Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_KERNEL_H
2#define _LINUX_KERNEL_H
3
4
5#include <stdarg.h>
6#include <linux/linkage.h>
7#include <linux/stddef.h>
8#include <linux/types.h>
9#include <linux/compiler.h>
10#include <linux/bitops.h>
11#include <linux/log2.h>
12#include <linux/typecheck.h>
13#include <linux/printk.h>
14#include <linux/build_bug.h>
15#include <asm/byteorder.h>
16#include <uapi/linux/kernel.h>
17
18#define USHRT_MAX ((u16)(~0U))
19#define SHRT_MAX ((s16)(USHRT_MAX>>1))
20#define SHRT_MIN ((s16)(-SHRT_MAX - 1))
21#define INT_MAX ((int)(~0U>>1))
22#define INT_MIN (-INT_MAX - 1)
23#define UINT_MAX (~0U)
24#define LONG_MAX ((long)(~0UL>>1))
25#define LONG_MIN (-LONG_MAX - 1)
26#define ULONG_MAX (~0UL)
27#define LLONG_MAX ((long long)(~0ULL>>1))
28#define LLONG_MIN (-LLONG_MAX - 1)
29#define ULLONG_MAX (~0ULL)
30#define SIZE_MAX (~(size_t)0)
31
32#define U8_MAX ((u8)~0U)
33#define S8_MAX ((s8)(U8_MAX>>1))
34#define S8_MIN ((s8)(-S8_MAX - 1))
35#define U16_MAX ((u16)~0U)
36#define S16_MAX ((s16)(U16_MAX>>1))
37#define S16_MIN ((s16)(-S16_MAX - 1))
38#define U32_MAX ((u32)~0U)
39#define S32_MAX ((s32)(U32_MAX>>1))
40#define S32_MIN ((s32)(-S32_MAX - 1))
41#define U64_MAX ((u64)~0ULL)
42#define S64_MAX ((s64)(U64_MAX>>1))
43#define S64_MIN ((s64)(-S64_MAX - 1))
44
45#define STACK_MAGIC 0xdeadbeef
46
47/**
48 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value
49 * @x: value to repeat
50 *
51 * NOTE: @x is not checked for > 0xff; larger values produce odd results.
52 */
53#define REPEAT_BYTE(x) ((~0ul / 0xff) * (x))
54
55/* @a is a power of 2 value */
56#define ALIGN(x, a) __ALIGN_KERNEL((x), (a))
57#define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a))
58#define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask))
59#define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a)))
60#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0)
61
62/* generic data direction definitions */
63#define READ 0
64#define WRITE 1
65
66/**
67 * ARRAY_SIZE - get the number of elements in array @arr
68 * @arr: array to be sized
69 */
70#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
71
72#define u64_to_user_ptr(x) ( \
73{ \
74 typecheck(u64, x); \
75 (void __user *)(uintptr_t)x; \
76} \
77)
78
79/*
80 * This looks more complex than it should be. But we need to
81 * get the type for the ~ right in round_down (it needs to be
82 * as wide as the result!), and we want to evaluate the macro
83 * arguments just once each.
84 */
85#define __round_mask(x, y) ((__typeof__(x))((y)-1))
86#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
87#define round_down(x, y) ((x) & ~__round_mask(x, y))
88
89/**
90 * FIELD_SIZEOF - get the size of a struct's field
91 * @t: the target struct
92 * @f: the target struct's field
93 * Return: the size of @f in the struct definition without having a
94 * declared instance of @t.
95 */
96#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
97
98#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
99
100#define DIV_ROUND_DOWN_ULL(ll, d) \
101 ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
102
103#define DIV_ROUND_UP_ULL(ll, d) DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d))
104
105#if BITS_PER_LONG == 32
106# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
107#else
108# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
109#endif
110
111/* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */
112#define roundup(x, y) ( \
113{ \
114 const typeof(y) __y = y; \
115 (((x) + (__y - 1)) / __y) * __y; \
116} \
117)
118#define rounddown(x, y) ( \
119{ \
120 typeof(x) __x = (x); \
121 __x - (__x % (y)); \
122} \
123)
124
125/*
126 * Divide positive or negative dividend by positive or negative divisor
127 * and round to closest integer. Result is undefined for negative
128 * divisors if the dividend variable type is unsigned and for negative
129 * dividends if the divisor variable type is unsigned.
130 */
131#define DIV_ROUND_CLOSEST(x, divisor)( \
132{ \
133 typeof(x) __x = x; \
134 typeof(divisor) __d = divisor; \
135 (((typeof(x))-1) > 0 || \
136 ((typeof(divisor))-1) > 0 || \
137 (((__x) > 0) == ((__d) > 0))) ? \
138 (((__x) + ((__d) / 2)) / (__d)) : \
139 (((__x) - ((__d) / 2)) / (__d)); \
140} \
141)
142/*
143 * Same as above but for u64 dividends. divisor must be a 32-bit
144 * number.
145 */
146#define DIV_ROUND_CLOSEST_ULL(x, divisor)( \
147{ \
148 typeof(divisor) __d = divisor; \
149 unsigned long long _tmp = (x) + (__d) / 2; \
150 do_div(_tmp, __d); \
151 _tmp; \
152} \
153)
154
155/*
156 * Multiplies an integer by a fraction, while avoiding unnecessary
157 * overflow or loss of precision.
158 */
159#define mult_frac(x, numer, denom)( \
160{ \
161 typeof(x) quot = (x) / (denom); \
162 typeof(x) rem = (x) % (denom); \
163 (quot * (numer)) + ((rem * (numer)) / (denom)); \
164} \
165)
166
167
168#define _RET_IP_ (unsigned long)__builtin_return_address(0)
169#define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; })
170
171#ifdef CONFIG_LBDAF
172# include <asm/div64.h>
173# define sector_div(a, b) do_div(a, b)
174#else
175# define sector_div(n, b)( \
176{ \
177 int _res; \
178 _res = (n) % (b); \
179 (n) /= (b); \
180 _res; \
181} \
182)
183#endif
184
185/**
186 * upper_32_bits - return bits 32-63 of a number
187 * @n: the number we're accessing
188 *
189 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress
190 * the "right shift count >= width of type" warning when that quantity is
191 * 32-bits.
192 */
193#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
194
195/**
196 * lower_32_bits - return bits 0-31 of a number
197 * @n: the number we're accessing
198 */
199#define lower_32_bits(n) ((u32)(n))
200
201struct completion;
202struct pt_regs;
203struct user;
204
205#ifdef CONFIG_PREEMPT_VOLUNTARY
206extern int _cond_resched(void);
207# define might_resched() _cond_resched()
208#else
209# define might_resched() do { } while (0)
210#endif
211
212#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
213 void ___might_sleep(const char *file, int line, int preempt_offset);
214 void __might_sleep(const char *file, int line, int preempt_offset);
215/**
216 * might_sleep - annotation for functions that can sleep
217 *
218 * this macro will print a stack trace if it is executed in an atomic
219 * context (spinlock, irq-handler, ...).
220 *
221 * This is a useful debugging help to be able to catch problems early and not
222 * be bitten later when the calling function happens to sleep when it is not
223 * supposed to.
224 */
225# define might_sleep() \
226 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
227# define sched_annotate_sleep() (current->task_state_change = 0)
228#else
229 static inline void ___might_sleep(const char *file, int line,
230 int preempt_offset) { }
231 static inline void __might_sleep(const char *file, int line,
232 int preempt_offset) { }
233# define might_sleep() do { might_resched(); } while (0)
234# define sched_annotate_sleep() do { } while (0)
235#endif
236
237#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
238
239/**
240 * abs - return absolute value of an argument
241 * @x: the value. If it is unsigned type, it is converted to signed type first.
242 * char is treated as if it was signed (regardless of whether it really is)
243 * but the macro's return type is preserved as char.
244 *
245 * Return: an absolute value of x.
246 */
247#define abs(x) __abs_choose_expr(x, long long, \
248 __abs_choose_expr(x, long, \
249 __abs_choose_expr(x, int, \
250 __abs_choose_expr(x, short, \
251 __abs_choose_expr(x, char, \
252 __builtin_choose_expr( \
253 __builtin_types_compatible_p(typeof(x), char), \
254 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \
255 ((void)0)))))))
256
257#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \
258 __builtin_types_compatible_p(typeof(x), signed type) || \
259 __builtin_types_compatible_p(typeof(x), unsigned type), \
260 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
261
262/**
263 * reciprocal_scale - "scale" a value into range [0, ep_ro)
264 * @val: value
265 * @ep_ro: right open interval endpoint
266 *
267 * Perform a "reciprocal multiplication" in order to "scale" a value into
268 * range [0, @ep_ro), where the upper interval endpoint is right-open.
269 * This is useful, e.g. for accessing a index of an array containing
270 * @ep_ro elements, for example. Think of it as sort of modulus, only that
271 * the result isn't that of modulo. ;) Note that if initial input is a
272 * small value, then result will return 0.
273 *
274 * Return: a result based on @val in interval [0, @ep_ro).
275 */
276static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
277{
278 return (u32)(((u64) val * ep_ro) >> 32);
279}
280
281#if defined(CONFIG_MMU) && \
282 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
283#define might_fault() __might_fault(__FILE__, __LINE__)
284void __might_fault(const char *file, int line);
285#else
286static inline void might_fault(void) { }
287#endif
288
289extern struct atomic_notifier_head panic_notifier_list;
290extern long (*panic_blink)(int state);
291__printf(1, 2)
292void panic(const char *fmt, ...) __noreturn __cold;
293void nmi_panic(struct pt_regs *regs, const char *msg);
294extern void oops_enter(void);
295extern void oops_exit(void);
296void print_oops_end_marker(void);
297extern int oops_may_print(void);
298void do_exit(long error_code) __noreturn;
299void complete_and_exit(struct completion *, long) __noreturn;
300
301#ifdef CONFIG_ARCH_HAS_REFCOUNT
302void refcount_error_report(struct pt_regs *regs, const char *err);
303#else
304static inline void refcount_error_report(struct pt_regs *regs, const char *err)
305{ }
306#endif
307
308/* Internal, do not use. */
309int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
310int __must_check _kstrtol(const char *s, unsigned int base, long *res);
311
312int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
313int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
314
315/**
316 * kstrtoul - convert a string to an unsigned long
317 * @s: The start of the string. The string must be null-terminated, and may also
318 * include a single newline before its terminating null. The first character
319 * may also be a plus sign, but not a minus sign.
320 * @base: The number base to use. The maximum supported base is 16. If base is
321 * given as 0, then the base of the string is automatically detected with the
322 * conventional semantics - If it begins with 0x the number will be parsed as a
323 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be
324 * parsed as an octal number. Otherwise it will be parsed as a decimal.
325 * @res: Where to write the result of the conversion on success.
326 *
327 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
328 * Used as a replacement for the obsolete simple_strtoull. Return code must
329 * be checked.
330*/
331static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
332{
333 /*
334 * We want to shortcut function call, but
335 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
336 */
337 if (sizeof(unsigned long) == sizeof(unsigned long long) &&
338 __alignof__(unsigned long) == __alignof__(unsigned long long))
339 return kstrtoull(s, base, (unsigned long long *)res);
340 else
341 return _kstrtoul(s, base, res);
342}
343
344/**
345 * kstrtol - convert a string to a long
346 * @s: The start of the string. The string must be null-terminated, and may also
347 * include a single newline before its terminating null. The first character
348 * may also be a plus sign or a minus sign.
349 * @base: The number base to use. The maximum supported base is 16. If base is
350 * given as 0, then the base of the string is automatically detected with the
351 * conventional semantics - If it begins with 0x the number will be parsed as a
352 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be
353 * parsed as an octal number. Otherwise it will be parsed as a decimal.
354 * @res: Where to write the result of the conversion on success.
355 *
356 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
357 * Used as a replacement for the obsolete simple_strtoull. Return code must
358 * be checked.
359 */
360static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
361{
362 /*
363 * We want to shortcut function call, but
364 * __builtin_types_compatible_p(long, long long) = 0.
365 */
366 if (sizeof(long) == sizeof(long long) &&
367 __alignof__(long) == __alignof__(long long))
368 return kstrtoll(s, base, (long long *)res);
369 else
370 return _kstrtol(s, base, res);
371}
372
373int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
374int __must_check kstrtoint(const char *s, unsigned int base, int *res);
375
376static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
377{
378 return kstrtoull(s, base, res);
379}
380
381static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
382{
383 return kstrtoll(s, base, res);
384}
385
386static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
387{
388 return kstrtouint(s, base, res);
389}
390
391static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
392{
393 return kstrtoint(s, base, res);
394}
395
396int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
397int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
398int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
399int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
400int __must_check kstrtobool(const char *s, bool *res);
401
402int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
403int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
404int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
405int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
406int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
407int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
408int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
409int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
410int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
411int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
412int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
413
414static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
415{
416 return kstrtoull_from_user(s, count, base, res);
417}
418
419static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
420{
421 return kstrtoll_from_user(s, count, base, res);
422}
423
424static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
425{
426 return kstrtouint_from_user(s, count, base, res);
427}
428
429static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
430{
431 return kstrtoint_from_user(s, count, base, res);
432}
433
434/* Obsolete, do not use. Use kstrto<foo> instead */
435
436extern unsigned long simple_strtoul(const char *,char **,unsigned int);
437extern long simple_strtol(const char *,char **,unsigned int);
438extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
439extern long long simple_strtoll(const char *,char **,unsigned int);
440
441extern int num_to_str(char *buf, int size, unsigned long long num);
442
443/* lib/printf utilities */
444
445extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
446extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
447extern __printf(3, 4)
448int snprintf(char *buf, size_t size, const char *fmt, ...);
449extern __printf(3, 0)
450int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
451extern __printf(3, 4)
452int scnprintf(char *buf, size_t size, const char *fmt, ...);
453extern __printf(3, 0)
454int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
455extern __printf(2, 3) __malloc
456char *kasprintf(gfp_t gfp, const char *fmt, ...);
457extern __printf(2, 0) __malloc
458char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
459extern __printf(2, 0)
460const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
461
462extern __scanf(2, 3)
463int sscanf(const char *, const char *, ...);
464extern __scanf(2, 0)
465int vsscanf(const char *, const char *, va_list);
466
467extern int get_option(char **str, int *pint);
468extern char *get_options(const char *str, int nints, int *ints);
469extern unsigned long long memparse(const char *ptr, char **retptr);
470extern bool parse_option_str(const char *str, const char *option);
471extern char *next_arg(char *args, char **param, char **val);
472
473extern int core_kernel_text(unsigned long addr);
474extern int core_kernel_data(unsigned long addr);
475extern int __kernel_text_address(unsigned long addr);
476extern int kernel_text_address(unsigned long addr);
477extern int func_ptr_is_kernel_text(void *ptr);
478
479unsigned long int_sqrt(unsigned long);
480
481extern void bust_spinlocks(int yes);
482extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */
483extern int panic_timeout;
484extern int panic_on_oops;
485extern int panic_on_unrecovered_nmi;
486extern int panic_on_io_nmi;
487extern int panic_on_warn;
488extern int sysctl_panic_on_rcu_stall;
489extern int sysctl_panic_on_stackoverflow;
490
491extern bool crash_kexec_post_notifiers;
492
493/*
494 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
495 * holds a CPU number which is executing panic() currently. A value of
496 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
497 */
498extern atomic_t panic_cpu;
499#define PANIC_CPU_INVALID -1
500
501/*
502 * Only to be used by arch init code. If the user over-wrote the default
503 * CONFIG_PANIC_TIMEOUT, honor it.
504 */
505static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
506{
507 if (panic_timeout == arch_default_timeout)
508 panic_timeout = timeout;
509}
510extern const char *print_tainted(void);
511enum lockdep_ok {
512 LOCKDEP_STILL_OK,
513 LOCKDEP_NOW_UNRELIABLE
514};
515extern void add_taint(unsigned flag, enum lockdep_ok);
516extern int test_taint(unsigned flag);
517extern unsigned long get_taint(void);
518extern int root_mountflags;
519
520extern bool early_boot_irqs_disabled;
521
522/*
523 * Values used for system_state. Ordering of the states must not be changed
524 * as code checks for <, <=, >, >= STATE.
525 */
526extern enum system_states {
527 SYSTEM_BOOTING,
528 SYSTEM_SCHEDULING,
529 SYSTEM_RUNNING,
530 SYSTEM_HALT,
531 SYSTEM_POWER_OFF,
532 SYSTEM_RESTART,
533} system_state;
534
535#define TAINT_PROPRIETARY_MODULE 0
536#define TAINT_FORCED_MODULE 1
537#define TAINT_CPU_OUT_OF_SPEC 2
538#define TAINT_FORCED_RMMOD 3
539#define TAINT_MACHINE_CHECK 4
540#define TAINT_BAD_PAGE 5
541#define TAINT_USER 6
542#define TAINT_DIE 7
543#define TAINT_OVERRIDDEN_ACPI_TABLE 8
544#define TAINT_WARN 9
545#define TAINT_CRAP 10
546#define TAINT_FIRMWARE_WORKAROUND 11
547#define TAINT_OOT_MODULE 12
548#define TAINT_UNSIGNED_MODULE 13
549#define TAINT_SOFTLOCKUP 14
550#define TAINT_LIVEPATCH 15
551#define TAINT_FLAGS_COUNT 16
552
553struct taint_flag {
554 char c_true; /* character printed when tainted */
555 char c_false; /* character printed when not tainted */
556 bool module; /* also show as a per-module taint flag */
557};
558
559extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
560
561extern const char hex_asc[];
562#define hex_asc_lo(x) hex_asc[((x) & 0x0f)]
563#define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4]
564
565static inline char *hex_byte_pack(char *buf, u8 byte)
566{
567 *buf++ = hex_asc_hi(byte);
568 *buf++ = hex_asc_lo(byte);
569 return buf;
570}
571
572extern const char hex_asc_upper[];
573#define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)]
574#define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4]
575
576static inline char *hex_byte_pack_upper(char *buf, u8 byte)
577{
578 *buf++ = hex_asc_upper_hi(byte);
579 *buf++ = hex_asc_upper_lo(byte);
580 return buf;
581}
582
583extern int hex_to_bin(char ch);
584extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
585extern char *bin2hex(char *dst, const void *src, size_t count);
586
587bool mac_pton(const char *s, u8 *mac);
588
589/*
590 * General tracing related utility functions - trace_printk(),
591 * tracing_on/tracing_off and tracing_start()/tracing_stop
592 *
593 * Use tracing_on/tracing_off when you want to quickly turn on or off
594 * tracing. It simply enables or disables the recording of the trace events.
595 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
596 * file, which gives a means for the kernel and userspace to interact.
597 * Place a tracing_off() in the kernel where you want tracing to end.
598 * From user space, examine the trace, and then echo 1 > tracing_on
599 * to continue tracing.
600 *
601 * tracing_stop/tracing_start has slightly more overhead. It is used
602 * by things like suspend to ram where disabling the recording of the
603 * trace is not enough, but tracing must actually stop because things
604 * like calling smp_processor_id() may crash the system.
605 *
606 * Most likely, you want to use tracing_on/tracing_off.
607 */
608
609enum ftrace_dump_mode {
610 DUMP_NONE,
611 DUMP_ALL,
612 DUMP_ORIG,
613};
614
615#ifdef CONFIG_TRACING
616void tracing_on(void);
617void tracing_off(void);
618int tracing_is_on(void);
619void tracing_snapshot(void);
620void tracing_snapshot_alloc(void);
621
622extern void tracing_start(void);
623extern void tracing_stop(void);
624
625static inline __printf(1, 2)
626void ____trace_printk_check_format(const char *fmt, ...)
627{
628}
629#define __trace_printk_check_format(fmt, args...) \
630do { \
631 if (0) \
632 ____trace_printk_check_format(fmt, ##args); \
633} while (0)
634
635/**
636 * trace_printk - printf formatting in the ftrace buffer
637 * @fmt: the printf format for printing
638 *
639 * Note: __trace_printk is an internal function for trace_printk() and
640 * the @ip is passed in via the trace_printk() macro.
641 *
642 * This function allows a kernel developer to debug fast path sections
643 * that printk is not appropriate for. By scattering in various
644 * printk like tracing in the code, a developer can quickly see
645 * where problems are occurring.
646 *
647 * This is intended as a debugging tool for the developer only.
648 * Please refrain from leaving trace_printks scattered around in
649 * your code. (Extra memory is used for special buffers that are
650 * allocated when trace_printk() is used.)
651 *
652 * A little optization trick is done here. If there's only one
653 * argument, there's no need to scan the string for printf formats.
654 * The trace_puts() will suffice. But how can we take advantage of
655 * using trace_puts() when trace_printk() has only one argument?
656 * By stringifying the args and checking the size we can tell
657 * whether or not there are args. __stringify((__VA_ARGS__)) will
658 * turn into "()\0" with a size of 3 when there are no args, anything
659 * else will be bigger. All we need to do is define a string to this,
660 * and then take its size and compare to 3. If it's bigger, use
661 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
662 * let gcc optimize the rest.
663 */
664
665#define trace_printk(fmt, ...) \
666do { \
667 char _______STR[] = __stringify((__VA_ARGS__)); \
668 if (sizeof(_______STR) > 3) \
669 do_trace_printk(fmt, ##__VA_ARGS__); \
670 else \
671 trace_puts(fmt); \
672} while (0)
673
674#define do_trace_printk(fmt, args...) \
675do { \
676 static const char *trace_printk_fmt __used \
677 __attribute__((section("__trace_printk_fmt"))) = \
678 __builtin_constant_p(fmt) ? fmt : NULL; \
679 \
680 __trace_printk_check_format(fmt, ##args); \
681 \
682 if (__builtin_constant_p(fmt)) \
683 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \
684 else \
685 __trace_printk(_THIS_IP_, fmt, ##args); \
686} while (0)
687
688extern __printf(2, 3)
689int __trace_bprintk(unsigned long ip, const char *fmt, ...);
690
691extern __printf(2, 3)
692int __trace_printk(unsigned long ip, const char *fmt, ...);
693
694/**
695 * trace_puts - write a string into the ftrace buffer
696 * @str: the string to record
697 *
698 * Note: __trace_bputs is an internal function for trace_puts and
699 * the @ip is passed in via the trace_puts macro.
700 *
701 * This is similar to trace_printk() but is made for those really fast
702 * paths that a developer wants the least amount of "Heisenbug" effects,
703 * where the processing of the print format is still too much.
704 *
705 * This function allows a kernel developer to debug fast path sections
706 * that printk is not appropriate for. By scattering in various
707 * printk like tracing in the code, a developer can quickly see
708 * where problems are occurring.
709 *
710 * This is intended as a debugging tool for the developer only.
711 * Please refrain from leaving trace_puts scattered around in
712 * your code. (Extra memory is used for special buffers that are
713 * allocated when trace_puts() is used.)
714 *
715 * Returns: 0 if nothing was written, positive # if string was.
716 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
717 */
718
719#define trace_puts(str) ({ \
720 static const char *trace_printk_fmt __used \
721 __attribute__((section("__trace_printk_fmt"))) = \
722 __builtin_constant_p(str) ? str : NULL; \
723 \
724 if (__builtin_constant_p(str)) \
725 __trace_bputs(_THIS_IP_, trace_printk_fmt); \
726 else \
727 __trace_puts(_THIS_IP_, str, strlen(str)); \
728})
729extern int __trace_bputs(unsigned long ip, const char *str);
730extern int __trace_puts(unsigned long ip, const char *str, int size);
731
732extern void trace_dump_stack(int skip);
733
734/*
735 * The double __builtin_constant_p is because gcc will give us an error
736 * if we try to allocate the static variable to fmt if it is not a
737 * constant. Even with the outer if statement.
738 */
739#define ftrace_vprintk(fmt, vargs) \
740do { \
741 if (__builtin_constant_p(fmt)) { \
742 static const char *trace_printk_fmt __used \
743 __attribute__((section("__trace_printk_fmt"))) = \
744 __builtin_constant_p(fmt) ? fmt : NULL; \
745 \
746 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \
747 } else \
748 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \
749} while (0)
750
751extern __printf(2, 0) int
752__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
753
754extern __printf(2, 0) int
755__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
756
757extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
758#else
759static inline void tracing_start(void) { }
760static inline void tracing_stop(void) { }
761static inline void trace_dump_stack(int skip) { }
762
763static inline void tracing_on(void) { }
764static inline void tracing_off(void) { }
765static inline int tracing_is_on(void) { return 0; }
766static inline void tracing_snapshot(void) { }
767static inline void tracing_snapshot_alloc(void) { }
768
769static inline __printf(1, 2)
770int trace_printk(const char *fmt, ...)
771{
772 return 0;
773}
774static __printf(1, 0) inline int
775ftrace_vprintk(const char *fmt, va_list ap)
776{
777 return 0;
778}
779static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
780#endif /* CONFIG_TRACING */
781
782/*
783 * min()/max()/clamp() macros that also do
784 * strict type-checking.. See the
785 * "unnecessary" pointer comparison.
786 */
787#define __min(t1, t2, min1, min2, x, y) ({ \
788 t1 min1 = (x); \
789 t2 min2 = (y); \
790 (void) (&min1 == &min2); \
791 min1 < min2 ? min1 : min2; })
792
793/**
794 * min - return minimum of two values of the same or compatible types
795 * @x: first value
796 * @y: second value
797 */
798#define min(x, y) \
799 __min(typeof(x), typeof(y), \
800 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \
801 x, y)
802
803#define __max(t1, t2, max1, max2, x, y) ({ \
804 t1 max1 = (x); \
805 t2 max2 = (y); \
806 (void) (&max1 == &max2); \
807 max1 > max2 ? max1 : max2; })
808
809/**
810 * max - return maximum of two values of the same or compatible types
811 * @x: first value
812 * @y: second value
813 */
814#define max(x, y) \
815 __max(typeof(x), typeof(y), \
816 __UNIQUE_ID(max1_), __UNIQUE_ID(max2_), \
817 x, y)
818
819/**
820 * min3 - return minimum of three values
821 * @x: first value
822 * @y: second value
823 * @z: third value
824 */
825#define min3(x, y, z) min((typeof(x))min(x, y), z)
826
827/**
828 * max3 - return maximum of three values
829 * @x: first value
830 * @y: second value
831 * @z: third value
832 */
833#define max3(x, y, z) max((typeof(x))max(x, y), z)
834
835/**
836 * min_not_zero - return the minimum that is _not_ zero, unless both are zero
837 * @x: value1
838 * @y: value2
839 */
840#define min_not_zero(x, y) ({ \
841 typeof(x) __x = (x); \
842 typeof(y) __y = (y); \
843 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
844
845/**
846 * clamp - return a value clamped to a given range with strict typechecking
847 * @val: current value
848 * @lo: lowest allowable value
849 * @hi: highest allowable value
850 *
851 * This macro does strict typechecking of @lo/@hi to make sure they are of the
852 * same type as @val. See the unnecessary pointer comparisons.
853 */
854#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
855
856/*
857 * ..and if you can't take the strict
858 * types, you can specify one yourself.
859 *
860 * Or not use min/max/clamp at all, of course.
861 */
862
863/**
864 * min_t - return minimum of two values, using the specified type
865 * @type: data type to use
866 * @x: first value
867 * @y: second value
868 */
869#define min_t(type, x, y) \
870 __min(type, type, \
871 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \
872 x, y)
873
874/**
875 * max_t - return maximum of two values, using the specified type
876 * @type: data type to use
877 * @x: first value
878 * @y: second value
879 */
880#define max_t(type, x, y) \
881 __max(type, type, \
882 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \
883 x, y)
884
885/**
886 * clamp_t - return a value clamped to a given range using a given type
887 * @type: the type of variable to use
888 * @val: current value
889 * @lo: minimum allowable value
890 * @hi: maximum allowable value
891 *
892 * This macro does no typechecking and uses temporary variables of type
893 * @type to make all the comparisons.
894 */
895#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
896
897/**
898 * clamp_val - return a value clamped to a given range using val's type
899 * @val: current value
900 * @lo: minimum allowable value
901 * @hi: maximum allowable value
902 *
903 * This macro does no typechecking and uses temporary variables of whatever
904 * type the input argument @val is. This is useful when @val is an unsigned
905 * type and @lo and @hi are literals that will otherwise be assigned a signed
906 * integer type.
907 */
908#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
909
910
911/**
912 * swap - swap values of @a and @b
913 * @a: first value
914 * @b: second value
915 */
916#define swap(a, b) \
917 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
918
919/**
920 * container_of - cast a member of a structure out to the containing structure
921 * @ptr: the pointer to the member.
922 * @type: the type of the container struct this is embedded in.
923 * @member: the name of the member within the struct.
924 *
925 */
926#define container_of(ptr, type, member) ({ \
927 void *__mptr = (void *)(ptr); \
928 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \
929 !__same_type(*(ptr), void), \
930 "pointer type mismatch in container_of()"); \
931 ((type *)(__mptr - offsetof(type, member))); })
932
933/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
934#ifdef CONFIG_FTRACE_MCOUNT_RECORD
935# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
936#endif
937
938/* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
939#define VERIFY_OCTAL_PERMISSIONS(perms) \
940 (BUILD_BUG_ON_ZERO((perms) < 0) + \
941 BUILD_BUG_ON_ZERO((perms) > 0777) + \
942 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \
943 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \
944 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \
945 /* USER_WRITABLE >= GROUP_WRITABLE */ \
946 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \
947 /* OTHER_WRITABLE? Generally considered a bad idea. */ \
948 BUILD_BUG_ON_ZERO((perms) & 2) + \
949 (perms))
950#endif