at v4.14-rc6 1625 lines 38 kB view raw
1/* 2 * Copyright (C) 2015 IT University of Copenhagen 3 * Initial release: Matias Bjorling <m@bjorling.me> 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License version 7 * 2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs. 15 */ 16 17#include "rrpc.h" 18 19static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache; 20static DECLARE_RWSEM(rrpc_lock); 21 22static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio, 23 struct nvm_rq *rqd, unsigned long flags); 24 25#define rrpc_for_each_lun(rrpc, rlun, i) \ 26 for ((i) = 0, rlun = &(rrpc)->luns[0]; \ 27 (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)]) 28 29static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a) 30{ 31 struct nvm_tgt_dev *dev = rrpc->dev; 32 struct rrpc_block *rblk = a->rblk; 33 unsigned int pg_offset; 34 35 lockdep_assert_held(&rrpc->rev_lock); 36 37 if (a->addr == ADDR_EMPTY || !rblk) 38 return; 39 40 spin_lock(&rblk->lock); 41 42 div_u64_rem(a->addr, dev->geo.sec_per_blk, &pg_offset); 43 WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages)); 44 rblk->nr_invalid_pages++; 45 46 spin_unlock(&rblk->lock); 47 48 rrpc->rev_trans_map[a->addr].addr = ADDR_EMPTY; 49} 50 51static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba, 52 unsigned int len) 53{ 54 sector_t i; 55 56 spin_lock(&rrpc->rev_lock); 57 for (i = slba; i < slba + len; i++) { 58 struct rrpc_addr *gp = &rrpc->trans_map[i]; 59 60 rrpc_page_invalidate(rrpc, gp); 61 gp->rblk = NULL; 62 } 63 spin_unlock(&rrpc->rev_lock); 64} 65 66static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc, 67 sector_t laddr, unsigned int pages) 68{ 69 struct nvm_rq *rqd; 70 struct rrpc_inflight_rq *inf; 71 72 rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC); 73 if (!rqd) 74 return ERR_PTR(-ENOMEM); 75 76 inf = rrpc_get_inflight_rq(rqd); 77 if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) { 78 mempool_free(rqd, rrpc->rq_pool); 79 return NULL; 80 } 81 82 return rqd; 83} 84 85static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd) 86{ 87 struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd); 88 89 rrpc_unlock_laddr(rrpc, inf); 90 91 mempool_free(rqd, rrpc->rq_pool); 92} 93 94static void rrpc_discard(struct rrpc *rrpc, struct bio *bio) 95{ 96 sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG; 97 sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE; 98 struct nvm_rq *rqd; 99 100 while (1) { 101 rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len); 102 if (rqd) 103 break; 104 105 schedule(); 106 } 107 108 if (IS_ERR(rqd)) { 109 pr_err("rrpc: unable to acquire inflight IO\n"); 110 bio_io_error(bio); 111 return; 112 } 113 114 rrpc_invalidate_range(rrpc, slba, len); 115 rrpc_inflight_laddr_release(rrpc, rqd); 116} 117 118static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk) 119{ 120 struct nvm_tgt_dev *dev = rrpc->dev; 121 122 return (rblk->next_page == dev->geo.sec_per_blk); 123} 124 125/* Calculate relative addr for the given block, considering instantiated LUNs */ 126static u64 block_to_rel_addr(struct rrpc *rrpc, struct rrpc_block *rblk) 127{ 128 struct nvm_tgt_dev *dev = rrpc->dev; 129 struct rrpc_lun *rlun = rblk->rlun; 130 131 return rlun->id * dev->geo.sec_per_blk; 132} 133 134static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_tgt_dev *dev, 135 struct rrpc_addr *gp) 136{ 137 struct rrpc_block *rblk = gp->rblk; 138 struct rrpc_lun *rlun = rblk->rlun; 139 u64 addr = gp->addr; 140 struct ppa_addr paddr; 141 142 paddr.ppa = addr; 143 paddr = rrpc_linear_to_generic_addr(&dev->geo, paddr); 144 paddr.g.ch = rlun->bppa.g.ch; 145 paddr.g.lun = rlun->bppa.g.lun; 146 paddr.g.blk = rblk->id; 147 148 return paddr; 149} 150 151/* requires lun->lock taken */ 152static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *new_rblk, 153 struct rrpc_block **cur_rblk) 154{ 155 struct rrpc *rrpc = rlun->rrpc; 156 157 if (*cur_rblk) { 158 spin_lock(&(*cur_rblk)->lock); 159 WARN_ON(!block_is_full(rrpc, *cur_rblk)); 160 spin_unlock(&(*cur_rblk)->lock); 161 } 162 *cur_rblk = new_rblk; 163} 164 165static struct rrpc_block *__rrpc_get_blk(struct rrpc *rrpc, 166 struct rrpc_lun *rlun) 167{ 168 struct rrpc_block *rblk = NULL; 169 170 if (list_empty(&rlun->free_list)) 171 goto out; 172 173 rblk = list_first_entry(&rlun->free_list, struct rrpc_block, list); 174 175 list_move_tail(&rblk->list, &rlun->used_list); 176 rblk->state = NVM_BLK_ST_TGT; 177 rlun->nr_free_blocks--; 178 179out: 180 return rblk; 181} 182 183static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun, 184 unsigned long flags) 185{ 186 struct nvm_tgt_dev *dev = rrpc->dev; 187 struct rrpc_block *rblk; 188 int is_gc = flags & NVM_IOTYPE_GC; 189 190 spin_lock(&rlun->lock); 191 if (!is_gc && rlun->nr_free_blocks < rlun->reserved_blocks) { 192 pr_err("nvm: rrpc: cannot give block to non GC request\n"); 193 spin_unlock(&rlun->lock); 194 return NULL; 195 } 196 197 rblk = __rrpc_get_blk(rrpc, rlun); 198 if (!rblk) { 199 pr_err("nvm: rrpc: cannot get new block\n"); 200 spin_unlock(&rlun->lock); 201 return NULL; 202 } 203 spin_unlock(&rlun->lock); 204 205 bitmap_zero(rblk->invalid_pages, dev->geo.sec_per_blk); 206 rblk->next_page = 0; 207 rblk->nr_invalid_pages = 0; 208 atomic_set(&rblk->data_cmnt_size, 0); 209 210 return rblk; 211} 212 213static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk) 214{ 215 struct rrpc_lun *rlun = rblk->rlun; 216 217 spin_lock(&rlun->lock); 218 if (rblk->state & NVM_BLK_ST_TGT) { 219 list_move_tail(&rblk->list, &rlun->free_list); 220 rlun->nr_free_blocks++; 221 rblk->state = NVM_BLK_ST_FREE; 222 } else if (rblk->state & NVM_BLK_ST_BAD) { 223 list_move_tail(&rblk->list, &rlun->bb_list); 224 rblk->state = NVM_BLK_ST_BAD; 225 } else { 226 WARN_ON_ONCE(1); 227 pr_err("rrpc: erroneous type (ch:%d,lun:%d,blk%d-> %u)\n", 228 rlun->bppa.g.ch, rlun->bppa.g.lun, 229 rblk->id, rblk->state); 230 list_move_tail(&rblk->list, &rlun->bb_list); 231 } 232 spin_unlock(&rlun->lock); 233} 234 235static void rrpc_put_blks(struct rrpc *rrpc) 236{ 237 struct rrpc_lun *rlun; 238 int i; 239 240 for (i = 0; i < rrpc->nr_luns; i++) { 241 rlun = &rrpc->luns[i]; 242 if (rlun->cur) 243 rrpc_put_blk(rrpc, rlun->cur); 244 if (rlun->gc_cur) 245 rrpc_put_blk(rrpc, rlun->gc_cur); 246 } 247} 248 249static struct rrpc_lun *get_next_lun(struct rrpc *rrpc) 250{ 251 int next = atomic_inc_return(&rrpc->next_lun); 252 253 return &rrpc->luns[next % rrpc->nr_luns]; 254} 255 256static void rrpc_gc_kick(struct rrpc *rrpc) 257{ 258 struct rrpc_lun *rlun; 259 unsigned int i; 260 261 for (i = 0; i < rrpc->nr_luns; i++) { 262 rlun = &rrpc->luns[i]; 263 queue_work(rrpc->krqd_wq, &rlun->ws_gc); 264 } 265} 266 267/* 268 * timed GC every interval. 269 */ 270static void rrpc_gc_timer(unsigned long data) 271{ 272 struct rrpc *rrpc = (struct rrpc *)data; 273 274 rrpc_gc_kick(rrpc); 275 mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10)); 276} 277 278static void rrpc_end_sync_bio(struct bio *bio) 279{ 280 struct completion *waiting = bio->bi_private; 281 282 if (bio->bi_status) 283 pr_err("nvm: gc request failed (%u).\n", bio->bi_status); 284 285 complete(waiting); 286} 287 288/* 289 * rrpc_move_valid_pages -- migrate live data off the block 290 * @rrpc: the 'rrpc' structure 291 * @block: the block from which to migrate live pages 292 * 293 * Description: 294 * GC algorithms may call this function to migrate remaining live 295 * pages off the block prior to erasing it. This function blocks 296 * further execution until the operation is complete. 297 */ 298static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk) 299{ 300 struct nvm_tgt_dev *dev = rrpc->dev; 301 struct request_queue *q = dev->q; 302 struct rrpc_rev_addr *rev; 303 struct nvm_rq *rqd; 304 struct bio *bio; 305 struct page *page; 306 int slot; 307 int nr_sec_per_blk = dev->geo.sec_per_blk; 308 u64 phys_addr; 309 DECLARE_COMPLETION_ONSTACK(wait); 310 311 if (bitmap_full(rblk->invalid_pages, nr_sec_per_blk)) 312 return 0; 313 314 bio = bio_alloc(GFP_NOIO, 1); 315 if (!bio) { 316 pr_err("nvm: could not alloc bio to gc\n"); 317 return -ENOMEM; 318 } 319 320 page = mempool_alloc(rrpc->page_pool, GFP_NOIO); 321 322 while ((slot = find_first_zero_bit(rblk->invalid_pages, 323 nr_sec_per_blk)) < nr_sec_per_blk) { 324 325 /* Lock laddr */ 326 phys_addr = rrpc_blk_to_ppa(rrpc, rblk) + slot; 327 328try: 329 spin_lock(&rrpc->rev_lock); 330 /* Get logical address from physical to logical table */ 331 rev = &rrpc->rev_trans_map[phys_addr]; 332 /* already updated by previous regular write */ 333 if (rev->addr == ADDR_EMPTY) { 334 spin_unlock(&rrpc->rev_lock); 335 continue; 336 } 337 338 rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1); 339 if (IS_ERR_OR_NULL(rqd)) { 340 spin_unlock(&rrpc->rev_lock); 341 schedule(); 342 goto try; 343 } 344 345 spin_unlock(&rrpc->rev_lock); 346 347 /* Perform read to do GC */ 348 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr); 349 bio_set_op_attrs(bio, REQ_OP_READ, 0); 350 bio->bi_private = &wait; 351 bio->bi_end_io = rrpc_end_sync_bio; 352 353 /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */ 354 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0); 355 356 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) { 357 pr_err("rrpc: gc read failed.\n"); 358 rrpc_inflight_laddr_release(rrpc, rqd); 359 goto finished; 360 } 361 wait_for_completion_io(&wait); 362 if (bio->bi_status) { 363 rrpc_inflight_laddr_release(rrpc, rqd); 364 goto finished; 365 } 366 367 bio_reset(bio); 368 reinit_completion(&wait); 369 370 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr); 371 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 372 bio->bi_private = &wait; 373 bio->bi_end_io = rrpc_end_sync_bio; 374 375 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0); 376 377 /* turn the command around and write the data back to a new 378 * address 379 */ 380 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) { 381 pr_err("rrpc: gc write failed.\n"); 382 rrpc_inflight_laddr_release(rrpc, rqd); 383 goto finished; 384 } 385 wait_for_completion_io(&wait); 386 387 rrpc_inflight_laddr_release(rrpc, rqd); 388 if (bio->bi_status) 389 goto finished; 390 391 bio_reset(bio); 392 } 393 394finished: 395 mempool_free(page, rrpc->page_pool); 396 bio_put(bio); 397 398 if (!bitmap_full(rblk->invalid_pages, nr_sec_per_blk)) { 399 pr_err("nvm: failed to garbage collect block\n"); 400 return -EIO; 401 } 402 403 return 0; 404} 405 406static void rrpc_block_gc(struct work_struct *work) 407{ 408 struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc, 409 ws_gc); 410 struct rrpc *rrpc = gcb->rrpc; 411 struct rrpc_block *rblk = gcb->rblk; 412 struct rrpc_lun *rlun = rblk->rlun; 413 struct ppa_addr ppa; 414 415 mempool_free(gcb, rrpc->gcb_pool); 416 pr_debug("nvm: block 'ch:%d,lun:%d,blk:%d' being reclaimed\n", 417 rlun->bppa.g.ch, rlun->bppa.g.lun, 418 rblk->id); 419 420 if (rrpc_move_valid_pages(rrpc, rblk)) 421 goto put_back; 422 423 ppa.ppa = 0; 424 ppa.g.ch = rlun->bppa.g.ch; 425 ppa.g.lun = rlun->bppa.g.lun; 426 ppa.g.blk = rblk->id; 427 428 if (nvm_erase_sync(rrpc->dev, &ppa, 1)) 429 goto put_back; 430 431 rrpc_put_blk(rrpc, rblk); 432 433 return; 434 435put_back: 436 spin_lock(&rlun->lock); 437 list_add_tail(&rblk->prio, &rlun->prio_list); 438 spin_unlock(&rlun->lock); 439} 440 441/* the block with highest number of invalid pages, will be in the beginning 442 * of the list 443 */ 444static struct rrpc_block *rblk_max_invalid(struct rrpc_block *ra, 445 struct rrpc_block *rb) 446{ 447 if (ra->nr_invalid_pages == rb->nr_invalid_pages) 448 return ra; 449 450 return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra; 451} 452 453/* linearly find the block with highest number of invalid pages 454 * requires lun->lock 455 */ 456static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun) 457{ 458 struct list_head *prio_list = &rlun->prio_list; 459 struct rrpc_block *rblk, *max; 460 461 BUG_ON(list_empty(prio_list)); 462 463 max = list_first_entry(prio_list, struct rrpc_block, prio); 464 list_for_each_entry(rblk, prio_list, prio) 465 max = rblk_max_invalid(max, rblk); 466 467 return max; 468} 469 470static void rrpc_lun_gc(struct work_struct *work) 471{ 472 struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc); 473 struct rrpc *rrpc = rlun->rrpc; 474 struct nvm_tgt_dev *dev = rrpc->dev; 475 struct rrpc_block_gc *gcb; 476 unsigned int nr_blocks_need; 477 478 nr_blocks_need = dev->geo.blks_per_lun / GC_LIMIT_INVERSE; 479 480 if (nr_blocks_need < rrpc->nr_luns) 481 nr_blocks_need = rrpc->nr_luns; 482 483 spin_lock(&rlun->lock); 484 while (nr_blocks_need > rlun->nr_free_blocks && 485 !list_empty(&rlun->prio_list)) { 486 struct rrpc_block *rblk = block_prio_find_max(rlun); 487 488 if (!rblk->nr_invalid_pages) 489 break; 490 491 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC); 492 if (!gcb) 493 break; 494 495 list_del_init(&rblk->prio); 496 497 WARN_ON(!block_is_full(rrpc, rblk)); 498 499 pr_debug("rrpc: selected block 'ch:%d,lun:%d,blk:%d' for GC\n", 500 rlun->bppa.g.ch, rlun->bppa.g.lun, 501 rblk->id); 502 503 gcb->rrpc = rrpc; 504 gcb->rblk = rblk; 505 INIT_WORK(&gcb->ws_gc, rrpc_block_gc); 506 507 queue_work(rrpc->kgc_wq, &gcb->ws_gc); 508 509 nr_blocks_need--; 510 } 511 spin_unlock(&rlun->lock); 512 513 /* TODO: Hint that request queue can be started again */ 514} 515 516static void rrpc_gc_queue(struct work_struct *work) 517{ 518 struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc, 519 ws_gc); 520 struct rrpc *rrpc = gcb->rrpc; 521 struct rrpc_block *rblk = gcb->rblk; 522 struct rrpc_lun *rlun = rblk->rlun; 523 524 spin_lock(&rlun->lock); 525 list_add_tail(&rblk->prio, &rlun->prio_list); 526 spin_unlock(&rlun->lock); 527 528 mempool_free(gcb, rrpc->gcb_pool); 529 pr_debug("nvm: block 'ch:%d,lun:%d,blk:%d' full, allow GC (sched)\n", 530 rlun->bppa.g.ch, rlun->bppa.g.lun, 531 rblk->id); 532} 533 534static const struct block_device_operations rrpc_fops = { 535 .owner = THIS_MODULE, 536}; 537 538static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc) 539{ 540 unsigned int i; 541 struct rrpc_lun *rlun, *max_free; 542 543 if (!is_gc) 544 return get_next_lun(rrpc); 545 546 /* during GC, we don't care about RR, instead we want to make 547 * sure that we maintain evenness between the block luns. 548 */ 549 max_free = &rrpc->luns[0]; 550 /* prevent GC-ing lun from devouring pages of a lun with 551 * little free blocks. We don't take the lock as we only need an 552 * estimate. 553 */ 554 rrpc_for_each_lun(rrpc, rlun, i) { 555 if (rlun->nr_free_blocks > max_free->nr_free_blocks) 556 max_free = rlun; 557 } 558 559 return max_free; 560} 561 562static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr, 563 struct rrpc_block *rblk, u64 paddr) 564{ 565 struct rrpc_addr *gp; 566 struct rrpc_rev_addr *rev; 567 568 BUG_ON(laddr >= rrpc->nr_sects); 569 570 gp = &rrpc->trans_map[laddr]; 571 spin_lock(&rrpc->rev_lock); 572 if (gp->rblk) 573 rrpc_page_invalidate(rrpc, gp); 574 575 gp->addr = paddr; 576 gp->rblk = rblk; 577 578 rev = &rrpc->rev_trans_map[gp->addr]; 579 rev->addr = laddr; 580 spin_unlock(&rrpc->rev_lock); 581 582 return gp; 583} 584 585static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk) 586{ 587 u64 addr = ADDR_EMPTY; 588 589 spin_lock(&rblk->lock); 590 if (block_is_full(rrpc, rblk)) 591 goto out; 592 593 addr = rblk->next_page; 594 595 rblk->next_page++; 596out: 597 spin_unlock(&rblk->lock); 598 return addr; 599} 600 601/* Map logical address to a physical page. The mapping implements a round robin 602 * approach and allocates a page from the next lun available. 603 * 604 * Returns rrpc_addr with the physical address and block. Returns NULL if no 605 * blocks in the next rlun are available. 606 */ 607static struct ppa_addr rrpc_map_page(struct rrpc *rrpc, sector_t laddr, 608 int is_gc) 609{ 610 struct nvm_tgt_dev *tgt_dev = rrpc->dev; 611 struct rrpc_lun *rlun; 612 struct rrpc_block *rblk, **cur_rblk; 613 struct rrpc_addr *p; 614 struct ppa_addr ppa; 615 u64 paddr; 616 int gc_force = 0; 617 618 ppa.ppa = ADDR_EMPTY; 619 rlun = rrpc_get_lun_rr(rrpc, is_gc); 620 621 if (!is_gc && rlun->nr_free_blocks < rrpc->nr_luns * 4) 622 return ppa; 623 624 /* 625 * page allocation steps: 626 * 1. Try to allocate new page from current rblk 627 * 2a. If succeed, proceed to map it in and return 628 * 2b. If fail, first try to allocate a new block from media manger, 629 * and then retry step 1. Retry until the normal block pool is 630 * exhausted. 631 * 3. If exhausted, and garbage collector is requesting the block, 632 * go to the reserved block and retry step 1. 633 * In the case that this fails as well, or it is not GC 634 * requesting, report not able to retrieve a block and let the 635 * caller handle further processing. 636 */ 637 638 spin_lock(&rlun->lock); 639 cur_rblk = &rlun->cur; 640 rblk = rlun->cur; 641retry: 642 paddr = rrpc_alloc_addr(rrpc, rblk); 643 644 if (paddr != ADDR_EMPTY) 645 goto done; 646 647 if (!list_empty(&rlun->wblk_list)) { 648new_blk: 649 rblk = list_first_entry(&rlun->wblk_list, struct rrpc_block, 650 prio); 651 rrpc_set_lun_cur(rlun, rblk, cur_rblk); 652 list_del(&rblk->prio); 653 goto retry; 654 } 655 spin_unlock(&rlun->lock); 656 657 rblk = rrpc_get_blk(rrpc, rlun, gc_force); 658 if (rblk) { 659 spin_lock(&rlun->lock); 660 list_add_tail(&rblk->prio, &rlun->wblk_list); 661 /* 662 * another thread might already have added a new block, 663 * Therefore, make sure that one is used, instead of the 664 * one just added. 665 */ 666 goto new_blk; 667 } 668 669 if (unlikely(is_gc) && !gc_force) { 670 /* retry from emergency gc block */ 671 cur_rblk = &rlun->gc_cur; 672 rblk = rlun->gc_cur; 673 gc_force = 1; 674 spin_lock(&rlun->lock); 675 goto retry; 676 } 677 678 pr_err("rrpc: failed to allocate new block\n"); 679 return ppa; 680done: 681 spin_unlock(&rlun->lock); 682 p = rrpc_update_map(rrpc, laddr, rblk, paddr); 683 if (!p) 684 return ppa; 685 686 /* return global address */ 687 return rrpc_ppa_to_gaddr(tgt_dev, p); 688} 689 690static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk) 691{ 692 struct rrpc_block_gc *gcb; 693 694 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC); 695 if (!gcb) { 696 pr_err("rrpc: unable to queue block for gc."); 697 return; 698 } 699 700 gcb->rrpc = rrpc; 701 gcb->rblk = rblk; 702 703 INIT_WORK(&gcb->ws_gc, rrpc_gc_queue); 704 queue_work(rrpc->kgc_wq, &gcb->ws_gc); 705} 706 707static struct rrpc_lun *rrpc_ppa_to_lun(struct rrpc *rrpc, struct ppa_addr p) 708{ 709 struct rrpc_lun *rlun = NULL; 710 int i; 711 712 for (i = 0; i < rrpc->nr_luns; i++) { 713 if (rrpc->luns[i].bppa.g.ch == p.g.ch && 714 rrpc->luns[i].bppa.g.lun == p.g.lun) { 715 rlun = &rrpc->luns[i]; 716 break; 717 } 718 } 719 720 return rlun; 721} 722 723static void __rrpc_mark_bad_block(struct rrpc *rrpc, struct ppa_addr ppa) 724{ 725 struct nvm_tgt_dev *dev = rrpc->dev; 726 struct rrpc_lun *rlun; 727 struct rrpc_block *rblk; 728 729 rlun = rrpc_ppa_to_lun(rrpc, ppa); 730 rblk = &rlun->blocks[ppa.g.blk]; 731 rblk->state = NVM_BLK_ST_BAD; 732 733 nvm_set_tgt_bb_tbl(dev, &ppa, 1, NVM_BLK_T_GRWN_BAD); 734} 735 736static void rrpc_mark_bad_block(struct rrpc *rrpc, struct nvm_rq *rqd) 737{ 738 void *comp_bits = &rqd->ppa_status; 739 struct ppa_addr ppa, prev_ppa; 740 int nr_ppas = rqd->nr_ppas; 741 int bit; 742 743 if (rqd->nr_ppas == 1) 744 __rrpc_mark_bad_block(rrpc, rqd->ppa_addr); 745 746 ppa_set_empty(&prev_ppa); 747 bit = -1; 748 while ((bit = find_next_bit(comp_bits, nr_ppas, bit + 1)) < nr_ppas) { 749 ppa = rqd->ppa_list[bit]; 750 if (ppa_cmp_blk(ppa, prev_ppa)) 751 continue; 752 753 __rrpc_mark_bad_block(rrpc, ppa); 754 } 755} 756 757static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd, 758 sector_t laddr, uint8_t npages) 759{ 760 struct nvm_tgt_dev *dev = rrpc->dev; 761 struct rrpc_addr *p; 762 struct rrpc_block *rblk; 763 int cmnt_size, i; 764 765 for (i = 0; i < npages; i++) { 766 p = &rrpc->trans_map[laddr + i]; 767 rblk = p->rblk; 768 769 cmnt_size = atomic_inc_return(&rblk->data_cmnt_size); 770 if (unlikely(cmnt_size == dev->geo.sec_per_blk)) 771 rrpc_run_gc(rrpc, rblk); 772 } 773} 774 775static void rrpc_end_io(struct nvm_rq *rqd) 776{ 777 struct rrpc *rrpc = rqd->private; 778 struct nvm_tgt_dev *dev = rrpc->dev; 779 struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd); 780 uint8_t npages = rqd->nr_ppas; 781 sector_t laddr = rrpc_get_laddr(rqd->bio) - npages; 782 783 if (bio_data_dir(rqd->bio) == WRITE) { 784 if (rqd->error == NVM_RSP_ERR_FAILWRITE) 785 rrpc_mark_bad_block(rrpc, rqd); 786 787 rrpc_end_io_write(rrpc, rrqd, laddr, npages); 788 } 789 790 bio_put(rqd->bio); 791 792 if (rrqd->flags & NVM_IOTYPE_GC) 793 return; 794 795 rrpc_unlock_rq(rrpc, rqd); 796 797 if (npages > 1) 798 nvm_dev_dma_free(dev->parent, rqd->ppa_list, rqd->dma_ppa_list); 799 800 mempool_free(rqd, rrpc->rq_pool); 801} 802 803static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio, 804 struct nvm_rq *rqd, unsigned long flags, int npages) 805{ 806 struct nvm_tgt_dev *dev = rrpc->dev; 807 struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd); 808 struct rrpc_addr *gp; 809 sector_t laddr = rrpc_get_laddr(bio); 810 int is_gc = flags & NVM_IOTYPE_GC; 811 int i; 812 813 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) { 814 nvm_dev_dma_free(dev->parent, rqd->ppa_list, rqd->dma_ppa_list); 815 return NVM_IO_REQUEUE; 816 } 817 818 for (i = 0; i < npages; i++) { 819 /* We assume that mapping occurs at 4KB granularity */ 820 BUG_ON(!(laddr + i < rrpc->nr_sects)); 821 gp = &rrpc->trans_map[laddr + i]; 822 823 if (gp->rblk) { 824 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(dev, gp); 825 } else { 826 BUG_ON(is_gc); 827 rrpc_unlock_laddr(rrpc, r); 828 nvm_dev_dma_free(dev->parent, rqd->ppa_list, 829 rqd->dma_ppa_list); 830 return NVM_IO_DONE; 831 } 832 } 833 834 rqd->opcode = NVM_OP_HBREAD; 835 836 return NVM_IO_OK; 837} 838 839static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd, 840 unsigned long flags) 841{ 842 int is_gc = flags & NVM_IOTYPE_GC; 843 sector_t laddr = rrpc_get_laddr(bio); 844 struct rrpc_addr *gp; 845 846 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) 847 return NVM_IO_REQUEUE; 848 849 BUG_ON(!(laddr < rrpc->nr_sects)); 850 gp = &rrpc->trans_map[laddr]; 851 852 if (gp->rblk) { 853 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp); 854 } else { 855 BUG_ON(is_gc); 856 rrpc_unlock_rq(rrpc, rqd); 857 return NVM_IO_DONE; 858 } 859 860 rqd->opcode = NVM_OP_HBREAD; 861 862 return NVM_IO_OK; 863} 864 865static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio, 866 struct nvm_rq *rqd, unsigned long flags, int npages) 867{ 868 struct nvm_tgt_dev *dev = rrpc->dev; 869 struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd); 870 struct ppa_addr p; 871 sector_t laddr = rrpc_get_laddr(bio); 872 int is_gc = flags & NVM_IOTYPE_GC; 873 int i; 874 875 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) { 876 nvm_dev_dma_free(dev->parent, rqd->ppa_list, rqd->dma_ppa_list); 877 return NVM_IO_REQUEUE; 878 } 879 880 for (i = 0; i < npages; i++) { 881 /* We assume that mapping occurs at 4KB granularity */ 882 p = rrpc_map_page(rrpc, laddr + i, is_gc); 883 if (p.ppa == ADDR_EMPTY) { 884 BUG_ON(is_gc); 885 rrpc_unlock_laddr(rrpc, r); 886 nvm_dev_dma_free(dev->parent, rqd->ppa_list, 887 rqd->dma_ppa_list); 888 rrpc_gc_kick(rrpc); 889 return NVM_IO_REQUEUE; 890 } 891 892 rqd->ppa_list[i] = p; 893 } 894 895 rqd->opcode = NVM_OP_HBWRITE; 896 897 return NVM_IO_OK; 898} 899 900static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio, 901 struct nvm_rq *rqd, unsigned long flags) 902{ 903 struct ppa_addr p; 904 int is_gc = flags & NVM_IOTYPE_GC; 905 sector_t laddr = rrpc_get_laddr(bio); 906 907 if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) 908 return NVM_IO_REQUEUE; 909 910 p = rrpc_map_page(rrpc, laddr, is_gc); 911 if (p.ppa == ADDR_EMPTY) { 912 BUG_ON(is_gc); 913 rrpc_unlock_rq(rrpc, rqd); 914 rrpc_gc_kick(rrpc); 915 return NVM_IO_REQUEUE; 916 } 917 918 rqd->ppa_addr = p; 919 rqd->opcode = NVM_OP_HBWRITE; 920 921 return NVM_IO_OK; 922} 923 924static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio, 925 struct nvm_rq *rqd, unsigned long flags, uint8_t npages) 926{ 927 struct nvm_tgt_dev *dev = rrpc->dev; 928 929 if (npages > 1) { 930 rqd->ppa_list = nvm_dev_dma_alloc(dev->parent, GFP_KERNEL, 931 &rqd->dma_ppa_list); 932 if (!rqd->ppa_list) { 933 pr_err("rrpc: not able to allocate ppa list\n"); 934 return NVM_IO_ERR; 935 } 936 937 if (bio_op(bio) == REQ_OP_WRITE) 938 return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags, 939 npages); 940 941 return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages); 942 } 943 944 if (bio_op(bio) == REQ_OP_WRITE) 945 return rrpc_write_rq(rrpc, bio, rqd, flags); 946 947 return rrpc_read_rq(rrpc, bio, rqd, flags); 948} 949 950static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio, 951 struct nvm_rq *rqd, unsigned long flags) 952{ 953 struct nvm_tgt_dev *dev = rrpc->dev; 954 struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd); 955 uint8_t nr_pages = rrpc_get_pages(bio); 956 int bio_size = bio_sectors(bio) << 9; 957 int err; 958 959 if (bio_size < dev->geo.sec_size) 960 return NVM_IO_ERR; 961 else if (bio_size > dev->geo.max_rq_size) 962 return NVM_IO_ERR; 963 964 err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages); 965 if (err) 966 return err; 967 968 bio_get(bio); 969 rqd->bio = bio; 970 rqd->private = rrpc; 971 rqd->nr_ppas = nr_pages; 972 rqd->end_io = rrpc_end_io; 973 rrq->flags = flags; 974 975 err = nvm_submit_io(dev, rqd); 976 if (err) { 977 pr_err("rrpc: I/O submission failed: %d\n", err); 978 bio_put(bio); 979 if (!(flags & NVM_IOTYPE_GC)) { 980 rrpc_unlock_rq(rrpc, rqd); 981 if (rqd->nr_ppas > 1) 982 nvm_dev_dma_free(dev->parent, rqd->ppa_list, 983 rqd->dma_ppa_list); 984 } 985 return NVM_IO_ERR; 986 } 987 988 return NVM_IO_OK; 989} 990 991static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio) 992{ 993 struct rrpc *rrpc = q->queuedata; 994 struct nvm_rq *rqd; 995 int err; 996 997 blk_queue_split(q, &bio); 998 999 if (bio_op(bio) == REQ_OP_DISCARD) { 1000 rrpc_discard(rrpc, bio); 1001 return BLK_QC_T_NONE; 1002 } 1003 1004 rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL); 1005 memset(rqd, 0, sizeof(struct nvm_rq)); 1006 1007 err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE); 1008 switch (err) { 1009 case NVM_IO_OK: 1010 return BLK_QC_T_NONE; 1011 case NVM_IO_ERR: 1012 bio_io_error(bio); 1013 break; 1014 case NVM_IO_DONE: 1015 bio_endio(bio); 1016 break; 1017 case NVM_IO_REQUEUE: 1018 spin_lock(&rrpc->bio_lock); 1019 bio_list_add(&rrpc->requeue_bios, bio); 1020 spin_unlock(&rrpc->bio_lock); 1021 queue_work(rrpc->kgc_wq, &rrpc->ws_requeue); 1022 break; 1023 } 1024 1025 mempool_free(rqd, rrpc->rq_pool); 1026 return BLK_QC_T_NONE; 1027} 1028 1029static void rrpc_requeue(struct work_struct *work) 1030{ 1031 struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue); 1032 struct bio_list bios; 1033 struct bio *bio; 1034 1035 bio_list_init(&bios); 1036 1037 spin_lock(&rrpc->bio_lock); 1038 bio_list_merge(&bios, &rrpc->requeue_bios); 1039 bio_list_init(&rrpc->requeue_bios); 1040 spin_unlock(&rrpc->bio_lock); 1041 1042 while ((bio = bio_list_pop(&bios))) 1043 rrpc_make_rq(rrpc->disk->queue, bio); 1044} 1045 1046static void rrpc_gc_free(struct rrpc *rrpc) 1047{ 1048 if (rrpc->krqd_wq) 1049 destroy_workqueue(rrpc->krqd_wq); 1050 1051 if (rrpc->kgc_wq) 1052 destroy_workqueue(rrpc->kgc_wq); 1053} 1054 1055static int rrpc_gc_init(struct rrpc *rrpc) 1056{ 1057 rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND, 1058 rrpc->nr_luns); 1059 if (!rrpc->krqd_wq) 1060 return -ENOMEM; 1061 1062 rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1); 1063 if (!rrpc->kgc_wq) 1064 return -ENOMEM; 1065 1066 setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc); 1067 1068 return 0; 1069} 1070 1071static void rrpc_map_free(struct rrpc *rrpc) 1072{ 1073 vfree(rrpc->rev_trans_map); 1074 vfree(rrpc->trans_map); 1075} 1076 1077static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private) 1078{ 1079 struct rrpc *rrpc = (struct rrpc *)private; 1080 struct nvm_tgt_dev *dev = rrpc->dev; 1081 struct rrpc_addr *addr = rrpc->trans_map + slba; 1082 struct rrpc_rev_addr *raddr = rrpc->rev_trans_map; 1083 struct rrpc_lun *rlun; 1084 struct rrpc_block *rblk; 1085 u64 i; 1086 1087 for (i = 0; i < nlb; i++) { 1088 struct ppa_addr gaddr; 1089 u64 pba = le64_to_cpu(entries[i]); 1090 unsigned int mod; 1091 1092 /* LNVM treats address-spaces as silos, LBA and PBA are 1093 * equally large and zero-indexed. 1094 */ 1095 if (unlikely(pba >= dev->total_secs && pba != U64_MAX)) { 1096 pr_err("nvm: L2P data entry is out of bounds!\n"); 1097 pr_err("nvm: Maybe loaded an old target L2P\n"); 1098 return -EINVAL; 1099 } 1100 1101 /* Address zero is a special one. The first page on a disk is 1102 * protected. As it often holds internal device boot 1103 * information. 1104 */ 1105 if (!pba) 1106 continue; 1107 1108 div_u64_rem(pba, rrpc->nr_sects, &mod); 1109 1110 gaddr = rrpc_recov_addr(dev, pba); 1111 rlun = rrpc_ppa_to_lun(rrpc, gaddr); 1112 if (!rlun) { 1113 pr_err("rrpc: l2p corruption on lba %llu\n", 1114 slba + i); 1115 return -EINVAL; 1116 } 1117 1118 rblk = &rlun->blocks[gaddr.g.blk]; 1119 if (!rblk->state) { 1120 /* at this point, we don't know anything about the 1121 * block. It's up to the FTL on top to re-etablish the 1122 * block state. The block is assumed to be open. 1123 */ 1124 list_move_tail(&rblk->list, &rlun->used_list); 1125 rblk->state = NVM_BLK_ST_TGT; 1126 rlun->nr_free_blocks--; 1127 } 1128 1129 addr[i].addr = pba; 1130 addr[i].rblk = rblk; 1131 raddr[mod].addr = slba + i; 1132 } 1133 1134 return 0; 1135} 1136 1137static int rrpc_map_init(struct rrpc *rrpc) 1138{ 1139 struct nvm_tgt_dev *dev = rrpc->dev; 1140 sector_t i; 1141 int ret; 1142 1143 rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_sects); 1144 if (!rrpc->trans_map) 1145 return -ENOMEM; 1146 1147 rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr) 1148 * rrpc->nr_sects); 1149 if (!rrpc->rev_trans_map) 1150 return -ENOMEM; 1151 1152 for (i = 0; i < rrpc->nr_sects; i++) { 1153 struct rrpc_addr *p = &rrpc->trans_map[i]; 1154 struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i]; 1155 1156 p->addr = ADDR_EMPTY; 1157 r->addr = ADDR_EMPTY; 1158 } 1159 1160 /* Bring up the mapping table from device */ 1161 ret = nvm_get_l2p_tbl(dev, rrpc->soffset, rrpc->nr_sects, 1162 rrpc_l2p_update, rrpc); 1163 if (ret) { 1164 pr_err("nvm: rrpc: could not read L2P table.\n"); 1165 return -EINVAL; 1166 } 1167 1168 return 0; 1169} 1170 1171/* Minimum pages needed within a lun */ 1172#define PAGE_POOL_SIZE 16 1173#define ADDR_POOL_SIZE 64 1174 1175static int rrpc_core_init(struct rrpc *rrpc) 1176{ 1177 down_write(&rrpc_lock); 1178 if (!rrpc_gcb_cache) { 1179 rrpc_gcb_cache = kmem_cache_create("rrpc_gcb", 1180 sizeof(struct rrpc_block_gc), 0, 0, NULL); 1181 if (!rrpc_gcb_cache) { 1182 up_write(&rrpc_lock); 1183 return -ENOMEM; 1184 } 1185 1186 rrpc_rq_cache = kmem_cache_create("rrpc_rq", 1187 sizeof(struct nvm_rq) + sizeof(struct rrpc_rq), 1188 0, 0, NULL); 1189 if (!rrpc_rq_cache) { 1190 kmem_cache_destroy(rrpc_gcb_cache); 1191 up_write(&rrpc_lock); 1192 return -ENOMEM; 1193 } 1194 } 1195 up_write(&rrpc_lock); 1196 1197 rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0); 1198 if (!rrpc->page_pool) 1199 return -ENOMEM; 1200 1201 rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->geo.nr_luns, 1202 rrpc_gcb_cache); 1203 if (!rrpc->gcb_pool) 1204 return -ENOMEM; 1205 1206 rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache); 1207 if (!rrpc->rq_pool) 1208 return -ENOMEM; 1209 1210 spin_lock_init(&rrpc->inflights.lock); 1211 INIT_LIST_HEAD(&rrpc->inflights.reqs); 1212 1213 return 0; 1214} 1215 1216static void rrpc_core_free(struct rrpc *rrpc) 1217{ 1218 mempool_destroy(rrpc->page_pool); 1219 mempool_destroy(rrpc->gcb_pool); 1220 mempool_destroy(rrpc->rq_pool); 1221} 1222 1223static void rrpc_luns_free(struct rrpc *rrpc) 1224{ 1225 struct rrpc_lun *rlun; 1226 int i; 1227 1228 if (!rrpc->luns) 1229 return; 1230 1231 for (i = 0; i < rrpc->nr_luns; i++) { 1232 rlun = &rrpc->luns[i]; 1233 vfree(rlun->blocks); 1234 } 1235 1236 kfree(rrpc->luns); 1237} 1238 1239static int rrpc_bb_discovery(struct nvm_tgt_dev *dev, struct rrpc_lun *rlun) 1240{ 1241 struct nvm_geo *geo = &dev->geo; 1242 struct rrpc_block *rblk; 1243 struct ppa_addr ppa; 1244 u8 *blks; 1245 int nr_blks; 1246 int i; 1247 int ret; 1248 1249 if (!dev->parent->ops->get_bb_tbl) 1250 return 0; 1251 1252 nr_blks = geo->blks_per_lun * geo->plane_mode; 1253 blks = kmalloc(nr_blks, GFP_KERNEL); 1254 if (!blks) 1255 return -ENOMEM; 1256 1257 ppa.ppa = 0; 1258 ppa.g.ch = rlun->bppa.g.ch; 1259 ppa.g.lun = rlun->bppa.g.lun; 1260 1261 ret = nvm_get_tgt_bb_tbl(dev, ppa, blks); 1262 if (ret) { 1263 pr_err("rrpc: could not get BB table\n"); 1264 goto out; 1265 } 1266 1267 nr_blks = nvm_bb_tbl_fold(dev->parent, blks, nr_blks); 1268 if (nr_blks < 0) { 1269 ret = nr_blks; 1270 goto out; 1271 } 1272 1273 for (i = 0; i < nr_blks; i++) { 1274 if (blks[i] == NVM_BLK_T_FREE) 1275 continue; 1276 1277 rblk = &rlun->blocks[i]; 1278 list_move_tail(&rblk->list, &rlun->bb_list); 1279 rblk->state = NVM_BLK_ST_BAD; 1280 rlun->nr_free_blocks--; 1281 } 1282 1283out: 1284 kfree(blks); 1285 return ret; 1286} 1287 1288static void rrpc_set_lun_ppa(struct rrpc_lun *rlun, struct ppa_addr ppa) 1289{ 1290 rlun->bppa.ppa = 0; 1291 rlun->bppa.g.ch = ppa.g.ch; 1292 rlun->bppa.g.lun = ppa.g.lun; 1293} 1294 1295static int rrpc_luns_init(struct rrpc *rrpc, struct ppa_addr *luns) 1296{ 1297 struct nvm_tgt_dev *dev = rrpc->dev; 1298 struct nvm_geo *geo = &dev->geo; 1299 struct rrpc_lun *rlun; 1300 int i, j, ret = -EINVAL; 1301 1302 if (geo->sec_per_blk > MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) { 1303 pr_err("rrpc: number of pages per block too high."); 1304 return -EINVAL; 1305 } 1306 1307 spin_lock_init(&rrpc->rev_lock); 1308 1309 rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun), 1310 GFP_KERNEL); 1311 if (!rrpc->luns) 1312 return -ENOMEM; 1313 1314 /* 1:1 mapping */ 1315 for (i = 0; i < rrpc->nr_luns; i++) { 1316 rlun = &rrpc->luns[i]; 1317 rlun->id = i; 1318 rrpc_set_lun_ppa(rlun, luns[i]); 1319 rlun->blocks = vzalloc(sizeof(struct rrpc_block) * 1320 geo->blks_per_lun); 1321 if (!rlun->blocks) { 1322 ret = -ENOMEM; 1323 goto err; 1324 } 1325 1326 INIT_LIST_HEAD(&rlun->free_list); 1327 INIT_LIST_HEAD(&rlun->used_list); 1328 INIT_LIST_HEAD(&rlun->bb_list); 1329 1330 for (j = 0; j < geo->blks_per_lun; j++) { 1331 struct rrpc_block *rblk = &rlun->blocks[j]; 1332 1333 rblk->id = j; 1334 rblk->rlun = rlun; 1335 rblk->state = NVM_BLK_T_FREE; 1336 INIT_LIST_HEAD(&rblk->prio); 1337 INIT_LIST_HEAD(&rblk->list); 1338 spin_lock_init(&rblk->lock); 1339 1340 list_add_tail(&rblk->list, &rlun->free_list); 1341 } 1342 1343 rlun->rrpc = rrpc; 1344 rlun->nr_free_blocks = geo->blks_per_lun; 1345 rlun->reserved_blocks = 2; /* for GC only */ 1346 1347 INIT_LIST_HEAD(&rlun->prio_list); 1348 INIT_LIST_HEAD(&rlun->wblk_list); 1349 1350 INIT_WORK(&rlun->ws_gc, rrpc_lun_gc); 1351 spin_lock_init(&rlun->lock); 1352 1353 if (rrpc_bb_discovery(dev, rlun)) 1354 goto err; 1355 1356 } 1357 1358 return 0; 1359err: 1360 return ret; 1361} 1362 1363/* returns 0 on success and stores the beginning address in *begin */ 1364static int rrpc_area_init(struct rrpc *rrpc, sector_t *begin) 1365{ 1366 struct nvm_tgt_dev *dev = rrpc->dev; 1367 sector_t size = rrpc->nr_sects * dev->geo.sec_size; 1368 int ret; 1369 1370 size >>= 9; 1371 1372 ret = nvm_get_area(dev, begin, size); 1373 if (!ret) 1374 *begin >>= (ilog2(dev->geo.sec_size) - 9); 1375 1376 return ret; 1377} 1378 1379static void rrpc_area_free(struct rrpc *rrpc) 1380{ 1381 struct nvm_tgt_dev *dev = rrpc->dev; 1382 sector_t begin = rrpc->soffset << (ilog2(dev->geo.sec_size) - 9); 1383 1384 nvm_put_area(dev, begin); 1385} 1386 1387static void rrpc_free(struct rrpc *rrpc) 1388{ 1389 rrpc_gc_free(rrpc); 1390 rrpc_map_free(rrpc); 1391 rrpc_core_free(rrpc); 1392 rrpc_luns_free(rrpc); 1393 rrpc_area_free(rrpc); 1394 1395 kfree(rrpc); 1396} 1397 1398static void rrpc_exit(void *private) 1399{ 1400 struct rrpc *rrpc = private; 1401 1402 del_timer(&rrpc->gc_timer); 1403 1404 flush_workqueue(rrpc->krqd_wq); 1405 flush_workqueue(rrpc->kgc_wq); 1406 1407 rrpc_free(rrpc); 1408} 1409 1410static sector_t rrpc_capacity(void *private) 1411{ 1412 struct rrpc *rrpc = private; 1413 struct nvm_tgt_dev *dev = rrpc->dev; 1414 sector_t reserved, provisioned; 1415 1416 /* cur, gc, and two emergency blocks for each lun */ 1417 reserved = rrpc->nr_luns * dev->geo.sec_per_blk * 4; 1418 provisioned = rrpc->nr_sects - reserved; 1419 1420 if (reserved > rrpc->nr_sects) { 1421 pr_err("rrpc: not enough space available to expose storage.\n"); 1422 return 0; 1423 } 1424 1425 sector_div(provisioned, 10); 1426 return provisioned * 9 * NR_PHY_IN_LOG; 1427} 1428 1429/* 1430 * Looks up the logical address from reverse trans map and check if its valid by 1431 * comparing the logical to physical address with the physical address. 1432 * Returns 0 on free, otherwise 1 if in use 1433 */ 1434static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk) 1435{ 1436 struct nvm_tgt_dev *dev = rrpc->dev; 1437 int offset; 1438 struct rrpc_addr *laddr; 1439 u64 bpaddr, paddr, pladdr; 1440 1441 bpaddr = block_to_rel_addr(rrpc, rblk); 1442 for (offset = 0; offset < dev->geo.sec_per_blk; offset++) { 1443 paddr = bpaddr + offset; 1444 1445 pladdr = rrpc->rev_trans_map[paddr].addr; 1446 if (pladdr == ADDR_EMPTY) 1447 continue; 1448 1449 laddr = &rrpc->trans_map[pladdr]; 1450 1451 if (paddr == laddr->addr) { 1452 laddr->rblk = rblk; 1453 } else { 1454 set_bit(offset, rblk->invalid_pages); 1455 rblk->nr_invalid_pages++; 1456 } 1457 } 1458} 1459 1460static int rrpc_blocks_init(struct rrpc *rrpc) 1461{ 1462 struct nvm_tgt_dev *dev = rrpc->dev; 1463 struct rrpc_lun *rlun; 1464 struct rrpc_block *rblk; 1465 int lun_iter, blk_iter; 1466 1467 for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) { 1468 rlun = &rrpc->luns[lun_iter]; 1469 1470 for (blk_iter = 0; blk_iter < dev->geo.blks_per_lun; 1471 blk_iter++) { 1472 rblk = &rlun->blocks[blk_iter]; 1473 rrpc_block_map_update(rrpc, rblk); 1474 } 1475 } 1476 1477 return 0; 1478} 1479 1480static int rrpc_luns_configure(struct rrpc *rrpc) 1481{ 1482 struct rrpc_lun *rlun; 1483 struct rrpc_block *rblk; 1484 int i; 1485 1486 for (i = 0; i < rrpc->nr_luns; i++) { 1487 rlun = &rrpc->luns[i]; 1488 1489 rblk = rrpc_get_blk(rrpc, rlun, 0); 1490 if (!rblk) 1491 goto err; 1492 rrpc_set_lun_cur(rlun, rblk, &rlun->cur); 1493 1494 /* Emergency gc block */ 1495 rblk = rrpc_get_blk(rrpc, rlun, 1); 1496 if (!rblk) 1497 goto err; 1498 rrpc_set_lun_cur(rlun, rblk, &rlun->gc_cur); 1499 } 1500 1501 return 0; 1502err: 1503 rrpc_put_blks(rrpc); 1504 return -EINVAL; 1505} 1506 1507static struct nvm_tgt_type tt_rrpc; 1508 1509static void *rrpc_init(struct nvm_tgt_dev *dev, struct gendisk *tdisk, 1510 int flags) 1511{ 1512 struct request_queue *bqueue = dev->q; 1513 struct request_queue *tqueue = tdisk->queue; 1514 struct nvm_geo *geo = &dev->geo; 1515 struct rrpc *rrpc; 1516 sector_t soffset; 1517 int ret; 1518 1519 if (!(dev->identity.dom & NVM_RSP_L2P)) { 1520 pr_err("nvm: rrpc: device does not support l2p (%x)\n", 1521 dev->identity.dom); 1522 return ERR_PTR(-EINVAL); 1523 } 1524 1525 rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL); 1526 if (!rrpc) 1527 return ERR_PTR(-ENOMEM); 1528 1529 rrpc->dev = dev; 1530 rrpc->disk = tdisk; 1531 1532 bio_list_init(&rrpc->requeue_bios); 1533 spin_lock_init(&rrpc->bio_lock); 1534 INIT_WORK(&rrpc->ws_requeue, rrpc_requeue); 1535 1536 rrpc->nr_luns = geo->nr_luns; 1537 rrpc->nr_sects = (unsigned long long)geo->sec_per_lun * rrpc->nr_luns; 1538 1539 /* simple round-robin strategy */ 1540 atomic_set(&rrpc->next_lun, -1); 1541 1542 ret = rrpc_area_init(rrpc, &soffset); 1543 if (ret < 0) { 1544 pr_err("nvm: rrpc: could not initialize area\n"); 1545 return ERR_PTR(ret); 1546 } 1547 rrpc->soffset = soffset; 1548 1549 ret = rrpc_luns_init(rrpc, dev->luns); 1550 if (ret) { 1551 pr_err("nvm: rrpc: could not initialize luns\n"); 1552 goto err; 1553 } 1554 1555 ret = rrpc_core_init(rrpc); 1556 if (ret) { 1557 pr_err("nvm: rrpc: could not initialize core\n"); 1558 goto err; 1559 } 1560 1561 ret = rrpc_map_init(rrpc); 1562 if (ret) { 1563 pr_err("nvm: rrpc: could not initialize maps\n"); 1564 goto err; 1565 } 1566 1567 ret = rrpc_blocks_init(rrpc); 1568 if (ret) { 1569 pr_err("nvm: rrpc: could not initialize state for blocks\n"); 1570 goto err; 1571 } 1572 1573 ret = rrpc_luns_configure(rrpc); 1574 if (ret) { 1575 pr_err("nvm: rrpc: not enough blocks available in LUNs.\n"); 1576 goto err; 1577 } 1578 1579 ret = rrpc_gc_init(rrpc); 1580 if (ret) { 1581 pr_err("nvm: rrpc: could not initialize gc\n"); 1582 goto err; 1583 } 1584 1585 /* inherit the size from the underlying device */ 1586 blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue)); 1587 blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue)); 1588 1589 pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n", 1590 rrpc->nr_luns, (unsigned long long)rrpc->nr_sects); 1591 1592 mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10)); 1593 1594 return rrpc; 1595err: 1596 rrpc_free(rrpc); 1597 return ERR_PTR(ret); 1598} 1599 1600/* round robin, page-based FTL, and cost-based GC */ 1601static struct nvm_tgt_type tt_rrpc = { 1602 .name = "rrpc", 1603 .version = {1, 0, 0}, 1604 1605 .make_rq = rrpc_make_rq, 1606 .capacity = rrpc_capacity, 1607 1608 .init = rrpc_init, 1609 .exit = rrpc_exit, 1610}; 1611 1612static int __init rrpc_module_init(void) 1613{ 1614 return nvm_register_tgt_type(&tt_rrpc); 1615} 1616 1617static void rrpc_module_exit(void) 1618{ 1619 nvm_unregister_tgt_type(&tt_rrpc); 1620} 1621 1622module_init(rrpc_module_init); 1623module_exit(rrpc_module_exit); 1624MODULE_LICENSE("GPL v2"); 1625MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");