 0; 4064 cfq_mark_cfqq_slice_new(cfqq); 4065} 4066 4067/* 4068 * Called when a new fs request (rq) is added (to cfqq). Check if there's 4069 * something we should do about it 4070 */ 4071static void 4072cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq, 4073 struct request *rq) 4074{ 4075 struct cfq_io_cq *cic = RQ_CIC(rq); 4076 4077 cfqd->rq_queued++; 4078 if (rq->cmd_flags & REQ_PRIO) 4079 cfqq->prio_pending++; 4080 4081 cfq_update_io_thinktime(cfqd, cfqq, cic); 4082 cfq_update_io_seektime(cfqd, cfqq, rq); 4083 cfq_update_idle_window(cfqd, cfqq, cic); 4084 4085 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq); 4086 4087 if (cfqq == cfqd->active_queue) { 4088 /* 4089 * Remember that we saw a request from this process, but 4090 * don't start queuing just yet. Otherwise we risk seeing lots 4091 * of tiny requests, because we disrupt the normal plugging 4092 * and merging. If the request is already larger than a single 4093 * page, let it rip immediately. For that case we assume that 4094 * merging is already done. Ditto for a busy system that 4095 * has other work pending, don't risk delaying until the 4096 * idle timer unplug to continue working. 4097 */ 4098 if (cfq_cfqq_wait_request(cfqq)) { 4099 if (blk_rq_bytes(rq) > PAGE_SIZE || 4100 cfqd->busy_queues > 1) { 4101 cfq_del_timer(cfqd, cfqq); 4102 cfq_clear_cfqq_wait_request(cfqq); 4103 __blk_run_queue(cfqd->queue); 4104 } else { 4105 cfqg_stats_update_idle_time(cfqq->cfqg); 4106 cfq_mark_cfqq_must_dispatch(cfqq); 4107 } 4108 } 4109 } else if (cfq_should_preempt(cfqd, cfqq, rq)) { 4110 /* 4111 * not the active queue - expire current slice if it is 4112 * idle and has expired it's mean thinktime or this new queue 4113 * has some old slice time left and is of higher priority or 4114 * this new queue is RT and the current one is BE 4115 */ 4116 cfq_preempt_queue(cfqd, cfqq); 4117 __blk_run_queue(cfqd->queue); 4118 } 4119} 4120 4121static void cfq_insert_request(struct request_queue *q, struct request *rq) 4122{ 4123 struct cfq_data *cfqd = q->elevator->elevator_data; 4124 struct cfq_queue *cfqq = RQ_CFQQ(rq); 4125 4126 cfq_log_cfqq(cfqd, cfqq, "insert_request"); 4127 cfq_init_prio_data(cfqq, RQ_CIC(rq)); 4128 4129 rq->fifo_time = ktime_get_ns() + cfqd->cfq_fifo_expire[rq_is_sync(rq)]; 4130 list_add_tail(&rq->queuelist, &cfqq->fifo); 4131 cfq_add_rq_rb(rq); 4132 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group, 4133 rq->cmd_flags); 4134 cfq_rq_enqueued(cfqd, cfqq, rq); 4135} 4136 4137/* 4138 * Update hw_tag based on peak queue depth over 50 samples under 4139 * sufficient load. 4140 */ 4141static void cfq_update_hw_tag(struct cfq_data *cfqd) 4142{ 4143 struct cfq_queue *cfqq = cfqd->active_queue; 4144 4145 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth) 4146 cfqd->hw_tag_est_depth = cfqd->rq_in_driver; 4147 4148 if (cfqd->hw_tag == 1) 4149 return; 4150 4151 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN && 4152 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN) 4153 return; 4154 4155 /* 4156 * If active queue hasn't enough requests and can idle, cfq might not 4157 * dispatch sufficient requests to hardware. Don't zero hw_tag in this 4158 * case 4159 */ 4160 if (cfqq && cfq_cfqq_idle_window(cfqq) && 4161 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] < 4162 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN) 4163 return; 4164 4165 if (cfqd->hw_tag_samples++ < 50) 4166 return; 4167 4168 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN) 4169 cfqd->hw_tag = 1; 4170 else 4171 cfqd->hw_tag = 0; 4172} 4173 4174static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq) 4175{ 4176 struct cfq_io_cq *cic = cfqd->active_cic; 4177 u64 now = ktime_get_ns(); 4178 4179 /* If the queue already has requests, don't wait */ 4180 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) 4181 return false; 4182 4183 /* If there are other queues in the group, don't wait */ 4184 if (cfqq->cfqg->nr_cfqq > 1) 4185 return false; 4186 4187 /* the only queue in the group, but think time is big */ 4188 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) 4189 return false; 4190 4191 if (cfq_slice_used(cfqq)) 4192 return true; 4193 4194 /* if slice left is less than think time, wait busy */ 4195 if (cic && sample_valid(cic->ttime.ttime_samples) 4196 && (cfqq->slice_end - now < cic->ttime.ttime_mean)) 4197 return true; 4198 4199 /* 4200 * If think times is less than a jiffy than ttime_mean=0 and above 4201 * will not be true. It might happen that slice has not expired yet 4202 * but will expire soon (4-5 ns) during select_queue(). To cover the 4203 * case where think time is less than a jiffy, mark the queue wait 4204 * busy if only 1 jiffy is left in the slice. 4205 */ 4206 if (cfqq->slice_end - now <= jiffies_to_nsecs(1)) 4207 return true; 4208 4209 return false; 4210} 4211 4212static void cfq_completed_request(struct request_queue *q, struct request *rq) 4213{ 4214 struct cfq_queue *cfqq = RQ_CFQQ(rq); 4215 struct cfq_data *cfqd = cfqq->cfqd; 4216 const int sync = rq_is_sync(rq); 4217 u64 now = ktime_get_ns(); 4218 4219 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", req_noidle(rq)); 4220 4221 cfq_update_hw_tag(cfqd); 4222 4223 WARN_ON(!cfqd->rq_in_driver); 4224 WARN_ON(!cfqq->dispatched); 4225 cfqd->rq_in_driver--; 4226 cfqq->dispatched--; 4227 (RQ_CFQG(rq))->dispatched--; 4228 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq), 4229 rq_io_start_time_ns(rq), rq->cmd_flags); 4230 4231 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--; 4232 4233 if (sync) { 4234 struct cfq_rb_root *st; 4235 4236 RQ_CIC(rq)->ttime.last_end_request = now; 4237 4238 if (cfq_cfqq_on_rr(cfqq)) 4239 st = cfqq->service_tree; 4240 else 4241 st = st_for(cfqq->cfqg, cfqq_class(cfqq), 4242 cfqq_type(cfqq)); 4243 4244 st->ttime.last_end_request = now; 4245 /* 4246 * We have to do this check in jiffies since start_time is in 4247 * jiffies and it is not trivial to convert to ns. If 4248 * cfq_fifo_expire[1] ever comes close to 1 jiffie, this test 4249 * will become problematic but so far we are fine (the default 4250 * is 128 ms). 4251 */ 4252 if (!time_after(rq->start_time + 4253 nsecs_to_jiffies(cfqd->cfq_fifo_expire[1]), 4254 jiffies)) 4255 cfqd->last_delayed_sync = now; 4256 } 4257 4258#ifdef CONFIG_CFQ_GROUP_IOSCHED 4259 cfqq->cfqg->ttime.last_end_request = now; 4260#endif 4261 4262 /* 4263 * If this is the active queue, check if it needs to be expired, 4264 * or if we want to idle in case it has no pending requests. 4265 */ 4266 if (cfqd->active_queue == cfqq) { 4267 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list); 4268 4269 if (cfq_cfqq_slice_new(cfqq)) { 4270 cfq_set_prio_slice(cfqd, cfqq); 4271 cfq_clear_cfqq_slice_new(cfqq); 4272 } 4273 4274 /* 4275 * Should we wait for next request to come in before we expire 4276 * the queue. 4277 */ 4278 if (cfq_should_wait_busy(cfqd, cfqq)) { 4279 u64 extend_sl = cfqd->cfq_slice_idle; 4280 if (!cfqd->cfq_slice_idle) 4281 extend_sl = cfqd->cfq_group_idle; 4282 cfqq->slice_end = now + extend_sl; 4283 cfq_mark_cfqq_wait_busy(cfqq); 4284 cfq_log_cfqq(cfqd, cfqq, "will busy wait"); 4285 } 4286 4287 /* 4288 * Idling is not enabled on: 4289 * - expired queues 4290 * - idle-priority queues 4291 * - async queues 4292 * - queues with still some requests queued 4293 * - when there is a close cooperator 4294 */ 4295 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq)) 4296 cfq_slice_expired(cfqd, 1); 4297 else if (sync && cfqq_empty && 4298 !cfq_close_cooperator(cfqd, cfqq)) { 4299 cfq_arm_slice_timer(cfqd); 4300 } 4301 } 4302 4303 if (!cfqd->rq_in_driver) 4304 cfq_schedule_dispatch(cfqd); 4305} 4306 4307static void cfqq_boost_on_prio(struct cfq_queue *cfqq, unsigned int op) 4308{ 4309 /* 4310 * If REQ_PRIO is set, boost class and prio level, if it's below 4311 * BE/NORM. If prio is not set, restore the potentially boosted 4312 * class/prio level. 4313 */ 4314 if (!(op & REQ_PRIO)) { 4315 cfqq->ioprio_class = cfqq->org_ioprio_class; 4316 cfqq->ioprio = cfqq->org_ioprio; 4317 } else { 4318 if (cfq_class_idle(cfqq)) 4319 cfqq->ioprio_class = IOPRIO_CLASS_BE; 4320 if (cfqq->ioprio > IOPRIO_NORM) 4321 cfqq->ioprio = IOPRIO_NORM; 4322 } 4323} 4324 4325static inline int __cfq_may_queue(struct cfq_queue *cfqq) 4326{ 4327 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) { 4328 cfq_mark_cfqq_must_alloc_slice(cfqq); 4329 return ELV_MQUEUE_MUST; 4330 } 4331 4332 return ELV_MQUEUE_MAY; 4333} 4334 4335static int cfq_may_queue(struct request_queue *q, unsigned int op) 4336{ 4337 struct cfq_data *cfqd = q->elevator->elevator_data; 4338 struct task_struct *tsk = current; 4339 struct cfq_io_cq *cic; 4340 struct cfq_queue *cfqq; 4341 4342 /* 4343 * don't force setup of a queue from here, as a call to may_queue 4344 * does not necessarily imply that a request actually will be queued. 4345 * so just lookup a possibly existing queue, or return 'may queue' 4346 * if that fails 4347 */ 4348 cic = cfq_cic_lookup(cfqd, tsk->io_context); 4349 if (!cic) 4350 return ELV_MQUEUE_MAY; 4351 4352 cfqq = cic_to_cfqq(cic, op_is_sync(op)); 4353 if (cfqq) { 4354 cfq_init_prio_data(cfqq, cic); 4355 cfqq_boost_on_prio(cfqq, op); 4356 4357 return __cfq_may_queue(cfqq); 4358 } 4359 4360 return ELV_MQUEUE_MAY; 4361} 4362 4363/* 4364 * queue lock held here 4365 */ 4366static void cfq_put_request(struct request *rq) 4367{ 4368 struct cfq_queue *cfqq = RQ_CFQQ(rq); 4369 4370 if (cfqq) { 4371 const int rw = rq_data_dir(rq); 4372 4373 BUG_ON(!cfqq->allocated[rw]); 4374 cfqq->allocated[rw]--; 4375 4376 /* Put down rq reference on cfqg */ 4377 cfqg_put(RQ_CFQG(rq)); 4378 rq->elv.priv[0] = NULL; 4379 rq->elv.priv[1] = NULL; 4380 4381 cfq_put_queue(cfqq); 4382 } 4383} 4384 4385static struct cfq_queue * 4386cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic, 4387 struct cfq_queue *cfqq) 4388{ 4389 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq); 4390 cic_set_cfqq(cic, cfqq->new_cfqq, 1); 4391 cfq_mark_cfqq_coop(cfqq->new_cfqq); 4392 cfq_put_queue(cfqq); 4393 return cic_to_cfqq(cic, 1); 4394} 4395 4396/* 4397 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this 4398 * was the last process referring to said cfqq. 4399 */ 4400static struct cfq_queue * 4401split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq) 4402{ 4403 if (cfqq_process_refs(cfqq) == 1) { 4404 cfqq->pid = current->pid; 4405 cfq_clear_cfqq_coop(cfqq); 4406 cfq_clear_cfqq_split_coop(cfqq); 4407 return cfqq; 4408 } 4409 4410 cic_set_cfqq(cic, NULL, 1); 4411 4412 cfq_put_cooperator(cfqq); 4413 4414 cfq_put_queue(cfqq); 4415 return NULL; 4416} 4417/* 4418 * Allocate cfq data structures associated with this request. 4419 */ 4420static int 4421cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio, 4422 gfp_t gfp_mask) 4423{ 4424 struct cfq_data *cfqd = q->elevator->elevator_data; 4425 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq); 4426 const int rw = rq_data_dir(rq); 4427 const bool is_sync = rq_is_sync(rq); 4428 struct cfq_queue *cfqq; 4429 4430 spin_lock_irq(q->queue_lock); 4431 4432 check_ioprio_changed(cic, bio); 4433 check_blkcg_changed(cic, bio); 4434new_queue: 4435 cfqq = cic_to_cfqq(cic, is_sync); 4436 if (!cfqq || cfqq == &cfqd->oom_cfqq) { 4437 if (cfqq) 4438 cfq_put_queue(cfqq); 4439 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio); 4440 cic_set_cfqq(cic, cfqq, is_sync); 4441 } else { 4442 /* 4443 * If the queue was seeky for too long, break it apart. 4444 */ 4445 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) { 4446 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq"); 4447 cfqq = split_cfqq(cic, cfqq); 4448 if (!cfqq) 4449 goto new_queue; 4450 } 4451 4452 /* 4453 * Check to see if this queue is scheduled to merge with 4454 * another, closely cooperating queue. The merging of 4455 * queues happens here as it must be done in process context. 4456 * The reference on new_cfqq was taken in merge_cfqqs. 4457 */ 4458 if (cfqq->new_cfqq) 4459 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq); 4460 } 4461 4462 cfqq->allocated[rw]++; 4463 4464 cfqq->ref++; 4465 cfqg_get(cfqq->cfqg); 4466 rq->elv.priv[0] = cfqq; 4467 rq->elv.priv[1] = cfqq->cfqg; 4468 spin_unlock_irq(q->queue_lock); 4469 4470 return 0; 4471} 4472 4473static void cfq_kick_queue(struct work_struct *work) 4474{ 4475 struct cfq_data *cfqd = 4476 container_of(work, struct cfq_data, unplug_work); 4477 struct request_queue *q = cfqd->queue; 4478 4479 spin_lock_irq(q->queue_lock); 4480 __blk_run_queue(cfqd->queue); 4481 spin_unlock_irq(q->queue_lock); 4482} 4483 4484/* 4485 * Timer running if the active_queue is currently idling inside its time slice 4486 */ 4487static enum hrtimer_restart cfq_idle_slice_timer(struct hrtimer *timer) 4488{ 4489 struct cfq_data *cfqd = container_of(timer, struct cfq_data, 4490 idle_slice_timer); 4491 struct cfq_queue *cfqq; 4492 unsigned long flags; 4493 int timed_out = 1; 4494 4495 cfq_log(cfqd, "idle timer fired"); 4496 4497 spin_lock_irqsave(cfqd->queue->queue_lock, flags); 4498 4499 cfqq = cfqd->active_queue; 4500 if (cfqq) { 4501 timed_out = 0; 4502 4503 /* 4504 * We saw a request before the queue expired, let it through 4505 */ 4506 if (cfq_cfqq_must_dispatch(cfqq)) 4507 goto out_kick; 4508 4509 /* 4510 * expired 4511 */ 4512 if (cfq_slice_used(cfqq)) 4513 goto expire; 4514 4515 /* 4516 * only expire and reinvoke request handler, if there are 4517 * other queues with pending requests 4518 */ 4519 if (!cfqd->busy_queues) 4520 goto out_cont; 4521 4522 /* 4523 * not expired and it has a request pending, let it dispatch 4524 */ 4525 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) 4526 goto out_kick; 4527 4528 /* 4529 * Queue depth flag is reset only when the idle didn't succeed 4530 */ 4531 cfq_clear_cfqq_deep(cfqq); 4532 } 4533expire: 4534 cfq_slice_expired(cfqd, timed_out); 4535out_kick: 4536 cfq_schedule_dispatch(cfqd); 4537out_cont: 4538 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags); 4539 return HRTIMER_NORESTART; 4540} 4541 4542static void cfq_shutdown_timer_wq(struct cfq_data *cfqd) 4543{ 4544 hrtimer_cancel(&cfqd->idle_slice_timer); 4545 cancel_work_sync(&cfqd->unplug_work); 4546} 4547 4548static void cfq_exit_queue(struct elevator_queue *e) 4549{ 4550 struct cfq_data *cfqd = e->elevator_data; 4551 struct request_queue *q = cfqd->queue; 4552 4553 cfq_shutdown_timer_wq(cfqd); 4554 4555 spin_lock_irq(q->queue_lock); 4556 4557 if (cfqd->active_queue) 4558 __cfq_slice_expired(cfqd, cfqd->active_queue, 0); 4559 4560 spin_unlock_irq(q->queue_lock); 4561 4562 cfq_shutdown_timer_wq(cfqd); 4563 4564#ifdef CONFIG_CFQ_GROUP_IOSCHED 4565 blkcg_deactivate_policy(q, &blkcg_policy_cfq); 4566#else 4567 kfree(cfqd->root_group); 4568#endif 4569 kfree(cfqd); 4570} 4571 4572static int cfq_init_queue(struct request_queue *q, struct elevator_type *e) 4573{ 4574 struct cfq_data *cfqd; 4575 struct blkcg_gq *blkg __maybe_unused; 4576 int i, ret; 4577 struct elevator_queue *eq; 4578 4579 eq = elevator_alloc(q, e); 4580 if (!eq) 4581 return -ENOMEM; 4582 4583 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node); 4584 if (!cfqd) { 4585 kobject_put(&eq->kobj); 4586 return -ENOMEM; 4587 } 4588 eq->elevator_data = cfqd; 4589 4590 cfqd->queue = q; 4591 spin_lock_irq(q->queue_lock); 4592 q->elevator = eq; 4593 spin_unlock_irq(q->queue_lock); 4594 4595 /* Init root service tree */ 4596 cfqd->grp_service_tree = CFQ_RB_ROOT; 4597 4598 /* Init root group and prefer root group over other groups by default */ 4599#ifdef CONFIG_CFQ_GROUP_IOSCHED 4600 ret = blkcg_activate_policy(q, &blkcg_policy_cfq); 4601 if (ret) 4602 goto out_free; 4603 4604 cfqd->root_group = blkg_to_cfqg(q->root_blkg); 4605#else 4606 ret = -ENOMEM; 4607 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group), 4608 GFP_KERNEL, cfqd->queue->node); 4609 if (!cfqd->root_group) 4610 goto out_free; 4611 4612 cfq_init_cfqg_base(cfqd->root_group); 4613 cfqd->root_group->weight = 2 * CFQ_WEIGHT_LEGACY_DFL; 4614 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_LEGACY_DFL; 4615#endif 4616 4617 /* 4618 * Not strictly needed (since RB_ROOT just clears the node and we 4619 * zeroed cfqd on alloc), but better be safe in case someone decides 4620 * to add magic to the rb code 4621 */ 4622 for (i = 0; i < CFQ_PRIO_LISTS; i++) 4623 cfqd->prio_trees[i] = RB_ROOT; 4624 4625 /* 4626 * Our fallback cfqq if cfq_get_queue() runs into OOM issues. 4627 * Grab a permanent reference to it, so that the normal code flow 4628 * will not attempt to free it. oom_cfqq is linked to root_group 4629 * but shouldn't hold a reference as it'll never be unlinked. Lose 4630 * the reference from linking right away. 4631 */ 4632 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0); 4633 cfqd->oom_cfqq.ref++; 4634 4635 spin_lock_irq(q->queue_lock); 4636 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group); 4637 cfqg_put(cfqd->root_group); 4638 spin_unlock_irq(q->queue_lock); 4639 4640 hrtimer_init(&cfqd->idle_slice_timer, CLOCK_MONOTONIC, 4641 HRTIMER_MODE_REL); 4642 cfqd->idle_slice_timer.function = cfq_idle_slice_timer; 4643 4644 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue); 4645 4646 cfqd->cfq_quantum = cfq_quantum; 4647 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0]; 4648 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1]; 4649 cfqd->cfq_back_max = cfq_back_max; 4650 cfqd->cfq_back_penalty = cfq_back_penalty; 4651 cfqd->cfq_slice[0] = cfq_slice_async; 4652 cfqd->cfq_slice[1] = cfq_slice_sync; 4653 cfqd->cfq_target_latency = cfq_target_latency; 4654 cfqd->cfq_slice_async_rq = cfq_slice_async_rq; 4655 cfqd->cfq_slice_idle = cfq_slice_idle; 4656 cfqd->cfq_group_idle = cfq_group_idle; 4657 cfqd->cfq_latency = 1; 4658 cfqd->hw_tag = -1; 4659 /* 4660 * we optimistically start assuming sync ops weren't delayed in last 4661 * second, in order to have larger depth for async operations. 4662 */ 4663 cfqd->last_delayed_sync = ktime_get_ns() - NSEC_PER_SEC; 4664 return 0; 4665 4666out_free: 4667 kfree(cfqd); 4668 kobject_put(&eq->kobj); 4669 return ret; 4670} 4671 4672static void cfq_registered_queue(struct request_queue *q) 4673{ 4674 struct elevator_queue *e = q->elevator; 4675 struct cfq_data *cfqd = e->elevator_data; 4676 4677 /* 4678 * Default to IOPS mode with no idling for SSDs 4679 */ 4680 if (blk_queue_nonrot(q)) 4681 cfqd->cfq_slice_idle = 0; 4682 wbt_disable_default(q); 4683} 4684 4685/* 4686 * sysfs parts below --> 4687 */ 4688static ssize_t 4689cfq_var_show(unsigned int var, char *page) 4690{ 4691 return sprintf(page, "%u\n", var); 4692} 4693 4694static void 4695cfq_var_store(unsigned int *var, const char *page) 4696{ 4697 char *p = (char *) page; 4698 4699 *var = simple_strtoul(p, &p, 10); 4700} 4701 4702#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \ 4703static ssize_t __FUNC(struct elevator_queue *e, char *page) \ 4704{ \ 4705 struct cfq_data *cfqd = e->elevator_data; \ 4706 u64 __data = __VAR; \ 4707 if (__CONV) \ 4708 __data = div_u64(__data, NSEC_PER_MSEC); \ 4709 return cfq_var_show(__data, (page)); \ 4710} 4711SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0); 4712SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1); 4713SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1); 4714SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0); 4715SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0); 4716SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1); 4717SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1); 4718SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1); 4719SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1); 4720SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0); 4721SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0); 4722SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1); 4723#undef SHOW_FUNCTION 4724 4725#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \ 4726static ssize_t __FUNC(struct elevator_queue *e, char *page) \ 4727{ \ 4728 struct cfq_data *cfqd = e->elevator_data; \ 4729 u64 __data = __VAR; \ 4730 __data = div_u64(__data, NSEC_PER_USEC); \ 4731 return cfq_var_show(__data, (page)); \ 4732} 4733USEC_SHOW_FUNCTION(cfq_slice_idle_us_show, cfqd->cfq_slice_idle); 4734USEC_SHOW_FUNCTION(cfq_group_idle_us_show, cfqd->cfq_group_idle); 4735USEC_SHOW_FUNCTION(cfq_slice_sync_us_show, cfqd->cfq_slice[1]); 4736USEC_SHOW_FUNCTION(cfq_slice_async_us_show, cfqd->cfq_slice[0]); 4737USEC_SHOW_FUNCTION(cfq_target_latency_us_show, cfqd->cfq_target_latency); 4738#undef USEC_SHOW_FUNCTION 4739 4740#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \ 4741static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \ 4742{ \ 4743 struct cfq_data *cfqd = e->elevator_data; \ 4744 unsigned int __data; \ 4745 cfq_var_store(&__data, (page)); \ 4746 if (__data < (MIN)) \ 4747 __data = (MIN); \ 4748 else if (__data > (MAX)) \ 4749 __data = (MAX); \ 4750 if (__CONV) \ 4751 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \ 4752 else \ 4753 *(__PTR) = __data; \ 4754 return count; \ 4755} 4756STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0); 4757STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, 4758 UINT_MAX, 1); 4759STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, 4760 UINT_MAX, 1); 4761STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0); 4762STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, 4763 UINT_MAX, 0); 4764STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1); 4765STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1); 4766STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1); 4767STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1); 4768STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, 4769 UINT_MAX, 0); 4770STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0); 4771STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1); 4772#undef STORE_FUNCTION 4773 4774#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \ 4775static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \ 4776{ \ 4777 struct cfq_data *cfqd = e->elevator_data; \ 4778 unsigned int __data; \ 4779 cfq_var_store(&__data, (page)); \ 4780 if (__data < (MIN)) \ 4781 __data = (MIN); \ 4782 else if (__data > (MAX)) \ 4783 __data = (MAX); \ 4784 *(__PTR) = (u64)__data * NSEC_PER_USEC; \ 4785 return count; \ 4786} 4787USEC_STORE_FUNCTION(cfq_slice_idle_us_store, &cfqd->cfq_slice_idle, 0, UINT_MAX); 4788USEC_STORE_FUNCTION(cfq_group_idle_us_store, &cfqd->cfq_group_idle, 0, UINT_MAX); 4789USEC_STORE_FUNCTION(cfq_slice_sync_us_store, &cfqd->cfq_slice[1], 1, UINT_MAX); 4790USEC_STORE_FUNCTION(cfq_slice_async_us_store, &cfqd->cfq_slice[0], 1, UINT_MAX); 4791USEC_STORE_FUNCTION(cfq_target_latency_us_store, &cfqd->cfq_target_latency, 1, UINT_MAX); 4792#undef USEC_STORE_FUNCTION 4793 4794#define CFQ_ATTR(name) \ 4795 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store) 4796 4797static struct elv_fs_entry cfq_attrs[] = { 4798 CFQ_ATTR(quantum), 4799 CFQ_ATTR(fifo_expire_sync), 4800 CFQ_ATTR(fifo_expire_async), 4801 CFQ_ATTR(back_seek_max), 4802 CFQ_ATTR(back_seek_penalty), 4803 CFQ_ATTR(slice_sync), 4804 CFQ_ATTR(slice_sync_us), 4805 CFQ_ATTR(slice_async), 4806 CFQ_ATTR(slice_async_us), 4807 CFQ_ATTR(slice_async_rq), 4808 CFQ_ATTR(slice_idle), 4809 CFQ_ATTR(slice_idle_us), 4810 CFQ_ATTR(group_idle), 4811 CFQ_ATTR(group_idle_us), 4812 CFQ_ATTR(low_latency), 4813 CFQ_ATTR(target_latency), 4814 CFQ_ATTR(target_latency_us), 4815 __ATTR_NULL 4816}; 4817 4818static struct elevator_type iosched_cfq = { 4819 .ops.sq = { 4820 .elevator_merge_fn = cfq_merge, 4821 .elevator_merged_fn = cfq_merged_request, 4822 .elevator_merge_req_fn = cfq_merged_requests, 4823 .elevator_allow_bio_merge_fn = cfq_allow_bio_merge, 4824 .elevator_allow_rq_merge_fn = cfq_allow_rq_merge, 4825 .elevator_bio_merged_fn = cfq_bio_merged, 4826 .elevator_dispatch_fn = cfq_dispatch_requests, 4827 .elevator_add_req_fn = cfq_insert_request, 4828 .elevator_activate_req_fn = cfq_activate_request, 4829 .elevator_deactivate_req_fn = cfq_deactivate_request, 4830 .elevator_completed_req_fn = cfq_completed_request, 4831 .elevator_former_req_fn = elv_rb_former_request, 4832 .elevator_latter_req_fn = elv_rb_latter_request, 4833 .elevator_init_icq_fn = cfq_init_icq, 4834 .elevator_exit_icq_fn = cfq_exit_icq, 4835 .elevator_set_req_fn = cfq_set_request, 4836 .elevator_put_req_fn = cfq_put_request, 4837 .elevator_may_queue_fn = cfq_may_queue, 4838 .elevator_init_fn = cfq_init_queue, 4839 .elevator_exit_fn = cfq_exit_queue, 4840 .elevator_registered_fn = cfq_registered_queue, 4841 }, 4842 .icq_size = sizeof(struct cfq_io_cq), 4843 .icq_align = __alignof__(struct cfq_io_cq), 4844 .elevator_attrs = cfq_attrs, 4845 .elevator_name = "cfq", 4846 .elevator_owner = THIS_MODULE, 4847}; 4848 4849#ifdef CONFIG_CFQ_GROUP_IOSCHED 4850static struct blkcg_policy blkcg_policy_cfq = { 4851 .dfl_cftypes = cfq_blkcg_files, 4852 .legacy_cftypes = cfq_blkcg_legacy_files, 4853 4854 .cpd_alloc_fn = cfq_cpd_alloc, 4855 .cpd_init_fn = cfq_cpd_init, 4856 .cpd_free_fn = cfq_cpd_free, 4857 .cpd_bind_fn = cfq_cpd_bind, 4858 4859 .pd_alloc_fn = cfq_pd_alloc, 4860 .pd_init_fn = cfq_pd_init, 4861 .pd_offline_fn = cfq_pd_offline, 4862 .pd_free_fn = cfq_pd_free, 4863 .pd_reset_stats_fn = cfq_pd_reset_stats, 4864}; 4865#endif 4866 4867static int __init cfq_init(void) 4868{ 4869 int ret; 4870 4871#ifdef CONFIG_CFQ_GROUP_IOSCHED 4872 ret = blkcg_policy_register(&blkcg_policy_cfq); 4873 if (ret) 4874 return ret; 4875#else 4876 cfq_group_idle = 0; 4877#endif 4878 4879 ret = -ENOMEM; 4880 cfq_pool = KMEM_CACHE(cfq_queue, 0); 4881 if (!cfq_pool) 4882 goto err_pol_unreg; 4883 4884 ret = elv_register(&iosched_cfq); 4885 if (ret) 4886 goto err_free_pool; 4887 4888 return 0; 4889 4890err_free_pool: 4891 kmem_cache_destroy(cfq_pool); 4892err_pol_unreg: 4893#ifdef CONFIG_CFQ_GROUP_IOSCHED 4894 blkcg_policy_unregister(&blkcg_policy_cfq); 4895#endif 4896 return ret; 4897} 4898 4899static void __exit cfq_exit(void) 4900{ 4901#ifdef CONFIG_CFQ_GROUP_IOSCHED 4902 blkcg_policy_unregister(&blkcg_policy_cfq); 4903#endif 4904 elv_unregister(&iosched_cfq); 4905 kmem_cache_destroy(cfq_pool); 4906} 4907 4908module_init(cfq_init); 4909module_exit(cfq_exit); 4910 4911MODULE_AUTHOR("Jens Axboe"); 4912MODULE_LICENSE("GPL"); 4913MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");