Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_PROCESSOR_H
3#define _ASM_X86_PROCESSOR_H
4
5#include <asm/processor-flags.h>
6
7/* Forward declaration, a strange C thing */
8struct task_struct;
9struct mm_struct;
10struct vm86;
11
12#include <asm/math_emu.h>
13#include <asm/segment.h>
14#include <asm/types.h>
15#include <uapi/asm/sigcontext.h>
16#include <asm/current.h>
17#include <asm/cpufeatures.h>
18#include <asm/page.h>
19#include <asm/pgtable_types.h>
20#include <asm/percpu.h>
21#include <asm/msr.h>
22#include <asm/desc_defs.h>
23#include <asm/nops.h>
24#include <asm/special_insns.h>
25#include <asm/fpu/types.h>
26#include <asm/unwind_hints.h>
27
28#include <linux/personality.h>
29#include <linux/cache.h>
30#include <linux/threads.h>
31#include <linux/math64.h>
32#include <linux/err.h>
33#include <linux/irqflags.h>
34#include <linux/mem_encrypt.h>
35
36/*
37 * We handle most unaligned accesses in hardware. On the other hand
38 * unaligned DMA can be quite expensive on some Nehalem processors.
39 *
40 * Based on this we disable the IP header alignment in network drivers.
41 */
42#define NET_IP_ALIGN 0
43
44#define HBP_NUM 4
45/*
46 * Default implementation of macro that returns current
47 * instruction pointer ("program counter").
48 */
49static inline void *current_text_addr(void)
50{
51 void *pc;
52
53 asm volatile("mov $1f, %0; 1:":"=r" (pc));
54
55 return pc;
56}
57
58/*
59 * These alignment constraints are for performance in the vSMP case,
60 * but in the task_struct case we must also meet hardware imposed
61 * alignment requirements of the FPU state:
62 */
63#ifdef CONFIG_X86_VSMP
64# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
65# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
66#else
67# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
68# define ARCH_MIN_MMSTRUCT_ALIGN 0
69#endif
70
71enum tlb_infos {
72 ENTRIES,
73 NR_INFO
74};
75
76extern u16 __read_mostly tlb_lli_4k[NR_INFO];
77extern u16 __read_mostly tlb_lli_2m[NR_INFO];
78extern u16 __read_mostly tlb_lli_4m[NR_INFO];
79extern u16 __read_mostly tlb_lld_4k[NR_INFO];
80extern u16 __read_mostly tlb_lld_2m[NR_INFO];
81extern u16 __read_mostly tlb_lld_4m[NR_INFO];
82extern u16 __read_mostly tlb_lld_1g[NR_INFO];
83
84/*
85 * CPU type and hardware bug flags. Kept separately for each CPU.
86 * Members of this structure are referenced in head_32.S, so think twice
87 * before touching them. [mj]
88 */
89
90struct cpuinfo_x86 {
91 __u8 x86; /* CPU family */
92 __u8 x86_vendor; /* CPU vendor */
93 __u8 x86_model;
94 __u8 x86_mask;
95#ifdef CONFIG_X86_64
96 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
97 int x86_tlbsize;
98#endif
99 __u8 x86_virt_bits;
100 __u8 x86_phys_bits;
101 /* CPUID returned core id bits: */
102 __u8 x86_coreid_bits;
103 __u8 cu_id;
104 /* Max extended CPUID function supported: */
105 __u32 extended_cpuid_level;
106 /* Maximum supported CPUID level, -1=no CPUID: */
107 int cpuid_level;
108 __u32 x86_capability[NCAPINTS + NBUGINTS];
109 char x86_vendor_id[16];
110 char x86_model_id[64];
111 /* in KB - valid for CPUS which support this call: */
112 int x86_cache_size;
113 int x86_cache_alignment; /* In bytes */
114 /* Cache QoS architectural values: */
115 int x86_cache_max_rmid; /* max index */
116 int x86_cache_occ_scale; /* scale to bytes */
117 int x86_power;
118 unsigned long loops_per_jiffy;
119 /* cpuid returned max cores value: */
120 u16 x86_max_cores;
121 u16 apicid;
122 u16 initial_apicid;
123 u16 x86_clflush_size;
124 /* number of cores as seen by the OS: */
125 u16 booted_cores;
126 /* Physical processor id: */
127 u16 phys_proc_id;
128 /* Logical processor id: */
129 u16 logical_proc_id;
130 /* Core id: */
131 u16 cpu_core_id;
132 /* Index into per_cpu list: */
133 u16 cpu_index;
134 u32 microcode;
135} __randomize_layout;
136
137struct cpuid_regs {
138 u32 eax, ebx, ecx, edx;
139};
140
141enum cpuid_regs_idx {
142 CPUID_EAX = 0,
143 CPUID_EBX,
144 CPUID_ECX,
145 CPUID_EDX,
146};
147
148#define X86_VENDOR_INTEL 0
149#define X86_VENDOR_CYRIX 1
150#define X86_VENDOR_AMD 2
151#define X86_VENDOR_UMC 3
152#define X86_VENDOR_CENTAUR 5
153#define X86_VENDOR_TRANSMETA 7
154#define X86_VENDOR_NSC 8
155#define X86_VENDOR_NUM 9
156
157#define X86_VENDOR_UNKNOWN 0xff
158
159/*
160 * capabilities of CPUs
161 */
162extern struct cpuinfo_x86 boot_cpu_data;
163extern struct cpuinfo_x86 new_cpu_data;
164
165extern struct tss_struct doublefault_tss;
166extern __u32 cpu_caps_cleared[NCAPINTS];
167extern __u32 cpu_caps_set[NCAPINTS];
168
169#ifdef CONFIG_SMP
170DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
171#define cpu_data(cpu) per_cpu(cpu_info, cpu)
172#else
173#define cpu_info boot_cpu_data
174#define cpu_data(cpu) boot_cpu_data
175#endif
176
177extern const struct seq_operations cpuinfo_op;
178
179#define cache_line_size() (boot_cpu_data.x86_cache_alignment)
180
181extern void cpu_detect(struct cpuinfo_x86 *c);
182
183extern void early_cpu_init(void);
184extern void identify_boot_cpu(void);
185extern void identify_secondary_cpu(struct cpuinfo_x86 *);
186extern void print_cpu_info(struct cpuinfo_x86 *);
187void print_cpu_msr(struct cpuinfo_x86 *);
188extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c);
189extern u32 get_scattered_cpuid_leaf(unsigned int level,
190 unsigned int sub_leaf,
191 enum cpuid_regs_idx reg);
192extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c);
193extern void init_amd_cacheinfo(struct cpuinfo_x86 *c);
194
195extern void detect_extended_topology(struct cpuinfo_x86 *c);
196extern void detect_ht(struct cpuinfo_x86 *c);
197
198#ifdef CONFIG_X86_32
199extern int have_cpuid_p(void);
200#else
201static inline int have_cpuid_p(void)
202{
203 return 1;
204}
205#endif
206static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
207 unsigned int *ecx, unsigned int *edx)
208{
209 /* ecx is often an input as well as an output. */
210 asm volatile("cpuid"
211 : "=a" (*eax),
212 "=b" (*ebx),
213 "=c" (*ecx),
214 "=d" (*edx)
215 : "0" (*eax), "2" (*ecx)
216 : "memory");
217}
218
219#define native_cpuid_reg(reg) \
220static inline unsigned int native_cpuid_##reg(unsigned int op) \
221{ \
222 unsigned int eax = op, ebx, ecx = 0, edx; \
223 \
224 native_cpuid(&eax, &ebx, &ecx, &edx); \
225 \
226 return reg; \
227}
228
229/*
230 * Native CPUID functions returning a single datum.
231 */
232native_cpuid_reg(eax)
233native_cpuid_reg(ebx)
234native_cpuid_reg(ecx)
235native_cpuid_reg(edx)
236
237/*
238 * Friendlier CR3 helpers.
239 */
240static inline unsigned long read_cr3_pa(void)
241{
242 return __read_cr3() & CR3_ADDR_MASK;
243}
244
245static inline unsigned long native_read_cr3_pa(void)
246{
247 return __native_read_cr3() & CR3_ADDR_MASK;
248}
249
250static inline void load_cr3(pgd_t *pgdir)
251{
252 write_cr3(__sme_pa(pgdir));
253}
254
255#ifdef CONFIG_X86_32
256/* This is the TSS defined by the hardware. */
257struct x86_hw_tss {
258 unsigned short back_link, __blh;
259 unsigned long sp0;
260 unsigned short ss0, __ss0h;
261 unsigned long sp1;
262
263 /*
264 * We don't use ring 1, so ss1 is a convenient scratch space in
265 * the same cacheline as sp0. We use ss1 to cache the value in
266 * MSR_IA32_SYSENTER_CS. When we context switch
267 * MSR_IA32_SYSENTER_CS, we first check if the new value being
268 * written matches ss1, and, if it's not, then we wrmsr the new
269 * value and update ss1.
270 *
271 * The only reason we context switch MSR_IA32_SYSENTER_CS is
272 * that we set it to zero in vm86 tasks to avoid corrupting the
273 * stack if we were to go through the sysenter path from vm86
274 * mode.
275 */
276 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
277
278 unsigned short __ss1h;
279 unsigned long sp2;
280 unsigned short ss2, __ss2h;
281 unsigned long __cr3;
282 unsigned long ip;
283 unsigned long flags;
284 unsigned long ax;
285 unsigned long cx;
286 unsigned long dx;
287 unsigned long bx;
288 unsigned long sp;
289 unsigned long bp;
290 unsigned long si;
291 unsigned long di;
292 unsigned short es, __esh;
293 unsigned short cs, __csh;
294 unsigned short ss, __ssh;
295 unsigned short ds, __dsh;
296 unsigned short fs, __fsh;
297 unsigned short gs, __gsh;
298 unsigned short ldt, __ldth;
299 unsigned short trace;
300 unsigned short io_bitmap_base;
301
302} __attribute__((packed));
303#else
304struct x86_hw_tss {
305 u32 reserved1;
306 u64 sp0;
307 u64 sp1;
308 u64 sp2;
309 u64 reserved2;
310 u64 ist[7];
311 u32 reserved3;
312 u32 reserved4;
313 u16 reserved5;
314 u16 io_bitmap_base;
315
316} __attribute__((packed));
317#endif
318
319/*
320 * IO-bitmap sizes:
321 */
322#define IO_BITMAP_BITS 65536
323#define IO_BITMAP_BYTES (IO_BITMAP_BITS/8)
324#define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long))
325#define IO_BITMAP_OFFSET offsetof(struct tss_struct, io_bitmap)
326#define INVALID_IO_BITMAP_OFFSET 0x8000
327
328struct tss_struct {
329 /*
330 * The hardware state:
331 */
332 struct x86_hw_tss x86_tss;
333
334 /*
335 * The extra 1 is there because the CPU will access an
336 * additional byte beyond the end of the IO permission
337 * bitmap. The extra byte must be all 1 bits, and must
338 * be within the limit.
339 */
340 unsigned long io_bitmap[IO_BITMAP_LONGS + 1];
341
342#ifdef CONFIG_X86_32
343 /*
344 * Space for the temporary SYSENTER stack.
345 */
346 unsigned long SYSENTER_stack_canary;
347 unsigned long SYSENTER_stack[64];
348#endif
349
350} ____cacheline_aligned;
351
352DECLARE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss);
353
354/*
355 * sizeof(unsigned long) coming from an extra "long" at the end
356 * of the iobitmap.
357 *
358 * -1? seg base+limit should be pointing to the address of the
359 * last valid byte
360 */
361#define __KERNEL_TSS_LIMIT \
362 (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
363
364#ifdef CONFIG_X86_32
365DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
366#endif
367
368/*
369 * Save the original ist values for checking stack pointers during debugging
370 */
371struct orig_ist {
372 unsigned long ist[7];
373};
374
375#ifdef CONFIG_X86_64
376DECLARE_PER_CPU(struct orig_ist, orig_ist);
377
378union irq_stack_union {
379 char irq_stack[IRQ_STACK_SIZE];
380 /*
381 * GCC hardcodes the stack canary as %gs:40. Since the
382 * irq_stack is the object at %gs:0, we reserve the bottom
383 * 48 bytes of the irq stack for the canary.
384 */
385 struct {
386 char gs_base[40];
387 unsigned long stack_canary;
388 };
389};
390
391DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
392DECLARE_INIT_PER_CPU(irq_stack_union);
393
394DECLARE_PER_CPU(char *, irq_stack_ptr);
395DECLARE_PER_CPU(unsigned int, irq_count);
396extern asmlinkage void ignore_sysret(void);
397#else /* X86_64 */
398#ifdef CONFIG_CC_STACKPROTECTOR
399/*
400 * Make sure stack canary segment base is cached-aligned:
401 * "For Intel Atom processors, avoid non zero segment base address
402 * that is not aligned to cache line boundary at all cost."
403 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
404 */
405struct stack_canary {
406 char __pad[20]; /* canary at %gs:20 */
407 unsigned long canary;
408};
409DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
410#endif
411/*
412 * per-CPU IRQ handling stacks
413 */
414struct irq_stack {
415 u32 stack[THREAD_SIZE/sizeof(u32)];
416} __aligned(THREAD_SIZE);
417
418DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
419DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
420#endif /* X86_64 */
421
422extern unsigned int fpu_kernel_xstate_size;
423extern unsigned int fpu_user_xstate_size;
424
425struct perf_event;
426
427typedef struct {
428 unsigned long seg;
429} mm_segment_t;
430
431struct thread_struct {
432 /* Cached TLS descriptors: */
433 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
434 unsigned long sp0;
435 unsigned long sp;
436#ifdef CONFIG_X86_32
437 unsigned long sysenter_cs;
438#else
439 unsigned short es;
440 unsigned short ds;
441 unsigned short fsindex;
442 unsigned short gsindex;
443#endif
444
445 u32 status; /* thread synchronous flags */
446
447#ifdef CONFIG_X86_64
448 unsigned long fsbase;
449 unsigned long gsbase;
450#else
451 /*
452 * XXX: this could presumably be unsigned short. Alternatively,
453 * 32-bit kernels could be taught to use fsindex instead.
454 */
455 unsigned long fs;
456 unsigned long gs;
457#endif
458
459 /* Save middle states of ptrace breakpoints */
460 struct perf_event *ptrace_bps[HBP_NUM];
461 /* Debug status used for traps, single steps, etc... */
462 unsigned long debugreg6;
463 /* Keep track of the exact dr7 value set by the user */
464 unsigned long ptrace_dr7;
465 /* Fault info: */
466 unsigned long cr2;
467 unsigned long trap_nr;
468 unsigned long error_code;
469#ifdef CONFIG_VM86
470 /* Virtual 86 mode info */
471 struct vm86 *vm86;
472#endif
473 /* IO permissions: */
474 unsigned long *io_bitmap_ptr;
475 unsigned long iopl;
476 /* Max allowed port in the bitmap, in bytes: */
477 unsigned io_bitmap_max;
478
479 mm_segment_t addr_limit;
480
481 unsigned int sig_on_uaccess_err:1;
482 unsigned int uaccess_err:1; /* uaccess failed */
483
484 /* Floating point and extended processor state */
485 struct fpu fpu;
486 /*
487 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
488 * the end.
489 */
490};
491
492/*
493 * Thread-synchronous status.
494 *
495 * This is different from the flags in that nobody else
496 * ever touches our thread-synchronous status, so we don't
497 * have to worry about atomic accesses.
498 */
499#define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
500
501/*
502 * Set IOPL bits in EFLAGS from given mask
503 */
504static inline void native_set_iopl_mask(unsigned mask)
505{
506#ifdef CONFIG_X86_32
507 unsigned int reg;
508
509 asm volatile ("pushfl;"
510 "popl %0;"
511 "andl %1, %0;"
512 "orl %2, %0;"
513 "pushl %0;"
514 "popfl"
515 : "=&r" (reg)
516 : "i" (~X86_EFLAGS_IOPL), "r" (mask));
517#endif
518}
519
520static inline void
521native_load_sp0(struct tss_struct *tss, struct thread_struct *thread)
522{
523 tss->x86_tss.sp0 = thread->sp0;
524#ifdef CONFIG_X86_32
525 /* Only happens when SEP is enabled, no need to test "SEP"arately: */
526 if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) {
527 tss->x86_tss.ss1 = thread->sysenter_cs;
528 wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0);
529 }
530#endif
531}
532
533static inline void native_swapgs(void)
534{
535#ifdef CONFIG_X86_64
536 asm volatile("swapgs" ::: "memory");
537#endif
538}
539
540static inline unsigned long current_top_of_stack(void)
541{
542#ifdef CONFIG_X86_64
543 return this_cpu_read_stable(cpu_tss.x86_tss.sp0);
544#else
545 /* sp0 on x86_32 is special in and around vm86 mode. */
546 return this_cpu_read_stable(cpu_current_top_of_stack);
547#endif
548}
549
550#ifdef CONFIG_PARAVIRT
551#include <asm/paravirt.h>
552#else
553#define __cpuid native_cpuid
554
555static inline void load_sp0(struct tss_struct *tss,
556 struct thread_struct *thread)
557{
558 native_load_sp0(tss, thread);
559}
560
561#define set_iopl_mask native_set_iopl_mask
562#endif /* CONFIG_PARAVIRT */
563
564/* Free all resources held by a thread. */
565extern void release_thread(struct task_struct *);
566
567unsigned long get_wchan(struct task_struct *p);
568
569/*
570 * Generic CPUID function
571 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
572 * resulting in stale register contents being returned.
573 */
574static inline void cpuid(unsigned int op,
575 unsigned int *eax, unsigned int *ebx,
576 unsigned int *ecx, unsigned int *edx)
577{
578 *eax = op;
579 *ecx = 0;
580 __cpuid(eax, ebx, ecx, edx);
581}
582
583/* Some CPUID calls want 'count' to be placed in ecx */
584static inline void cpuid_count(unsigned int op, int count,
585 unsigned int *eax, unsigned int *ebx,
586 unsigned int *ecx, unsigned int *edx)
587{
588 *eax = op;
589 *ecx = count;
590 __cpuid(eax, ebx, ecx, edx);
591}
592
593/*
594 * CPUID functions returning a single datum
595 */
596static inline unsigned int cpuid_eax(unsigned int op)
597{
598 unsigned int eax, ebx, ecx, edx;
599
600 cpuid(op, &eax, &ebx, &ecx, &edx);
601
602 return eax;
603}
604
605static inline unsigned int cpuid_ebx(unsigned int op)
606{
607 unsigned int eax, ebx, ecx, edx;
608
609 cpuid(op, &eax, &ebx, &ecx, &edx);
610
611 return ebx;
612}
613
614static inline unsigned int cpuid_ecx(unsigned int op)
615{
616 unsigned int eax, ebx, ecx, edx;
617
618 cpuid(op, &eax, &ebx, &ecx, &edx);
619
620 return ecx;
621}
622
623static inline unsigned int cpuid_edx(unsigned int op)
624{
625 unsigned int eax, ebx, ecx, edx;
626
627 cpuid(op, &eax, &ebx, &ecx, &edx);
628
629 return edx;
630}
631
632/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
633static __always_inline void rep_nop(void)
634{
635 asm volatile("rep; nop" ::: "memory");
636}
637
638static __always_inline void cpu_relax(void)
639{
640 rep_nop();
641}
642
643/*
644 * This function forces the icache and prefetched instruction stream to
645 * catch up with reality in two very specific cases:
646 *
647 * a) Text was modified using one virtual address and is about to be executed
648 * from the same physical page at a different virtual address.
649 *
650 * b) Text was modified on a different CPU, may subsequently be
651 * executed on this CPU, and you want to make sure the new version
652 * gets executed. This generally means you're calling this in a IPI.
653 *
654 * If you're calling this for a different reason, you're probably doing
655 * it wrong.
656 */
657static inline void sync_core(void)
658{
659 /*
660 * There are quite a few ways to do this. IRET-to-self is nice
661 * because it works on every CPU, at any CPL (so it's compatible
662 * with paravirtualization), and it never exits to a hypervisor.
663 * The only down sides are that it's a bit slow (it seems to be
664 * a bit more than 2x slower than the fastest options) and that
665 * it unmasks NMIs. The "push %cs" is needed because, in
666 * paravirtual environments, __KERNEL_CS may not be a valid CS
667 * value when we do IRET directly.
668 *
669 * In case NMI unmasking or performance ever becomes a problem,
670 * the next best option appears to be MOV-to-CR2 and an
671 * unconditional jump. That sequence also works on all CPUs,
672 * but it will fault at CPL3 (i.e. Xen PV).
673 *
674 * CPUID is the conventional way, but it's nasty: it doesn't
675 * exist on some 486-like CPUs, and it usually exits to a
676 * hypervisor.
677 *
678 * Like all of Linux's memory ordering operations, this is a
679 * compiler barrier as well.
680 */
681#ifdef CONFIG_X86_32
682 asm volatile (
683 "pushfl\n\t"
684 "pushl %%cs\n\t"
685 "pushl $1f\n\t"
686 "iret\n\t"
687 "1:"
688 : ASM_CALL_CONSTRAINT : : "memory");
689#else
690 unsigned int tmp;
691
692 asm volatile (
693 UNWIND_HINT_SAVE
694 "mov %%ss, %0\n\t"
695 "pushq %q0\n\t"
696 "pushq %%rsp\n\t"
697 "addq $8, (%%rsp)\n\t"
698 "pushfq\n\t"
699 "mov %%cs, %0\n\t"
700 "pushq %q0\n\t"
701 "pushq $1f\n\t"
702 "iretq\n\t"
703 UNWIND_HINT_RESTORE
704 "1:"
705 : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
706#endif
707}
708
709extern void select_idle_routine(const struct cpuinfo_x86 *c);
710extern void amd_e400_c1e_apic_setup(void);
711
712extern unsigned long boot_option_idle_override;
713
714enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
715 IDLE_POLL};
716
717extern void enable_sep_cpu(void);
718extern int sysenter_setup(void);
719
720extern void early_trap_init(void);
721void early_trap_pf_init(void);
722
723/* Defined in head.S */
724extern struct desc_ptr early_gdt_descr;
725
726extern void cpu_set_gdt(int);
727extern void switch_to_new_gdt(int);
728extern void load_direct_gdt(int);
729extern void load_fixmap_gdt(int);
730extern void load_percpu_segment(int);
731extern void cpu_init(void);
732
733static inline unsigned long get_debugctlmsr(void)
734{
735 unsigned long debugctlmsr = 0;
736
737#ifndef CONFIG_X86_DEBUGCTLMSR
738 if (boot_cpu_data.x86 < 6)
739 return 0;
740#endif
741 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
742
743 return debugctlmsr;
744}
745
746static inline void update_debugctlmsr(unsigned long debugctlmsr)
747{
748#ifndef CONFIG_X86_DEBUGCTLMSR
749 if (boot_cpu_data.x86 < 6)
750 return;
751#endif
752 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
753}
754
755extern void set_task_blockstep(struct task_struct *task, bool on);
756
757/* Boot loader type from the setup header: */
758extern int bootloader_type;
759extern int bootloader_version;
760
761extern char ignore_fpu_irq;
762
763#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
764#define ARCH_HAS_PREFETCHW
765#define ARCH_HAS_SPINLOCK_PREFETCH
766
767#ifdef CONFIG_X86_32
768# define BASE_PREFETCH ""
769# define ARCH_HAS_PREFETCH
770#else
771# define BASE_PREFETCH "prefetcht0 %P1"
772#endif
773
774/*
775 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
776 *
777 * It's not worth to care about 3dnow prefetches for the K6
778 * because they are microcoded there and very slow.
779 */
780static inline void prefetch(const void *x)
781{
782 alternative_input(BASE_PREFETCH, "prefetchnta %P1",
783 X86_FEATURE_XMM,
784 "m" (*(const char *)x));
785}
786
787/*
788 * 3dnow prefetch to get an exclusive cache line.
789 * Useful for spinlocks to avoid one state transition in the
790 * cache coherency protocol:
791 */
792static inline void prefetchw(const void *x)
793{
794 alternative_input(BASE_PREFETCH, "prefetchw %P1",
795 X86_FEATURE_3DNOWPREFETCH,
796 "m" (*(const char *)x));
797}
798
799static inline void spin_lock_prefetch(const void *x)
800{
801 prefetchw(x);
802}
803
804#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
805 TOP_OF_KERNEL_STACK_PADDING)
806
807#ifdef CONFIG_X86_32
808/*
809 * User space process size: 3GB (default).
810 */
811#define IA32_PAGE_OFFSET PAGE_OFFSET
812#define TASK_SIZE PAGE_OFFSET
813#define TASK_SIZE_LOW TASK_SIZE
814#define TASK_SIZE_MAX TASK_SIZE
815#define DEFAULT_MAP_WINDOW TASK_SIZE
816#define STACK_TOP TASK_SIZE
817#define STACK_TOP_MAX STACK_TOP
818
819#define INIT_THREAD { \
820 .sp0 = TOP_OF_INIT_STACK, \
821 .sysenter_cs = __KERNEL_CS, \
822 .io_bitmap_ptr = NULL, \
823 .addr_limit = KERNEL_DS, \
824}
825
826/*
827 * TOP_OF_KERNEL_STACK_PADDING reserves 8 bytes on top of the ring0 stack.
828 * This is necessary to guarantee that the entire "struct pt_regs"
829 * is accessible even if the CPU haven't stored the SS/ESP registers
830 * on the stack (interrupt gate does not save these registers
831 * when switching to the same priv ring).
832 * Therefore beware: accessing the ss/esp fields of the
833 * "struct pt_regs" is possible, but they may contain the
834 * completely wrong values.
835 */
836#define task_pt_regs(task) \
837({ \
838 unsigned long __ptr = (unsigned long)task_stack_page(task); \
839 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
840 ((struct pt_regs *)__ptr) - 1; \
841})
842
843#define KSTK_ESP(task) (task_pt_regs(task)->sp)
844
845#else
846/*
847 * User space process size. 47bits minus one guard page. The guard
848 * page is necessary on Intel CPUs: if a SYSCALL instruction is at
849 * the highest possible canonical userspace address, then that
850 * syscall will enter the kernel with a non-canonical return
851 * address, and SYSRET will explode dangerously. We avoid this
852 * particular problem by preventing anything from being mapped
853 * at the maximum canonical address.
854 */
855#define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
856
857#define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE)
858
859/* This decides where the kernel will search for a free chunk of vm
860 * space during mmap's.
861 */
862#define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
863 0xc0000000 : 0xFFFFe000)
864
865#define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \
866 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
867#define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
868 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
869#define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
870 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
871
872#define STACK_TOP TASK_SIZE_LOW
873#define STACK_TOP_MAX TASK_SIZE_MAX
874
875#define INIT_THREAD { \
876 .sp0 = TOP_OF_INIT_STACK, \
877 .addr_limit = KERNEL_DS, \
878}
879
880#define task_pt_regs(tsk) ((struct pt_regs *)(tsk)->thread.sp0 - 1)
881extern unsigned long KSTK_ESP(struct task_struct *task);
882
883#endif /* CONFIG_X86_64 */
884
885extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
886 unsigned long new_sp);
887
888/*
889 * This decides where the kernel will search for a free chunk of vm
890 * space during mmap's.
891 */
892#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
893#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
894
895#define KSTK_EIP(task) (task_pt_regs(task)->ip)
896
897/* Get/set a process' ability to use the timestamp counter instruction */
898#define GET_TSC_CTL(adr) get_tsc_mode((adr))
899#define SET_TSC_CTL(val) set_tsc_mode((val))
900
901extern int get_tsc_mode(unsigned long adr);
902extern int set_tsc_mode(unsigned int val);
903
904DECLARE_PER_CPU(u64, msr_misc_features_shadow);
905
906/* Register/unregister a process' MPX related resource */
907#define MPX_ENABLE_MANAGEMENT() mpx_enable_management()
908#define MPX_DISABLE_MANAGEMENT() mpx_disable_management()
909
910#ifdef CONFIG_X86_INTEL_MPX
911extern int mpx_enable_management(void);
912extern int mpx_disable_management(void);
913#else
914static inline int mpx_enable_management(void)
915{
916 return -EINVAL;
917}
918static inline int mpx_disable_management(void)
919{
920 return -EINVAL;
921}
922#endif /* CONFIG_X86_INTEL_MPX */
923
924#ifdef CONFIG_CPU_SUP_AMD
925extern u16 amd_get_nb_id(int cpu);
926extern u32 amd_get_nodes_per_socket(void);
927#else
928static inline u16 amd_get_nb_id(int cpu) { return 0; }
929static inline u32 amd_get_nodes_per_socket(void) { return 0; }
930#endif
931
932static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
933{
934 uint32_t base, eax, signature[3];
935
936 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
937 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
938
939 if (!memcmp(sig, signature, 12) &&
940 (leaves == 0 || ((eax - base) >= leaves)))
941 return base;
942 }
943
944 return 0;
945}
946
947extern unsigned long arch_align_stack(unsigned long sp);
948extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
949
950void default_idle(void);
951#ifdef CONFIG_XEN
952bool xen_set_default_idle(void);
953#else
954#define xen_set_default_idle 0
955#endif
956
957void stop_this_cpu(void *dummy);
958void df_debug(struct pt_regs *regs, long error_code);
959#endif /* _ASM_X86_PROCESSOR_H */