at v4.14-rc7 19 kB view raw
1#ifndef __LINUX_COMPILER_H 2#define __LINUX_COMPILER_H 3 4#ifndef __ASSEMBLY__ 5 6#ifdef __CHECKER__ 7# define __user __attribute__((noderef, address_space(1))) 8# define __kernel __attribute__((address_space(0))) 9# define __safe __attribute__((safe)) 10# define __force __attribute__((force)) 11# define __nocast __attribute__((nocast)) 12# define __iomem __attribute__((noderef, address_space(2))) 13# define __must_hold(x) __attribute__((context(x,1,1))) 14# define __acquires(x) __attribute__((context(x,0,1))) 15# define __releases(x) __attribute__((context(x,1,0))) 16# define __acquire(x) __context__(x,1) 17# define __release(x) __context__(x,-1) 18# define __cond_lock(x,c) ((c) ? ({ __acquire(x); 1; }) : 0) 19# define __percpu __attribute__((noderef, address_space(3))) 20# define __rcu __attribute__((noderef, address_space(4))) 21# define __private __attribute__((noderef)) 22extern void __chk_user_ptr(const volatile void __user *); 23extern void __chk_io_ptr(const volatile void __iomem *); 24# define ACCESS_PRIVATE(p, member) (*((typeof((p)->member) __force *) &(p)->member)) 25#else /* __CHECKER__ */ 26# ifdef STRUCTLEAK_PLUGIN 27# define __user __attribute__((user)) 28# else 29# define __user 30# endif 31# define __kernel 32# define __safe 33# define __force 34# define __nocast 35# define __iomem 36# define __chk_user_ptr(x) (void)0 37# define __chk_io_ptr(x) (void)0 38# define __builtin_warning(x, y...) (1) 39# define __must_hold(x) 40# define __acquires(x) 41# define __releases(x) 42# define __acquire(x) (void)0 43# define __release(x) (void)0 44# define __cond_lock(x,c) (c) 45# define __percpu 46# define __rcu 47# define __private 48# define ACCESS_PRIVATE(p, member) ((p)->member) 49#endif /* __CHECKER__ */ 50 51/* Indirect macros required for expanded argument pasting, eg. __LINE__. */ 52#define ___PASTE(a,b) a##b 53#define __PASTE(a,b) ___PASTE(a,b) 54 55#ifdef __KERNEL__ 56 57#ifdef __GNUC__ 58#include <linux/compiler-gcc.h> 59#endif 60 61#if defined(CC_USING_HOTPATCH) && !defined(__CHECKER__) 62#define notrace __attribute__((hotpatch(0,0))) 63#else 64#define notrace __attribute__((no_instrument_function)) 65#endif 66 67/* Intel compiler defines __GNUC__. So we will overwrite implementations 68 * coming from above header files here 69 */ 70#ifdef __INTEL_COMPILER 71# include <linux/compiler-intel.h> 72#endif 73 74/* Clang compiler defines __GNUC__. So we will overwrite implementations 75 * coming from above header files here 76 */ 77#ifdef __clang__ 78#include <linux/compiler-clang.h> 79#endif 80 81/* 82 * Generic compiler-dependent macros required for kernel 83 * build go below this comment. Actual compiler/compiler version 84 * specific implementations come from the above header files 85 */ 86 87struct ftrace_branch_data { 88 const char *func; 89 const char *file; 90 unsigned line; 91 union { 92 struct { 93 unsigned long correct; 94 unsigned long incorrect; 95 }; 96 struct { 97 unsigned long miss; 98 unsigned long hit; 99 }; 100 unsigned long miss_hit[2]; 101 }; 102}; 103 104struct ftrace_likely_data { 105 struct ftrace_branch_data data; 106 unsigned long constant; 107}; 108 109/* 110 * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code 111 * to disable branch tracing on a per file basis. 112 */ 113#if defined(CONFIG_TRACE_BRANCH_PROFILING) \ 114 && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__) 115void ftrace_likely_update(struct ftrace_likely_data *f, int val, 116 int expect, int is_constant); 117 118#define likely_notrace(x) __builtin_expect(!!(x), 1) 119#define unlikely_notrace(x) __builtin_expect(!!(x), 0) 120 121#define __branch_check__(x, expect, is_constant) ({ \ 122 int ______r; \ 123 static struct ftrace_likely_data \ 124 __attribute__((__aligned__(4))) \ 125 __attribute__((section("_ftrace_annotated_branch"))) \ 126 ______f = { \ 127 .data.func = __func__, \ 128 .data.file = __FILE__, \ 129 .data.line = __LINE__, \ 130 }; \ 131 ______r = __builtin_expect(!!(x), expect); \ 132 ftrace_likely_update(&______f, ______r, \ 133 expect, is_constant); \ 134 ______r; \ 135 }) 136 137/* 138 * Using __builtin_constant_p(x) to ignore cases where the return 139 * value is always the same. This idea is taken from a similar patch 140 * written by Daniel Walker. 141 */ 142# ifndef likely 143# define likely(x) (__branch_check__(x, 1, __builtin_constant_p(x))) 144# endif 145# ifndef unlikely 146# define unlikely(x) (__branch_check__(x, 0, __builtin_constant_p(x))) 147# endif 148 149#ifdef CONFIG_PROFILE_ALL_BRANCHES 150/* 151 * "Define 'is'", Bill Clinton 152 * "Define 'if'", Steven Rostedt 153 */ 154#define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) ) 155#define __trace_if(cond) \ 156 if (__builtin_constant_p(!!(cond)) ? !!(cond) : \ 157 ({ \ 158 int ______r; \ 159 static struct ftrace_branch_data \ 160 __attribute__((__aligned__(4))) \ 161 __attribute__((section("_ftrace_branch"))) \ 162 ______f = { \ 163 .func = __func__, \ 164 .file = __FILE__, \ 165 .line = __LINE__, \ 166 }; \ 167 ______r = !!(cond); \ 168 ______f.miss_hit[______r]++; \ 169 ______r; \ 170 })) 171#endif /* CONFIG_PROFILE_ALL_BRANCHES */ 172 173#else 174# define likely(x) __builtin_expect(!!(x), 1) 175# define unlikely(x) __builtin_expect(!!(x), 0) 176#endif 177 178/* Optimization barrier */ 179#ifndef barrier 180# define barrier() __memory_barrier() 181#endif 182 183#ifndef barrier_data 184# define barrier_data(ptr) barrier() 185#endif 186 187/* Unreachable code */ 188#ifdef CONFIG_STACK_VALIDATION 189#define annotate_reachable() ({ \ 190 asm("%c0:\n\t" \ 191 ".pushsection .discard.reachable\n\t" \ 192 ".long %c0b - .\n\t" \ 193 ".popsection\n\t" : : "i" (__LINE__)); \ 194}) 195#define annotate_unreachable() ({ \ 196 asm("%c0:\n\t" \ 197 ".pushsection .discard.unreachable\n\t" \ 198 ".long %c0b - .\n\t" \ 199 ".popsection\n\t" : : "i" (__LINE__)); \ 200}) 201#define ASM_UNREACHABLE \ 202 "999:\n\t" \ 203 ".pushsection .discard.unreachable\n\t" \ 204 ".long 999b - .\n\t" \ 205 ".popsection\n\t" 206#else 207#define annotate_reachable() 208#define annotate_unreachable() 209#endif 210 211#ifndef ASM_UNREACHABLE 212# define ASM_UNREACHABLE 213#endif 214#ifndef unreachable 215# define unreachable() do { annotate_reachable(); do { } while (1); } while (0) 216#endif 217 218/* 219 * KENTRY - kernel entry point 220 * This can be used to annotate symbols (functions or data) that are used 221 * without their linker symbol being referenced explicitly. For example, 222 * interrupt vector handlers, or functions in the kernel image that are found 223 * programatically. 224 * 225 * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those 226 * are handled in their own way (with KEEP() in linker scripts). 227 * 228 * KENTRY can be avoided if the symbols in question are marked as KEEP() in the 229 * linker script. For example an architecture could KEEP() its entire 230 * boot/exception vector code rather than annotate each function and data. 231 */ 232#ifndef KENTRY 233# define KENTRY(sym) \ 234 extern typeof(sym) sym; \ 235 static const unsigned long __kentry_##sym \ 236 __used \ 237 __attribute__((section("___kentry" "+" #sym ), used)) \ 238 = (unsigned long)&sym; 239#endif 240 241#ifndef RELOC_HIDE 242# define RELOC_HIDE(ptr, off) \ 243 ({ unsigned long __ptr; \ 244 __ptr = (unsigned long) (ptr); \ 245 (typeof(ptr)) (__ptr + (off)); }) 246#endif 247 248#ifndef OPTIMIZER_HIDE_VAR 249#define OPTIMIZER_HIDE_VAR(var) barrier() 250#endif 251 252/* Not-quite-unique ID. */ 253#ifndef __UNIQUE_ID 254# define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__) 255#endif 256 257#include <uapi/linux/types.h> 258 259#define __READ_ONCE_SIZE \ 260({ \ 261 switch (size) { \ 262 case 1: *(__u8 *)res = *(volatile __u8 *)p; break; \ 263 case 2: *(__u16 *)res = *(volatile __u16 *)p; break; \ 264 case 4: *(__u32 *)res = *(volatile __u32 *)p; break; \ 265 case 8: *(__u64 *)res = *(volatile __u64 *)p; break; \ 266 default: \ 267 barrier(); \ 268 __builtin_memcpy((void *)res, (const void *)p, size); \ 269 barrier(); \ 270 } \ 271}) 272 273static __always_inline 274void __read_once_size(const volatile void *p, void *res, int size) 275{ 276 __READ_ONCE_SIZE; 277} 278 279#ifdef CONFIG_KASAN 280/* 281 * This function is not 'inline' because __no_sanitize_address confilcts 282 * with inlining. Attempt to inline it may cause a build failure. 283 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368 284 * '__maybe_unused' allows us to avoid defined-but-not-used warnings. 285 */ 286static __no_sanitize_address __maybe_unused 287void __read_once_size_nocheck(const volatile void *p, void *res, int size) 288{ 289 __READ_ONCE_SIZE; 290} 291#else 292static __always_inline 293void __read_once_size_nocheck(const volatile void *p, void *res, int size) 294{ 295 __READ_ONCE_SIZE; 296} 297#endif 298 299static __always_inline void __write_once_size(volatile void *p, void *res, int size) 300{ 301 switch (size) { 302 case 1: *(volatile __u8 *)p = *(__u8 *)res; break; 303 case 2: *(volatile __u16 *)p = *(__u16 *)res; break; 304 case 4: *(volatile __u32 *)p = *(__u32 *)res; break; 305 case 8: *(volatile __u64 *)p = *(__u64 *)res; break; 306 default: 307 barrier(); 308 __builtin_memcpy((void *)p, (const void *)res, size); 309 barrier(); 310 } 311} 312 313/* 314 * Prevent the compiler from merging or refetching reads or writes. The 315 * compiler is also forbidden from reordering successive instances of 316 * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the 317 * compiler is aware of some particular ordering. One way to make the 318 * compiler aware of ordering is to put the two invocations of READ_ONCE, 319 * WRITE_ONCE or ACCESS_ONCE() in different C statements. 320 * 321 * In contrast to ACCESS_ONCE these two macros will also work on aggregate 322 * data types like structs or unions. If the size of the accessed data 323 * type exceeds the word size of the machine (e.g., 32 bits or 64 bits) 324 * READ_ONCE() and WRITE_ONCE() will fall back to memcpy(). There's at 325 * least two memcpy()s: one for the __builtin_memcpy() and then one for 326 * the macro doing the copy of variable - '__u' allocated on the stack. 327 * 328 * Their two major use cases are: (1) Mediating communication between 329 * process-level code and irq/NMI handlers, all running on the same CPU, 330 * and (2) Ensuring that the compiler does not fold, spindle, or otherwise 331 * mutilate accesses that either do not require ordering or that interact 332 * with an explicit memory barrier or atomic instruction that provides the 333 * required ordering. 334 */ 335 336#define __READ_ONCE(x, check) \ 337({ \ 338 union { typeof(x) __val; char __c[1]; } __u; \ 339 if (check) \ 340 __read_once_size(&(x), __u.__c, sizeof(x)); \ 341 else \ 342 __read_once_size_nocheck(&(x), __u.__c, sizeof(x)); \ 343 __u.__val; \ 344}) 345#define READ_ONCE(x) __READ_ONCE(x, 1) 346 347/* 348 * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need 349 * to hide memory access from KASAN. 350 */ 351#define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0) 352 353#define WRITE_ONCE(x, val) \ 354({ \ 355 union { typeof(x) __val; char __c[1]; } __u = \ 356 { .__val = (__force typeof(x)) (val) }; \ 357 __write_once_size(&(x), __u.__c, sizeof(x)); \ 358 __u.__val; \ 359}) 360 361#endif /* __KERNEL__ */ 362 363#endif /* __ASSEMBLY__ */ 364 365#ifdef __KERNEL__ 366/* 367 * Allow us to mark functions as 'deprecated' and have gcc emit a nice 368 * warning for each use, in hopes of speeding the functions removal. 369 * Usage is: 370 * int __deprecated foo(void) 371 */ 372#ifndef __deprecated 373# define __deprecated /* unimplemented */ 374#endif 375 376#ifdef MODULE 377#define __deprecated_for_modules __deprecated 378#else 379#define __deprecated_for_modules 380#endif 381 382#ifndef __must_check 383#define __must_check 384#endif 385 386#ifndef CONFIG_ENABLE_MUST_CHECK 387#undef __must_check 388#define __must_check 389#endif 390#ifndef CONFIG_ENABLE_WARN_DEPRECATED 391#undef __deprecated 392#undef __deprecated_for_modules 393#define __deprecated 394#define __deprecated_for_modules 395#endif 396 397#ifndef __malloc 398#define __malloc 399#endif 400 401/* 402 * Allow us to avoid 'defined but not used' warnings on functions and data, 403 * as well as force them to be emitted to the assembly file. 404 * 405 * As of gcc 3.4, static functions that are not marked with attribute((used)) 406 * may be elided from the assembly file. As of gcc 3.4, static data not so 407 * marked will not be elided, but this may change in a future gcc version. 408 * 409 * NOTE: Because distributions shipped with a backported unit-at-a-time 410 * compiler in gcc 3.3, we must define __used to be __attribute__((used)) 411 * for gcc >=3.3 instead of 3.4. 412 * 413 * In prior versions of gcc, such functions and data would be emitted, but 414 * would be warned about except with attribute((unused)). 415 * 416 * Mark functions that are referenced only in inline assembly as __used so 417 * the code is emitted even though it appears to be unreferenced. 418 */ 419#ifndef __used 420# define __used /* unimplemented */ 421#endif 422 423#ifndef __maybe_unused 424# define __maybe_unused /* unimplemented */ 425#endif 426 427#ifndef __always_unused 428# define __always_unused /* unimplemented */ 429#endif 430 431#ifndef noinline 432#define noinline 433#endif 434 435/* 436 * Rather then using noinline to prevent stack consumption, use 437 * noinline_for_stack instead. For documentation reasons. 438 */ 439#define noinline_for_stack noinline 440 441#ifndef __always_inline 442#define __always_inline inline 443#endif 444 445#endif /* __KERNEL__ */ 446 447/* 448 * From the GCC manual: 449 * 450 * Many functions do not examine any values except their arguments, 451 * and have no effects except the return value. Basically this is 452 * just slightly more strict class than the `pure' attribute above, 453 * since function is not allowed to read global memory. 454 * 455 * Note that a function that has pointer arguments and examines the 456 * data pointed to must _not_ be declared `const'. Likewise, a 457 * function that calls a non-`const' function usually must not be 458 * `const'. It does not make sense for a `const' function to return 459 * `void'. 460 */ 461#ifndef __attribute_const__ 462# define __attribute_const__ /* unimplemented */ 463#endif 464 465#ifndef __designated_init 466# define __designated_init 467#endif 468 469#ifndef __latent_entropy 470# define __latent_entropy 471#endif 472 473#ifndef __randomize_layout 474# define __randomize_layout __designated_init 475#endif 476 477#ifndef __no_randomize_layout 478# define __no_randomize_layout 479#endif 480 481#ifndef randomized_struct_fields_start 482# define randomized_struct_fields_start 483# define randomized_struct_fields_end 484#endif 485 486/* 487 * Tell gcc if a function is cold. The compiler will assume any path 488 * directly leading to the call is unlikely. 489 */ 490 491#ifndef __cold 492#define __cold 493#endif 494 495/* Simple shorthand for a section definition */ 496#ifndef __section 497# define __section(S) __attribute__ ((__section__(#S))) 498#endif 499 500#ifndef __visible 501#define __visible 502#endif 503 504#ifndef __nostackprotector 505# define __nostackprotector 506#endif 507 508/* 509 * Assume alignment of return value. 510 */ 511#ifndef __assume_aligned 512#define __assume_aligned(a, ...) 513#endif 514 515 516/* Are two types/vars the same type (ignoring qualifiers)? */ 517#ifndef __same_type 518# define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b)) 519#endif 520 521/* Is this type a native word size -- useful for atomic operations */ 522#ifndef __native_word 523# define __native_word(t) (sizeof(t) == sizeof(char) || sizeof(t) == sizeof(short) || sizeof(t) == sizeof(int) || sizeof(t) == sizeof(long)) 524#endif 525 526/* Compile time object size, -1 for unknown */ 527#ifndef __compiletime_object_size 528# define __compiletime_object_size(obj) -1 529#endif 530#ifndef __compiletime_warning 531# define __compiletime_warning(message) 532#endif 533#ifndef __compiletime_error 534# define __compiletime_error(message) 535/* 536 * Sparse complains of variable sized arrays due to the temporary variable in 537 * __compiletime_assert. Unfortunately we can't just expand it out to make 538 * sparse see a constant array size without breaking compiletime_assert on old 539 * versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether. 540 */ 541# ifndef __CHECKER__ 542# define __compiletime_error_fallback(condition) \ 543 do { ((void)sizeof(char[1 - 2 * condition])); } while (0) 544# endif 545#endif 546#ifndef __compiletime_error_fallback 547# define __compiletime_error_fallback(condition) do { } while (0) 548#endif 549 550#ifdef __OPTIMIZE__ 551# define __compiletime_assert(condition, msg, prefix, suffix) \ 552 do { \ 553 bool __cond = !(condition); \ 554 extern void prefix ## suffix(void) __compiletime_error(msg); \ 555 if (__cond) \ 556 prefix ## suffix(); \ 557 __compiletime_error_fallback(__cond); \ 558 } while (0) 559#else 560# define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0) 561#endif 562 563#define _compiletime_assert(condition, msg, prefix, suffix) \ 564 __compiletime_assert(condition, msg, prefix, suffix) 565 566/** 567 * compiletime_assert - break build and emit msg if condition is false 568 * @condition: a compile-time constant condition to check 569 * @msg: a message to emit if condition is false 570 * 571 * In tradition of POSIX assert, this macro will break the build if the 572 * supplied condition is *false*, emitting the supplied error message if the 573 * compiler has support to do so. 574 */ 575#define compiletime_assert(condition, msg) \ 576 _compiletime_assert(condition, msg, __compiletime_assert_, __LINE__) 577 578#define compiletime_assert_atomic_type(t) \ 579 compiletime_assert(__native_word(t), \ 580 "Need native word sized stores/loads for atomicity.") 581 582/* 583 * Prevent the compiler from merging or refetching accesses. The compiler 584 * is also forbidden from reordering successive instances of ACCESS_ONCE(), 585 * but only when the compiler is aware of some particular ordering. One way 586 * to make the compiler aware of ordering is to put the two invocations of 587 * ACCESS_ONCE() in different C statements. 588 * 589 * ACCESS_ONCE will only work on scalar types. For union types, ACCESS_ONCE 590 * on a union member will work as long as the size of the member matches the 591 * size of the union and the size is smaller than word size. 592 * 593 * The major use cases of ACCESS_ONCE used to be (1) Mediating communication 594 * between process-level code and irq/NMI handlers, all running on the same CPU, 595 * and (2) Ensuring that the compiler does not fold, spindle, or otherwise 596 * mutilate accesses that either do not require ordering or that interact 597 * with an explicit memory barrier or atomic instruction that provides the 598 * required ordering. 599 * 600 * If possible use READ_ONCE()/WRITE_ONCE() instead. 601 */ 602#define __ACCESS_ONCE(x) ({ \ 603 __maybe_unused typeof(x) __var = (__force typeof(x)) 0; \ 604 (volatile typeof(x) *)&(x); }) 605#define ACCESS_ONCE(x) (*__ACCESS_ONCE(x)) 606 607/** 608 * lockless_dereference() - safely load a pointer for later dereference 609 * @p: The pointer to load 610 * 611 * Similar to rcu_dereference(), but for situations where the pointed-to 612 * object's lifetime is managed by something other than RCU. That 613 * "something other" might be reference counting or simple immortality. 614 * 615 * The seemingly unused variable ___typecheck_p validates that @p is 616 * indeed a pointer type by using a pointer to typeof(*p) as the type. 617 * Taking a pointer to typeof(*p) again is needed in case p is void *. 618 */ 619#define lockless_dereference(p) \ 620({ \ 621 typeof(p) _________p1 = READ_ONCE(p); \ 622 typeof(*(p)) *___typecheck_p __maybe_unused; \ 623 smp_read_barrier_depends(); /* Dependency order vs. p above. */ \ 624 (_________p1); \ 625}) 626 627#endif /* __LINUX_COMPILER_H */