at v4.14 959 lines 25 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _ASM_X86_PROCESSOR_H 3#define _ASM_X86_PROCESSOR_H 4 5#include <asm/processor-flags.h> 6 7/* Forward declaration, a strange C thing */ 8struct task_struct; 9struct mm_struct; 10struct vm86; 11 12#include <asm/math_emu.h> 13#include <asm/segment.h> 14#include <asm/types.h> 15#include <uapi/asm/sigcontext.h> 16#include <asm/current.h> 17#include <asm/cpufeatures.h> 18#include <asm/page.h> 19#include <asm/pgtable_types.h> 20#include <asm/percpu.h> 21#include <asm/msr.h> 22#include <asm/desc_defs.h> 23#include <asm/nops.h> 24#include <asm/special_insns.h> 25#include <asm/fpu/types.h> 26#include <asm/unwind_hints.h> 27 28#include <linux/personality.h> 29#include <linux/cache.h> 30#include <linux/threads.h> 31#include <linux/math64.h> 32#include <linux/err.h> 33#include <linux/irqflags.h> 34#include <linux/mem_encrypt.h> 35 36/* 37 * We handle most unaligned accesses in hardware. On the other hand 38 * unaligned DMA can be quite expensive on some Nehalem processors. 39 * 40 * Based on this we disable the IP header alignment in network drivers. 41 */ 42#define NET_IP_ALIGN 0 43 44#define HBP_NUM 4 45/* 46 * Default implementation of macro that returns current 47 * instruction pointer ("program counter"). 48 */ 49static inline void *current_text_addr(void) 50{ 51 void *pc; 52 53 asm volatile("mov $1f, %0; 1:":"=r" (pc)); 54 55 return pc; 56} 57 58/* 59 * These alignment constraints are for performance in the vSMP case, 60 * but in the task_struct case we must also meet hardware imposed 61 * alignment requirements of the FPU state: 62 */ 63#ifdef CONFIG_X86_VSMP 64# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT) 65# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT) 66#else 67# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state) 68# define ARCH_MIN_MMSTRUCT_ALIGN 0 69#endif 70 71enum tlb_infos { 72 ENTRIES, 73 NR_INFO 74}; 75 76extern u16 __read_mostly tlb_lli_4k[NR_INFO]; 77extern u16 __read_mostly tlb_lli_2m[NR_INFO]; 78extern u16 __read_mostly tlb_lli_4m[NR_INFO]; 79extern u16 __read_mostly tlb_lld_4k[NR_INFO]; 80extern u16 __read_mostly tlb_lld_2m[NR_INFO]; 81extern u16 __read_mostly tlb_lld_4m[NR_INFO]; 82extern u16 __read_mostly tlb_lld_1g[NR_INFO]; 83 84/* 85 * CPU type and hardware bug flags. Kept separately for each CPU. 86 * Members of this structure are referenced in head_32.S, so think twice 87 * before touching them. [mj] 88 */ 89 90struct cpuinfo_x86 { 91 __u8 x86; /* CPU family */ 92 __u8 x86_vendor; /* CPU vendor */ 93 __u8 x86_model; 94 __u8 x86_mask; 95#ifdef CONFIG_X86_64 96 /* Number of 4K pages in DTLB/ITLB combined(in pages): */ 97 int x86_tlbsize; 98#endif 99 __u8 x86_virt_bits; 100 __u8 x86_phys_bits; 101 /* CPUID returned core id bits: */ 102 __u8 x86_coreid_bits; 103 __u8 cu_id; 104 /* Max extended CPUID function supported: */ 105 __u32 extended_cpuid_level; 106 /* Maximum supported CPUID level, -1=no CPUID: */ 107 int cpuid_level; 108 __u32 x86_capability[NCAPINTS + NBUGINTS]; 109 char x86_vendor_id[16]; 110 char x86_model_id[64]; 111 /* in KB - valid for CPUS which support this call: */ 112 int x86_cache_size; 113 int x86_cache_alignment; /* In bytes */ 114 /* Cache QoS architectural values: */ 115 int x86_cache_max_rmid; /* max index */ 116 int x86_cache_occ_scale; /* scale to bytes */ 117 int x86_power; 118 unsigned long loops_per_jiffy; 119 /* cpuid returned max cores value: */ 120 u16 x86_max_cores; 121 u16 apicid; 122 u16 initial_apicid; 123 u16 x86_clflush_size; 124 /* number of cores as seen by the OS: */ 125 u16 booted_cores; 126 /* Physical processor id: */ 127 u16 phys_proc_id; 128 /* Logical processor id: */ 129 u16 logical_proc_id; 130 /* Core id: */ 131 u16 cpu_core_id; 132 /* Index into per_cpu list: */ 133 u16 cpu_index; 134 u32 microcode; 135} __randomize_layout; 136 137struct cpuid_regs { 138 u32 eax, ebx, ecx, edx; 139}; 140 141enum cpuid_regs_idx { 142 CPUID_EAX = 0, 143 CPUID_EBX, 144 CPUID_ECX, 145 CPUID_EDX, 146}; 147 148#define X86_VENDOR_INTEL 0 149#define X86_VENDOR_CYRIX 1 150#define X86_VENDOR_AMD 2 151#define X86_VENDOR_UMC 3 152#define X86_VENDOR_CENTAUR 5 153#define X86_VENDOR_TRANSMETA 7 154#define X86_VENDOR_NSC 8 155#define X86_VENDOR_NUM 9 156 157#define X86_VENDOR_UNKNOWN 0xff 158 159/* 160 * capabilities of CPUs 161 */ 162extern struct cpuinfo_x86 boot_cpu_data; 163extern struct cpuinfo_x86 new_cpu_data; 164 165extern struct tss_struct doublefault_tss; 166extern __u32 cpu_caps_cleared[NCAPINTS]; 167extern __u32 cpu_caps_set[NCAPINTS]; 168 169#ifdef CONFIG_SMP 170DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 171#define cpu_data(cpu) per_cpu(cpu_info, cpu) 172#else 173#define cpu_info boot_cpu_data 174#define cpu_data(cpu) boot_cpu_data 175#endif 176 177extern const struct seq_operations cpuinfo_op; 178 179#define cache_line_size() (boot_cpu_data.x86_cache_alignment) 180 181extern void cpu_detect(struct cpuinfo_x86 *c); 182 183extern void early_cpu_init(void); 184extern void identify_boot_cpu(void); 185extern void identify_secondary_cpu(struct cpuinfo_x86 *); 186extern void print_cpu_info(struct cpuinfo_x86 *); 187void print_cpu_msr(struct cpuinfo_x86 *); 188extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c); 189extern u32 get_scattered_cpuid_leaf(unsigned int level, 190 unsigned int sub_leaf, 191 enum cpuid_regs_idx reg); 192extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c); 193extern void init_amd_cacheinfo(struct cpuinfo_x86 *c); 194 195extern void detect_extended_topology(struct cpuinfo_x86 *c); 196extern void detect_ht(struct cpuinfo_x86 *c); 197 198#ifdef CONFIG_X86_32 199extern int have_cpuid_p(void); 200#else 201static inline int have_cpuid_p(void) 202{ 203 return 1; 204} 205#endif 206static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, 207 unsigned int *ecx, unsigned int *edx) 208{ 209 /* ecx is often an input as well as an output. */ 210 asm volatile("cpuid" 211 : "=a" (*eax), 212 "=b" (*ebx), 213 "=c" (*ecx), 214 "=d" (*edx) 215 : "0" (*eax), "2" (*ecx) 216 : "memory"); 217} 218 219#define native_cpuid_reg(reg) \ 220static inline unsigned int native_cpuid_##reg(unsigned int op) \ 221{ \ 222 unsigned int eax = op, ebx, ecx = 0, edx; \ 223 \ 224 native_cpuid(&eax, &ebx, &ecx, &edx); \ 225 \ 226 return reg; \ 227} 228 229/* 230 * Native CPUID functions returning a single datum. 231 */ 232native_cpuid_reg(eax) 233native_cpuid_reg(ebx) 234native_cpuid_reg(ecx) 235native_cpuid_reg(edx) 236 237/* 238 * Friendlier CR3 helpers. 239 */ 240static inline unsigned long read_cr3_pa(void) 241{ 242 return __read_cr3() & CR3_ADDR_MASK; 243} 244 245static inline unsigned long native_read_cr3_pa(void) 246{ 247 return __native_read_cr3() & CR3_ADDR_MASK; 248} 249 250static inline void load_cr3(pgd_t *pgdir) 251{ 252 write_cr3(__sme_pa(pgdir)); 253} 254 255#ifdef CONFIG_X86_32 256/* This is the TSS defined by the hardware. */ 257struct x86_hw_tss { 258 unsigned short back_link, __blh; 259 unsigned long sp0; 260 unsigned short ss0, __ss0h; 261 unsigned long sp1; 262 263 /* 264 * We don't use ring 1, so ss1 is a convenient scratch space in 265 * the same cacheline as sp0. We use ss1 to cache the value in 266 * MSR_IA32_SYSENTER_CS. When we context switch 267 * MSR_IA32_SYSENTER_CS, we first check if the new value being 268 * written matches ss1, and, if it's not, then we wrmsr the new 269 * value and update ss1. 270 * 271 * The only reason we context switch MSR_IA32_SYSENTER_CS is 272 * that we set it to zero in vm86 tasks to avoid corrupting the 273 * stack if we were to go through the sysenter path from vm86 274 * mode. 275 */ 276 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */ 277 278 unsigned short __ss1h; 279 unsigned long sp2; 280 unsigned short ss2, __ss2h; 281 unsigned long __cr3; 282 unsigned long ip; 283 unsigned long flags; 284 unsigned long ax; 285 unsigned long cx; 286 unsigned long dx; 287 unsigned long bx; 288 unsigned long sp; 289 unsigned long bp; 290 unsigned long si; 291 unsigned long di; 292 unsigned short es, __esh; 293 unsigned short cs, __csh; 294 unsigned short ss, __ssh; 295 unsigned short ds, __dsh; 296 unsigned short fs, __fsh; 297 unsigned short gs, __gsh; 298 unsigned short ldt, __ldth; 299 unsigned short trace; 300 unsigned short io_bitmap_base; 301 302} __attribute__((packed)); 303#else 304struct x86_hw_tss { 305 u32 reserved1; 306 u64 sp0; 307 u64 sp1; 308 u64 sp2; 309 u64 reserved2; 310 u64 ist[7]; 311 u32 reserved3; 312 u32 reserved4; 313 u16 reserved5; 314 u16 io_bitmap_base; 315 316} __attribute__((packed)); 317#endif 318 319/* 320 * IO-bitmap sizes: 321 */ 322#define IO_BITMAP_BITS 65536 323#define IO_BITMAP_BYTES (IO_BITMAP_BITS/8) 324#define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long)) 325#define IO_BITMAP_OFFSET offsetof(struct tss_struct, io_bitmap) 326#define INVALID_IO_BITMAP_OFFSET 0x8000 327 328struct tss_struct { 329 /* 330 * The hardware state: 331 */ 332 struct x86_hw_tss x86_tss; 333 334 /* 335 * The extra 1 is there because the CPU will access an 336 * additional byte beyond the end of the IO permission 337 * bitmap. The extra byte must be all 1 bits, and must 338 * be within the limit. 339 */ 340 unsigned long io_bitmap[IO_BITMAP_LONGS + 1]; 341 342#ifdef CONFIG_X86_32 343 /* 344 * Space for the temporary SYSENTER stack. 345 */ 346 unsigned long SYSENTER_stack_canary; 347 unsigned long SYSENTER_stack[64]; 348#endif 349 350} ____cacheline_aligned; 351 352DECLARE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss); 353 354/* 355 * sizeof(unsigned long) coming from an extra "long" at the end 356 * of the iobitmap. 357 * 358 * -1? seg base+limit should be pointing to the address of the 359 * last valid byte 360 */ 361#define __KERNEL_TSS_LIMIT \ 362 (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1) 363 364#ifdef CONFIG_X86_32 365DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack); 366#endif 367 368/* 369 * Save the original ist values for checking stack pointers during debugging 370 */ 371struct orig_ist { 372 unsigned long ist[7]; 373}; 374 375#ifdef CONFIG_X86_64 376DECLARE_PER_CPU(struct orig_ist, orig_ist); 377 378union irq_stack_union { 379 char irq_stack[IRQ_STACK_SIZE]; 380 /* 381 * GCC hardcodes the stack canary as %gs:40. Since the 382 * irq_stack is the object at %gs:0, we reserve the bottom 383 * 48 bytes of the irq stack for the canary. 384 */ 385 struct { 386 char gs_base[40]; 387 unsigned long stack_canary; 388 }; 389}; 390 391DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible; 392DECLARE_INIT_PER_CPU(irq_stack_union); 393 394DECLARE_PER_CPU(char *, irq_stack_ptr); 395DECLARE_PER_CPU(unsigned int, irq_count); 396extern asmlinkage void ignore_sysret(void); 397#else /* X86_64 */ 398#ifdef CONFIG_CC_STACKPROTECTOR 399/* 400 * Make sure stack canary segment base is cached-aligned: 401 * "For Intel Atom processors, avoid non zero segment base address 402 * that is not aligned to cache line boundary at all cost." 403 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.) 404 */ 405struct stack_canary { 406 char __pad[20]; /* canary at %gs:20 */ 407 unsigned long canary; 408}; 409DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); 410#endif 411/* 412 * per-CPU IRQ handling stacks 413 */ 414struct irq_stack { 415 u32 stack[THREAD_SIZE/sizeof(u32)]; 416} __aligned(THREAD_SIZE); 417 418DECLARE_PER_CPU(struct irq_stack *, hardirq_stack); 419DECLARE_PER_CPU(struct irq_stack *, softirq_stack); 420#endif /* X86_64 */ 421 422extern unsigned int fpu_kernel_xstate_size; 423extern unsigned int fpu_user_xstate_size; 424 425struct perf_event; 426 427typedef struct { 428 unsigned long seg; 429} mm_segment_t; 430 431struct thread_struct { 432 /* Cached TLS descriptors: */ 433 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; 434 unsigned long sp0; 435 unsigned long sp; 436#ifdef CONFIG_X86_32 437 unsigned long sysenter_cs; 438#else 439 unsigned short es; 440 unsigned short ds; 441 unsigned short fsindex; 442 unsigned short gsindex; 443#endif 444 445 u32 status; /* thread synchronous flags */ 446 447#ifdef CONFIG_X86_64 448 unsigned long fsbase; 449 unsigned long gsbase; 450#else 451 /* 452 * XXX: this could presumably be unsigned short. Alternatively, 453 * 32-bit kernels could be taught to use fsindex instead. 454 */ 455 unsigned long fs; 456 unsigned long gs; 457#endif 458 459 /* Save middle states of ptrace breakpoints */ 460 struct perf_event *ptrace_bps[HBP_NUM]; 461 /* Debug status used for traps, single steps, etc... */ 462 unsigned long debugreg6; 463 /* Keep track of the exact dr7 value set by the user */ 464 unsigned long ptrace_dr7; 465 /* Fault info: */ 466 unsigned long cr2; 467 unsigned long trap_nr; 468 unsigned long error_code; 469#ifdef CONFIG_VM86 470 /* Virtual 86 mode info */ 471 struct vm86 *vm86; 472#endif 473 /* IO permissions: */ 474 unsigned long *io_bitmap_ptr; 475 unsigned long iopl; 476 /* Max allowed port in the bitmap, in bytes: */ 477 unsigned io_bitmap_max; 478 479 mm_segment_t addr_limit; 480 481 unsigned int sig_on_uaccess_err:1; 482 unsigned int uaccess_err:1; /* uaccess failed */ 483 484 /* Floating point and extended processor state */ 485 struct fpu fpu; 486 /* 487 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at 488 * the end. 489 */ 490}; 491 492/* 493 * Thread-synchronous status. 494 * 495 * This is different from the flags in that nobody else 496 * ever touches our thread-synchronous status, so we don't 497 * have to worry about atomic accesses. 498 */ 499#define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/ 500 501/* 502 * Set IOPL bits in EFLAGS from given mask 503 */ 504static inline void native_set_iopl_mask(unsigned mask) 505{ 506#ifdef CONFIG_X86_32 507 unsigned int reg; 508 509 asm volatile ("pushfl;" 510 "popl %0;" 511 "andl %1, %0;" 512 "orl %2, %0;" 513 "pushl %0;" 514 "popfl" 515 : "=&r" (reg) 516 : "i" (~X86_EFLAGS_IOPL), "r" (mask)); 517#endif 518} 519 520static inline void 521native_load_sp0(struct tss_struct *tss, struct thread_struct *thread) 522{ 523 tss->x86_tss.sp0 = thread->sp0; 524#ifdef CONFIG_X86_32 525 /* Only happens when SEP is enabled, no need to test "SEP"arately: */ 526 if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) { 527 tss->x86_tss.ss1 = thread->sysenter_cs; 528 wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0); 529 } 530#endif 531} 532 533static inline void native_swapgs(void) 534{ 535#ifdef CONFIG_X86_64 536 asm volatile("swapgs" ::: "memory"); 537#endif 538} 539 540static inline unsigned long current_top_of_stack(void) 541{ 542#ifdef CONFIG_X86_64 543 return this_cpu_read_stable(cpu_tss.x86_tss.sp0); 544#else 545 /* sp0 on x86_32 is special in and around vm86 mode. */ 546 return this_cpu_read_stable(cpu_current_top_of_stack); 547#endif 548} 549 550#ifdef CONFIG_PARAVIRT 551#include <asm/paravirt.h> 552#else 553#define __cpuid native_cpuid 554 555static inline void load_sp0(struct tss_struct *tss, 556 struct thread_struct *thread) 557{ 558 native_load_sp0(tss, thread); 559} 560 561#define set_iopl_mask native_set_iopl_mask 562#endif /* CONFIG_PARAVIRT */ 563 564/* Free all resources held by a thread. */ 565extern void release_thread(struct task_struct *); 566 567unsigned long get_wchan(struct task_struct *p); 568 569/* 570 * Generic CPUID function 571 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx 572 * resulting in stale register contents being returned. 573 */ 574static inline void cpuid(unsigned int op, 575 unsigned int *eax, unsigned int *ebx, 576 unsigned int *ecx, unsigned int *edx) 577{ 578 *eax = op; 579 *ecx = 0; 580 __cpuid(eax, ebx, ecx, edx); 581} 582 583/* Some CPUID calls want 'count' to be placed in ecx */ 584static inline void cpuid_count(unsigned int op, int count, 585 unsigned int *eax, unsigned int *ebx, 586 unsigned int *ecx, unsigned int *edx) 587{ 588 *eax = op; 589 *ecx = count; 590 __cpuid(eax, ebx, ecx, edx); 591} 592 593/* 594 * CPUID functions returning a single datum 595 */ 596static inline unsigned int cpuid_eax(unsigned int op) 597{ 598 unsigned int eax, ebx, ecx, edx; 599 600 cpuid(op, &eax, &ebx, &ecx, &edx); 601 602 return eax; 603} 604 605static inline unsigned int cpuid_ebx(unsigned int op) 606{ 607 unsigned int eax, ebx, ecx, edx; 608 609 cpuid(op, &eax, &ebx, &ecx, &edx); 610 611 return ebx; 612} 613 614static inline unsigned int cpuid_ecx(unsigned int op) 615{ 616 unsigned int eax, ebx, ecx, edx; 617 618 cpuid(op, &eax, &ebx, &ecx, &edx); 619 620 return ecx; 621} 622 623static inline unsigned int cpuid_edx(unsigned int op) 624{ 625 unsigned int eax, ebx, ecx, edx; 626 627 cpuid(op, &eax, &ebx, &ecx, &edx); 628 629 return edx; 630} 631 632/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */ 633static __always_inline void rep_nop(void) 634{ 635 asm volatile("rep; nop" ::: "memory"); 636} 637 638static __always_inline void cpu_relax(void) 639{ 640 rep_nop(); 641} 642 643/* 644 * This function forces the icache and prefetched instruction stream to 645 * catch up with reality in two very specific cases: 646 * 647 * a) Text was modified using one virtual address and is about to be executed 648 * from the same physical page at a different virtual address. 649 * 650 * b) Text was modified on a different CPU, may subsequently be 651 * executed on this CPU, and you want to make sure the new version 652 * gets executed. This generally means you're calling this in a IPI. 653 * 654 * If you're calling this for a different reason, you're probably doing 655 * it wrong. 656 */ 657static inline void sync_core(void) 658{ 659 /* 660 * There are quite a few ways to do this. IRET-to-self is nice 661 * because it works on every CPU, at any CPL (so it's compatible 662 * with paravirtualization), and it never exits to a hypervisor. 663 * The only down sides are that it's a bit slow (it seems to be 664 * a bit more than 2x slower than the fastest options) and that 665 * it unmasks NMIs. The "push %cs" is needed because, in 666 * paravirtual environments, __KERNEL_CS may not be a valid CS 667 * value when we do IRET directly. 668 * 669 * In case NMI unmasking or performance ever becomes a problem, 670 * the next best option appears to be MOV-to-CR2 and an 671 * unconditional jump. That sequence also works on all CPUs, 672 * but it will fault at CPL3 (i.e. Xen PV). 673 * 674 * CPUID is the conventional way, but it's nasty: it doesn't 675 * exist on some 486-like CPUs, and it usually exits to a 676 * hypervisor. 677 * 678 * Like all of Linux's memory ordering operations, this is a 679 * compiler barrier as well. 680 */ 681#ifdef CONFIG_X86_32 682 asm volatile ( 683 "pushfl\n\t" 684 "pushl %%cs\n\t" 685 "pushl $1f\n\t" 686 "iret\n\t" 687 "1:" 688 : ASM_CALL_CONSTRAINT : : "memory"); 689#else 690 unsigned int tmp; 691 692 asm volatile ( 693 UNWIND_HINT_SAVE 694 "mov %%ss, %0\n\t" 695 "pushq %q0\n\t" 696 "pushq %%rsp\n\t" 697 "addq $8, (%%rsp)\n\t" 698 "pushfq\n\t" 699 "mov %%cs, %0\n\t" 700 "pushq %q0\n\t" 701 "pushq $1f\n\t" 702 "iretq\n\t" 703 UNWIND_HINT_RESTORE 704 "1:" 705 : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory"); 706#endif 707} 708 709extern void select_idle_routine(const struct cpuinfo_x86 *c); 710extern void amd_e400_c1e_apic_setup(void); 711 712extern unsigned long boot_option_idle_override; 713 714enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT, 715 IDLE_POLL}; 716 717extern void enable_sep_cpu(void); 718extern int sysenter_setup(void); 719 720extern void early_trap_init(void); 721void early_trap_pf_init(void); 722 723/* Defined in head.S */ 724extern struct desc_ptr early_gdt_descr; 725 726extern void cpu_set_gdt(int); 727extern void switch_to_new_gdt(int); 728extern void load_direct_gdt(int); 729extern void load_fixmap_gdt(int); 730extern void load_percpu_segment(int); 731extern void cpu_init(void); 732 733static inline unsigned long get_debugctlmsr(void) 734{ 735 unsigned long debugctlmsr = 0; 736 737#ifndef CONFIG_X86_DEBUGCTLMSR 738 if (boot_cpu_data.x86 < 6) 739 return 0; 740#endif 741 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 742 743 return debugctlmsr; 744} 745 746static inline void update_debugctlmsr(unsigned long debugctlmsr) 747{ 748#ifndef CONFIG_X86_DEBUGCTLMSR 749 if (boot_cpu_data.x86 < 6) 750 return; 751#endif 752 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 753} 754 755extern void set_task_blockstep(struct task_struct *task, bool on); 756 757/* Boot loader type from the setup header: */ 758extern int bootloader_type; 759extern int bootloader_version; 760 761extern char ignore_fpu_irq; 762 763#define HAVE_ARCH_PICK_MMAP_LAYOUT 1 764#define ARCH_HAS_PREFETCHW 765#define ARCH_HAS_SPINLOCK_PREFETCH 766 767#ifdef CONFIG_X86_32 768# define BASE_PREFETCH "" 769# define ARCH_HAS_PREFETCH 770#else 771# define BASE_PREFETCH "prefetcht0 %P1" 772#endif 773 774/* 775 * Prefetch instructions for Pentium III (+) and AMD Athlon (+) 776 * 777 * It's not worth to care about 3dnow prefetches for the K6 778 * because they are microcoded there and very slow. 779 */ 780static inline void prefetch(const void *x) 781{ 782 alternative_input(BASE_PREFETCH, "prefetchnta %P1", 783 X86_FEATURE_XMM, 784 "m" (*(const char *)x)); 785} 786 787/* 788 * 3dnow prefetch to get an exclusive cache line. 789 * Useful for spinlocks to avoid one state transition in the 790 * cache coherency protocol: 791 */ 792static inline void prefetchw(const void *x) 793{ 794 alternative_input(BASE_PREFETCH, "prefetchw %P1", 795 X86_FEATURE_3DNOWPREFETCH, 796 "m" (*(const char *)x)); 797} 798 799static inline void spin_lock_prefetch(const void *x) 800{ 801 prefetchw(x); 802} 803 804#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \ 805 TOP_OF_KERNEL_STACK_PADDING) 806 807#ifdef CONFIG_X86_32 808/* 809 * User space process size: 3GB (default). 810 */ 811#define IA32_PAGE_OFFSET PAGE_OFFSET 812#define TASK_SIZE PAGE_OFFSET 813#define TASK_SIZE_LOW TASK_SIZE 814#define TASK_SIZE_MAX TASK_SIZE 815#define DEFAULT_MAP_WINDOW TASK_SIZE 816#define STACK_TOP TASK_SIZE 817#define STACK_TOP_MAX STACK_TOP 818 819#define INIT_THREAD { \ 820 .sp0 = TOP_OF_INIT_STACK, \ 821 .sysenter_cs = __KERNEL_CS, \ 822 .io_bitmap_ptr = NULL, \ 823 .addr_limit = KERNEL_DS, \ 824} 825 826/* 827 * TOP_OF_KERNEL_STACK_PADDING reserves 8 bytes on top of the ring0 stack. 828 * This is necessary to guarantee that the entire "struct pt_regs" 829 * is accessible even if the CPU haven't stored the SS/ESP registers 830 * on the stack (interrupt gate does not save these registers 831 * when switching to the same priv ring). 832 * Therefore beware: accessing the ss/esp fields of the 833 * "struct pt_regs" is possible, but they may contain the 834 * completely wrong values. 835 */ 836#define task_pt_regs(task) \ 837({ \ 838 unsigned long __ptr = (unsigned long)task_stack_page(task); \ 839 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \ 840 ((struct pt_regs *)__ptr) - 1; \ 841}) 842 843#define KSTK_ESP(task) (task_pt_regs(task)->sp) 844 845#else 846/* 847 * User space process size. 47bits minus one guard page. The guard 848 * page is necessary on Intel CPUs: if a SYSCALL instruction is at 849 * the highest possible canonical userspace address, then that 850 * syscall will enter the kernel with a non-canonical return 851 * address, and SYSRET will explode dangerously. We avoid this 852 * particular problem by preventing anything from being mapped 853 * at the maximum canonical address. 854 */ 855#define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE) 856 857#define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE) 858 859/* This decides where the kernel will search for a free chunk of vm 860 * space during mmap's. 861 */ 862#define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \ 863 0xc0000000 : 0xFFFFe000) 864 865#define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \ 866 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW) 867#define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \ 868 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 869#define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \ 870 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 871 872#define STACK_TOP TASK_SIZE_LOW 873#define STACK_TOP_MAX TASK_SIZE_MAX 874 875#define INIT_THREAD { \ 876 .sp0 = TOP_OF_INIT_STACK, \ 877 .addr_limit = KERNEL_DS, \ 878} 879 880#define task_pt_regs(tsk) ((struct pt_regs *)(tsk)->thread.sp0 - 1) 881extern unsigned long KSTK_ESP(struct task_struct *task); 882 883#endif /* CONFIG_X86_64 */ 884 885extern void start_thread(struct pt_regs *regs, unsigned long new_ip, 886 unsigned long new_sp); 887 888/* 889 * This decides where the kernel will search for a free chunk of vm 890 * space during mmap's. 891 */ 892#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3)) 893#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW) 894 895#define KSTK_EIP(task) (task_pt_regs(task)->ip) 896 897/* Get/set a process' ability to use the timestamp counter instruction */ 898#define GET_TSC_CTL(adr) get_tsc_mode((adr)) 899#define SET_TSC_CTL(val) set_tsc_mode((val)) 900 901extern int get_tsc_mode(unsigned long adr); 902extern int set_tsc_mode(unsigned int val); 903 904DECLARE_PER_CPU(u64, msr_misc_features_shadow); 905 906/* Register/unregister a process' MPX related resource */ 907#define MPX_ENABLE_MANAGEMENT() mpx_enable_management() 908#define MPX_DISABLE_MANAGEMENT() mpx_disable_management() 909 910#ifdef CONFIG_X86_INTEL_MPX 911extern int mpx_enable_management(void); 912extern int mpx_disable_management(void); 913#else 914static inline int mpx_enable_management(void) 915{ 916 return -EINVAL; 917} 918static inline int mpx_disable_management(void) 919{ 920 return -EINVAL; 921} 922#endif /* CONFIG_X86_INTEL_MPX */ 923 924#ifdef CONFIG_CPU_SUP_AMD 925extern u16 amd_get_nb_id(int cpu); 926extern u32 amd_get_nodes_per_socket(void); 927#else 928static inline u16 amd_get_nb_id(int cpu) { return 0; } 929static inline u32 amd_get_nodes_per_socket(void) { return 0; } 930#endif 931 932static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves) 933{ 934 uint32_t base, eax, signature[3]; 935 936 for (base = 0x40000000; base < 0x40010000; base += 0x100) { 937 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]); 938 939 if (!memcmp(sig, signature, 12) && 940 (leaves == 0 || ((eax - base) >= leaves))) 941 return base; 942 } 943 944 return 0; 945} 946 947extern unsigned long arch_align_stack(unsigned long sp); 948extern void free_init_pages(char *what, unsigned long begin, unsigned long end); 949 950void default_idle(void); 951#ifdef CONFIG_XEN 952bool xen_set_default_idle(void); 953#else 954#define xen_set_default_idle 0 955#endif 956 957void stop_this_cpu(void *dummy); 958void df_debug(struct pt_regs *regs, long error_code); 959#endif /* _ASM_X86_PROCESSOR_H */