Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35/*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41#include <linux/module.h>
42#include <linux/types.h>
43#include <linux/kernel.h>
44#include <linux/kmemcheck.h>
45#include <linux/mm.h>
46#include <linux/interrupt.h>
47#include <linux/in.h>
48#include <linux/inet.h>
49#include <linux/slab.h>
50#include <linux/tcp.h>
51#include <linux/udp.h>
52#include <linux/sctp.h>
53#include <linux/netdevice.h>
54#ifdef CONFIG_NET_CLS_ACT
55#include <net/pkt_sched.h>
56#endif
57#include <linux/string.h>
58#include <linux/skbuff.h>
59#include <linux/splice.h>
60#include <linux/cache.h>
61#include <linux/rtnetlink.h>
62#include <linux/init.h>
63#include <linux/scatterlist.h>
64#include <linux/errqueue.h>
65#include <linux/prefetch.h>
66#include <linux/if_vlan.h>
67
68#include <net/protocol.h>
69#include <net/dst.h>
70#include <net/sock.h>
71#include <net/checksum.h>
72#include <net/ip6_checksum.h>
73#include <net/xfrm.h>
74
75#include <linux/uaccess.h>
76#include <trace/events/skb.h>
77#include <linux/highmem.h>
78#include <linux/capability.h>
79#include <linux/user_namespace.h>
80
81struct kmem_cache *skbuff_head_cache __read_mostly;
82static struct kmem_cache *skbuff_fclone_cache __read_mostly;
83int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
84EXPORT_SYMBOL(sysctl_max_skb_frags);
85
86/**
87 * skb_panic - private function for out-of-line support
88 * @skb: buffer
89 * @sz: size
90 * @addr: address
91 * @msg: skb_over_panic or skb_under_panic
92 *
93 * Out-of-line support for skb_put() and skb_push().
94 * Called via the wrapper skb_over_panic() or skb_under_panic().
95 * Keep out of line to prevent kernel bloat.
96 * __builtin_return_address is not used because it is not always reliable.
97 */
98static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
99 const char msg[])
100{
101 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
102 msg, addr, skb->len, sz, skb->head, skb->data,
103 (unsigned long)skb->tail, (unsigned long)skb->end,
104 skb->dev ? skb->dev->name : "<NULL>");
105 BUG();
106}
107
108static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109{
110 skb_panic(skb, sz, addr, __func__);
111}
112
113static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
114{
115 skb_panic(skb, sz, addr, __func__);
116}
117
118/*
119 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
120 * the caller if emergency pfmemalloc reserves are being used. If it is and
121 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
122 * may be used. Otherwise, the packet data may be discarded until enough
123 * memory is free
124 */
125#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
126 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
127
128static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
129 unsigned long ip, bool *pfmemalloc)
130{
131 void *obj;
132 bool ret_pfmemalloc = false;
133
134 /*
135 * Try a regular allocation, when that fails and we're not entitled
136 * to the reserves, fail.
137 */
138 obj = kmalloc_node_track_caller(size,
139 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
140 node);
141 if (obj || !(gfp_pfmemalloc_allowed(flags)))
142 goto out;
143
144 /* Try again but now we are using pfmemalloc reserves */
145 ret_pfmemalloc = true;
146 obj = kmalloc_node_track_caller(size, flags, node);
147
148out:
149 if (pfmemalloc)
150 *pfmemalloc = ret_pfmemalloc;
151
152 return obj;
153}
154
155/* Allocate a new skbuff. We do this ourselves so we can fill in a few
156 * 'private' fields and also do memory statistics to find all the
157 * [BEEP] leaks.
158 *
159 */
160
161/**
162 * __alloc_skb - allocate a network buffer
163 * @size: size to allocate
164 * @gfp_mask: allocation mask
165 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
166 * instead of head cache and allocate a cloned (child) skb.
167 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
168 * allocations in case the data is required for writeback
169 * @node: numa node to allocate memory on
170 *
171 * Allocate a new &sk_buff. The returned buffer has no headroom and a
172 * tail room of at least size bytes. The object has a reference count
173 * of one. The return is the buffer. On a failure the return is %NULL.
174 *
175 * Buffers may only be allocated from interrupts using a @gfp_mask of
176 * %GFP_ATOMIC.
177 */
178struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
179 int flags, int node)
180{
181 struct kmem_cache *cache;
182 struct skb_shared_info *shinfo;
183 struct sk_buff *skb;
184 u8 *data;
185 bool pfmemalloc;
186
187 cache = (flags & SKB_ALLOC_FCLONE)
188 ? skbuff_fclone_cache : skbuff_head_cache;
189
190 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
191 gfp_mask |= __GFP_MEMALLOC;
192
193 /* Get the HEAD */
194 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
195 if (!skb)
196 goto out;
197 prefetchw(skb);
198
199 /* We do our best to align skb_shared_info on a separate cache
200 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
201 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
202 * Both skb->head and skb_shared_info are cache line aligned.
203 */
204 size = SKB_DATA_ALIGN(size);
205 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
206 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
207 if (!data)
208 goto nodata;
209 /* kmalloc(size) might give us more room than requested.
210 * Put skb_shared_info exactly at the end of allocated zone,
211 * to allow max possible filling before reallocation.
212 */
213 size = SKB_WITH_OVERHEAD(ksize(data));
214 prefetchw(data + size);
215
216 /*
217 * Only clear those fields we need to clear, not those that we will
218 * actually initialise below. Hence, don't put any more fields after
219 * the tail pointer in struct sk_buff!
220 */
221 memset(skb, 0, offsetof(struct sk_buff, tail));
222 /* Account for allocated memory : skb + skb->head */
223 skb->truesize = SKB_TRUESIZE(size);
224 skb->pfmemalloc = pfmemalloc;
225 refcount_set(&skb->users, 1);
226 skb->head = data;
227 skb->data = data;
228 skb_reset_tail_pointer(skb);
229 skb->end = skb->tail + size;
230 skb->mac_header = (typeof(skb->mac_header))~0U;
231 skb->transport_header = (typeof(skb->transport_header))~0U;
232
233 /* make sure we initialize shinfo sequentially */
234 shinfo = skb_shinfo(skb);
235 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
236 atomic_set(&shinfo->dataref, 1);
237 kmemcheck_annotate_variable(shinfo->destructor_arg);
238
239 if (flags & SKB_ALLOC_FCLONE) {
240 struct sk_buff_fclones *fclones;
241
242 fclones = container_of(skb, struct sk_buff_fclones, skb1);
243
244 kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
245 skb->fclone = SKB_FCLONE_ORIG;
246 refcount_set(&fclones->fclone_ref, 1);
247
248 fclones->skb2.fclone = SKB_FCLONE_CLONE;
249 }
250out:
251 return skb;
252nodata:
253 kmem_cache_free(cache, skb);
254 skb = NULL;
255 goto out;
256}
257EXPORT_SYMBOL(__alloc_skb);
258
259/**
260 * __build_skb - build a network buffer
261 * @data: data buffer provided by caller
262 * @frag_size: size of data, or 0 if head was kmalloced
263 *
264 * Allocate a new &sk_buff. Caller provides space holding head and
265 * skb_shared_info. @data must have been allocated by kmalloc() only if
266 * @frag_size is 0, otherwise data should come from the page allocator
267 * or vmalloc()
268 * The return is the new skb buffer.
269 * On a failure the return is %NULL, and @data is not freed.
270 * Notes :
271 * Before IO, driver allocates only data buffer where NIC put incoming frame
272 * Driver should add room at head (NET_SKB_PAD) and
273 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
274 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
275 * before giving packet to stack.
276 * RX rings only contains data buffers, not full skbs.
277 */
278struct sk_buff *__build_skb(void *data, unsigned int frag_size)
279{
280 struct skb_shared_info *shinfo;
281 struct sk_buff *skb;
282 unsigned int size = frag_size ? : ksize(data);
283
284 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
285 if (!skb)
286 return NULL;
287
288 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
289
290 memset(skb, 0, offsetof(struct sk_buff, tail));
291 skb->truesize = SKB_TRUESIZE(size);
292 refcount_set(&skb->users, 1);
293 skb->head = data;
294 skb->data = data;
295 skb_reset_tail_pointer(skb);
296 skb->end = skb->tail + size;
297 skb->mac_header = (typeof(skb->mac_header))~0U;
298 skb->transport_header = (typeof(skb->transport_header))~0U;
299
300 /* make sure we initialize shinfo sequentially */
301 shinfo = skb_shinfo(skb);
302 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
303 atomic_set(&shinfo->dataref, 1);
304 kmemcheck_annotate_variable(shinfo->destructor_arg);
305
306 return skb;
307}
308
309/* build_skb() is wrapper over __build_skb(), that specifically
310 * takes care of skb->head and skb->pfmemalloc
311 * This means that if @frag_size is not zero, then @data must be backed
312 * by a page fragment, not kmalloc() or vmalloc()
313 */
314struct sk_buff *build_skb(void *data, unsigned int frag_size)
315{
316 struct sk_buff *skb = __build_skb(data, frag_size);
317
318 if (skb && frag_size) {
319 skb->head_frag = 1;
320 if (page_is_pfmemalloc(virt_to_head_page(data)))
321 skb->pfmemalloc = 1;
322 }
323 return skb;
324}
325EXPORT_SYMBOL(build_skb);
326
327#define NAPI_SKB_CACHE_SIZE 64
328
329struct napi_alloc_cache {
330 struct page_frag_cache page;
331 unsigned int skb_count;
332 void *skb_cache[NAPI_SKB_CACHE_SIZE];
333};
334
335static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
336static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
337
338static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
339{
340 struct page_frag_cache *nc;
341 unsigned long flags;
342 void *data;
343
344 local_irq_save(flags);
345 nc = this_cpu_ptr(&netdev_alloc_cache);
346 data = page_frag_alloc(nc, fragsz, gfp_mask);
347 local_irq_restore(flags);
348 return data;
349}
350
351/**
352 * netdev_alloc_frag - allocate a page fragment
353 * @fragsz: fragment size
354 *
355 * Allocates a frag from a page for receive buffer.
356 * Uses GFP_ATOMIC allocations.
357 */
358void *netdev_alloc_frag(unsigned int fragsz)
359{
360 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
361}
362EXPORT_SYMBOL(netdev_alloc_frag);
363
364static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
365{
366 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
367
368 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
369}
370
371void *napi_alloc_frag(unsigned int fragsz)
372{
373 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
374}
375EXPORT_SYMBOL(napi_alloc_frag);
376
377/**
378 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
379 * @dev: network device to receive on
380 * @len: length to allocate
381 * @gfp_mask: get_free_pages mask, passed to alloc_skb
382 *
383 * Allocate a new &sk_buff and assign it a usage count of one. The
384 * buffer has NET_SKB_PAD headroom built in. Users should allocate
385 * the headroom they think they need without accounting for the
386 * built in space. The built in space is used for optimisations.
387 *
388 * %NULL is returned if there is no free memory.
389 */
390struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
391 gfp_t gfp_mask)
392{
393 struct page_frag_cache *nc;
394 unsigned long flags;
395 struct sk_buff *skb;
396 bool pfmemalloc;
397 void *data;
398
399 len += NET_SKB_PAD;
400
401 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
402 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
403 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
404 if (!skb)
405 goto skb_fail;
406 goto skb_success;
407 }
408
409 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
410 len = SKB_DATA_ALIGN(len);
411
412 if (sk_memalloc_socks())
413 gfp_mask |= __GFP_MEMALLOC;
414
415 local_irq_save(flags);
416
417 nc = this_cpu_ptr(&netdev_alloc_cache);
418 data = page_frag_alloc(nc, len, gfp_mask);
419 pfmemalloc = nc->pfmemalloc;
420
421 local_irq_restore(flags);
422
423 if (unlikely(!data))
424 return NULL;
425
426 skb = __build_skb(data, len);
427 if (unlikely(!skb)) {
428 skb_free_frag(data);
429 return NULL;
430 }
431
432 /* use OR instead of assignment to avoid clearing of bits in mask */
433 if (pfmemalloc)
434 skb->pfmemalloc = 1;
435 skb->head_frag = 1;
436
437skb_success:
438 skb_reserve(skb, NET_SKB_PAD);
439 skb->dev = dev;
440
441skb_fail:
442 return skb;
443}
444EXPORT_SYMBOL(__netdev_alloc_skb);
445
446/**
447 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
448 * @napi: napi instance this buffer was allocated for
449 * @len: length to allocate
450 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
451 *
452 * Allocate a new sk_buff for use in NAPI receive. This buffer will
453 * attempt to allocate the head from a special reserved region used
454 * only for NAPI Rx allocation. By doing this we can save several
455 * CPU cycles by avoiding having to disable and re-enable IRQs.
456 *
457 * %NULL is returned if there is no free memory.
458 */
459struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
460 gfp_t gfp_mask)
461{
462 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
463 struct sk_buff *skb;
464 void *data;
465
466 len += NET_SKB_PAD + NET_IP_ALIGN;
467
468 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
469 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
470 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
471 if (!skb)
472 goto skb_fail;
473 goto skb_success;
474 }
475
476 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
477 len = SKB_DATA_ALIGN(len);
478
479 if (sk_memalloc_socks())
480 gfp_mask |= __GFP_MEMALLOC;
481
482 data = page_frag_alloc(&nc->page, len, gfp_mask);
483 if (unlikely(!data))
484 return NULL;
485
486 skb = __build_skb(data, len);
487 if (unlikely(!skb)) {
488 skb_free_frag(data);
489 return NULL;
490 }
491
492 /* use OR instead of assignment to avoid clearing of bits in mask */
493 if (nc->page.pfmemalloc)
494 skb->pfmemalloc = 1;
495 skb->head_frag = 1;
496
497skb_success:
498 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
499 skb->dev = napi->dev;
500
501skb_fail:
502 return skb;
503}
504EXPORT_SYMBOL(__napi_alloc_skb);
505
506void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
507 int size, unsigned int truesize)
508{
509 skb_fill_page_desc(skb, i, page, off, size);
510 skb->len += size;
511 skb->data_len += size;
512 skb->truesize += truesize;
513}
514EXPORT_SYMBOL(skb_add_rx_frag);
515
516void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
517 unsigned int truesize)
518{
519 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
520
521 skb_frag_size_add(frag, size);
522 skb->len += size;
523 skb->data_len += size;
524 skb->truesize += truesize;
525}
526EXPORT_SYMBOL(skb_coalesce_rx_frag);
527
528static void skb_drop_list(struct sk_buff **listp)
529{
530 kfree_skb_list(*listp);
531 *listp = NULL;
532}
533
534static inline void skb_drop_fraglist(struct sk_buff *skb)
535{
536 skb_drop_list(&skb_shinfo(skb)->frag_list);
537}
538
539static void skb_clone_fraglist(struct sk_buff *skb)
540{
541 struct sk_buff *list;
542
543 skb_walk_frags(skb, list)
544 skb_get(list);
545}
546
547static void skb_free_head(struct sk_buff *skb)
548{
549 unsigned char *head = skb->head;
550
551 if (skb->head_frag)
552 skb_free_frag(head);
553 else
554 kfree(head);
555}
556
557static void skb_release_data(struct sk_buff *skb)
558{
559 struct skb_shared_info *shinfo = skb_shinfo(skb);
560 int i;
561
562 if (skb->cloned &&
563 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
564 &shinfo->dataref))
565 return;
566
567 for (i = 0; i < shinfo->nr_frags; i++)
568 __skb_frag_unref(&shinfo->frags[i]);
569
570 if (shinfo->frag_list)
571 kfree_skb_list(shinfo->frag_list);
572
573 skb_zcopy_clear(skb, true);
574 skb_free_head(skb);
575}
576
577/*
578 * Free an skbuff by memory without cleaning the state.
579 */
580static void kfree_skbmem(struct sk_buff *skb)
581{
582 struct sk_buff_fclones *fclones;
583
584 switch (skb->fclone) {
585 case SKB_FCLONE_UNAVAILABLE:
586 kmem_cache_free(skbuff_head_cache, skb);
587 return;
588
589 case SKB_FCLONE_ORIG:
590 fclones = container_of(skb, struct sk_buff_fclones, skb1);
591
592 /* We usually free the clone (TX completion) before original skb
593 * This test would have no chance to be true for the clone,
594 * while here, branch prediction will be good.
595 */
596 if (refcount_read(&fclones->fclone_ref) == 1)
597 goto fastpath;
598 break;
599
600 default: /* SKB_FCLONE_CLONE */
601 fclones = container_of(skb, struct sk_buff_fclones, skb2);
602 break;
603 }
604 if (!refcount_dec_and_test(&fclones->fclone_ref))
605 return;
606fastpath:
607 kmem_cache_free(skbuff_fclone_cache, fclones);
608}
609
610void skb_release_head_state(struct sk_buff *skb)
611{
612 skb_dst_drop(skb);
613 secpath_reset(skb);
614 if (skb->destructor) {
615 WARN_ON(in_irq());
616 skb->destructor(skb);
617 }
618#if IS_ENABLED(CONFIG_NF_CONNTRACK)
619 nf_conntrack_put(skb_nfct(skb));
620#endif
621#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
622 nf_bridge_put(skb->nf_bridge);
623#endif
624}
625
626/* Free everything but the sk_buff shell. */
627static void skb_release_all(struct sk_buff *skb)
628{
629 skb_release_head_state(skb);
630 if (likely(skb->head))
631 skb_release_data(skb);
632}
633
634/**
635 * __kfree_skb - private function
636 * @skb: buffer
637 *
638 * Free an sk_buff. Release anything attached to the buffer.
639 * Clean the state. This is an internal helper function. Users should
640 * always call kfree_skb
641 */
642
643void __kfree_skb(struct sk_buff *skb)
644{
645 skb_release_all(skb);
646 kfree_skbmem(skb);
647}
648EXPORT_SYMBOL(__kfree_skb);
649
650/**
651 * kfree_skb - free an sk_buff
652 * @skb: buffer to free
653 *
654 * Drop a reference to the buffer and free it if the usage count has
655 * hit zero.
656 */
657void kfree_skb(struct sk_buff *skb)
658{
659 if (!skb_unref(skb))
660 return;
661
662 trace_kfree_skb(skb, __builtin_return_address(0));
663 __kfree_skb(skb);
664}
665EXPORT_SYMBOL(kfree_skb);
666
667void kfree_skb_list(struct sk_buff *segs)
668{
669 while (segs) {
670 struct sk_buff *next = segs->next;
671
672 kfree_skb(segs);
673 segs = next;
674 }
675}
676EXPORT_SYMBOL(kfree_skb_list);
677
678/**
679 * skb_tx_error - report an sk_buff xmit error
680 * @skb: buffer that triggered an error
681 *
682 * Report xmit error if a device callback is tracking this skb.
683 * skb must be freed afterwards.
684 */
685void skb_tx_error(struct sk_buff *skb)
686{
687 skb_zcopy_clear(skb, true);
688}
689EXPORT_SYMBOL(skb_tx_error);
690
691/**
692 * consume_skb - free an skbuff
693 * @skb: buffer to free
694 *
695 * Drop a ref to the buffer and free it if the usage count has hit zero
696 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
697 * is being dropped after a failure and notes that
698 */
699void consume_skb(struct sk_buff *skb)
700{
701 if (!skb_unref(skb))
702 return;
703
704 trace_consume_skb(skb);
705 __kfree_skb(skb);
706}
707EXPORT_SYMBOL(consume_skb);
708
709/**
710 * consume_stateless_skb - free an skbuff, assuming it is stateless
711 * @skb: buffer to free
712 *
713 * Alike consume_skb(), but this variant assumes that this is the last
714 * skb reference and all the head states have been already dropped
715 */
716void __consume_stateless_skb(struct sk_buff *skb)
717{
718 trace_consume_skb(skb);
719 skb_release_data(skb);
720 kfree_skbmem(skb);
721}
722
723void __kfree_skb_flush(void)
724{
725 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
726
727 /* flush skb_cache if containing objects */
728 if (nc->skb_count) {
729 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
730 nc->skb_cache);
731 nc->skb_count = 0;
732 }
733}
734
735static inline void _kfree_skb_defer(struct sk_buff *skb)
736{
737 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
738
739 /* drop skb->head and call any destructors for packet */
740 skb_release_all(skb);
741
742 /* record skb to CPU local list */
743 nc->skb_cache[nc->skb_count++] = skb;
744
745#ifdef CONFIG_SLUB
746 /* SLUB writes into objects when freeing */
747 prefetchw(skb);
748#endif
749
750 /* flush skb_cache if it is filled */
751 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
752 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
753 nc->skb_cache);
754 nc->skb_count = 0;
755 }
756}
757void __kfree_skb_defer(struct sk_buff *skb)
758{
759 _kfree_skb_defer(skb);
760}
761
762void napi_consume_skb(struct sk_buff *skb, int budget)
763{
764 if (unlikely(!skb))
765 return;
766
767 /* Zero budget indicate non-NAPI context called us, like netpoll */
768 if (unlikely(!budget)) {
769 dev_consume_skb_any(skb);
770 return;
771 }
772
773 if (!skb_unref(skb))
774 return;
775
776 /* if reaching here SKB is ready to free */
777 trace_consume_skb(skb);
778
779 /* if SKB is a clone, don't handle this case */
780 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
781 __kfree_skb(skb);
782 return;
783 }
784
785 _kfree_skb_defer(skb);
786}
787EXPORT_SYMBOL(napi_consume_skb);
788
789/* Make sure a field is enclosed inside headers_start/headers_end section */
790#define CHECK_SKB_FIELD(field) \
791 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
792 offsetof(struct sk_buff, headers_start)); \
793 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
794 offsetof(struct sk_buff, headers_end)); \
795
796static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
797{
798 new->tstamp = old->tstamp;
799 /* We do not copy old->sk */
800 new->dev = old->dev;
801 memcpy(new->cb, old->cb, sizeof(old->cb));
802 skb_dst_copy(new, old);
803#ifdef CONFIG_XFRM
804 new->sp = secpath_get(old->sp);
805#endif
806 __nf_copy(new, old, false);
807
808 /* Note : this field could be in headers_start/headers_end section
809 * It is not yet because we do not want to have a 16 bit hole
810 */
811 new->queue_mapping = old->queue_mapping;
812
813 memcpy(&new->headers_start, &old->headers_start,
814 offsetof(struct sk_buff, headers_end) -
815 offsetof(struct sk_buff, headers_start));
816 CHECK_SKB_FIELD(protocol);
817 CHECK_SKB_FIELD(csum);
818 CHECK_SKB_FIELD(hash);
819 CHECK_SKB_FIELD(priority);
820 CHECK_SKB_FIELD(skb_iif);
821 CHECK_SKB_FIELD(vlan_proto);
822 CHECK_SKB_FIELD(vlan_tci);
823 CHECK_SKB_FIELD(transport_header);
824 CHECK_SKB_FIELD(network_header);
825 CHECK_SKB_FIELD(mac_header);
826 CHECK_SKB_FIELD(inner_protocol);
827 CHECK_SKB_FIELD(inner_transport_header);
828 CHECK_SKB_FIELD(inner_network_header);
829 CHECK_SKB_FIELD(inner_mac_header);
830 CHECK_SKB_FIELD(mark);
831#ifdef CONFIG_NETWORK_SECMARK
832 CHECK_SKB_FIELD(secmark);
833#endif
834#ifdef CONFIG_NET_RX_BUSY_POLL
835 CHECK_SKB_FIELD(napi_id);
836#endif
837#ifdef CONFIG_XPS
838 CHECK_SKB_FIELD(sender_cpu);
839#endif
840#ifdef CONFIG_NET_SCHED
841 CHECK_SKB_FIELD(tc_index);
842#endif
843
844}
845
846/*
847 * You should not add any new code to this function. Add it to
848 * __copy_skb_header above instead.
849 */
850static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
851{
852#define C(x) n->x = skb->x
853
854 n->next = n->prev = NULL;
855 n->sk = NULL;
856 __copy_skb_header(n, skb);
857
858 C(len);
859 C(data_len);
860 C(mac_len);
861 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
862 n->cloned = 1;
863 n->nohdr = 0;
864 n->destructor = NULL;
865 C(tail);
866 C(end);
867 C(head);
868 C(head_frag);
869 C(data);
870 C(truesize);
871 refcount_set(&n->users, 1);
872
873 atomic_inc(&(skb_shinfo(skb)->dataref));
874 skb->cloned = 1;
875
876 return n;
877#undef C
878}
879
880/**
881 * skb_morph - morph one skb into another
882 * @dst: the skb to receive the contents
883 * @src: the skb to supply the contents
884 *
885 * This is identical to skb_clone except that the target skb is
886 * supplied by the user.
887 *
888 * The target skb is returned upon exit.
889 */
890struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
891{
892 skb_release_all(dst);
893 return __skb_clone(dst, src);
894}
895EXPORT_SYMBOL_GPL(skb_morph);
896
897static int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
898{
899 unsigned long max_pg, num_pg, new_pg, old_pg;
900 struct user_struct *user;
901
902 if (capable(CAP_IPC_LOCK) || !size)
903 return 0;
904
905 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
906 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
907 user = mmp->user ? : current_user();
908
909 do {
910 old_pg = atomic_long_read(&user->locked_vm);
911 new_pg = old_pg + num_pg;
912 if (new_pg > max_pg)
913 return -ENOBUFS;
914 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
915 old_pg);
916
917 if (!mmp->user) {
918 mmp->user = get_uid(user);
919 mmp->num_pg = num_pg;
920 } else {
921 mmp->num_pg += num_pg;
922 }
923
924 return 0;
925}
926
927static void mm_unaccount_pinned_pages(struct mmpin *mmp)
928{
929 if (mmp->user) {
930 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
931 free_uid(mmp->user);
932 }
933}
934
935struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
936{
937 struct ubuf_info *uarg;
938 struct sk_buff *skb;
939
940 WARN_ON_ONCE(!in_task());
941
942 if (!sock_flag(sk, SOCK_ZEROCOPY))
943 return NULL;
944
945 skb = sock_omalloc(sk, 0, GFP_KERNEL);
946 if (!skb)
947 return NULL;
948
949 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
950 uarg = (void *)skb->cb;
951 uarg->mmp.user = NULL;
952
953 if (mm_account_pinned_pages(&uarg->mmp, size)) {
954 kfree_skb(skb);
955 return NULL;
956 }
957
958 uarg->callback = sock_zerocopy_callback;
959 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
960 uarg->len = 1;
961 uarg->bytelen = size;
962 uarg->zerocopy = 1;
963 refcount_set(&uarg->refcnt, 1);
964 sock_hold(sk);
965
966 return uarg;
967}
968EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
969
970static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
971{
972 return container_of((void *)uarg, struct sk_buff, cb);
973}
974
975struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
976 struct ubuf_info *uarg)
977{
978 if (uarg) {
979 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
980 u32 bytelen, next;
981
982 /* realloc only when socket is locked (TCP, UDP cork),
983 * so uarg->len and sk_zckey access is serialized
984 */
985 if (!sock_owned_by_user(sk)) {
986 WARN_ON_ONCE(1);
987 return NULL;
988 }
989
990 bytelen = uarg->bytelen + size;
991 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
992 /* TCP can create new skb to attach new uarg */
993 if (sk->sk_type == SOCK_STREAM)
994 goto new_alloc;
995 return NULL;
996 }
997
998 next = (u32)atomic_read(&sk->sk_zckey);
999 if ((u32)(uarg->id + uarg->len) == next) {
1000 if (mm_account_pinned_pages(&uarg->mmp, size))
1001 return NULL;
1002 uarg->len++;
1003 uarg->bytelen = bytelen;
1004 atomic_set(&sk->sk_zckey, ++next);
1005 sock_zerocopy_get(uarg);
1006 return uarg;
1007 }
1008 }
1009
1010new_alloc:
1011 return sock_zerocopy_alloc(sk, size);
1012}
1013EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1014
1015static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1016{
1017 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1018 u32 old_lo, old_hi;
1019 u64 sum_len;
1020
1021 old_lo = serr->ee.ee_info;
1022 old_hi = serr->ee.ee_data;
1023 sum_len = old_hi - old_lo + 1ULL + len;
1024
1025 if (sum_len >= (1ULL << 32))
1026 return false;
1027
1028 if (lo != old_hi + 1)
1029 return false;
1030
1031 serr->ee.ee_data += len;
1032 return true;
1033}
1034
1035void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1036{
1037 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1038 struct sock_exterr_skb *serr;
1039 struct sock *sk = skb->sk;
1040 struct sk_buff_head *q;
1041 unsigned long flags;
1042 u32 lo, hi;
1043 u16 len;
1044
1045 mm_unaccount_pinned_pages(&uarg->mmp);
1046
1047 /* if !len, there was only 1 call, and it was aborted
1048 * so do not queue a completion notification
1049 */
1050 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1051 goto release;
1052
1053 len = uarg->len;
1054 lo = uarg->id;
1055 hi = uarg->id + len - 1;
1056
1057 serr = SKB_EXT_ERR(skb);
1058 memset(serr, 0, sizeof(*serr));
1059 serr->ee.ee_errno = 0;
1060 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1061 serr->ee.ee_data = hi;
1062 serr->ee.ee_info = lo;
1063 if (!success)
1064 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1065
1066 q = &sk->sk_error_queue;
1067 spin_lock_irqsave(&q->lock, flags);
1068 tail = skb_peek_tail(q);
1069 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1070 !skb_zerocopy_notify_extend(tail, lo, len)) {
1071 __skb_queue_tail(q, skb);
1072 skb = NULL;
1073 }
1074 spin_unlock_irqrestore(&q->lock, flags);
1075
1076 sk->sk_error_report(sk);
1077
1078release:
1079 consume_skb(skb);
1080 sock_put(sk);
1081}
1082EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1083
1084void sock_zerocopy_put(struct ubuf_info *uarg)
1085{
1086 if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1087 if (uarg->callback)
1088 uarg->callback(uarg, uarg->zerocopy);
1089 else
1090 consume_skb(skb_from_uarg(uarg));
1091 }
1092}
1093EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1094
1095void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1096{
1097 if (uarg) {
1098 struct sock *sk = skb_from_uarg(uarg)->sk;
1099
1100 atomic_dec(&sk->sk_zckey);
1101 uarg->len--;
1102
1103 sock_zerocopy_put(uarg);
1104 }
1105}
1106EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1107
1108extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1109 struct iov_iter *from, size_t length);
1110
1111int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1112 struct msghdr *msg, int len,
1113 struct ubuf_info *uarg)
1114{
1115 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1116 struct iov_iter orig_iter = msg->msg_iter;
1117 int err, orig_len = skb->len;
1118
1119 /* An skb can only point to one uarg. This edge case happens when
1120 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1121 */
1122 if (orig_uarg && uarg != orig_uarg)
1123 return -EEXIST;
1124
1125 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1126 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1127 struct sock *save_sk = skb->sk;
1128
1129 /* Streams do not free skb on error. Reset to prev state. */
1130 msg->msg_iter = orig_iter;
1131 skb->sk = sk;
1132 ___pskb_trim(skb, orig_len);
1133 skb->sk = save_sk;
1134 return err;
1135 }
1136
1137 skb_zcopy_set(skb, uarg);
1138 return skb->len - orig_len;
1139}
1140EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1141
1142static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1143 gfp_t gfp_mask)
1144{
1145 if (skb_zcopy(orig)) {
1146 if (skb_zcopy(nskb)) {
1147 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1148 if (!gfp_mask) {
1149 WARN_ON_ONCE(1);
1150 return -ENOMEM;
1151 }
1152 if (skb_uarg(nskb) == skb_uarg(orig))
1153 return 0;
1154 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1155 return -EIO;
1156 }
1157 skb_zcopy_set(nskb, skb_uarg(orig));
1158 }
1159 return 0;
1160}
1161
1162/**
1163 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1164 * @skb: the skb to modify
1165 * @gfp_mask: allocation priority
1166 *
1167 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1168 * It will copy all frags into kernel and drop the reference
1169 * to userspace pages.
1170 *
1171 * If this function is called from an interrupt gfp_mask() must be
1172 * %GFP_ATOMIC.
1173 *
1174 * Returns 0 on success or a negative error code on failure
1175 * to allocate kernel memory to copy to.
1176 */
1177int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1178{
1179 int num_frags = skb_shinfo(skb)->nr_frags;
1180 struct page *page, *head = NULL;
1181 int i, new_frags;
1182 u32 d_off;
1183
1184 if (!num_frags)
1185 return 0;
1186
1187 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1188 return -EINVAL;
1189
1190 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1191 for (i = 0; i < new_frags; i++) {
1192 page = alloc_page(gfp_mask);
1193 if (!page) {
1194 while (head) {
1195 struct page *next = (struct page *)page_private(head);
1196 put_page(head);
1197 head = next;
1198 }
1199 return -ENOMEM;
1200 }
1201 set_page_private(page, (unsigned long)head);
1202 head = page;
1203 }
1204
1205 page = head;
1206 d_off = 0;
1207 for (i = 0; i < num_frags; i++) {
1208 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1209 u32 p_off, p_len, copied;
1210 struct page *p;
1211 u8 *vaddr;
1212
1213 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1214 p, p_off, p_len, copied) {
1215 u32 copy, done = 0;
1216 vaddr = kmap_atomic(p);
1217
1218 while (done < p_len) {
1219 if (d_off == PAGE_SIZE) {
1220 d_off = 0;
1221 page = (struct page *)page_private(page);
1222 }
1223 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1224 memcpy(page_address(page) + d_off,
1225 vaddr + p_off + done, copy);
1226 done += copy;
1227 d_off += copy;
1228 }
1229 kunmap_atomic(vaddr);
1230 }
1231 }
1232
1233 /* skb frags release userspace buffers */
1234 for (i = 0; i < num_frags; i++)
1235 skb_frag_unref(skb, i);
1236
1237 /* skb frags point to kernel buffers */
1238 for (i = 0; i < new_frags - 1; i++) {
1239 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1240 head = (struct page *)page_private(head);
1241 }
1242 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1243 skb_shinfo(skb)->nr_frags = new_frags;
1244
1245 skb_zcopy_clear(skb, false);
1246 return 0;
1247}
1248EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1249
1250/**
1251 * skb_clone - duplicate an sk_buff
1252 * @skb: buffer to clone
1253 * @gfp_mask: allocation priority
1254 *
1255 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1256 * copies share the same packet data but not structure. The new
1257 * buffer has a reference count of 1. If the allocation fails the
1258 * function returns %NULL otherwise the new buffer is returned.
1259 *
1260 * If this function is called from an interrupt gfp_mask() must be
1261 * %GFP_ATOMIC.
1262 */
1263
1264struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1265{
1266 struct sk_buff_fclones *fclones = container_of(skb,
1267 struct sk_buff_fclones,
1268 skb1);
1269 struct sk_buff *n;
1270
1271 if (skb_orphan_frags(skb, gfp_mask))
1272 return NULL;
1273
1274 if (skb->fclone == SKB_FCLONE_ORIG &&
1275 refcount_read(&fclones->fclone_ref) == 1) {
1276 n = &fclones->skb2;
1277 refcount_set(&fclones->fclone_ref, 2);
1278 } else {
1279 if (skb_pfmemalloc(skb))
1280 gfp_mask |= __GFP_MEMALLOC;
1281
1282 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1283 if (!n)
1284 return NULL;
1285
1286 kmemcheck_annotate_bitfield(n, flags1);
1287 n->fclone = SKB_FCLONE_UNAVAILABLE;
1288 }
1289
1290 return __skb_clone(n, skb);
1291}
1292EXPORT_SYMBOL(skb_clone);
1293
1294static void skb_headers_offset_update(struct sk_buff *skb, int off)
1295{
1296 /* Only adjust this if it actually is csum_start rather than csum */
1297 if (skb->ip_summed == CHECKSUM_PARTIAL)
1298 skb->csum_start += off;
1299 /* {transport,network,mac}_header and tail are relative to skb->head */
1300 skb->transport_header += off;
1301 skb->network_header += off;
1302 if (skb_mac_header_was_set(skb))
1303 skb->mac_header += off;
1304 skb->inner_transport_header += off;
1305 skb->inner_network_header += off;
1306 skb->inner_mac_header += off;
1307}
1308
1309static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1310{
1311 __copy_skb_header(new, old);
1312
1313 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1314 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1315 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1316}
1317
1318static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1319{
1320 if (skb_pfmemalloc(skb))
1321 return SKB_ALLOC_RX;
1322 return 0;
1323}
1324
1325/**
1326 * skb_copy - create private copy of an sk_buff
1327 * @skb: buffer to copy
1328 * @gfp_mask: allocation priority
1329 *
1330 * Make a copy of both an &sk_buff and its data. This is used when the
1331 * caller wishes to modify the data and needs a private copy of the
1332 * data to alter. Returns %NULL on failure or the pointer to the buffer
1333 * on success. The returned buffer has a reference count of 1.
1334 *
1335 * As by-product this function converts non-linear &sk_buff to linear
1336 * one, so that &sk_buff becomes completely private and caller is allowed
1337 * to modify all the data of returned buffer. This means that this
1338 * function is not recommended for use in circumstances when only
1339 * header is going to be modified. Use pskb_copy() instead.
1340 */
1341
1342struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1343{
1344 int headerlen = skb_headroom(skb);
1345 unsigned int size = skb_end_offset(skb) + skb->data_len;
1346 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1347 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1348
1349 if (!n)
1350 return NULL;
1351
1352 /* Set the data pointer */
1353 skb_reserve(n, headerlen);
1354 /* Set the tail pointer and length */
1355 skb_put(n, skb->len);
1356
1357 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1358 BUG();
1359
1360 copy_skb_header(n, skb);
1361 return n;
1362}
1363EXPORT_SYMBOL(skb_copy);
1364
1365/**
1366 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1367 * @skb: buffer to copy
1368 * @headroom: headroom of new skb
1369 * @gfp_mask: allocation priority
1370 * @fclone: if true allocate the copy of the skb from the fclone
1371 * cache instead of the head cache; it is recommended to set this
1372 * to true for the cases where the copy will likely be cloned
1373 *
1374 * Make a copy of both an &sk_buff and part of its data, located
1375 * in header. Fragmented data remain shared. This is used when
1376 * the caller wishes to modify only header of &sk_buff and needs
1377 * private copy of the header to alter. Returns %NULL on failure
1378 * or the pointer to the buffer on success.
1379 * The returned buffer has a reference count of 1.
1380 */
1381
1382struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1383 gfp_t gfp_mask, bool fclone)
1384{
1385 unsigned int size = skb_headlen(skb) + headroom;
1386 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1387 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1388
1389 if (!n)
1390 goto out;
1391
1392 /* Set the data pointer */
1393 skb_reserve(n, headroom);
1394 /* Set the tail pointer and length */
1395 skb_put(n, skb_headlen(skb));
1396 /* Copy the bytes */
1397 skb_copy_from_linear_data(skb, n->data, n->len);
1398
1399 n->truesize += skb->data_len;
1400 n->data_len = skb->data_len;
1401 n->len = skb->len;
1402
1403 if (skb_shinfo(skb)->nr_frags) {
1404 int i;
1405
1406 if (skb_orphan_frags(skb, gfp_mask) ||
1407 skb_zerocopy_clone(n, skb, gfp_mask)) {
1408 kfree_skb(n);
1409 n = NULL;
1410 goto out;
1411 }
1412 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1413 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1414 skb_frag_ref(skb, i);
1415 }
1416 skb_shinfo(n)->nr_frags = i;
1417 }
1418
1419 if (skb_has_frag_list(skb)) {
1420 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1421 skb_clone_fraglist(n);
1422 }
1423
1424 copy_skb_header(n, skb);
1425out:
1426 return n;
1427}
1428EXPORT_SYMBOL(__pskb_copy_fclone);
1429
1430/**
1431 * pskb_expand_head - reallocate header of &sk_buff
1432 * @skb: buffer to reallocate
1433 * @nhead: room to add at head
1434 * @ntail: room to add at tail
1435 * @gfp_mask: allocation priority
1436 *
1437 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1438 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1439 * reference count of 1. Returns zero in the case of success or error,
1440 * if expansion failed. In the last case, &sk_buff is not changed.
1441 *
1442 * All the pointers pointing into skb header may change and must be
1443 * reloaded after call to this function.
1444 */
1445
1446int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1447 gfp_t gfp_mask)
1448{
1449 int i, osize = skb_end_offset(skb);
1450 int size = osize + nhead + ntail;
1451 long off;
1452 u8 *data;
1453
1454 BUG_ON(nhead < 0);
1455
1456 if (skb_shared(skb))
1457 BUG();
1458
1459 size = SKB_DATA_ALIGN(size);
1460
1461 if (skb_pfmemalloc(skb))
1462 gfp_mask |= __GFP_MEMALLOC;
1463 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1464 gfp_mask, NUMA_NO_NODE, NULL);
1465 if (!data)
1466 goto nodata;
1467 size = SKB_WITH_OVERHEAD(ksize(data));
1468
1469 /* Copy only real data... and, alas, header. This should be
1470 * optimized for the cases when header is void.
1471 */
1472 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1473
1474 memcpy((struct skb_shared_info *)(data + size),
1475 skb_shinfo(skb),
1476 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1477
1478 /*
1479 * if shinfo is shared we must drop the old head gracefully, but if it
1480 * is not we can just drop the old head and let the existing refcount
1481 * be since all we did is relocate the values
1482 */
1483 if (skb_cloned(skb)) {
1484 if (skb_orphan_frags(skb, gfp_mask))
1485 goto nofrags;
1486 if (skb_zcopy(skb))
1487 refcount_inc(&skb_uarg(skb)->refcnt);
1488 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1489 skb_frag_ref(skb, i);
1490
1491 if (skb_has_frag_list(skb))
1492 skb_clone_fraglist(skb);
1493
1494 skb_release_data(skb);
1495 } else {
1496 skb_free_head(skb);
1497 }
1498 off = (data + nhead) - skb->head;
1499
1500 skb->head = data;
1501 skb->head_frag = 0;
1502 skb->data += off;
1503#ifdef NET_SKBUFF_DATA_USES_OFFSET
1504 skb->end = size;
1505 off = nhead;
1506#else
1507 skb->end = skb->head + size;
1508#endif
1509 skb->tail += off;
1510 skb_headers_offset_update(skb, nhead);
1511 skb->cloned = 0;
1512 skb->hdr_len = 0;
1513 skb->nohdr = 0;
1514 atomic_set(&skb_shinfo(skb)->dataref, 1);
1515
1516 /* It is not generally safe to change skb->truesize.
1517 * For the moment, we really care of rx path, or
1518 * when skb is orphaned (not attached to a socket).
1519 */
1520 if (!skb->sk || skb->destructor == sock_edemux)
1521 skb->truesize += size - osize;
1522
1523 return 0;
1524
1525nofrags:
1526 kfree(data);
1527nodata:
1528 return -ENOMEM;
1529}
1530EXPORT_SYMBOL(pskb_expand_head);
1531
1532/* Make private copy of skb with writable head and some headroom */
1533
1534struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1535{
1536 struct sk_buff *skb2;
1537 int delta = headroom - skb_headroom(skb);
1538
1539 if (delta <= 0)
1540 skb2 = pskb_copy(skb, GFP_ATOMIC);
1541 else {
1542 skb2 = skb_clone(skb, GFP_ATOMIC);
1543 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1544 GFP_ATOMIC)) {
1545 kfree_skb(skb2);
1546 skb2 = NULL;
1547 }
1548 }
1549 return skb2;
1550}
1551EXPORT_SYMBOL(skb_realloc_headroom);
1552
1553/**
1554 * skb_copy_expand - copy and expand sk_buff
1555 * @skb: buffer to copy
1556 * @newheadroom: new free bytes at head
1557 * @newtailroom: new free bytes at tail
1558 * @gfp_mask: allocation priority
1559 *
1560 * Make a copy of both an &sk_buff and its data and while doing so
1561 * allocate additional space.
1562 *
1563 * This is used when the caller wishes to modify the data and needs a
1564 * private copy of the data to alter as well as more space for new fields.
1565 * Returns %NULL on failure or the pointer to the buffer
1566 * on success. The returned buffer has a reference count of 1.
1567 *
1568 * You must pass %GFP_ATOMIC as the allocation priority if this function
1569 * is called from an interrupt.
1570 */
1571struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1572 int newheadroom, int newtailroom,
1573 gfp_t gfp_mask)
1574{
1575 /*
1576 * Allocate the copy buffer
1577 */
1578 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1579 gfp_mask, skb_alloc_rx_flag(skb),
1580 NUMA_NO_NODE);
1581 int oldheadroom = skb_headroom(skb);
1582 int head_copy_len, head_copy_off;
1583
1584 if (!n)
1585 return NULL;
1586
1587 skb_reserve(n, newheadroom);
1588
1589 /* Set the tail pointer and length */
1590 skb_put(n, skb->len);
1591
1592 head_copy_len = oldheadroom;
1593 head_copy_off = 0;
1594 if (newheadroom <= head_copy_len)
1595 head_copy_len = newheadroom;
1596 else
1597 head_copy_off = newheadroom - head_copy_len;
1598
1599 /* Copy the linear header and data. */
1600 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1601 skb->len + head_copy_len))
1602 BUG();
1603
1604 copy_skb_header(n, skb);
1605
1606 skb_headers_offset_update(n, newheadroom - oldheadroom);
1607
1608 return n;
1609}
1610EXPORT_SYMBOL(skb_copy_expand);
1611
1612/**
1613 * __skb_pad - zero pad the tail of an skb
1614 * @skb: buffer to pad
1615 * @pad: space to pad
1616 * @free_on_error: free buffer on error
1617 *
1618 * Ensure that a buffer is followed by a padding area that is zero
1619 * filled. Used by network drivers which may DMA or transfer data
1620 * beyond the buffer end onto the wire.
1621 *
1622 * May return error in out of memory cases. The skb is freed on error
1623 * if @free_on_error is true.
1624 */
1625
1626int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1627{
1628 int err;
1629 int ntail;
1630
1631 /* If the skbuff is non linear tailroom is always zero.. */
1632 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1633 memset(skb->data+skb->len, 0, pad);
1634 return 0;
1635 }
1636
1637 ntail = skb->data_len + pad - (skb->end - skb->tail);
1638 if (likely(skb_cloned(skb) || ntail > 0)) {
1639 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1640 if (unlikely(err))
1641 goto free_skb;
1642 }
1643
1644 /* FIXME: The use of this function with non-linear skb's really needs
1645 * to be audited.
1646 */
1647 err = skb_linearize(skb);
1648 if (unlikely(err))
1649 goto free_skb;
1650
1651 memset(skb->data + skb->len, 0, pad);
1652 return 0;
1653
1654free_skb:
1655 if (free_on_error)
1656 kfree_skb(skb);
1657 return err;
1658}
1659EXPORT_SYMBOL(__skb_pad);
1660
1661/**
1662 * pskb_put - add data to the tail of a potentially fragmented buffer
1663 * @skb: start of the buffer to use
1664 * @tail: tail fragment of the buffer to use
1665 * @len: amount of data to add
1666 *
1667 * This function extends the used data area of the potentially
1668 * fragmented buffer. @tail must be the last fragment of @skb -- or
1669 * @skb itself. If this would exceed the total buffer size the kernel
1670 * will panic. A pointer to the first byte of the extra data is
1671 * returned.
1672 */
1673
1674void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1675{
1676 if (tail != skb) {
1677 skb->data_len += len;
1678 skb->len += len;
1679 }
1680 return skb_put(tail, len);
1681}
1682EXPORT_SYMBOL_GPL(pskb_put);
1683
1684/**
1685 * skb_put - add data to a buffer
1686 * @skb: buffer to use
1687 * @len: amount of data to add
1688 *
1689 * This function extends the used data area of the buffer. If this would
1690 * exceed the total buffer size the kernel will panic. A pointer to the
1691 * first byte of the extra data is returned.
1692 */
1693void *skb_put(struct sk_buff *skb, unsigned int len)
1694{
1695 void *tmp = skb_tail_pointer(skb);
1696 SKB_LINEAR_ASSERT(skb);
1697 skb->tail += len;
1698 skb->len += len;
1699 if (unlikely(skb->tail > skb->end))
1700 skb_over_panic(skb, len, __builtin_return_address(0));
1701 return tmp;
1702}
1703EXPORT_SYMBOL(skb_put);
1704
1705/**
1706 * skb_push - add data to the start of a buffer
1707 * @skb: buffer to use
1708 * @len: amount of data to add
1709 *
1710 * This function extends the used data area of the buffer at the buffer
1711 * start. If this would exceed the total buffer headroom the kernel will
1712 * panic. A pointer to the first byte of the extra data is returned.
1713 */
1714void *skb_push(struct sk_buff *skb, unsigned int len)
1715{
1716 skb->data -= len;
1717 skb->len += len;
1718 if (unlikely(skb->data<skb->head))
1719 skb_under_panic(skb, len, __builtin_return_address(0));
1720 return skb->data;
1721}
1722EXPORT_SYMBOL(skb_push);
1723
1724/**
1725 * skb_pull - remove data from the start of a buffer
1726 * @skb: buffer to use
1727 * @len: amount of data to remove
1728 *
1729 * This function removes data from the start of a buffer, returning
1730 * the memory to the headroom. A pointer to the next data in the buffer
1731 * is returned. Once the data has been pulled future pushes will overwrite
1732 * the old data.
1733 */
1734void *skb_pull(struct sk_buff *skb, unsigned int len)
1735{
1736 return skb_pull_inline(skb, len);
1737}
1738EXPORT_SYMBOL(skb_pull);
1739
1740/**
1741 * skb_trim - remove end from a buffer
1742 * @skb: buffer to alter
1743 * @len: new length
1744 *
1745 * Cut the length of a buffer down by removing data from the tail. If
1746 * the buffer is already under the length specified it is not modified.
1747 * The skb must be linear.
1748 */
1749void skb_trim(struct sk_buff *skb, unsigned int len)
1750{
1751 if (skb->len > len)
1752 __skb_trim(skb, len);
1753}
1754EXPORT_SYMBOL(skb_trim);
1755
1756/* Trims skb to length len. It can change skb pointers.
1757 */
1758
1759int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1760{
1761 struct sk_buff **fragp;
1762 struct sk_buff *frag;
1763 int offset = skb_headlen(skb);
1764 int nfrags = skb_shinfo(skb)->nr_frags;
1765 int i;
1766 int err;
1767
1768 if (skb_cloned(skb) &&
1769 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1770 return err;
1771
1772 i = 0;
1773 if (offset >= len)
1774 goto drop_pages;
1775
1776 for (; i < nfrags; i++) {
1777 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1778
1779 if (end < len) {
1780 offset = end;
1781 continue;
1782 }
1783
1784 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1785
1786drop_pages:
1787 skb_shinfo(skb)->nr_frags = i;
1788
1789 for (; i < nfrags; i++)
1790 skb_frag_unref(skb, i);
1791
1792 if (skb_has_frag_list(skb))
1793 skb_drop_fraglist(skb);
1794 goto done;
1795 }
1796
1797 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1798 fragp = &frag->next) {
1799 int end = offset + frag->len;
1800
1801 if (skb_shared(frag)) {
1802 struct sk_buff *nfrag;
1803
1804 nfrag = skb_clone(frag, GFP_ATOMIC);
1805 if (unlikely(!nfrag))
1806 return -ENOMEM;
1807
1808 nfrag->next = frag->next;
1809 consume_skb(frag);
1810 frag = nfrag;
1811 *fragp = frag;
1812 }
1813
1814 if (end < len) {
1815 offset = end;
1816 continue;
1817 }
1818
1819 if (end > len &&
1820 unlikely((err = pskb_trim(frag, len - offset))))
1821 return err;
1822
1823 if (frag->next)
1824 skb_drop_list(&frag->next);
1825 break;
1826 }
1827
1828done:
1829 if (len > skb_headlen(skb)) {
1830 skb->data_len -= skb->len - len;
1831 skb->len = len;
1832 } else {
1833 skb->len = len;
1834 skb->data_len = 0;
1835 skb_set_tail_pointer(skb, len);
1836 }
1837
1838 if (!skb->sk || skb->destructor == sock_edemux)
1839 skb_condense(skb);
1840 return 0;
1841}
1842EXPORT_SYMBOL(___pskb_trim);
1843
1844/**
1845 * __pskb_pull_tail - advance tail of skb header
1846 * @skb: buffer to reallocate
1847 * @delta: number of bytes to advance tail
1848 *
1849 * The function makes a sense only on a fragmented &sk_buff,
1850 * it expands header moving its tail forward and copying necessary
1851 * data from fragmented part.
1852 *
1853 * &sk_buff MUST have reference count of 1.
1854 *
1855 * Returns %NULL (and &sk_buff does not change) if pull failed
1856 * or value of new tail of skb in the case of success.
1857 *
1858 * All the pointers pointing into skb header may change and must be
1859 * reloaded after call to this function.
1860 */
1861
1862/* Moves tail of skb head forward, copying data from fragmented part,
1863 * when it is necessary.
1864 * 1. It may fail due to malloc failure.
1865 * 2. It may change skb pointers.
1866 *
1867 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1868 */
1869void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1870{
1871 /* If skb has not enough free space at tail, get new one
1872 * plus 128 bytes for future expansions. If we have enough
1873 * room at tail, reallocate without expansion only if skb is cloned.
1874 */
1875 int i, k, eat = (skb->tail + delta) - skb->end;
1876
1877 if (eat > 0 || skb_cloned(skb)) {
1878 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1879 GFP_ATOMIC))
1880 return NULL;
1881 }
1882
1883 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1884 BUG();
1885
1886 /* Optimization: no fragments, no reasons to preestimate
1887 * size of pulled pages. Superb.
1888 */
1889 if (!skb_has_frag_list(skb))
1890 goto pull_pages;
1891
1892 /* Estimate size of pulled pages. */
1893 eat = delta;
1894 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1895 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1896
1897 if (size >= eat)
1898 goto pull_pages;
1899 eat -= size;
1900 }
1901
1902 /* If we need update frag list, we are in troubles.
1903 * Certainly, it is possible to add an offset to skb data,
1904 * but taking into account that pulling is expected to
1905 * be very rare operation, it is worth to fight against
1906 * further bloating skb head and crucify ourselves here instead.
1907 * Pure masohism, indeed. 8)8)
1908 */
1909 if (eat) {
1910 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1911 struct sk_buff *clone = NULL;
1912 struct sk_buff *insp = NULL;
1913
1914 do {
1915 BUG_ON(!list);
1916
1917 if (list->len <= eat) {
1918 /* Eaten as whole. */
1919 eat -= list->len;
1920 list = list->next;
1921 insp = list;
1922 } else {
1923 /* Eaten partially. */
1924
1925 if (skb_shared(list)) {
1926 /* Sucks! We need to fork list. :-( */
1927 clone = skb_clone(list, GFP_ATOMIC);
1928 if (!clone)
1929 return NULL;
1930 insp = list->next;
1931 list = clone;
1932 } else {
1933 /* This may be pulled without
1934 * problems. */
1935 insp = list;
1936 }
1937 if (!pskb_pull(list, eat)) {
1938 kfree_skb(clone);
1939 return NULL;
1940 }
1941 break;
1942 }
1943 } while (eat);
1944
1945 /* Free pulled out fragments. */
1946 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1947 skb_shinfo(skb)->frag_list = list->next;
1948 kfree_skb(list);
1949 }
1950 /* And insert new clone at head. */
1951 if (clone) {
1952 clone->next = list;
1953 skb_shinfo(skb)->frag_list = clone;
1954 }
1955 }
1956 /* Success! Now we may commit changes to skb data. */
1957
1958pull_pages:
1959 eat = delta;
1960 k = 0;
1961 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1962 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1963
1964 if (size <= eat) {
1965 skb_frag_unref(skb, i);
1966 eat -= size;
1967 } else {
1968 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1969 if (eat) {
1970 skb_shinfo(skb)->frags[k].page_offset += eat;
1971 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1972 if (!i)
1973 goto end;
1974 eat = 0;
1975 }
1976 k++;
1977 }
1978 }
1979 skb_shinfo(skb)->nr_frags = k;
1980
1981end:
1982 skb->tail += delta;
1983 skb->data_len -= delta;
1984
1985 if (!skb->data_len)
1986 skb_zcopy_clear(skb, false);
1987
1988 return skb_tail_pointer(skb);
1989}
1990EXPORT_SYMBOL(__pskb_pull_tail);
1991
1992/**
1993 * skb_copy_bits - copy bits from skb to kernel buffer
1994 * @skb: source skb
1995 * @offset: offset in source
1996 * @to: destination buffer
1997 * @len: number of bytes to copy
1998 *
1999 * Copy the specified number of bytes from the source skb to the
2000 * destination buffer.
2001 *
2002 * CAUTION ! :
2003 * If its prototype is ever changed,
2004 * check arch/{*}/net/{*}.S files,
2005 * since it is called from BPF assembly code.
2006 */
2007int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2008{
2009 int start = skb_headlen(skb);
2010 struct sk_buff *frag_iter;
2011 int i, copy;
2012
2013 if (offset > (int)skb->len - len)
2014 goto fault;
2015
2016 /* Copy header. */
2017 if ((copy = start - offset) > 0) {
2018 if (copy > len)
2019 copy = len;
2020 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2021 if ((len -= copy) == 0)
2022 return 0;
2023 offset += copy;
2024 to += copy;
2025 }
2026
2027 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2028 int end;
2029 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2030
2031 WARN_ON(start > offset + len);
2032
2033 end = start + skb_frag_size(f);
2034 if ((copy = end - offset) > 0) {
2035 u32 p_off, p_len, copied;
2036 struct page *p;
2037 u8 *vaddr;
2038
2039 if (copy > len)
2040 copy = len;
2041
2042 skb_frag_foreach_page(f,
2043 f->page_offset + offset - start,
2044 copy, p, p_off, p_len, copied) {
2045 vaddr = kmap_atomic(p);
2046 memcpy(to + copied, vaddr + p_off, p_len);
2047 kunmap_atomic(vaddr);
2048 }
2049
2050 if ((len -= copy) == 0)
2051 return 0;
2052 offset += copy;
2053 to += copy;
2054 }
2055 start = end;
2056 }
2057
2058 skb_walk_frags(skb, frag_iter) {
2059 int end;
2060
2061 WARN_ON(start > offset + len);
2062
2063 end = start + frag_iter->len;
2064 if ((copy = end - offset) > 0) {
2065 if (copy > len)
2066 copy = len;
2067 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2068 goto fault;
2069 if ((len -= copy) == 0)
2070 return 0;
2071 offset += copy;
2072 to += copy;
2073 }
2074 start = end;
2075 }
2076
2077 if (!len)
2078 return 0;
2079
2080fault:
2081 return -EFAULT;
2082}
2083EXPORT_SYMBOL(skb_copy_bits);
2084
2085/*
2086 * Callback from splice_to_pipe(), if we need to release some pages
2087 * at the end of the spd in case we error'ed out in filling the pipe.
2088 */
2089static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2090{
2091 put_page(spd->pages[i]);
2092}
2093
2094static struct page *linear_to_page(struct page *page, unsigned int *len,
2095 unsigned int *offset,
2096 struct sock *sk)
2097{
2098 struct page_frag *pfrag = sk_page_frag(sk);
2099
2100 if (!sk_page_frag_refill(sk, pfrag))
2101 return NULL;
2102
2103 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2104
2105 memcpy(page_address(pfrag->page) + pfrag->offset,
2106 page_address(page) + *offset, *len);
2107 *offset = pfrag->offset;
2108 pfrag->offset += *len;
2109
2110 return pfrag->page;
2111}
2112
2113static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2114 struct page *page,
2115 unsigned int offset)
2116{
2117 return spd->nr_pages &&
2118 spd->pages[spd->nr_pages - 1] == page &&
2119 (spd->partial[spd->nr_pages - 1].offset +
2120 spd->partial[spd->nr_pages - 1].len == offset);
2121}
2122
2123/*
2124 * Fill page/offset/length into spd, if it can hold more pages.
2125 */
2126static bool spd_fill_page(struct splice_pipe_desc *spd,
2127 struct pipe_inode_info *pipe, struct page *page,
2128 unsigned int *len, unsigned int offset,
2129 bool linear,
2130 struct sock *sk)
2131{
2132 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2133 return true;
2134
2135 if (linear) {
2136 page = linear_to_page(page, len, &offset, sk);
2137 if (!page)
2138 return true;
2139 }
2140 if (spd_can_coalesce(spd, page, offset)) {
2141 spd->partial[spd->nr_pages - 1].len += *len;
2142 return false;
2143 }
2144 get_page(page);
2145 spd->pages[spd->nr_pages] = page;
2146 spd->partial[spd->nr_pages].len = *len;
2147 spd->partial[spd->nr_pages].offset = offset;
2148 spd->nr_pages++;
2149
2150 return false;
2151}
2152
2153static bool __splice_segment(struct page *page, unsigned int poff,
2154 unsigned int plen, unsigned int *off,
2155 unsigned int *len,
2156 struct splice_pipe_desc *spd, bool linear,
2157 struct sock *sk,
2158 struct pipe_inode_info *pipe)
2159{
2160 if (!*len)
2161 return true;
2162
2163 /* skip this segment if already processed */
2164 if (*off >= plen) {
2165 *off -= plen;
2166 return false;
2167 }
2168
2169 /* ignore any bits we already processed */
2170 poff += *off;
2171 plen -= *off;
2172 *off = 0;
2173
2174 do {
2175 unsigned int flen = min(*len, plen);
2176
2177 if (spd_fill_page(spd, pipe, page, &flen, poff,
2178 linear, sk))
2179 return true;
2180 poff += flen;
2181 plen -= flen;
2182 *len -= flen;
2183 } while (*len && plen);
2184
2185 return false;
2186}
2187
2188/*
2189 * Map linear and fragment data from the skb to spd. It reports true if the
2190 * pipe is full or if we already spliced the requested length.
2191 */
2192static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2193 unsigned int *offset, unsigned int *len,
2194 struct splice_pipe_desc *spd, struct sock *sk)
2195{
2196 int seg;
2197 struct sk_buff *iter;
2198
2199 /* map the linear part :
2200 * If skb->head_frag is set, this 'linear' part is backed by a
2201 * fragment, and if the head is not shared with any clones then
2202 * we can avoid a copy since we own the head portion of this page.
2203 */
2204 if (__splice_segment(virt_to_page(skb->data),
2205 (unsigned long) skb->data & (PAGE_SIZE - 1),
2206 skb_headlen(skb),
2207 offset, len, spd,
2208 skb_head_is_locked(skb),
2209 sk, pipe))
2210 return true;
2211
2212 /*
2213 * then map the fragments
2214 */
2215 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2216 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2217
2218 if (__splice_segment(skb_frag_page(f),
2219 f->page_offset, skb_frag_size(f),
2220 offset, len, spd, false, sk, pipe))
2221 return true;
2222 }
2223
2224 skb_walk_frags(skb, iter) {
2225 if (*offset >= iter->len) {
2226 *offset -= iter->len;
2227 continue;
2228 }
2229 /* __skb_splice_bits() only fails if the output has no room
2230 * left, so no point in going over the frag_list for the error
2231 * case.
2232 */
2233 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2234 return true;
2235 }
2236
2237 return false;
2238}
2239
2240/*
2241 * Map data from the skb to a pipe. Should handle both the linear part,
2242 * the fragments, and the frag list.
2243 */
2244int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2245 struct pipe_inode_info *pipe, unsigned int tlen,
2246 unsigned int flags)
2247{
2248 struct partial_page partial[MAX_SKB_FRAGS];
2249 struct page *pages[MAX_SKB_FRAGS];
2250 struct splice_pipe_desc spd = {
2251 .pages = pages,
2252 .partial = partial,
2253 .nr_pages_max = MAX_SKB_FRAGS,
2254 .ops = &nosteal_pipe_buf_ops,
2255 .spd_release = sock_spd_release,
2256 };
2257 int ret = 0;
2258
2259 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2260
2261 if (spd.nr_pages)
2262 ret = splice_to_pipe(pipe, &spd);
2263
2264 return ret;
2265}
2266EXPORT_SYMBOL_GPL(skb_splice_bits);
2267
2268/* Send skb data on a socket. Socket must be locked. */
2269int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2270 int len)
2271{
2272 unsigned int orig_len = len;
2273 struct sk_buff *head = skb;
2274 unsigned short fragidx;
2275 int slen, ret;
2276
2277do_frag_list:
2278
2279 /* Deal with head data */
2280 while (offset < skb_headlen(skb) && len) {
2281 struct kvec kv;
2282 struct msghdr msg;
2283
2284 slen = min_t(int, len, skb_headlen(skb) - offset);
2285 kv.iov_base = skb->data + offset;
2286 kv.iov_len = slen;
2287 memset(&msg, 0, sizeof(msg));
2288
2289 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2290 if (ret <= 0)
2291 goto error;
2292
2293 offset += ret;
2294 len -= ret;
2295 }
2296
2297 /* All the data was skb head? */
2298 if (!len)
2299 goto out;
2300
2301 /* Make offset relative to start of frags */
2302 offset -= skb_headlen(skb);
2303
2304 /* Find where we are in frag list */
2305 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2306 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2307
2308 if (offset < frag->size)
2309 break;
2310
2311 offset -= frag->size;
2312 }
2313
2314 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2315 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2316
2317 slen = min_t(size_t, len, frag->size - offset);
2318
2319 while (slen) {
2320 ret = kernel_sendpage_locked(sk, frag->page.p,
2321 frag->page_offset + offset,
2322 slen, MSG_DONTWAIT);
2323 if (ret <= 0)
2324 goto error;
2325
2326 len -= ret;
2327 offset += ret;
2328 slen -= ret;
2329 }
2330
2331 offset = 0;
2332 }
2333
2334 if (len) {
2335 /* Process any frag lists */
2336
2337 if (skb == head) {
2338 if (skb_has_frag_list(skb)) {
2339 skb = skb_shinfo(skb)->frag_list;
2340 goto do_frag_list;
2341 }
2342 } else if (skb->next) {
2343 skb = skb->next;
2344 goto do_frag_list;
2345 }
2346 }
2347
2348out:
2349 return orig_len - len;
2350
2351error:
2352 return orig_len == len ? ret : orig_len - len;
2353}
2354EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2355
2356/* Send skb data on a socket. */
2357int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2358{
2359 int ret = 0;
2360
2361 lock_sock(sk);
2362 ret = skb_send_sock_locked(sk, skb, offset, len);
2363 release_sock(sk);
2364
2365 return ret;
2366}
2367EXPORT_SYMBOL_GPL(skb_send_sock);
2368
2369/**
2370 * skb_store_bits - store bits from kernel buffer to skb
2371 * @skb: destination buffer
2372 * @offset: offset in destination
2373 * @from: source buffer
2374 * @len: number of bytes to copy
2375 *
2376 * Copy the specified number of bytes from the source buffer to the
2377 * destination skb. This function handles all the messy bits of
2378 * traversing fragment lists and such.
2379 */
2380
2381int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2382{
2383 int start = skb_headlen(skb);
2384 struct sk_buff *frag_iter;
2385 int i, copy;
2386
2387 if (offset > (int)skb->len - len)
2388 goto fault;
2389
2390 if ((copy = start - offset) > 0) {
2391 if (copy > len)
2392 copy = len;
2393 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2394 if ((len -= copy) == 0)
2395 return 0;
2396 offset += copy;
2397 from += copy;
2398 }
2399
2400 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2401 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2402 int end;
2403
2404 WARN_ON(start > offset + len);
2405
2406 end = start + skb_frag_size(frag);
2407 if ((copy = end - offset) > 0) {
2408 u32 p_off, p_len, copied;
2409 struct page *p;
2410 u8 *vaddr;
2411
2412 if (copy > len)
2413 copy = len;
2414
2415 skb_frag_foreach_page(frag,
2416 frag->page_offset + offset - start,
2417 copy, p, p_off, p_len, copied) {
2418 vaddr = kmap_atomic(p);
2419 memcpy(vaddr + p_off, from + copied, p_len);
2420 kunmap_atomic(vaddr);
2421 }
2422
2423 if ((len -= copy) == 0)
2424 return 0;
2425 offset += copy;
2426 from += copy;
2427 }
2428 start = end;
2429 }
2430
2431 skb_walk_frags(skb, frag_iter) {
2432 int end;
2433
2434 WARN_ON(start > offset + len);
2435
2436 end = start + frag_iter->len;
2437 if ((copy = end - offset) > 0) {
2438 if (copy > len)
2439 copy = len;
2440 if (skb_store_bits(frag_iter, offset - start,
2441 from, copy))
2442 goto fault;
2443 if ((len -= copy) == 0)
2444 return 0;
2445 offset += copy;
2446 from += copy;
2447 }
2448 start = end;
2449 }
2450 if (!len)
2451 return 0;
2452
2453fault:
2454 return -EFAULT;
2455}
2456EXPORT_SYMBOL(skb_store_bits);
2457
2458/* Checksum skb data. */
2459__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2460 __wsum csum, const struct skb_checksum_ops *ops)
2461{
2462 int start = skb_headlen(skb);
2463 int i, copy = start - offset;
2464 struct sk_buff *frag_iter;
2465 int pos = 0;
2466
2467 /* Checksum header. */
2468 if (copy > 0) {
2469 if (copy > len)
2470 copy = len;
2471 csum = ops->update(skb->data + offset, copy, csum);
2472 if ((len -= copy) == 0)
2473 return csum;
2474 offset += copy;
2475 pos = copy;
2476 }
2477
2478 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2479 int end;
2480 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2481
2482 WARN_ON(start > offset + len);
2483
2484 end = start + skb_frag_size(frag);
2485 if ((copy = end - offset) > 0) {
2486 u32 p_off, p_len, copied;
2487 struct page *p;
2488 __wsum csum2;
2489 u8 *vaddr;
2490
2491 if (copy > len)
2492 copy = len;
2493
2494 skb_frag_foreach_page(frag,
2495 frag->page_offset + offset - start,
2496 copy, p, p_off, p_len, copied) {
2497 vaddr = kmap_atomic(p);
2498 csum2 = ops->update(vaddr + p_off, p_len, 0);
2499 kunmap_atomic(vaddr);
2500 csum = ops->combine(csum, csum2, pos, p_len);
2501 pos += p_len;
2502 }
2503
2504 if (!(len -= copy))
2505 return csum;
2506 offset += copy;
2507 }
2508 start = end;
2509 }
2510
2511 skb_walk_frags(skb, frag_iter) {
2512 int end;
2513
2514 WARN_ON(start > offset + len);
2515
2516 end = start + frag_iter->len;
2517 if ((copy = end - offset) > 0) {
2518 __wsum csum2;
2519 if (copy > len)
2520 copy = len;
2521 csum2 = __skb_checksum(frag_iter, offset - start,
2522 copy, 0, ops);
2523 csum = ops->combine(csum, csum2, pos, copy);
2524 if ((len -= copy) == 0)
2525 return csum;
2526 offset += copy;
2527 pos += copy;
2528 }
2529 start = end;
2530 }
2531 BUG_ON(len);
2532
2533 return csum;
2534}
2535EXPORT_SYMBOL(__skb_checksum);
2536
2537__wsum skb_checksum(const struct sk_buff *skb, int offset,
2538 int len, __wsum csum)
2539{
2540 const struct skb_checksum_ops ops = {
2541 .update = csum_partial_ext,
2542 .combine = csum_block_add_ext,
2543 };
2544
2545 return __skb_checksum(skb, offset, len, csum, &ops);
2546}
2547EXPORT_SYMBOL(skb_checksum);
2548
2549/* Both of above in one bottle. */
2550
2551__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2552 u8 *to, int len, __wsum csum)
2553{
2554 int start = skb_headlen(skb);
2555 int i, copy = start - offset;
2556 struct sk_buff *frag_iter;
2557 int pos = 0;
2558
2559 /* Copy header. */
2560 if (copy > 0) {
2561 if (copy > len)
2562 copy = len;
2563 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2564 copy, csum);
2565 if ((len -= copy) == 0)
2566 return csum;
2567 offset += copy;
2568 to += copy;
2569 pos = copy;
2570 }
2571
2572 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2573 int end;
2574
2575 WARN_ON(start > offset + len);
2576
2577 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2578 if ((copy = end - offset) > 0) {
2579 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2580 u32 p_off, p_len, copied;
2581 struct page *p;
2582 __wsum csum2;
2583 u8 *vaddr;
2584
2585 if (copy > len)
2586 copy = len;
2587
2588 skb_frag_foreach_page(frag,
2589 frag->page_offset + offset - start,
2590 copy, p, p_off, p_len, copied) {
2591 vaddr = kmap_atomic(p);
2592 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2593 to + copied,
2594 p_len, 0);
2595 kunmap_atomic(vaddr);
2596 csum = csum_block_add(csum, csum2, pos);
2597 pos += p_len;
2598 }
2599
2600 if (!(len -= copy))
2601 return csum;
2602 offset += copy;
2603 to += copy;
2604 }
2605 start = end;
2606 }
2607
2608 skb_walk_frags(skb, frag_iter) {
2609 __wsum csum2;
2610 int end;
2611
2612 WARN_ON(start > offset + len);
2613
2614 end = start + frag_iter->len;
2615 if ((copy = end - offset) > 0) {
2616 if (copy > len)
2617 copy = len;
2618 csum2 = skb_copy_and_csum_bits(frag_iter,
2619 offset - start,
2620 to, copy, 0);
2621 csum = csum_block_add(csum, csum2, pos);
2622 if ((len -= copy) == 0)
2623 return csum;
2624 offset += copy;
2625 to += copy;
2626 pos += copy;
2627 }
2628 start = end;
2629 }
2630 BUG_ON(len);
2631 return csum;
2632}
2633EXPORT_SYMBOL(skb_copy_and_csum_bits);
2634
2635static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2636{
2637 net_warn_ratelimited(
2638 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2639 __func__);
2640 return 0;
2641}
2642
2643static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2644 int offset, int len)
2645{
2646 net_warn_ratelimited(
2647 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2648 __func__);
2649 return 0;
2650}
2651
2652static const struct skb_checksum_ops default_crc32c_ops = {
2653 .update = warn_crc32c_csum_update,
2654 .combine = warn_crc32c_csum_combine,
2655};
2656
2657const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2658 &default_crc32c_ops;
2659EXPORT_SYMBOL(crc32c_csum_stub);
2660
2661 /**
2662 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2663 * @from: source buffer
2664 *
2665 * Calculates the amount of linear headroom needed in the 'to' skb passed
2666 * into skb_zerocopy().
2667 */
2668unsigned int
2669skb_zerocopy_headlen(const struct sk_buff *from)
2670{
2671 unsigned int hlen = 0;
2672
2673 if (!from->head_frag ||
2674 skb_headlen(from) < L1_CACHE_BYTES ||
2675 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2676 hlen = skb_headlen(from);
2677
2678 if (skb_has_frag_list(from))
2679 hlen = from->len;
2680
2681 return hlen;
2682}
2683EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2684
2685/**
2686 * skb_zerocopy - Zero copy skb to skb
2687 * @to: destination buffer
2688 * @from: source buffer
2689 * @len: number of bytes to copy from source buffer
2690 * @hlen: size of linear headroom in destination buffer
2691 *
2692 * Copies up to `len` bytes from `from` to `to` by creating references
2693 * to the frags in the source buffer.
2694 *
2695 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2696 * headroom in the `to` buffer.
2697 *
2698 * Return value:
2699 * 0: everything is OK
2700 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2701 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2702 */
2703int
2704skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2705{
2706 int i, j = 0;
2707 int plen = 0; /* length of skb->head fragment */
2708 int ret;
2709 struct page *page;
2710 unsigned int offset;
2711
2712 BUG_ON(!from->head_frag && !hlen);
2713
2714 /* dont bother with small payloads */
2715 if (len <= skb_tailroom(to))
2716 return skb_copy_bits(from, 0, skb_put(to, len), len);
2717
2718 if (hlen) {
2719 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2720 if (unlikely(ret))
2721 return ret;
2722 len -= hlen;
2723 } else {
2724 plen = min_t(int, skb_headlen(from), len);
2725 if (plen) {
2726 page = virt_to_head_page(from->head);
2727 offset = from->data - (unsigned char *)page_address(page);
2728 __skb_fill_page_desc(to, 0, page, offset, plen);
2729 get_page(page);
2730 j = 1;
2731 len -= plen;
2732 }
2733 }
2734
2735 to->truesize += len + plen;
2736 to->len += len + plen;
2737 to->data_len += len + plen;
2738
2739 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2740 skb_tx_error(from);
2741 return -ENOMEM;
2742 }
2743 skb_zerocopy_clone(to, from, GFP_ATOMIC);
2744
2745 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2746 if (!len)
2747 break;
2748 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2749 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2750 len -= skb_shinfo(to)->frags[j].size;
2751 skb_frag_ref(to, j);
2752 j++;
2753 }
2754 skb_shinfo(to)->nr_frags = j;
2755
2756 return 0;
2757}
2758EXPORT_SYMBOL_GPL(skb_zerocopy);
2759
2760void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2761{
2762 __wsum csum;
2763 long csstart;
2764
2765 if (skb->ip_summed == CHECKSUM_PARTIAL)
2766 csstart = skb_checksum_start_offset(skb);
2767 else
2768 csstart = skb_headlen(skb);
2769
2770 BUG_ON(csstart > skb_headlen(skb));
2771
2772 skb_copy_from_linear_data(skb, to, csstart);
2773
2774 csum = 0;
2775 if (csstart != skb->len)
2776 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2777 skb->len - csstart, 0);
2778
2779 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2780 long csstuff = csstart + skb->csum_offset;
2781
2782 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2783 }
2784}
2785EXPORT_SYMBOL(skb_copy_and_csum_dev);
2786
2787/**
2788 * skb_dequeue - remove from the head of the queue
2789 * @list: list to dequeue from
2790 *
2791 * Remove the head of the list. The list lock is taken so the function
2792 * may be used safely with other locking list functions. The head item is
2793 * returned or %NULL if the list is empty.
2794 */
2795
2796struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2797{
2798 unsigned long flags;
2799 struct sk_buff *result;
2800
2801 spin_lock_irqsave(&list->lock, flags);
2802 result = __skb_dequeue(list);
2803 spin_unlock_irqrestore(&list->lock, flags);
2804 return result;
2805}
2806EXPORT_SYMBOL(skb_dequeue);
2807
2808/**
2809 * skb_dequeue_tail - remove from the tail of the queue
2810 * @list: list to dequeue from
2811 *
2812 * Remove the tail of the list. The list lock is taken so the function
2813 * may be used safely with other locking list functions. The tail item is
2814 * returned or %NULL if the list is empty.
2815 */
2816struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2817{
2818 unsigned long flags;
2819 struct sk_buff *result;
2820
2821 spin_lock_irqsave(&list->lock, flags);
2822 result = __skb_dequeue_tail(list);
2823 spin_unlock_irqrestore(&list->lock, flags);
2824 return result;
2825}
2826EXPORT_SYMBOL(skb_dequeue_tail);
2827
2828/**
2829 * skb_queue_purge - empty a list
2830 * @list: list to empty
2831 *
2832 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2833 * the list and one reference dropped. This function takes the list
2834 * lock and is atomic with respect to other list locking functions.
2835 */
2836void skb_queue_purge(struct sk_buff_head *list)
2837{
2838 struct sk_buff *skb;
2839 while ((skb = skb_dequeue(list)) != NULL)
2840 kfree_skb(skb);
2841}
2842EXPORT_SYMBOL(skb_queue_purge);
2843
2844/**
2845 * skb_rbtree_purge - empty a skb rbtree
2846 * @root: root of the rbtree to empty
2847 *
2848 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2849 * the list and one reference dropped. This function does not take
2850 * any lock. Synchronization should be handled by the caller (e.g., TCP
2851 * out-of-order queue is protected by the socket lock).
2852 */
2853void skb_rbtree_purge(struct rb_root *root)
2854{
2855 struct sk_buff *skb, *next;
2856
2857 rbtree_postorder_for_each_entry_safe(skb, next, root, rbnode)
2858 kfree_skb(skb);
2859
2860 *root = RB_ROOT;
2861}
2862
2863/**
2864 * skb_queue_head - queue a buffer at the list head
2865 * @list: list to use
2866 * @newsk: buffer to queue
2867 *
2868 * Queue a buffer at the start of the list. This function takes the
2869 * list lock and can be used safely with other locking &sk_buff functions
2870 * safely.
2871 *
2872 * A buffer cannot be placed on two lists at the same time.
2873 */
2874void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2875{
2876 unsigned long flags;
2877
2878 spin_lock_irqsave(&list->lock, flags);
2879 __skb_queue_head(list, newsk);
2880 spin_unlock_irqrestore(&list->lock, flags);
2881}
2882EXPORT_SYMBOL(skb_queue_head);
2883
2884/**
2885 * skb_queue_tail - queue a buffer at the list tail
2886 * @list: list to use
2887 * @newsk: buffer to queue
2888 *
2889 * Queue a buffer at the tail of the list. This function takes the
2890 * list lock and can be used safely with other locking &sk_buff functions
2891 * safely.
2892 *
2893 * A buffer cannot be placed on two lists at the same time.
2894 */
2895void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2896{
2897 unsigned long flags;
2898
2899 spin_lock_irqsave(&list->lock, flags);
2900 __skb_queue_tail(list, newsk);
2901 spin_unlock_irqrestore(&list->lock, flags);
2902}
2903EXPORT_SYMBOL(skb_queue_tail);
2904
2905/**
2906 * skb_unlink - remove a buffer from a list
2907 * @skb: buffer to remove
2908 * @list: list to use
2909 *
2910 * Remove a packet from a list. The list locks are taken and this
2911 * function is atomic with respect to other list locked calls
2912 *
2913 * You must know what list the SKB is on.
2914 */
2915void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2916{
2917 unsigned long flags;
2918
2919 spin_lock_irqsave(&list->lock, flags);
2920 __skb_unlink(skb, list);
2921 spin_unlock_irqrestore(&list->lock, flags);
2922}
2923EXPORT_SYMBOL(skb_unlink);
2924
2925/**
2926 * skb_append - append a buffer
2927 * @old: buffer to insert after
2928 * @newsk: buffer to insert
2929 * @list: list to use
2930 *
2931 * Place a packet after a given packet in a list. The list locks are taken
2932 * and this function is atomic with respect to other list locked calls.
2933 * A buffer cannot be placed on two lists at the same time.
2934 */
2935void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2936{
2937 unsigned long flags;
2938
2939 spin_lock_irqsave(&list->lock, flags);
2940 __skb_queue_after(list, old, newsk);
2941 spin_unlock_irqrestore(&list->lock, flags);
2942}
2943EXPORT_SYMBOL(skb_append);
2944
2945/**
2946 * skb_insert - insert a buffer
2947 * @old: buffer to insert before
2948 * @newsk: buffer to insert
2949 * @list: list to use
2950 *
2951 * Place a packet before a given packet in a list. The list locks are
2952 * taken and this function is atomic with respect to other list locked
2953 * calls.
2954 *
2955 * A buffer cannot be placed on two lists at the same time.
2956 */
2957void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2958{
2959 unsigned long flags;
2960
2961 spin_lock_irqsave(&list->lock, flags);
2962 __skb_insert(newsk, old->prev, old, list);
2963 spin_unlock_irqrestore(&list->lock, flags);
2964}
2965EXPORT_SYMBOL(skb_insert);
2966
2967static inline void skb_split_inside_header(struct sk_buff *skb,
2968 struct sk_buff* skb1,
2969 const u32 len, const int pos)
2970{
2971 int i;
2972
2973 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2974 pos - len);
2975 /* And move data appendix as is. */
2976 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2977 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2978
2979 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2980 skb_shinfo(skb)->nr_frags = 0;
2981 skb1->data_len = skb->data_len;
2982 skb1->len += skb1->data_len;
2983 skb->data_len = 0;
2984 skb->len = len;
2985 skb_set_tail_pointer(skb, len);
2986}
2987
2988static inline void skb_split_no_header(struct sk_buff *skb,
2989 struct sk_buff* skb1,
2990 const u32 len, int pos)
2991{
2992 int i, k = 0;
2993 const int nfrags = skb_shinfo(skb)->nr_frags;
2994
2995 skb_shinfo(skb)->nr_frags = 0;
2996 skb1->len = skb1->data_len = skb->len - len;
2997 skb->len = len;
2998 skb->data_len = len - pos;
2999
3000 for (i = 0; i < nfrags; i++) {
3001 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3002
3003 if (pos + size > len) {
3004 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3005
3006 if (pos < len) {
3007 /* Split frag.
3008 * We have two variants in this case:
3009 * 1. Move all the frag to the second
3010 * part, if it is possible. F.e.
3011 * this approach is mandatory for TUX,
3012 * where splitting is expensive.
3013 * 2. Split is accurately. We make this.
3014 */
3015 skb_frag_ref(skb, i);
3016 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3017 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3018 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3019 skb_shinfo(skb)->nr_frags++;
3020 }
3021 k++;
3022 } else
3023 skb_shinfo(skb)->nr_frags++;
3024 pos += size;
3025 }
3026 skb_shinfo(skb1)->nr_frags = k;
3027}
3028
3029/**
3030 * skb_split - Split fragmented skb to two parts at length len.
3031 * @skb: the buffer to split
3032 * @skb1: the buffer to receive the second part
3033 * @len: new length for skb
3034 */
3035void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3036{
3037 int pos = skb_headlen(skb);
3038
3039 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3040 SKBTX_SHARED_FRAG;
3041 skb_zerocopy_clone(skb1, skb, 0);
3042 if (len < pos) /* Split line is inside header. */
3043 skb_split_inside_header(skb, skb1, len, pos);
3044 else /* Second chunk has no header, nothing to copy. */
3045 skb_split_no_header(skb, skb1, len, pos);
3046}
3047EXPORT_SYMBOL(skb_split);
3048
3049/* Shifting from/to a cloned skb is a no-go.
3050 *
3051 * Caller cannot keep skb_shinfo related pointers past calling here!
3052 */
3053static int skb_prepare_for_shift(struct sk_buff *skb)
3054{
3055 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3056}
3057
3058/**
3059 * skb_shift - Shifts paged data partially from skb to another
3060 * @tgt: buffer into which tail data gets added
3061 * @skb: buffer from which the paged data comes from
3062 * @shiftlen: shift up to this many bytes
3063 *
3064 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3065 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3066 * It's up to caller to free skb if everything was shifted.
3067 *
3068 * If @tgt runs out of frags, the whole operation is aborted.
3069 *
3070 * Skb cannot include anything else but paged data while tgt is allowed
3071 * to have non-paged data as well.
3072 *
3073 * TODO: full sized shift could be optimized but that would need
3074 * specialized skb free'er to handle frags without up-to-date nr_frags.
3075 */
3076int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3077{
3078 int from, to, merge, todo;
3079 struct skb_frag_struct *fragfrom, *fragto;
3080
3081 BUG_ON(shiftlen > skb->len);
3082
3083 if (skb_headlen(skb))
3084 return 0;
3085 if (skb_zcopy(tgt) || skb_zcopy(skb))
3086 return 0;
3087
3088 todo = shiftlen;
3089 from = 0;
3090 to = skb_shinfo(tgt)->nr_frags;
3091 fragfrom = &skb_shinfo(skb)->frags[from];
3092
3093 /* Actual merge is delayed until the point when we know we can
3094 * commit all, so that we don't have to undo partial changes
3095 */
3096 if (!to ||
3097 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3098 fragfrom->page_offset)) {
3099 merge = -1;
3100 } else {
3101 merge = to - 1;
3102
3103 todo -= skb_frag_size(fragfrom);
3104 if (todo < 0) {
3105 if (skb_prepare_for_shift(skb) ||
3106 skb_prepare_for_shift(tgt))
3107 return 0;
3108
3109 /* All previous frag pointers might be stale! */
3110 fragfrom = &skb_shinfo(skb)->frags[from];
3111 fragto = &skb_shinfo(tgt)->frags[merge];
3112
3113 skb_frag_size_add(fragto, shiftlen);
3114 skb_frag_size_sub(fragfrom, shiftlen);
3115 fragfrom->page_offset += shiftlen;
3116
3117 goto onlymerged;
3118 }
3119
3120 from++;
3121 }
3122
3123 /* Skip full, not-fitting skb to avoid expensive operations */
3124 if ((shiftlen == skb->len) &&
3125 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3126 return 0;
3127
3128 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3129 return 0;
3130
3131 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3132 if (to == MAX_SKB_FRAGS)
3133 return 0;
3134
3135 fragfrom = &skb_shinfo(skb)->frags[from];
3136 fragto = &skb_shinfo(tgt)->frags[to];
3137
3138 if (todo >= skb_frag_size(fragfrom)) {
3139 *fragto = *fragfrom;
3140 todo -= skb_frag_size(fragfrom);
3141 from++;
3142 to++;
3143
3144 } else {
3145 __skb_frag_ref(fragfrom);
3146 fragto->page = fragfrom->page;
3147 fragto->page_offset = fragfrom->page_offset;
3148 skb_frag_size_set(fragto, todo);
3149
3150 fragfrom->page_offset += todo;
3151 skb_frag_size_sub(fragfrom, todo);
3152 todo = 0;
3153
3154 to++;
3155 break;
3156 }
3157 }
3158
3159 /* Ready to "commit" this state change to tgt */
3160 skb_shinfo(tgt)->nr_frags = to;
3161
3162 if (merge >= 0) {
3163 fragfrom = &skb_shinfo(skb)->frags[0];
3164 fragto = &skb_shinfo(tgt)->frags[merge];
3165
3166 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3167 __skb_frag_unref(fragfrom);
3168 }
3169
3170 /* Reposition in the original skb */
3171 to = 0;
3172 while (from < skb_shinfo(skb)->nr_frags)
3173 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3174 skb_shinfo(skb)->nr_frags = to;
3175
3176 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3177
3178onlymerged:
3179 /* Most likely the tgt won't ever need its checksum anymore, skb on
3180 * the other hand might need it if it needs to be resent
3181 */
3182 tgt->ip_summed = CHECKSUM_PARTIAL;
3183 skb->ip_summed = CHECKSUM_PARTIAL;
3184
3185 /* Yak, is it really working this way? Some helper please? */
3186 skb->len -= shiftlen;
3187 skb->data_len -= shiftlen;
3188 skb->truesize -= shiftlen;
3189 tgt->len += shiftlen;
3190 tgt->data_len += shiftlen;
3191 tgt->truesize += shiftlen;
3192
3193 return shiftlen;
3194}
3195
3196/**
3197 * skb_prepare_seq_read - Prepare a sequential read of skb data
3198 * @skb: the buffer to read
3199 * @from: lower offset of data to be read
3200 * @to: upper offset of data to be read
3201 * @st: state variable
3202 *
3203 * Initializes the specified state variable. Must be called before
3204 * invoking skb_seq_read() for the first time.
3205 */
3206void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3207 unsigned int to, struct skb_seq_state *st)
3208{
3209 st->lower_offset = from;
3210 st->upper_offset = to;
3211 st->root_skb = st->cur_skb = skb;
3212 st->frag_idx = st->stepped_offset = 0;
3213 st->frag_data = NULL;
3214}
3215EXPORT_SYMBOL(skb_prepare_seq_read);
3216
3217/**
3218 * skb_seq_read - Sequentially read skb data
3219 * @consumed: number of bytes consumed by the caller so far
3220 * @data: destination pointer for data to be returned
3221 * @st: state variable
3222 *
3223 * Reads a block of skb data at @consumed relative to the
3224 * lower offset specified to skb_prepare_seq_read(). Assigns
3225 * the head of the data block to @data and returns the length
3226 * of the block or 0 if the end of the skb data or the upper
3227 * offset has been reached.
3228 *
3229 * The caller is not required to consume all of the data
3230 * returned, i.e. @consumed is typically set to the number
3231 * of bytes already consumed and the next call to
3232 * skb_seq_read() will return the remaining part of the block.
3233 *
3234 * Note 1: The size of each block of data returned can be arbitrary,
3235 * this limitation is the cost for zerocopy sequential
3236 * reads of potentially non linear data.
3237 *
3238 * Note 2: Fragment lists within fragments are not implemented
3239 * at the moment, state->root_skb could be replaced with
3240 * a stack for this purpose.
3241 */
3242unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3243 struct skb_seq_state *st)
3244{
3245 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3246 skb_frag_t *frag;
3247
3248 if (unlikely(abs_offset >= st->upper_offset)) {
3249 if (st->frag_data) {
3250 kunmap_atomic(st->frag_data);
3251 st->frag_data = NULL;
3252 }
3253 return 0;
3254 }
3255
3256next_skb:
3257 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3258
3259 if (abs_offset < block_limit && !st->frag_data) {
3260 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3261 return block_limit - abs_offset;
3262 }
3263
3264 if (st->frag_idx == 0 && !st->frag_data)
3265 st->stepped_offset += skb_headlen(st->cur_skb);
3266
3267 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3268 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3269 block_limit = skb_frag_size(frag) + st->stepped_offset;
3270
3271 if (abs_offset < block_limit) {
3272 if (!st->frag_data)
3273 st->frag_data = kmap_atomic(skb_frag_page(frag));
3274
3275 *data = (u8 *) st->frag_data + frag->page_offset +
3276 (abs_offset - st->stepped_offset);
3277
3278 return block_limit - abs_offset;
3279 }
3280
3281 if (st->frag_data) {
3282 kunmap_atomic(st->frag_data);
3283 st->frag_data = NULL;
3284 }
3285
3286 st->frag_idx++;
3287 st->stepped_offset += skb_frag_size(frag);
3288 }
3289
3290 if (st->frag_data) {
3291 kunmap_atomic(st->frag_data);
3292 st->frag_data = NULL;
3293 }
3294
3295 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3296 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3297 st->frag_idx = 0;
3298 goto next_skb;
3299 } else if (st->cur_skb->next) {
3300 st->cur_skb = st->cur_skb->next;
3301 st->frag_idx = 0;
3302 goto next_skb;
3303 }
3304
3305 return 0;
3306}
3307EXPORT_SYMBOL(skb_seq_read);
3308
3309/**
3310 * skb_abort_seq_read - Abort a sequential read of skb data
3311 * @st: state variable
3312 *
3313 * Must be called if skb_seq_read() was not called until it
3314 * returned 0.
3315 */
3316void skb_abort_seq_read(struct skb_seq_state *st)
3317{
3318 if (st->frag_data)
3319 kunmap_atomic(st->frag_data);
3320}
3321EXPORT_SYMBOL(skb_abort_seq_read);
3322
3323#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3324
3325static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3326 struct ts_config *conf,
3327 struct ts_state *state)
3328{
3329 return skb_seq_read(offset, text, TS_SKB_CB(state));
3330}
3331
3332static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3333{
3334 skb_abort_seq_read(TS_SKB_CB(state));
3335}
3336
3337/**
3338 * skb_find_text - Find a text pattern in skb data
3339 * @skb: the buffer to look in
3340 * @from: search offset
3341 * @to: search limit
3342 * @config: textsearch configuration
3343 *
3344 * Finds a pattern in the skb data according to the specified
3345 * textsearch configuration. Use textsearch_next() to retrieve
3346 * subsequent occurrences of the pattern. Returns the offset
3347 * to the first occurrence or UINT_MAX if no match was found.
3348 */
3349unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3350 unsigned int to, struct ts_config *config)
3351{
3352 struct ts_state state;
3353 unsigned int ret;
3354
3355 config->get_next_block = skb_ts_get_next_block;
3356 config->finish = skb_ts_finish;
3357
3358 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3359
3360 ret = textsearch_find(config, &state);
3361 return (ret <= to - from ? ret : UINT_MAX);
3362}
3363EXPORT_SYMBOL(skb_find_text);
3364
3365/**
3366 * skb_append_datato_frags - append the user data to a skb
3367 * @sk: sock structure
3368 * @skb: skb structure to be appended with user data.
3369 * @getfrag: call back function to be used for getting the user data
3370 * @from: pointer to user message iov
3371 * @length: length of the iov message
3372 *
3373 * Description: This procedure append the user data in the fragment part
3374 * of the skb if any page alloc fails user this procedure returns -ENOMEM
3375 */
3376int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
3377 int (*getfrag)(void *from, char *to, int offset,
3378 int len, int odd, struct sk_buff *skb),
3379 void *from, int length)
3380{
3381 int frg_cnt = skb_shinfo(skb)->nr_frags;
3382 int copy;
3383 int offset = 0;
3384 int ret;
3385 struct page_frag *pfrag = ¤t->task_frag;
3386
3387 do {
3388 /* Return error if we don't have space for new frag */
3389 if (frg_cnt >= MAX_SKB_FRAGS)
3390 return -EMSGSIZE;
3391
3392 if (!sk_page_frag_refill(sk, pfrag))
3393 return -ENOMEM;
3394
3395 /* copy the user data to page */
3396 copy = min_t(int, length, pfrag->size - pfrag->offset);
3397
3398 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3399 offset, copy, 0, skb);
3400 if (ret < 0)
3401 return -EFAULT;
3402
3403 /* copy was successful so update the size parameters */
3404 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3405 copy);
3406 frg_cnt++;
3407 pfrag->offset += copy;
3408 get_page(pfrag->page);
3409
3410 skb->truesize += copy;
3411 refcount_add(copy, &sk->sk_wmem_alloc);
3412 skb->len += copy;
3413 skb->data_len += copy;
3414 offset += copy;
3415 length -= copy;
3416
3417 } while (length > 0);
3418
3419 return 0;
3420}
3421EXPORT_SYMBOL(skb_append_datato_frags);
3422
3423int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3424 int offset, size_t size)
3425{
3426 int i = skb_shinfo(skb)->nr_frags;
3427
3428 if (skb_can_coalesce(skb, i, page, offset)) {
3429 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3430 } else if (i < MAX_SKB_FRAGS) {
3431 get_page(page);
3432 skb_fill_page_desc(skb, i, page, offset, size);
3433 } else {
3434 return -EMSGSIZE;
3435 }
3436
3437 return 0;
3438}
3439EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3440
3441/**
3442 * skb_pull_rcsum - pull skb and update receive checksum
3443 * @skb: buffer to update
3444 * @len: length of data pulled
3445 *
3446 * This function performs an skb_pull on the packet and updates
3447 * the CHECKSUM_COMPLETE checksum. It should be used on
3448 * receive path processing instead of skb_pull unless you know
3449 * that the checksum difference is zero (e.g., a valid IP header)
3450 * or you are setting ip_summed to CHECKSUM_NONE.
3451 */
3452void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3453{
3454 unsigned char *data = skb->data;
3455
3456 BUG_ON(len > skb->len);
3457 __skb_pull(skb, len);
3458 skb_postpull_rcsum(skb, data, len);
3459 return skb->data;
3460}
3461EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3462
3463/**
3464 * skb_segment - Perform protocol segmentation on skb.
3465 * @head_skb: buffer to segment
3466 * @features: features for the output path (see dev->features)
3467 *
3468 * This function performs segmentation on the given skb. It returns
3469 * a pointer to the first in a list of new skbs for the segments.
3470 * In case of error it returns ERR_PTR(err).
3471 */
3472struct sk_buff *skb_segment(struct sk_buff *head_skb,
3473 netdev_features_t features)
3474{
3475 struct sk_buff *segs = NULL;
3476 struct sk_buff *tail = NULL;
3477 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3478 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3479 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3480 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3481 struct sk_buff *frag_skb = head_skb;
3482 unsigned int offset = doffset;
3483 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3484 unsigned int partial_segs = 0;
3485 unsigned int headroom;
3486 unsigned int len = head_skb->len;
3487 __be16 proto;
3488 bool csum, sg;
3489 int nfrags = skb_shinfo(head_skb)->nr_frags;
3490 int err = -ENOMEM;
3491 int i = 0;
3492 int pos;
3493 int dummy;
3494
3495 __skb_push(head_skb, doffset);
3496 proto = skb_network_protocol(head_skb, &dummy);
3497 if (unlikely(!proto))
3498 return ERR_PTR(-EINVAL);
3499
3500 sg = !!(features & NETIF_F_SG);
3501 csum = !!can_checksum_protocol(features, proto);
3502
3503 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3504 if (!(features & NETIF_F_GSO_PARTIAL)) {
3505 struct sk_buff *iter;
3506 unsigned int frag_len;
3507
3508 if (!list_skb ||
3509 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3510 goto normal;
3511
3512 /* If we get here then all the required
3513 * GSO features except frag_list are supported.
3514 * Try to split the SKB to multiple GSO SKBs
3515 * with no frag_list.
3516 * Currently we can do that only when the buffers don't
3517 * have a linear part and all the buffers except
3518 * the last are of the same length.
3519 */
3520 frag_len = list_skb->len;
3521 skb_walk_frags(head_skb, iter) {
3522 if (frag_len != iter->len && iter->next)
3523 goto normal;
3524 if (skb_headlen(iter) && !iter->head_frag)
3525 goto normal;
3526
3527 len -= iter->len;
3528 }
3529
3530 if (len != frag_len)
3531 goto normal;
3532 }
3533
3534 /* GSO partial only requires that we trim off any excess that
3535 * doesn't fit into an MSS sized block, so take care of that
3536 * now.
3537 */
3538 partial_segs = len / mss;
3539 if (partial_segs > 1)
3540 mss *= partial_segs;
3541 else
3542 partial_segs = 0;
3543 }
3544
3545normal:
3546 headroom = skb_headroom(head_skb);
3547 pos = skb_headlen(head_skb);
3548
3549 do {
3550 struct sk_buff *nskb;
3551 skb_frag_t *nskb_frag;
3552 int hsize;
3553 int size;
3554
3555 if (unlikely(mss == GSO_BY_FRAGS)) {
3556 len = list_skb->len;
3557 } else {
3558 len = head_skb->len - offset;
3559 if (len > mss)
3560 len = mss;
3561 }
3562
3563 hsize = skb_headlen(head_skb) - offset;
3564 if (hsize < 0)
3565 hsize = 0;
3566 if (hsize > len || !sg)
3567 hsize = len;
3568
3569 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3570 (skb_headlen(list_skb) == len || sg)) {
3571 BUG_ON(skb_headlen(list_skb) > len);
3572
3573 i = 0;
3574 nfrags = skb_shinfo(list_skb)->nr_frags;
3575 frag = skb_shinfo(list_skb)->frags;
3576 frag_skb = list_skb;
3577 pos += skb_headlen(list_skb);
3578
3579 while (pos < offset + len) {
3580 BUG_ON(i >= nfrags);
3581
3582 size = skb_frag_size(frag);
3583 if (pos + size > offset + len)
3584 break;
3585
3586 i++;
3587 pos += size;
3588 frag++;
3589 }
3590
3591 nskb = skb_clone(list_skb, GFP_ATOMIC);
3592 list_skb = list_skb->next;
3593
3594 if (unlikely(!nskb))
3595 goto err;
3596
3597 if (unlikely(pskb_trim(nskb, len))) {
3598 kfree_skb(nskb);
3599 goto err;
3600 }
3601
3602 hsize = skb_end_offset(nskb);
3603 if (skb_cow_head(nskb, doffset + headroom)) {
3604 kfree_skb(nskb);
3605 goto err;
3606 }
3607
3608 nskb->truesize += skb_end_offset(nskb) - hsize;
3609 skb_release_head_state(nskb);
3610 __skb_push(nskb, doffset);
3611 } else {
3612 nskb = __alloc_skb(hsize + doffset + headroom,
3613 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3614 NUMA_NO_NODE);
3615
3616 if (unlikely(!nskb))
3617 goto err;
3618
3619 skb_reserve(nskb, headroom);
3620 __skb_put(nskb, doffset);
3621 }
3622
3623 if (segs)
3624 tail->next = nskb;
3625 else
3626 segs = nskb;
3627 tail = nskb;
3628
3629 __copy_skb_header(nskb, head_skb);
3630
3631 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3632 skb_reset_mac_len(nskb);
3633
3634 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3635 nskb->data - tnl_hlen,
3636 doffset + tnl_hlen);
3637
3638 if (nskb->len == len + doffset)
3639 goto perform_csum_check;
3640
3641 if (!sg) {
3642 if (!nskb->remcsum_offload)
3643 nskb->ip_summed = CHECKSUM_NONE;
3644 SKB_GSO_CB(nskb)->csum =
3645 skb_copy_and_csum_bits(head_skb, offset,
3646 skb_put(nskb, len),
3647 len, 0);
3648 SKB_GSO_CB(nskb)->csum_start =
3649 skb_headroom(nskb) + doffset;
3650 continue;
3651 }
3652
3653 nskb_frag = skb_shinfo(nskb)->frags;
3654
3655 skb_copy_from_linear_data_offset(head_skb, offset,
3656 skb_put(nskb, hsize), hsize);
3657
3658 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3659 SKBTX_SHARED_FRAG;
3660 if (skb_zerocopy_clone(nskb, head_skb, GFP_ATOMIC))
3661 goto err;
3662
3663 while (pos < offset + len) {
3664 if (i >= nfrags) {
3665 BUG_ON(skb_headlen(list_skb));
3666
3667 i = 0;
3668 nfrags = skb_shinfo(list_skb)->nr_frags;
3669 frag = skb_shinfo(list_skb)->frags;
3670 frag_skb = list_skb;
3671
3672 BUG_ON(!nfrags);
3673
3674 list_skb = list_skb->next;
3675 }
3676
3677 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3678 MAX_SKB_FRAGS)) {
3679 net_warn_ratelimited(
3680 "skb_segment: too many frags: %u %u\n",
3681 pos, mss);
3682 goto err;
3683 }
3684
3685 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3686 goto err;
3687
3688 *nskb_frag = *frag;
3689 __skb_frag_ref(nskb_frag);
3690 size = skb_frag_size(nskb_frag);
3691
3692 if (pos < offset) {
3693 nskb_frag->page_offset += offset - pos;
3694 skb_frag_size_sub(nskb_frag, offset - pos);
3695 }
3696
3697 skb_shinfo(nskb)->nr_frags++;
3698
3699 if (pos + size <= offset + len) {
3700 i++;
3701 frag++;
3702 pos += size;
3703 } else {
3704 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3705 goto skip_fraglist;
3706 }
3707
3708 nskb_frag++;
3709 }
3710
3711skip_fraglist:
3712 nskb->data_len = len - hsize;
3713 nskb->len += nskb->data_len;
3714 nskb->truesize += nskb->data_len;
3715
3716perform_csum_check:
3717 if (!csum) {
3718 if (skb_has_shared_frag(nskb)) {
3719 err = __skb_linearize(nskb);
3720 if (err)
3721 goto err;
3722 }
3723 if (!nskb->remcsum_offload)
3724 nskb->ip_summed = CHECKSUM_NONE;
3725 SKB_GSO_CB(nskb)->csum =
3726 skb_checksum(nskb, doffset,
3727 nskb->len - doffset, 0);
3728 SKB_GSO_CB(nskb)->csum_start =
3729 skb_headroom(nskb) + doffset;
3730 }
3731 } while ((offset += len) < head_skb->len);
3732
3733 /* Some callers want to get the end of the list.
3734 * Put it in segs->prev to avoid walking the list.
3735 * (see validate_xmit_skb_list() for example)
3736 */
3737 segs->prev = tail;
3738
3739 if (partial_segs) {
3740 struct sk_buff *iter;
3741 int type = skb_shinfo(head_skb)->gso_type;
3742 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3743
3744 /* Update type to add partial and then remove dodgy if set */
3745 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3746 type &= ~SKB_GSO_DODGY;
3747
3748 /* Update GSO info and prepare to start updating headers on
3749 * our way back down the stack of protocols.
3750 */
3751 for (iter = segs; iter; iter = iter->next) {
3752 skb_shinfo(iter)->gso_size = gso_size;
3753 skb_shinfo(iter)->gso_segs = partial_segs;
3754 skb_shinfo(iter)->gso_type = type;
3755 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3756 }
3757
3758 if (tail->len - doffset <= gso_size)
3759 skb_shinfo(tail)->gso_size = 0;
3760 else if (tail != segs)
3761 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3762 }
3763
3764 /* Following permits correct backpressure, for protocols
3765 * using skb_set_owner_w().
3766 * Idea is to tranfert ownership from head_skb to last segment.
3767 */
3768 if (head_skb->destructor == sock_wfree) {
3769 swap(tail->truesize, head_skb->truesize);
3770 swap(tail->destructor, head_skb->destructor);
3771 swap(tail->sk, head_skb->sk);
3772 }
3773 return segs;
3774
3775err:
3776 kfree_skb_list(segs);
3777 return ERR_PTR(err);
3778}
3779EXPORT_SYMBOL_GPL(skb_segment);
3780
3781int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3782{
3783 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3784 unsigned int offset = skb_gro_offset(skb);
3785 unsigned int headlen = skb_headlen(skb);
3786 unsigned int len = skb_gro_len(skb);
3787 struct sk_buff *lp, *p = *head;
3788 unsigned int delta_truesize;
3789
3790 if (unlikely(p->len + len >= 65536))
3791 return -E2BIG;
3792
3793 lp = NAPI_GRO_CB(p)->last;
3794 pinfo = skb_shinfo(lp);
3795
3796 if (headlen <= offset) {
3797 skb_frag_t *frag;
3798 skb_frag_t *frag2;
3799 int i = skbinfo->nr_frags;
3800 int nr_frags = pinfo->nr_frags + i;
3801
3802 if (nr_frags > MAX_SKB_FRAGS)
3803 goto merge;
3804
3805 offset -= headlen;
3806 pinfo->nr_frags = nr_frags;
3807 skbinfo->nr_frags = 0;
3808
3809 frag = pinfo->frags + nr_frags;
3810 frag2 = skbinfo->frags + i;
3811 do {
3812 *--frag = *--frag2;
3813 } while (--i);
3814
3815 frag->page_offset += offset;
3816 skb_frag_size_sub(frag, offset);
3817
3818 /* all fragments truesize : remove (head size + sk_buff) */
3819 delta_truesize = skb->truesize -
3820 SKB_TRUESIZE(skb_end_offset(skb));
3821
3822 skb->truesize -= skb->data_len;
3823 skb->len -= skb->data_len;
3824 skb->data_len = 0;
3825
3826 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3827 goto done;
3828 } else if (skb->head_frag) {
3829 int nr_frags = pinfo->nr_frags;
3830 skb_frag_t *frag = pinfo->frags + nr_frags;
3831 struct page *page = virt_to_head_page(skb->head);
3832 unsigned int first_size = headlen - offset;
3833 unsigned int first_offset;
3834
3835 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3836 goto merge;
3837
3838 first_offset = skb->data -
3839 (unsigned char *)page_address(page) +
3840 offset;
3841
3842 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3843
3844 frag->page.p = page;
3845 frag->page_offset = first_offset;
3846 skb_frag_size_set(frag, first_size);
3847
3848 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3849 /* We dont need to clear skbinfo->nr_frags here */
3850
3851 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3852 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3853 goto done;
3854 }
3855
3856merge:
3857 delta_truesize = skb->truesize;
3858 if (offset > headlen) {
3859 unsigned int eat = offset - headlen;
3860
3861 skbinfo->frags[0].page_offset += eat;
3862 skb_frag_size_sub(&skbinfo->frags[0], eat);
3863 skb->data_len -= eat;
3864 skb->len -= eat;
3865 offset = headlen;
3866 }
3867
3868 __skb_pull(skb, offset);
3869
3870 if (NAPI_GRO_CB(p)->last == p)
3871 skb_shinfo(p)->frag_list = skb;
3872 else
3873 NAPI_GRO_CB(p)->last->next = skb;
3874 NAPI_GRO_CB(p)->last = skb;
3875 __skb_header_release(skb);
3876 lp = p;
3877
3878done:
3879 NAPI_GRO_CB(p)->count++;
3880 p->data_len += len;
3881 p->truesize += delta_truesize;
3882 p->len += len;
3883 if (lp != p) {
3884 lp->data_len += len;
3885 lp->truesize += delta_truesize;
3886 lp->len += len;
3887 }
3888 NAPI_GRO_CB(skb)->same_flow = 1;
3889 return 0;
3890}
3891EXPORT_SYMBOL_GPL(skb_gro_receive);
3892
3893void __init skb_init(void)
3894{
3895 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3896 sizeof(struct sk_buff),
3897 0,
3898 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3899 NULL);
3900 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3901 sizeof(struct sk_buff_fclones),
3902 0,
3903 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3904 NULL);
3905}
3906
3907static int
3908__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3909 unsigned int recursion_level)
3910{
3911 int start = skb_headlen(skb);
3912 int i, copy = start - offset;
3913 struct sk_buff *frag_iter;
3914 int elt = 0;
3915
3916 if (unlikely(recursion_level >= 24))
3917 return -EMSGSIZE;
3918
3919 if (copy > 0) {
3920 if (copy > len)
3921 copy = len;
3922 sg_set_buf(sg, skb->data + offset, copy);
3923 elt++;
3924 if ((len -= copy) == 0)
3925 return elt;
3926 offset += copy;
3927 }
3928
3929 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3930 int end;
3931
3932 WARN_ON(start > offset + len);
3933
3934 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3935 if ((copy = end - offset) > 0) {
3936 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3937 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3938 return -EMSGSIZE;
3939
3940 if (copy > len)
3941 copy = len;
3942 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3943 frag->page_offset+offset-start);
3944 elt++;
3945 if (!(len -= copy))
3946 return elt;
3947 offset += copy;
3948 }
3949 start = end;
3950 }
3951
3952 skb_walk_frags(skb, frag_iter) {
3953 int end, ret;
3954
3955 WARN_ON(start > offset + len);
3956
3957 end = start + frag_iter->len;
3958 if ((copy = end - offset) > 0) {
3959 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3960 return -EMSGSIZE;
3961
3962 if (copy > len)
3963 copy = len;
3964 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3965 copy, recursion_level + 1);
3966 if (unlikely(ret < 0))
3967 return ret;
3968 elt += ret;
3969 if ((len -= copy) == 0)
3970 return elt;
3971 offset += copy;
3972 }
3973 start = end;
3974 }
3975 BUG_ON(len);
3976 return elt;
3977}
3978
3979/**
3980 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3981 * @skb: Socket buffer containing the buffers to be mapped
3982 * @sg: The scatter-gather list to map into
3983 * @offset: The offset into the buffer's contents to start mapping
3984 * @len: Length of buffer space to be mapped
3985 *
3986 * Fill the specified scatter-gather list with mappings/pointers into a
3987 * region of the buffer space attached to a socket buffer. Returns either
3988 * the number of scatterlist items used, or -EMSGSIZE if the contents
3989 * could not fit.
3990 */
3991int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3992{
3993 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
3994
3995 if (nsg <= 0)
3996 return nsg;
3997
3998 sg_mark_end(&sg[nsg - 1]);
3999
4000 return nsg;
4001}
4002EXPORT_SYMBOL_GPL(skb_to_sgvec);
4003
4004/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4005 * sglist without mark the sg which contain last skb data as the end.
4006 * So the caller can mannipulate sg list as will when padding new data after
4007 * the first call without calling sg_unmark_end to expend sg list.
4008 *
4009 * Scenario to use skb_to_sgvec_nomark:
4010 * 1. sg_init_table
4011 * 2. skb_to_sgvec_nomark(payload1)
4012 * 3. skb_to_sgvec_nomark(payload2)
4013 *
4014 * This is equivalent to:
4015 * 1. sg_init_table
4016 * 2. skb_to_sgvec(payload1)
4017 * 3. sg_unmark_end
4018 * 4. skb_to_sgvec(payload2)
4019 *
4020 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4021 * is more preferable.
4022 */
4023int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4024 int offset, int len)
4025{
4026 return __skb_to_sgvec(skb, sg, offset, len, 0);
4027}
4028EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4029
4030
4031
4032/**
4033 * skb_cow_data - Check that a socket buffer's data buffers are writable
4034 * @skb: The socket buffer to check.
4035 * @tailbits: Amount of trailing space to be added
4036 * @trailer: Returned pointer to the skb where the @tailbits space begins
4037 *
4038 * Make sure that the data buffers attached to a socket buffer are
4039 * writable. If they are not, private copies are made of the data buffers
4040 * and the socket buffer is set to use these instead.
4041 *
4042 * If @tailbits is given, make sure that there is space to write @tailbits
4043 * bytes of data beyond current end of socket buffer. @trailer will be
4044 * set to point to the skb in which this space begins.
4045 *
4046 * The number of scatterlist elements required to completely map the
4047 * COW'd and extended socket buffer will be returned.
4048 */
4049int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4050{
4051 int copyflag;
4052 int elt;
4053 struct sk_buff *skb1, **skb_p;
4054
4055 /* If skb is cloned or its head is paged, reallocate
4056 * head pulling out all the pages (pages are considered not writable
4057 * at the moment even if they are anonymous).
4058 */
4059 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4060 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4061 return -ENOMEM;
4062
4063 /* Easy case. Most of packets will go this way. */
4064 if (!skb_has_frag_list(skb)) {
4065 /* A little of trouble, not enough of space for trailer.
4066 * This should not happen, when stack is tuned to generate
4067 * good frames. OK, on miss we reallocate and reserve even more
4068 * space, 128 bytes is fair. */
4069
4070 if (skb_tailroom(skb) < tailbits &&
4071 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4072 return -ENOMEM;
4073
4074 /* Voila! */
4075 *trailer = skb;
4076 return 1;
4077 }
4078
4079 /* Misery. We are in troubles, going to mincer fragments... */
4080
4081 elt = 1;
4082 skb_p = &skb_shinfo(skb)->frag_list;
4083 copyflag = 0;
4084
4085 while ((skb1 = *skb_p) != NULL) {
4086 int ntail = 0;
4087
4088 /* The fragment is partially pulled by someone,
4089 * this can happen on input. Copy it and everything
4090 * after it. */
4091
4092 if (skb_shared(skb1))
4093 copyflag = 1;
4094
4095 /* If the skb is the last, worry about trailer. */
4096
4097 if (skb1->next == NULL && tailbits) {
4098 if (skb_shinfo(skb1)->nr_frags ||
4099 skb_has_frag_list(skb1) ||
4100 skb_tailroom(skb1) < tailbits)
4101 ntail = tailbits + 128;
4102 }
4103
4104 if (copyflag ||
4105 skb_cloned(skb1) ||
4106 ntail ||
4107 skb_shinfo(skb1)->nr_frags ||
4108 skb_has_frag_list(skb1)) {
4109 struct sk_buff *skb2;
4110
4111 /* Fuck, we are miserable poor guys... */
4112 if (ntail == 0)
4113 skb2 = skb_copy(skb1, GFP_ATOMIC);
4114 else
4115 skb2 = skb_copy_expand(skb1,
4116 skb_headroom(skb1),
4117 ntail,
4118 GFP_ATOMIC);
4119 if (unlikely(skb2 == NULL))
4120 return -ENOMEM;
4121
4122 if (skb1->sk)
4123 skb_set_owner_w(skb2, skb1->sk);
4124
4125 /* Looking around. Are we still alive?
4126 * OK, link new skb, drop old one */
4127
4128 skb2->next = skb1->next;
4129 *skb_p = skb2;
4130 kfree_skb(skb1);
4131 skb1 = skb2;
4132 }
4133 elt++;
4134 *trailer = skb1;
4135 skb_p = &skb1->next;
4136 }
4137
4138 return elt;
4139}
4140EXPORT_SYMBOL_GPL(skb_cow_data);
4141
4142static void sock_rmem_free(struct sk_buff *skb)
4143{
4144 struct sock *sk = skb->sk;
4145
4146 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4147}
4148
4149static void skb_set_err_queue(struct sk_buff *skb)
4150{
4151 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4152 * So, it is safe to (mis)use it to mark skbs on the error queue.
4153 */
4154 skb->pkt_type = PACKET_OUTGOING;
4155 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4156}
4157
4158/*
4159 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4160 */
4161int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4162{
4163 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4164 (unsigned int)sk->sk_rcvbuf)
4165 return -ENOMEM;
4166
4167 skb_orphan(skb);
4168 skb->sk = sk;
4169 skb->destructor = sock_rmem_free;
4170 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4171 skb_set_err_queue(skb);
4172
4173 /* before exiting rcu section, make sure dst is refcounted */
4174 skb_dst_force(skb);
4175
4176 skb_queue_tail(&sk->sk_error_queue, skb);
4177 if (!sock_flag(sk, SOCK_DEAD))
4178 sk->sk_data_ready(sk);
4179 return 0;
4180}
4181EXPORT_SYMBOL(sock_queue_err_skb);
4182
4183static bool is_icmp_err_skb(const struct sk_buff *skb)
4184{
4185 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4186 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4187}
4188
4189struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4190{
4191 struct sk_buff_head *q = &sk->sk_error_queue;
4192 struct sk_buff *skb, *skb_next = NULL;
4193 bool icmp_next = false;
4194 unsigned long flags;
4195
4196 spin_lock_irqsave(&q->lock, flags);
4197 skb = __skb_dequeue(q);
4198 if (skb && (skb_next = skb_peek(q))) {
4199 icmp_next = is_icmp_err_skb(skb_next);
4200 if (icmp_next)
4201 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4202 }
4203 spin_unlock_irqrestore(&q->lock, flags);
4204
4205 if (is_icmp_err_skb(skb) && !icmp_next)
4206 sk->sk_err = 0;
4207
4208 if (skb_next)
4209 sk->sk_error_report(sk);
4210
4211 return skb;
4212}
4213EXPORT_SYMBOL(sock_dequeue_err_skb);
4214
4215/**
4216 * skb_clone_sk - create clone of skb, and take reference to socket
4217 * @skb: the skb to clone
4218 *
4219 * This function creates a clone of a buffer that holds a reference on
4220 * sk_refcnt. Buffers created via this function are meant to be
4221 * returned using sock_queue_err_skb, or free via kfree_skb.
4222 *
4223 * When passing buffers allocated with this function to sock_queue_err_skb
4224 * it is necessary to wrap the call with sock_hold/sock_put in order to
4225 * prevent the socket from being released prior to being enqueued on
4226 * the sk_error_queue.
4227 */
4228struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4229{
4230 struct sock *sk = skb->sk;
4231 struct sk_buff *clone;
4232
4233 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4234 return NULL;
4235
4236 clone = skb_clone(skb, GFP_ATOMIC);
4237 if (!clone) {
4238 sock_put(sk);
4239 return NULL;
4240 }
4241
4242 clone->sk = sk;
4243 clone->destructor = sock_efree;
4244
4245 return clone;
4246}
4247EXPORT_SYMBOL(skb_clone_sk);
4248
4249static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4250 struct sock *sk,
4251 int tstype,
4252 bool opt_stats)
4253{
4254 struct sock_exterr_skb *serr;
4255 int err;
4256
4257 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4258
4259 serr = SKB_EXT_ERR(skb);
4260 memset(serr, 0, sizeof(*serr));
4261 serr->ee.ee_errno = ENOMSG;
4262 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4263 serr->ee.ee_info = tstype;
4264 serr->opt_stats = opt_stats;
4265 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4266 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4267 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4268 if (sk->sk_protocol == IPPROTO_TCP &&
4269 sk->sk_type == SOCK_STREAM)
4270 serr->ee.ee_data -= sk->sk_tskey;
4271 }
4272
4273 err = sock_queue_err_skb(sk, skb);
4274
4275 if (err)
4276 kfree_skb(skb);
4277}
4278
4279static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4280{
4281 bool ret;
4282
4283 if (likely(sysctl_tstamp_allow_data || tsonly))
4284 return true;
4285
4286 read_lock_bh(&sk->sk_callback_lock);
4287 ret = sk->sk_socket && sk->sk_socket->file &&
4288 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4289 read_unlock_bh(&sk->sk_callback_lock);
4290 return ret;
4291}
4292
4293void skb_complete_tx_timestamp(struct sk_buff *skb,
4294 struct skb_shared_hwtstamps *hwtstamps)
4295{
4296 struct sock *sk = skb->sk;
4297
4298 if (!skb_may_tx_timestamp(sk, false))
4299 return;
4300
4301 /* Take a reference to prevent skb_orphan() from freeing the socket,
4302 * but only if the socket refcount is not zero.
4303 */
4304 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4305 *skb_hwtstamps(skb) = *hwtstamps;
4306 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4307 sock_put(sk);
4308 }
4309}
4310EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4311
4312void __skb_tstamp_tx(struct sk_buff *orig_skb,
4313 struct skb_shared_hwtstamps *hwtstamps,
4314 struct sock *sk, int tstype)
4315{
4316 struct sk_buff *skb;
4317 bool tsonly, opt_stats = false;
4318
4319 if (!sk)
4320 return;
4321
4322 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4323 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4324 return;
4325
4326 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4327 if (!skb_may_tx_timestamp(sk, tsonly))
4328 return;
4329
4330 if (tsonly) {
4331#ifdef CONFIG_INET
4332 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4333 sk->sk_protocol == IPPROTO_TCP &&
4334 sk->sk_type == SOCK_STREAM) {
4335 skb = tcp_get_timestamping_opt_stats(sk);
4336 opt_stats = true;
4337 } else
4338#endif
4339 skb = alloc_skb(0, GFP_ATOMIC);
4340 } else {
4341 skb = skb_clone(orig_skb, GFP_ATOMIC);
4342 }
4343 if (!skb)
4344 return;
4345
4346 if (tsonly) {
4347 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4348 SKBTX_ANY_TSTAMP;
4349 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4350 }
4351
4352 if (hwtstamps)
4353 *skb_hwtstamps(skb) = *hwtstamps;
4354 else
4355 skb->tstamp = ktime_get_real();
4356
4357 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4358}
4359EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4360
4361void skb_tstamp_tx(struct sk_buff *orig_skb,
4362 struct skb_shared_hwtstamps *hwtstamps)
4363{
4364 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4365 SCM_TSTAMP_SND);
4366}
4367EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4368
4369void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4370{
4371 struct sock *sk = skb->sk;
4372 struct sock_exterr_skb *serr;
4373 int err = 1;
4374
4375 skb->wifi_acked_valid = 1;
4376 skb->wifi_acked = acked;
4377
4378 serr = SKB_EXT_ERR(skb);
4379 memset(serr, 0, sizeof(*serr));
4380 serr->ee.ee_errno = ENOMSG;
4381 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4382
4383 /* Take a reference to prevent skb_orphan() from freeing the socket,
4384 * but only if the socket refcount is not zero.
4385 */
4386 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4387 err = sock_queue_err_skb(sk, skb);
4388 sock_put(sk);
4389 }
4390 if (err)
4391 kfree_skb(skb);
4392}
4393EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4394
4395/**
4396 * skb_partial_csum_set - set up and verify partial csum values for packet
4397 * @skb: the skb to set
4398 * @start: the number of bytes after skb->data to start checksumming.
4399 * @off: the offset from start to place the checksum.
4400 *
4401 * For untrusted partially-checksummed packets, we need to make sure the values
4402 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4403 *
4404 * This function checks and sets those values and skb->ip_summed: if this
4405 * returns false you should drop the packet.
4406 */
4407bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4408{
4409 if (unlikely(start > skb_headlen(skb)) ||
4410 unlikely((int)start + off > skb_headlen(skb) - 2)) {
4411 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4412 start, off, skb_headlen(skb));
4413 return false;
4414 }
4415 skb->ip_summed = CHECKSUM_PARTIAL;
4416 skb->csum_start = skb_headroom(skb) + start;
4417 skb->csum_offset = off;
4418 skb_set_transport_header(skb, start);
4419 return true;
4420}
4421EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4422
4423static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4424 unsigned int max)
4425{
4426 if (skb_headlen(skb) >= len)
4427 return 0;
4428
4429 /* If we need to pullup then pullup to the max, so we
4430 * won't need to do it again.
4431 */
4432 if (max > skb->len)
4433 max = skb->len;
4434
4435 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4436 return -ENOMEM;
4437
4438 if (skb_headlen(skb) < len)
4439 return -EPROTO;
4440
4441 return 0;
4442}
4443
4444#define MAX_TCP_HDR_LEN (15 * 4)
4445
4446static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4447 typeof(IPPROTO_IP) proto,
4448 unsigned int off)
4449{
4450 switch (proto) {
4451 int err;
4452
4453 case IPPROTO_TCP:
4454 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4455 off + MAX_TCP_HDR_LEN);
4456 if (!err && !skb_partial_csum_set(skb, off,
4457 offsetof(struct tcphdr,
4458 check)))
4459 err = -EPROTO;
4460 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4461
4462 case IPPROTO_UDP:
4463 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4464 off + sizeof(struct udphdr));
4465 if (!err && !skb_partial_csum_set(skb, off,
4466 offsetof(struct udphdr,
4467 check)))
4468 err = -EPROTO;
4469 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4470 }
4471
4472 return ERR_PTR(-EPROTO);
4473}
4474
4475/* This value should be large enough to cover a tagged ethernet header plus
4476 * maximally sized IP and TCP or UDP headers.
4477 */
4478#define MAX_IP_HDR_LEN 128
4479
4480static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4481{
4482 unsigned int off;
4483 bool fragment;
4484 __sum16 *csum;
4485 int err;
4486
4487 fragment = false;
4488
4489 err = skb_maybe_pull_tail(skb,
4490 sizeof(struct iphdr),
4491 MAX_IP_HDR_LEN);
4492 if (err < 0)
4493 goto out;
4494
4495 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4496 fragment = true;
4497
4498 off = ip_hdrlen(skb);
4499
4500 err = -EPROTO;
4501
4502 if (fragment)
4503 goto out;
4504
4505 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4506 if (IS_ERR(csum))
4507 return PTR_ERR(csum);
4508
4509 if (recalculate)
4510 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4511 ip_hdr(skb)->daddr,
4512 skb->len - off,
4513 ip_hdr(skb)->protocol, 0);
4514 err = 0;
4515
4516out:
4517 return err;
4518}
4519
4520/* This value should be large enough to cover a tagged ethernet header plus
4521 * an IPv6 header, all options, and a maximal TCP or UDP header.
4522 */
4523#define MAX_IPV6_HDR_LEN 256
4524
4525#define OPT_HDR(type, skb, off) \
4526 (type *)(skb_network_header(skb) + (off))
4527
4528static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4529{
4530 int err;
4531 u8 nexthdr;
4532 unsigned int off;
4533 unsigned int len;
4534 bool fragment;
4535 bool done;
4536 __sum16 *csum;
4537
4538 fragment = false;
4539 done = false;
4540
4541 off = sizeof(struct ipv6hdr);
4542
4543 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4544 if (err < 0)
4545 goto out;
4546
4547 nexthdr = ipv6_hdr(skb)->nexthdr;
4548
4549 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4550 while (off <= len && !done) {
4551 switch (nexthdr) {
4552 case IPPROTO_DSTOPTS:
4553 case IPPROTO_HOPOPTS:
4554 case IPPROTO_ROUTING: {
4555 struct ipv6_opt_hdr *hp;
4556
4557 err = skb_maybe_pull_tail(skb,
4558 off +
4559 sizeof(struct ipv6_opt_hdr),
4560 MAX_IPV6_HDR_LEN);
4561 if (err < 0)
4562 goto out;
4563
4564 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4565 nexthdr = hp->nexthdr;
4566 off += ipv6_optlen(hp);
4567 break;
4568 }
4569 case IPPROTO_AH: {
4570 struct ip_auth_hdr *hp;
4571
4572 err = skb_maybe_pull_tail(skb,
4573 off +
4574 sizeof(struct ip_auth_hdr),
4575 MAX_IPV6_HDR_LEN);
4576 if (err < 0)
4577 goto out;
4578
4579 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4580 nexthdr = hp->nexthdr;
4581 off += ipv6_authlen(hp);
4582 break;
4583 }
4584 case IPPROTO_FRAGMENT: {
4585 struct frag_hdr *hp;
4586
4587 err = skb_maybe_pull_tail(skb,
4588 off +
4589 sizeof(struct frag_hdr),
4590 MAX_IPV6_HDR_LEN);
4591 if (err < 0)
4592 goto out;
4593
4594 hp = OPT_HDR(struct frag_hdr, skb, off);
4595
4596 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4597 fragment = true;
4598
4599 nexthdr = hp->nexthdr;
4600 off += sizeof(struct frag_hdr);
4601 break;
4602 }
4603 default:
4604 done = true;
4605 break;
4606 }
4607 }
4608
4609 err = -EPROTO;
4610
4611 if (!done || fragment)
4612 goto out;
4613
4614 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4615 if (IS_ERR(csum))
4616 return PTR_ERR(csum);
4617
4618 if (recalculate)
4619 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4620 &ipv6_hdr(skb)->daddr,
4621 skb->len - off, nexthdr, 0);
4622 err = 0;
4623
4624out:
4625 return err;
4626}
4627
4628/**
4629 * skb_checksum_setup - set up partial checksum offset
4630 * @skb: the skb to set up
4631 * @recalculate: if true the pseudo-header checksum will be recalculated
4632 */
4633int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4634{
4635 int err;
4636
4637 switch (skb->protocol) {
4638 case htons(ETH_P_IP):
4639 err = skb_checksum_setup_ipv4(skb, recalculate);
4640 break;
4641
4642 case htons(ETH_P_IPV6):
4643 err = skb_checksum_setup_ipv6(skb, recalculate);
4644 break;
4645
4646 default:
4647 err = -EPROTO;
4648 break;
4649 }
4650
4651 return err;
4652}
4653EXPORT_SYMBOL(skb_checksum_setup);
4654
4655/**
4656 * skb_checksum_maybe_trim - maybe trims the given skb
4657 * @skb: the skb to check
4658 * @transport_len: the data length beyond the network header
4659 *
4660 * Checks whether the given skb has data beyond the given transport length.
4661 * If so, returns a cloned skb trimmed to this transport length.
4662 * Otherwise returns the provided skb. Returns NULL in error cases
4663 * (e.g. transport_len exceeds skb length or out-of-memory).
4664 *
4665 * Caller needs to set the skb transport header and free any returned skb if it
4666 * differs from the provided skb.
4667 */
4668static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4669 unsigned int transport_len)
4670{
4671 struct sk_buff *skb_chk;
4672 unsigned int len = skb_transport_offset(skb) + transport_len;
4673 int ret;
4674
4675 if (skb->len < len)
4676 return NULL;
4677 else if (skb->len == len)
4678 return skb;
4679
4680 skb_chk = skb_clone(skb, GFP_ATOMIC);
4681 if (!skb_chk)
4682 return NULL;
4683
4684 ret = pskb_trim_rcsum(skb_chk, len);
4685 if (ret) {
4686 kfree_skb(skb_chk);
4687 return NULL;
4688 }
4689
4690 return skb_chk;
4691}
4692
4693/**
4694 * skb_checksum_trimmed - validate checksum of an skb
4695 * @skb: the skb to check
4696 * @transport_len: the data length beyond the network header
4697 * @skb_chkf: checksum function to use
4698 *
4699 * Applies the given checksum function skb_chkf to the provided skb.
4700 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4701 *
4702 * If the skb has data beyond the given transport length, then a
4703 * trimmed & cloned skb is checked and returned.
4704 *
4705 * Caller needs to set the skb transport header and free any returned skb if it
4706 * differs from the provided skb.
4707 */
4708struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4709 unsigned int transport_len,
4710 __sum16(*skb_chkf)(struct sk_buff *skb))
4711{
4712 struct sk_buff *skb_chk;
4713 unsigned int offset = skb_transport_offset(skb);
4714 __sum16 ret;
4715
4716 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4717 if (!skb_chk)
4718 goto err;
4719
4720 if (!pskb_may_pull(skb_chk, offset))
4721 goto err;
4722
4723 skb_pull_rcsum(skb_chk, offset);
4724 ret = skb_chkf(skb_chk);
4725 skb_push_rcsum(skb_chk, offset);
4726
4727 if (ret)
4728 goto err;
4729
4730 return skb_chk;
4731
4732err:
4733 if (skb_chk && skb_chk != skb)
4734 kfree_skb(skb_chk);
4735
4736 return NULL;
4737
4738}
4739EXPORT_SYMBOL(skb_checksum_trimmed);
4740
4741void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4742{
4743 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4744 skb->dev->name);
4745}
4746EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4747
4748void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4749{
4750 if (head_stolen) {
4751 skb_release_head_state(skb);
4752 kmem_cache_free(skbuff_head_cache, skb);
4753 } else {
4754 __kfree_skb(skb);
4755 }
4756}
4757EXPORT_SYMBOL(kfree_skb_partial);
4758
4759/**
4760 * skb_try_coalesce - try to merge skb to prior one
4761 * @to: prior buffer
4762 * @from: buffer to add
4763 * @fragstolen: pointer to boolean
4764 * @delta_truesize: how much more was allocated than was requested
4765 */
4766bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4767 bool *fragstolen, int *delta_truesize)
4768{
4769 int i, delta, len = from->len;
4770
4771 *fragstolen = false;
4772
4773 if (skb_cloned(to))
4774 return false;
4775
4776 if (len <= skb_tailroom(to)) {
4777 if (len)
4778 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4779 *delta_truesize = 0;
4780 return true;
4781 }
4782
4783 if (skb_has_frag_list(to) || skb_has_frag_list(from))
4784 return false;
4785 if (skb_zcopy(to) || skb_zcopy(from))
4786 return false;
4787
4788 if (skb_headlen(from) != 0) {
4789 struct page *page;
4790 unsigned int offset;
4791
4792 if (skb_shinfo(to)->nr_frags +
4793 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4794 return false;
4795
4796 if (skb_head_is_locked(from))
4797 return false;
4798
4799 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4800
4801 page = virt_to_head_page(from->head);
4802 offset = from->data - (unsigned char *)page_address(page);
4803
4804 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4805 page, offset, skb_headlen(from));
4806 *fragstolen = true;
4807 } else {
4808 if (skb_shinfo(to)->nr_frags +
4809 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4810 return false;
4811
4812 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4813 }
4814
4815 WARN_ON_ONCE(delta < len);
4816
4817 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4818 skb_shinfo(from)->frags,
4819 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4820 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4821
4822 if (!skb_cloned(from))
4823 skb_shinfo(from)->nr_frags = 0;
4824
4825 /* if the skb is not cloned this does nothing
4826 * since we set nr_frags to 0.
4827 */
4828 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4829 skb_frag_ref(from, i);
4830
4831 to->truesize += delta;
4832 to->len += len;
4833 to->data_len += len;
4834
4835 *delta_truesize = delta;
4836 return true;
4837}
4838EXPORT_SYMBOL(skb_try_coalesce);
4839
4840/**
4841 * skb_scrub_packet - scrub an skb
4842 *
4843 * @skb: buffer to clean
4844 * @xnet: packet is crossing netns
4845 *
4846 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4847 * into/from a tunnel. Some information have to be cleared during these
4848 * operations.
4849 * skb_scrub_packet can also be used to clean a skb before injecting it in
4850 * another namespace (@xnet == true). We have to clear all information in the
4851 * skb that could impact namespace isolation.
4852 */
4853void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4854{
4855 skb->tstamp = 0;
4856 skb->pkt_type = PACKET_HOST;
4857 skb->skb_iif = 0;
4858 skb->ignore_df = 0;
4859 skb_dst_drop(skb);
4860 secpath_reset(skb);
4861 nf_reset(skb);
4862 nf_reset_trace(skb);
4863
4864 if (!xnet)
4865 return;
4866
4867 skb_orphan(skb);
4868 skb->mark = 0;
4869}
4870EXPORT_SYMBOL_GPL(skb_scrub_packet);
4871
4872/**
4873 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4874 *
4875 * @skb: GSO skb
4876 *
4877 * skb_gso_transport_seglen is used to determine the real size of the
4878 * individual segments, including Layer4 headers (TCP/UDP).
4879 *
4880 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4881 */
4882unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4883{
4884 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4885 unsigned int thlen = 0;
4886
4887 if (skb->encapsulation) {
4888 thlen = skb_inner_transport_header(skb) -
4889 skb_transport_header(skb);
4890
4891 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4892 thlen += inner_tcp_hdrlen(skb);
4893 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4894 thlen = tcp_hdrlen(skb);
4895 } else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
4896 thlen = sizeof(struct sctphdr);
4897 }
4898 /* UFO sets gso_size to the size of the fragmentation
4899 * payload, i.e. the size of the L4 (UDP) header is already
4900 * accounted for.
4901 */
4902 return thlen + shinfo->gso_size;
4903}
4904EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4905
4906/**
4907 * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4908 *
4909 * @skb: GSO skb
4910 * @mtu: MTU to validate against
4911 *
4912 * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
4913 * once split.
4914 */
4915bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu)
4916{
4917 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4918 const struct sk_buff *iter;
4919 unsigned int hlen;
4920
4921 hlen = skb_gso_network_seglen(skb);
4922
4923 if (shinfo->gso_size != GSO_BY_FRAGS)
4924 return hlen <= mtu;
4925
4926 /* Undo this so we can re-use header sizes */
4927 hlen -= GSO_BY_FRAGS;
4928
4929 skb_walk_frags(skb, iter) {
4930 if (hlen + skb_headlen(iter) > mtu)
4931 return false;
4932 }
4933
4934 return true;
4935}
4936EXPORT_SYMBOL_GPL(skb_gso_validate_mtu);
4937
4938static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4939{
4940 if (skb_cow(skb, skb_headroom(skb)) < 0) {
4941 kfree_skb(skb);
4942 return NULL;
4943 }
4944
4945 memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4946 2 * ETH_ALEN);
4947 skb->mac_header += VLAN_HLEN;
4948 return skb;
4949}
4950
4951struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4952{
4953 struct vlan_hdr *vhdr;
4954 u16 vlan_tci;
4955
4956 if (unlikely(skb_vlan_tag_present(skb))) {
4957 /* vlan_tci is already set-up so leave this for another time */
4958 return skb;
4959 }
4960
4961 skb = skb_share_check(skb, GFP_ATOMIC);
4962 if (unlikely(!skb))
4963 goto err_free;
4964
4965 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4966 goto err_free;
4967
4968 vhdr = (struct vlan_hdr *)skb->data;
4969 vlan_tci = ntohs(vhdr->h_vlan_TCI);
4970 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4971
4972 skb_pull_rcsum(skb, VLAN_HLEN);
4973 vlan_set_encap_proto(skb, vhdr);
4974
4975 skb = skb_reorder_vlan_header(skb);
4976 if (unlikely(!skb))
4977 goto err_free;
4978
4979 skb_reset_network_header(skb);
4980 skb_reset_transport_header(skb);
4981 skb_reset_mac_len(skb);
4982
4983 return skb;
4984
4985err_free:
4986 kfree_skb(skb);
4987 return NULL;
4988}
4989EXPORT_SYMBOL(skb_vlan_untag);
4990
4991int skb_ensure_writable(struct sk_buff *skb, int write_len)
4992{
4993 if (!pskb_may_pull(skb, write_len))
4994 return -ENOMEM;
4995
4996 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4997 return 0;
4998
4999 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5000}
5001EXPORT_SYMBOL(skb_ensure_writable);
5002
5003/* remove VLAN header from packet and update csum accordingly.
5004 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5005 */
5006int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5007{
5008 struct vlan_hdr *vhdr;
5009 int offset = skb->data - skb_mac_header(skb);
5010 int err;
5011
5012 if (WARN_ONCE(offset,
5013 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5014 offset)) {
5015 return -EINVAL;
5016 }
5017
5018 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5019 if (unlikely(err))
5020 return err;
5021
5022 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5023
5024 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5025 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5026
5027 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5028 __skb_pull(skb, VLAN_HLEN);
5029
5030 vlan_set_encap_proto(skb, vhdr);
5031 skb->mac_header += VLAN_HLEN;
5032
5033 if (skb_network_offset(skb) < ETH_HLEN)
5034 skb_set_network_header(skb, ETH_HLEN);
5035
5036 skb_reset_mac_len(skb);
5037
5038 return err;
5039}
5040EXPORT_SYMBOL(__skb_vlan_pop);
5041
5042/* Pop a vlan tag either from hwaccel or from payload.
5043 * Expects skb->data at mac header.
5044 */
5045int skb_vlan_pop(struct sk_buff *skb)
5046{
5047 u16 vlan_tci;
5048 __be16 vlan_proto;
5049 int err;
5050
5051 if (likely(skb_vlan_tag_present(skb))) {
5052 skb->vlan_tci = 0;
5053 } else {
5054 if (unlikely(!eth_type_vlan(skb->protocol)))
5055 return 0;
5056
5057 err = __skb_vlan_pop(skb, &vlan_tci);
5058 if (err)
5059 return err;
5060 }
5061 /* move next vlan tag to hw accel tag */
5062 if (likely(!eth_type_vlan(skb->protocol)))
5063 return 0;
5064
5065 vlan_proto = skb->protocol;
5066 err = __skb_vlan_pop(skb, &vlan_tci);
5067 if (unlikely(err))
5068 return err;
5069
5070 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5071 return 0;
5072}
5073EXPORT_SYMBOL(skb_vlan_pop);
5074
5075/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5076 * Expects skb->data at mac header.
5077 */
5078int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5079{
5080 if (skb_vlan_tag_present(skb)) {
5081 int offset = skb->data - skb_mac_header(skb);
5082 int err;
5083
5084 if (WARN_ONCE(offset,
5085 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5086 offset)) {
5087 return -EINVAL;
5088 }
5089
5090 err = __vlan_insert_tag(skb, skb->vlan_proto,
5091 skb_vlan_tag_get(skb));
5092 if (err)
5093 return err;
5094
5095 skb->protocol = skb->vlan_proto;
5096 skb->mac_len += VLAN_HLEN;
5097
5098 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5099 }
5100 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5101 return 0;
5102}
5103EXPORT_SYMBOL(skb_vlan_push);
5104
5105/**
5106 * alloc_skb_with_frags - allocate skb with page frags
5107 *
5108 * @header_len: size of linear part
5109 * @data_len: needed length in frags
5110 * @max_page_order: max page order desired.
5111 * @errcode: pointer to error code if any
5112 * @gfp_mask: allocation mask
5113 *
5114 * This can be used to allocate a paged skb, given a maximal order for frags.
5115 */
5116struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5117 unsigned long data_len,
5118 int max_page_order,
5119 int *errcode,
5120 gfp_t gfp_mask)
5121{
5122 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5123 unsigned long chunk;
5124 struct sk_buff *skb;
5125 struct page *page;
5126 gfp_t gfp_head;
5127 int i;
5128
5129 *errcode = -EMSGSIZE;
5130 /* Note this test could be relaxed, if we succeed to allocate
5131 * high order pages...
5132 */
5133 if (npages > MAX_SKB_FRAGS)
5134 return NULL;
5135
5136 gfp_head = gfp_mask;
5137 if (gfp_head & __GFP_DIRECT_RECLAIM)
5138 gfp_head |= __GFP_RETRY_MAYFAIL;
5139
5140 *errcode = -ENOBUFS;
5141 skb = alloc_skb(header_len, gfp_head);
5142 if (!skb)
5143 return NULL;
5144
5145 skb->truesize += npages << PAGE_SHIFT;
5146
5147 for (i = 0; npages > 0; i++) {
5148 int order = max_page_order;
5149
5150 while (order) {
5151 if (npages >= 1 << order) {
5152 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5153 __GFP_COMP |
5154 __GFP_NOWARN |
5155 __GFP_NORETRY,
5156 order);
5157 if (page)
5158 goto fill_page;
5159 /* Do not retry other high order allocations */
5160 order = 1;
5161 max_page_order = 0;
5162 }
5163 order--;
5164 }
5165 page = alloc_page(gfp_mask);
5166 if (!page)
5167 goto failure;
5168fill_page:
5169 chunk = min_t(unsigned long, data_len,
5170 PAGE_SIZE << order);
5171 skb_fill_page_desc(skb, i, page, 0, chunk);
5172 data_len -= chunk;
5173 npages -= 1 << order;
5174 }
5175 return skb;
5176
5177failure:
5178 kfree_skb(skb);
5179 return NULL;
5180}
5181EXPORT_SYMBOL(alloc_skb_with_frags);
5182
5183/* carve out the first off bytes from skb when off < headlen */
5184static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5185 const int headlen, gfp_t gfp_mask)
5186{
5187 int i;
5188 int size = skb_end_offset(skb);
5189 int new_hlen = headlen - off;
5190 u8 *data;
5191
5192 size = SKB_DATA_ALIGN(size);
5193
5194 if (skb_pfmemalloc(skb))
5195 gfp_mask |= __GFP_MEMALLOC;
5196 data = kmalloc_reserve(size +
5197 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5198 gfp_mask, NUMA_NO_NODE, NULL);
5199 if (!data)
5200 return -ENOMEM;
5201
5202 size = SKB_WITH_OVERHEAD(ksize(data));
5203
5204 /* Copy real data, and all frags */
5205 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5206 skb->len -= off;
5207
5208 memcpy((struct skb_shared_info *)(data + size),
5209 skb_shinfo(skb),
5210 offsetof(struct skb_shared_info,
5211 frags[skb_shinfo(skb)->nr_frags]));
5212 if (skb_cloned(skb)) {
5213 /* drop the old head gracefully */
5214 if (skb_orphan_frags(skb, gfp_mask)) {
5215 kfree(data);
5216 return -ENOMEM;
5217 }
5218 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5219 skb_frag_ref(skb, i);
5220 if (skb_has_frag_list(skb))
5221 skb_clone_fraglist(skb);
5222 skb_release_data(skb);
5223 } else {
5224 /* we can reuse existing recount- all we did was
5225 * relocate values
5226 */
5227 skb_free_head(skb);
5228 }
5229
5230 skb->head = data;
5231 skb->data = data;
5232 skb->head_frag = 0;
5233#ifdef NET_SKBUFF_DATA_USES_OFFSET
5234 skb->end = size;
5235#else
5236 skb->end = skb->head + size;
5237#endif
5238 skb_set_tail_pointer(skb, skb_headlen(skb));
5239 skb_headers_offset_update(skb, 0);
5240 skb->cloned = 0;
5241 skb->hdr_len = 0;
5242 skb->nohdr = 0;
5243 atomic_set(&skb_shinfo(skb)->dataref, 1);
5244
5245 return 0;
5246}
5247
5248static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5249
5250/* carve out the first eat bytes from skb's frag_list. May recurse into
5251 * pskb_carve()
5252 */
5253static int pskb_carve_frag_list(struct sk_buff *skb,
5254 struct skb_shared_info *shinfo, int eat,
5255 gfp_t gfp_mask)
5256{
5257 struct sk_buff *list = shinfo->frag_list;
5258 struct sk_buff *clone = NULL;
5259 struct sk_buff *insp = NULL;
5260
5261 do {
5262 if (!list) {
5263 pr_err("Not enough bytes to eat. Want %d\n", eat);
5264 return -EFAULT;
5265 }
5266 if (list->len <= eat) {
5267 /* Eaten as whole. */
5268 eat -= list->len;
5269 list = list->next;
5270 insp = list;
5271 } else {
5272 /* Eaten partially. */
5273 if (skb_shared(list)) {
5274 clone = skb_clone(list, gfp_mask);
5275 if (!clone)
5276 return -ENOMEM;
5277 insp = list->next;
5278 list = clone;
5279 } else {
5280 /* This may be pulled without problems. */
5281 insp = list;
5282 }
5283 if (pskb_carve(list, eat, gfp_mask) < 0) {
5284 kfree_skb(clone);
5285 return -ENOMEM;
5286 }
5287 break;
5288 }
5289 } while (eat);
5290
5291 /* Free pulled out fragments. */
5292 while ((list = shinfo->frag_list) != insp) {
5293 shinfo->frag_list = list->next;
5294 kfree_skb(list);
5295 }
5296 /* And insert new clone at head. */
5297 if (clone) {
5298 clone->next = list;
5299 shinfo->frag_list = clone;
5300 }
5301 return 0;
5302}
5303
5304/* carve off first len bytes from skb. Split line (off) is in the
5305 * non-linear part of skb
5306 */
5307static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5308 int pos, gfp_t gfp_mask)
5309{
5310 int i, k = 0;
5311 int size = skb_end_offset(skb);
5312 u8 *data;
5313 const int nfrags = skb_shinfo(skb)->nr_frags;
5314 struct skb_shared_info *shinfo;
5315
5316 size = SKB_DATA_ALIGN(size);
5317
5318 if (skb_pfmemalloc(skb))
5319 gfp_mask |= __GFP_MEMALLOC;
5320 data = kmalloc_reserve(size +
5321 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5322 gfp_mask, NUMA_NO_NODE, NULL);
5323 if (!data)
5324 return -ENOMEM;
5325
5326 size = SKB_WITH_OVERHEAD(ksize(data));
5327
5328 memcpy((struct skb_shared_info *)(data + size),
5329 skb_shinfo(skb), offsetof(struct skb_shared_info,
5330 frags[skb_shinfo(skb)->nr_frags]));
5331 if (skb_orphan_frags(skb, gfp_mask)) {
5332 kfree(data);
5333 return -ENOMEM;
5334 }
5335 shinfo = (struct skb_shared_info *)(data + size);
5336 for (i = 0; i < nfrags; i++) {
5337 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5338
5339 if (pos + fsize > off) {
5340 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5341
5342 if (pos < off) {
5343 /* Split frag.
5344 * We have two variants in this case:
5345 * 1. Move all the frag to the second
5346 * part, if it is possible. F.e.
5347 * this approach is mandatory for TUX,
5348 * where splitting is expensive.
5349 * 2. Split is accurately. We make this.
5350 */
5351 shinfo->frags[0].page_offset += off - pos;
5352 skb_frag_size_sub(&shinfo->frags[0], off - pos);
5353 }
5354 skb_frag_ref(skb, i);
5355 k++;
5356 }
5357 pos += fsize;
5358 }
5359 shinfo->nr_frags = k;
5360 if (skb_has_frag_list(skb))
5361 skb_clone_fraglist(skb);
5362
5363 if (k == 0) {
5364 /* split line is in frag list */
5365 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5366 }
5367 skb_release_data(skb);
5368
5369 skb->head = data;
5370 skb->head_frag = 0;
5371 skb->data = data;
5372#ifdef NET_SKBUFF_DATA_USES_OFFSET
5373 skb->end = size;
5374#else
5375 skb->end = skb->head + size;
5376#endif
5377 skb_reset_tail_pointer(skb);
5378 skb_headers_offset_update(skb, 0);
5379 skb->cloned = 0;
5380 skb->hdr_len = 0;
5381 skb->nohdr = 0;
5382 skb->len -= off;
5383 skb->data_len = skb->len;
5384 atomic_set(&skb_shinfo(skb)->dataref, 1);
5385 return 0;
5386}
5387
5388/* remove len bytes from the beginning of the skb */
5389static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5390{
5391 int headlen = skb_headlen(skb);
5392
5393 if (len < headlen)
5394 return pskb_carve_inside_header(skb, len, headlen, gfp);
5395 else
5396 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5397}
5398
5399/* Extract to_copy bytes starting at off from skb, and return this in
5400 * a new skb
5401 */
5402struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5403 int to_copy, gfp_t gfp)
5404{
5405 struct sk_buff *clone = skb_clone(skb, gfp);
5406
5407 if (!clone)
5408 return NULL;
5409
5410 if (pskb_carve(clone, off, gfp) < 0 ||
5411 pskb_trim(clone, to_copy)) {
5412 kfree_skb(clone);
5413 return NULL;
5414 }
5415 return clone;
5416}
5417EXPORT_SYMBOL(pskb_extract);
5418
5419/**
5420 * skb_condense - try to get rid of fragments/frag_list if possible
5421 * @skb: buffer
5422 *
5423 * Can be used to save memory before skb is added to a busy queue.
5424 * If packet has bytes in frags and enough tail room in skb->head,
5425 * pull all of them, so that we can free the frags right now and adjust
5426 * truesize.
5427 * Notes:
5428 * We do not reallocate skb->head thus can not fail.
5429 * Caller must re-evaluate skb->truesize if needed.
5430 */
5431void skb_condense(struct sk_buff *skb)
5432{
5433 if (skb->data_len) {
5434 if (skb->data_len > skb->end - skb->tail ||
5435 skb_cloned(skb))
5436 return;
5437
5438 /* Nice, we can free page frag(s) right now */
5439 __pskb_pull_tail(skb, skb->data_len);
5440 }
5441 /* At this point, skb->truesize might be over estimated,
5442 * because skb had a fragment, and fragments do not tell
5443 * their truesize.
5444 * When we pulled its content into skb->head, fragment
5445 * was freed, but __pskb_pull_tail() could not possibly
5446 * adjust skb->truesize, not knowing the frag truesize.
5447 */
5448 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5449}