Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35/*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41#include <linux/module.h>
42#include <linux/types.h>
43#include <linux/kernel.h>
44#include <linux/kmemcheck.h>
45#include <linux/mm.h>
46#include <linux/interrupt.h>
47#include <linux/in.h>
48#include <linux/inet.h>
49#include <linux/slab.h>
50#include <linux/tcp.h>
51#include <linux/udp.h>
52#include <linux/sctp.h>
53#include <linux/netdevice.h>
54#ifdef CONFIG_NET_CLS_ACT
55#include <net/pkt_sched.h>
56#endif
57#include <linux/string.h>
58#include <linux/skbuff.h>
59#include <linux/splice.h>
60#include <linux/cache.h>
61#include <linux/rtnetlink.h>
62#include <linux/init.h>
63#include <linux/scatterlist.h>
64#include <linux/errqueue.h>
65#include <linux/prefetch.h>
66#include <linux/if_vlan.h>
67
68#include <net/protocol.h>
69#include <net/dst.h>
70#include <net/sock.h>
71#include <net/checksum.h>
72#include <net/ip6_checksum.h>
73#include <net/xfrm.h>
74
75#include <linux/uaccess.h>
76#include <trace/events/skb.h>
77#include <linux/highmem.h>
78#include <linux/capability.h>
79#include <linux/user_namespace.h>
80
81struct kmem_cache *skbuff_head_cache __read_mostly;
82static struct kmem_cache *skbuff_fclone_cache __read_mostly;
83int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
84EXPORT_SYMBOL(sysctl_max_skb_frags);
85
86/**
87 * skb_panic - private function for out-of-line support
88 * @skb: buffer
89 * @sz: size
90 * @addr: address
91 * @msg: skb_over_panic or skb_under_panic
92 *
93 * Out-of-line support for skb_put() and skb_push().
94 * Called via the wrapper skb_over_panic() or skb_under_panic().
95 * Keep out of line to prevent kernel bloat.
96 * __builtin_return_address is not used because it is not always reliable.
97 */
98static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
99 const char msg[])
100{
101 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
102 msg, addr, skb->len, sz, skb->head, skb->data,
103 (unsigned long)skb->tail, (unsigned long)skb->end,
104 skb->dev ? skb->dev->name : "<NULL>");
105 BUG();
106}
107
108static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109{
110 skb_panic(skb, sz, addr, __func__);
111}
112
113static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
114{
115 skb_panic(skb, sz, addr, __func__);
116}
117
118/*
119 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
120 * the caller if emergency pfmemalloc reserves are being used. If it is and
121 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
122 * may be used. Otherwise, the packet data may be discarded until enough
123 * memory is free
124 */
125#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
126 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
127
128static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
129 unsigned long ip, bool *pfmemalloc)
130{
131 void *obj;
132 bool ret_pfmemalloc = false;
133
134 /*
135 * Try a regular allocation, when that fails and we're not entitled
136 * to the reserves, fail.
137 */
138 obj = kmalloc_node_track_caller(size,
139 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
140 node);
141 if (obj || !(gfp_pfmemalloc_allowed(flags)))
142 goto out;
143
144 /* Try again but now we are using pfmemalloc reserves */
145 ret_pfmemalloc = true;
146 obj = kmalloc_node_track_caller(size, flags, node);
147
148out:
149 if (pfmemalloc)
150 *pfmemalloc = ret_pfmemalloc;
151
152 return obj;
153}
154
155/* Allocate a new skbuff. We do this ourselves so we can fill in a few
156 * 'private' fields and also do memory statistics to find all the
157 * [BEEP] leaks.
158 *
159 */
160
161/**
162 * __alloc_skb - allocate a network buffer
163 * @size: size to allocate
164 * @gfp_mask: allocation mask
165 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
166 * instead of head cache and allocate a cloned (child) skb.
167 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
168 * allocations in case the data is required for writeback
169 * @node: numa node to allocate memory on
170 *
171 * Allocate a new &sk_buff. The returned buffer has no headroom and a
172 * tail room of at least size bytes. The object has a reference count
173 * of one. The return is the buffer. On a failure the return is %NULL.
174 *
175 * Buffers may only be allocated from interrupts using a @gfp_mask of
176 * %GFP_ATOMIC.
177 */
178struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
179 int flags, int node)
180{
181 struct kmem_cache *cache;
182 struct skb_shared_info *shinfo;
183 struct sk_buff *skb;
184 u8 *data;
185 bool pfmemalloc;
186
187 cache = (flags & SKB_ALLOC_FCLONE)
188 ? skbuff_fclone_cache : skbuff_head_cache;
189
190 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
191 gfp_mask |= __GFP_MEMALLOC;
192
193 /* Get the HEAD */
194 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
195 if (!skb)
196 goto out;
197 prefetchw(skb);
198
199 /* We do our best to align skb_shared_info on a separate cache
200 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
201 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
202 * Both skb->head and skb_shared_info are cache line aligned.
203 */
204 size = SKB_DATA_ALIGN(size);
205 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
206 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
207 if (!data)
208 goto nodata;
209 /* kmalloc(size) might give us more room than requested.
210 * Put skb_shared_info exactly at the end of allocated zone,
211 * to allow max possible filling before reallocation.
212 */
213 size = SKB_WITH_OVERHEAD(ksize(data));
214 prefetchw(data + size);
215
216 /*
217 * Only clear those fields we need to clear, not those that we will
218 * actually initialise below. Hence, don't put any more fields after
219 * the tail pointer in struct sk_buff!
220 */
221 memset(skb, 0, offsetof(struct sk_buff, tail));
222 /* Account for allocated memory : skb + skb->head */
223 skb->truesize = SKB_TRUESIZE(size);
224 skb->pfmemalloc = pfmemalloc;
225 refcount_set(&skb->users, 1);
226 skb->head = data;
227 skb->data = data;
228 skb_reset_tail_pointer(skb);
229 skb->end = skb->tail + size;
230 skb->mac_header = (typeof(skb->mac_header))~0U;
231 skb->transport_header = (typeof(skb->transport_header))~0U;
232
233 /* make sure we initialize shinfo sequentially */
234 shinfo = skb_shinfo(skb);
235 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
236 atomic_set(&shinfo->dataref, 1);
237 kmemcheck_annotate_variable(shinfo->destructor_arg);
238
239 if (flags & SKB_ALLOC_FCLONE) {
240 struct sk_buff_fclones *fclones;
241
242 fclones = container_of(skb, struct sk_buff_fclones, skb1);
243
244 kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
245 skb->fclone = SKB_FCLONE_ORIG;
246 refcount_set(&fclones->fclone_ref, 1);
247
248 fclones->skb2.fclone = SKB_FCLONE_CLONE;
249 }
250out:
251 return skb;
252nodata:
253 kmem_cache_free(cache, skb);
254 skb = NULL;
255 goto out;
256}
257EXPORT_SYMBOL(__alloc_skb);
258
259/**
260 * __build_skb - build a network buffer
261 * @data: data buffer provided by caller
262 * @frag_size: size of data, or 0 if head was kmalloced
263 *
264 * Allocate a new &sk_buff. Caller provides space holding head and
265 * skb_shared_info. @data must have been allocated by kmalloc() only if
266 * @frag_size is 0, otherwise data should come from the page allocator
267 * or vmalloc()
268 * The return is the new skb buffer.
269 * On a failure the return is %NULL, and @data is not freed.
270 * Notes :
271 * Before IO, driver allocates only data buffer where NIC put incoming frame
272 * Driver should add room at head (NET_SKB_PAD) and
273 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
274 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
275 * before giving packet to stack.
276 * RX rings only contains data buffers, not full skbs.
277 */
278struct sk_buff *__build_skb(void *data, unsigned int frag_size)
279{
280 struct skb_shared_info *shinfo;
281 struct sk_buff *skb;
282 unsigned int size = frag_size ? : ksize(data);
283
284 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
285 if (!skb)
286 return NULL;
287
288 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
289
290 memset(skb, 0, offsetof(struct sk_buff, tail));
291 skb->truesize = SKB_TRUESIZE(size);
292 refcount_set(&skb->users, 1);
293 skb->head = data;
294 skb->data = data;
295 skb_reset_tail_pointer(skb);
296 skb->end = skb->tail + size;
297 skb->mac_header = (typeof(skb->mac_header))~0U;
298 skb->transport_header = (typeof(skb->transport_header))~0U;
299
300 /* make sure we initialize shinfo sequentially */
301 shinfo = skb_shinfo(skb);
302 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
303 atomic_set(&shinfo->dataref, 1);
304 kmemcheck_annotate_variable(shinfo->destructor_arg);
305
306 return skb;
307}
308
309/* build_skb() is wrapper over __build_skb(), that specifically
310 * takes care of skb->head and skb->pfmemalloc
311 * This means that if @frag_size is not zero, then @data must be backed
312 * by a page fragment, not kmalloc() or vmalloc()
313 */
314struct sk_buff *build_skb(void *data, unsigned int frag_size)
315{
316 struct sk_buff *skb = __build_skb(data, frag_size);
317
318 if (skb && frag_size) {
319 skb->head_frag = 1;
320 if (page_is_pfmemalloc(virt_to_head_page(data)))
321 skb->pfmemalloc = 1;
322 }
323 return skb;
324}
325EXPORT_SYMBOL(build_skb);
326
327#define NAPI_SKB_CACHE_SIZE 64
328
329struct napi_alloc_cache {
330 struct page_frag_cache page;
331 unsigned int skb_count;
332 void *skb_cache[NAPI_SKB_CACHE_SIZE];
333};
334
335static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
336static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
337
338static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
339{
340 struct page_frag_cache *nc;
341 unsigned long flags;
342 void *data;
343
344 local_irq_save(flags);
345 nc = this_cpu_ptr(&netdev_alloc_cache);
346 data = page_frag_alloc(nc, fragsz, gfp_mask);
347 local_irq_restore(flags);
348 return data;
349}
350
351/**
352 * netdev_alloc_frag - allocate a page fragment
353 * @fragsz: fragment size
354 *
355 * Allocates a frag from a page for receive buffer.
356 * Uses GFP_ATOMIC allocations.
357 */
358void *netdev_alloc_frag(unsigned int fragsz)
359{
360 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
361}
362EXPORT_SYMBOL(netdev_alloc_frag);
363
364static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
365{
366 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
367
368 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
369}
370
371void *napi_alloc_frag(unsigned int fragsz)
372{
373 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
374}
375EXPORT_SYMBOL(napi_alloc_frag);
376
377/**
378 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
379 * @dev: network device to receive on
380 * @len: length to allocate
381 * @gfp_mask: get_free_pages mask, passed to alloc_skb
382 *
383 * Allocate a new &sk_buff and assign it a usage count of one. The
384 * buffer has NET_SKB_PAD headroom built in. Users should allocate
385 * the headroom they think they need without accounting for the
386 * built in space. The built in space is used for optimisations.
387 *
388 * %NULL is returned if there is no free memory.
389 */
390struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
391 gfp_t gfp_mask)
392{
393 struct page_frag_cache *nc;
394 unsigned long flags;
395 struct sk_buff *skb;
396 bool pfmemalloc;
397 void *data;
398
399 len += NET_SKB_PAD;
400
401 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
402 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
403 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
404 if (!skb)
405 goto skb_fail;
406 goto skb_success;
407 }
408
409 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
410 len = SKB_DATA_ALIGN(len);
411
412 if (sk_memalloc_socks())
413 gfp_mask |= __GFP_MEMALLOC;
414
415 local_irq_save(flags);
416
417 nc = this_cpu_ptr(&netdev_alloc_cache);
418 data = page_frag_alloc(nc, len, gfp_mask);
419 pfmemalloc = nc->pfmemalloc;
420
421 local_irq_restore(flags);
422
423 if (unlikely(!data))
424 return NULL;
425
426 skb = __build_skb(data, len);
427 if (unlikely(!skb)) {
428 skb_free_frag(data);
429 return NULL;
430 }
431
432 /* use OR instead of assignment to avoid clearing of bits in mask */
433 if (pfmemalloc)
434 skb->pfmemalloc = 1;
435 skb->head_frag = 1;
436
437skb_success:
438 skb_reserve(skb, NET_SKB_PAD);
439 skb->dev = dev;
440
441skb_fail:
442 return skb;
443}
444EXPORT_SYMBOL(__netdev_alloc_skb);
445
446/**
447 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
448 * @napi: napi instance this buffer was allocated for
449 * @len: length to allocate
450 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
451 *
452 * Allocate a new sk_buff for use in NAPI receive. This buffer will
453 * attempt to allocate the head from a special reserved region used
454 * only for NAPI Rx allocation. By doing this we can save several
455 * CPU cycles by avoiding having to disable and re-enable IRQs.
456 *
457 * %NULL is returned if there is no free memory.
458 */
459struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
460 gfp_t gfp_mask)
461{
462 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
463 struct sk_buff *skb;
464 void *data;
465
466 len += NET_SKB_PAD + NET_IP_ALIGN;
467
468 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
469 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
470 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
471 if (!skb)
472 goto skb_fail;
473 goto skb_success;
474 }
475
476 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
477 len = SKB_DATA_ALIGN(len);
478
479 if (sk_memalloc_socks())
480 gfp_mask |= __GFP_MEMALLOC;
481
482 data = page_frag_alloc(&nc->page, len, gfp_mask);
483 if (unlikely(!data))
484 return NULL;
485
486 skb = __build_skb(data, len);
487 if (unlikely(!skb)) {
488 skb_free_frag(data);
489 return NULL;
490 }
491
492 /* use OR instead of assignment to avoid clearing of bits in mask */
493 if (nc->page.pfmemalloc)
494 skb->pfmemalloc = 1;
495 skb->head_frag = 1;
496
497skb_success:
498 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
499 skb->dev = napi->dev;
500
501skb_fail:
502 return skb;
503}
504EXPORT_SYMBOL(__napi_alloc_skb);
505
506void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
507 int size, unsigned int truesize)
508{
509 skb_fill_page_desc(skb, i, page, off, size);
510 skb->len += size;
511 skb->data_len += size;
512 skb->truesize += truesize;
513}
514EXPORT_SYMBOL(skb_add_rx_frag);
515
516void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
517 unsigned int truesize)
518{
519 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
520
521 skb_frag_size_add(frag, size);
522 skb->len += size;
523 skb->data_len += size;
524 skb->truesize += truesize;
525}
526EXPORT_SYMBOL(skb_coalesce_rx_frag);
527
528static void skb_drop_list(struct sk_buff **listp)
529{
530 kfree_skb_list(*listp);
531 *listp = NULL;
532}
533
534static inline void skb_drop_fraglist(struct sk_buff *skb)
535{
536 skb_drop_list(&skb_shinfo(skb)->frag_list);
537}
538
539static void skb_clone_fraglist(struct sk_buff *skb)
540{
541 struct sk_buff *list;
542
543 skb_walk_frags(skb, list)
544 skb_get(list);
545}
546
547static void skb_free_head(struct sk_buff *skb)
548{
549 unsigned char *head = skb->head;
550
551 if (skb->head_frag)
552 skb_free_frag(head);
553 else
554 kfree(head);
555}
556
557static void skb_release_data(struct sk_buff *skb)
558{
559 struct skb_shared_info *shinfo = skb_shinfo(skb);
560 int i;
561
562 if (skb->cloned &&
563 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
564 &shinfo->dataref))
565 return;
566
567 for (i = 0; i < shinfo->nr_frags; i++)
568 __skb_frag_unref(&shinfo->frags[i]);
569
570 if (shinfo->frag_list)
571 kfree_skb_list(shinfo->frag_list);
572
573 skb_zcopy_clear(skb, true);
574 skb_free_head(skb);
575}
576
577/*
578 * Free an skbuff by memory without cleaning the state.
579 */
580static void kfree_skbmem(struct sk_buff *skb)
581{
582 struct sk_buff_fclones *fclones;
583
584 switch (skb->fclone) {
585 case SKB_FCLONE_UNAVAILABLE:
586 kmem_cache_free(skbuff_head_cache, skb);
587 return;
588
589 case SKB_FCLONE_ORIG:
590 fclones = container_of(skb, struct sk_buff_fclones, skb1);
591
592 /* We usually free the clone (TX completion) before original skb
593 * This test would have no chance to be true for the clone,
594 * while here, branch prediction will be good.
595 */
596 if (refcount_read(&fclones->fclone_ref) == 1)
597 goto fastpath;
598 break;
599
600 default: /* SKB_FCLONE_CLONE */
601 fclones = container_of(skb, struct sk_buff_fclones, skb2);
602 break;
603 }
604 if (!refcount_dec_and_test(&fclones->fclone_ref))
605 return;
606fastpath:
607 kmem_cache_free(skbuff_fclone_cache, fclones);
608}
609
610void skb_release_head_state(struct sk_buff *skb)
611{
612 skb_dst_drop(skb);
613 secpath_reset(skb);
614 if (skb->destructor) {
615 WARN_ON(in_irq());
616 skb->destructor(skb);
617 }
618#if IS_ENABLED(CONFIG_NF_CONNTRACK)
619 nf_conntrack_put(skb_nfct(skb));
620#endif
621#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
622 nf_bridge_put(skb->nf_bridge);
623#endif
624}
625
626/* Free everything but the sk_buff shell. */
627static void skb_release_all(struct sk_buff *skb)
628{
629 skb_release_head_state(skb);
630 if (likely(skb->head))
631 skb_release_data(skb);
632}
633
634/**
635 * __kfree_skb - private function
636 * @skb: buffer
637 *
638 * Free an sk_buff. Release anything attached to the buffer.
639 * Clean the state. This is an internal helper function. Users should
640 * always call kfree_skb
641 */
642
643void __kfree_skb(struct sk_buff *skb)
644{
645 skb_release_all(skb);
646 kfree_skbmem(skb);
647}
648EXPORT_SYMBOL(__kfree_skb);
649
650/**
651 * kfree_skb - free an sk_buff
652 * @skb: buffer to free
653 *
654 * Drop a reference to the buffer and free it if the usage count has
655 * hit zero.
656 */
657void kfree_skb(struct sk_buff *skb)
658{
659 if (!skb_unref(skb))
660 return;
661
662 trace_kfree_skb(skb, __builtin_return_address(0));
663 __kfree_skb(skb);
664}
665EXPORT_SYMBOL(kfree_skb);
666
667void kfree_skb_list(struct sk_buff *segs)
668{
669 while (segs) {
670 struct sk_buff *next = segs->next;
671
672 kfree_skb(segs);
673 segs = next;
674 }
675}
676EXPORT_SYMBOL(kfree_skb_list);
677
678/**
679 * skb_tx_error - report an sk_buff xmit error
680 * @skb: buffer that triggered an error
681 *
682 * Report xmit error if a device callback is tracking this skb.
683 * skb must be freed afterwards.
684 */
685void skb_tx_error(struct sk_buff *skb)
686{
687 skb_zcopy_clear(skb, true);
688}
689EXPORT_SYMBOL(skb_tx_error);
690
691/**
692 * consume_skb - free an skbuff
693 * @skb: buffer to free
694 *
695 * Drop a ref to the buffer and free it if the usage count has hit zero
696 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
697 * is being dropped after a failure and notes that
698 */
699void consume_skb(struct sk_buff *skb)
700{
701 if (!skb_unref(skb))
702 return;
703
704 trace_consume_skb(skb);
705 __kfree_skb(skb);
706}
707EXPORT_SYMBOL(consume_skb);
708
709/**
710 * consume_stateless_skb - free an skbuff, assuming it is stateless
711 * @skb: buffer to free
712 *
713 * Alike consume_skb(), but this variant assumes that this is the last
714 * skb reference and all the head states have been already dropped
715 */
716void __consume_stateless_skb(struct sk_buff *skb)
717{
718 trace_consume_skb(skb);
719 skb_release_data(skb);
720 kfree_skbmem(skb);
721}
722
723void __kfree_skb_flush(void)
724{
725 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
726
727 /* flush skb_cache if containing objects */
728 if (nc->skb_count) {
729 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
730 nc->skb_cache);
731 nc->skb_count = 0;
732 }
733}
734
735static inline void _kfree_skb_defer(struct sk_buff *skb)
736{
737 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
738
739 /* drop skb->head and call any destructors for packet */
740 skb_release_all(skb);
741
742 /* record skb to CPU local list */
743 nc->skb_cache[nc->skb_count++] = skb;
744
745#ifdef CONFIG_SLUB
746 /* SLUB writes into objects when freeing */
747 prefetchw(skb);
748#endif
749
750 /* flush skb_cache if it is filled */
751 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
752 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
753 nc->skb_cache);
754 nc->skb_count = 0;
755 }
756}
757void __kfree_skb_defer(struct sk_buff *skb)
758{
759 _kfree_skb_defer(skb);
760}
761
762void napi_consume_skb(struct sk_buff *skb, int budget)
763{
764 if (unlikely(!skb))
765 return;
766
767 /* Zero budget indicate non-NAPI context called us, like netpoll */
768 if (unlikely(!budget)) {
769 dev_consume_skb_any(skb);
770 return;
771 }
772
773 if (!skb_unref(skb))
774 return;
775
776 /* if reaching here SKB is ready to free */
777 trace_consume_skb(skb);
778
779 /* if SKB is a clone, don't handle this case */
780 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
781 __kfree_skb(skb);
782 return;
783 }
784
785 _kfree_skb_defer(skb);
786}
787EXPORT_SYMBOL(napi_consume_skb);
788
789/* Make sure a field is enclosed inside headers_start/headers_end section */
790#define CHECK_SKB_FIELD(field) \
791 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
792 offsetof(struct sk_buff, headers_start)); \
793 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
794 offsetof(struct sk_buff, headers_end)); \
795
796static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
797{
798 new->tstamp = old->tstamp;
799 /* We do not copy old->sk */
800 new->dev = old->dev;
801 memcpy(new->cb, old->cb, sizeof(old->cb));
802 skb_dst_copy(new, old);
803#ifdef CONFIG_XFRM
804 new->sp = secpath_get(old->sp);
805#endif
806 __nf_copy(new, old, false);
807
808 /* Note : this field could be in headers_start/headers_end section
809 * It is not yet because we do not want to have a 16 bit hole
810 */
811 new->queue_mapping = old->queue_mapping;
812
813 memcpy(&new->headers_start, &old->headers_start,
814 offsetof(struct sk_buff, headers_end) -
815 offsetof(struct sk_buff, headers_start));
816 CHECK_SKB_FIELD(protocol);
817 CHECK_SKB_FIELD(csum);
818 CHECK_SKB_FIELD(hash);
819 CHECK_SKB_FIELD(priority);
820 CHECK_SKB_FIELD(skb_iif);
821 CHECK_SKB_FIELD(vlan_proto);
822 CHECK_SKB_FIELD(vlan_tci);
823 CHECK_SKB_FIELD(transport_header);
824 CHECK_SKB_FIELD(network_header);
825 CHECK_SKB_FIELD(mac_header);
826 CHECK_SKB_FIELD(inner_protocol);
827 CHECK_SKB_FIELD(inner_transport_header);
828 CHECK_SKB_FIELD(inner_network_header);
829 CHECK_SKB_FIELD(inner_mac_header);
830 CHECK_SKB_FIELD(mark);
831#ifdef CONFIG_NETWORK_SECMARK
832 CHECK_SKB_FIELD(secmark);
833#endif
834#ifdef CONFIG_NET_RX_BUSY_POLL
835 CHECK_SKB_FIELD(napi_id);
836#endif
837#ifdef CONFIG_XPS
838 CHECK_SKB_FIELD(sender_cpu);
839#endif
840#ifdef CONFIG_NET_SCHED
841 CHECK_SKB_FIELD(tc_index);
842#endif
843
844}
845
846/*
847 * You should not add any new code to this function. Add it to
848 * __copy_skb_header above instead.
849 */
850static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
851{
852#define C(x) n->x = skb->x
853
854 n->next = n->prev = NULL;
855 n->sk = NULL;
856 __copy_skb_header(n, skb);
857
858 C(len);
859 C(data_len);
860 C(mac_len);
861 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
862 n->cloned = 1;
863 n->nohdr = 0;
864 n->destructor = NULL;
865 C(tail);
866 C(end);
867 C(head);
868 C(head_frag);
869 C(data);
870 C(truesize);
871 refcount_set(&n->users, 1);
872
873 atomic_inc(&(skb_shinfo(skb)->dataref));
874 skb->cloned = 1;
875
876 return n;
877#undef C
878}
879
880/**
881 * skb_morph - morph one skb into another
882 * @dst: the skb to receive the contents
883 * @src: the skb to supply the contents
884 *
885 * This is identical to skb_clone except that the target skb is
886 * supplied by the user.
887 *
888 * The target skb is returned upon exit.
889 */
890struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
891{
892 skb_release_all(dst);
893 return __skb_clone(dst, src);
894}
895EXPORT_SYMBOL_GPL(skb_morph);
896
897static int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
898{
899 unsigned long max_pg, num_pg, new_pg, old_pg;
900 struct user_struct *user;
901
902 if (capable(CAP_IPC_LOCK) || !size)
903 return 0;
904
905 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
906 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
907 user = mmp->user ? : current_user();
908
909 do {
910 old_pg = atomic_long_read(&user->locked_vm);
911 new_pg = old_pg + num_pg;
912 if (new_pg > max_pg)
913 return -ENOBUFS;
914 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
915 old_pg);
916
917 if (!mmp->user) {
918 mmp->user = get_uid(user);
919 mmp->num_pg = num_pg;
920 } else {
921 mmp->num_pg += num_pg;
922 }
923
924 return 0;
925}
926
927static void mm_unaccount_pinned_pages(struct mmpin *mmp)
928{
929 if (mmp->user) {
930 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
931 free_uid(mmp->user);
932 }
933}
934
935struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
936{
937 struct ubuf_info *uarg;
938 struct sk_buff *skb;
939
940 WARN_ON_ONCE(!in_task());
941
942 if (!sock_flag(sk, SOCK_ZEROCOPY))
943 return NULL;
944
945 skb = sock_omalloc(sk, 0, GFP_KERNEL);
946 if (!skb)
947 return NULL;
948
949 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
950 uarg = (void *)skb->cb;
951 uarg->mmp.user = NULL;
952
953 if (mm_account_pinned_pages(&uarg->mmp, size)) {
954 kfree_skb(skb);
955 return NULL;
956 }
957
958 uarg->callback = sock_zerocopy_callback;
959 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
960 uarg->len = 1;
961 uarg->bytelen = size;
962 uarg->zerocopy = 1;
963 refcount_set(&uarg->refcnt, 1);
964 sock_hold(sk);
965
966 return uarg;
967}
968EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
969
970static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
971{
972 return container_of((void *)uarg, struct sk_buff, cb);
973}
974
975struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
976 struct ubuf_info *uarg)
977{
978 if (uarg) {
979 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
980 u32 bytelen, next;
981
982 /* realloc only when socket is locked (TCP, UDP cork),
983 * so uarg->len and sk_zckey access is serialized
984 */
985 if (!sock_owned_by_user(sk)) {
986 WARN_ON_ONCE(1);
987 return NULL;
988 }
989
990 bytelen = uarg->bytelen + size;
991 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
992 /* TCP can create new skb to attach new uarg */
993 if (sk->sk_type == SOCK_STREAM)
994 goto new_alloc;
995 return NULL;
996 }
997
998 next = (u32)atomic_read(&sk->sk_zckey);
999 if ((u32)(uarg->id + uarg->len) == next) {
1000 if (mm_account_pinned_pages(&uarg->mmp, size))
1001 return NULL;
1002 uarg->len++;
1003 uarg->bytelen = bytelen;
1004 atomic_set(&sk->sk_zckey, ++next);
1005 sock_zerocopy_get(uarg);
1006 return uarg;
1007 }
1008 }
1009
1010new_alloc:
1011 return sock_zerocopy_alloc(sk, size);
1012}
1013EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1014
1015static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1016{
1017 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1018 u32 old_lo, old_hi;
1019 u64 sum_len;
1020
1021 old_lo = serr->ee.ee_info;
1022 old_hi = serr->ee.ee_data;
1023 sum_len = old_hi - old_lo + 1ULL + len;
1024
1025 if (sum_len >= (1ULL << 32))
1026 return false;
1027
1028 if (lo != old_hi + 1)
1029 return false;
1030
1031 serr->ee.ee_data += len;
1032 return true;
1033}
1034
1035void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1036{
1037 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1038 struct sock_exterr_skb *serr;
1039 struct sock *sk = skb->sk;
1040 struct sk_buff_head *q;
1041 unsigned long flags;
1042 u32 lo, hi;
1043 u16 len;
1044
1045 mm_unaccount_pinned_pages(&uarg->mmp);
1046
1047 /* if !len, there was only 1 call, and it was aborted
1048 * so do not queue a completion notification
1049 */
1050 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1051 goto release;
1052
1053 len = uarg->len;
1054 lo = uarg->id;
1055 hi = uarg->id + len - 1;
1056
1057 serr = SKB_EXT_ERR(skb);
1058 memset(serr, 0, sizeof(*serr));
1059 serr->ee.ee_errno = 0;
1060 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1061 serr->ee.ee_data = hi;
1062 serr->ee.ee_info = lo;
1063 if (!success)
1064 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1065
1066 q = &sk->sk_error_queue;
1067 spin_lock_irqsave(&q->lock, flags);
1068 tail = skb_peek_tail(q);
1069 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1070 !skb_zerocopy_notify_extend(tail, lo, len)) {
1071 __skb_queue_tail(q, skb);
1072 skb = NULL;
1073 }
1074 spin_unlock_irqrestore(&q->lock, flags);
1075
1076 sk->sk_error_report(sk);
1077
1078release:
1079 consume_skb(skb);
1080 sock_put(sk);
1081}
1082EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1083
1084void sock_zerocopy_put(struct ubuf_info *uarg)
1085{
1086 if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1087 if (uarg->callback)
1088 uarg->callback(uarg, uarg->zerocopy);
1089 else
1090 consume_skb(skb_from_uarg(uarg));
1091 }
1092}
1093EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1094
1095void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1096{
1097 if (uarg) {
1098 struct sock *sk = skb_from_uarg(uarg)->sk;
1099
1100 atomic_dec(&sk->sk_zckey);
1101 uarg->len--;
1102
1103 sock_zerocopy_put(uarg);
1104 }
1105}
1106EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1107
1108extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1109 struct iov_iter *from, size_t length);
1110
1111int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1112 struct msghdr *msg, int len,
1113 struct ubuf_info *uarg)
1114{
1115 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1116 struct iov_iter orig_iter = msg->msg_iter;
1117 int err, orig_len = skb->len;
1118
1119 /* An skb can only point to one uarg. This edge case happens when
1120 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1121 */
1122 if (orig_uarg && uarg != orig_uarg)
1123 return -EEXIST;
1124
1125 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1126 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1127 /* Streams do not free skb on error. Reset to prev state. */
1128 msg->msg_iter = orig_iter;
1129 ___pskb_trim(skb, orig_len);
1130 return err;
1131 }
1132
1133 skb_zcopy_set(skb, uarg);
1134 return skb->len - orig_len;
1135}
1136EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1137
1138static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1139 gfp_t gfp_mask)
1140{
1141 if (skb_zcopy(orig)) {
1142 if (skb_zcopy(nskb)) {
1143 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1144 if (!gfp_mask) {
1145 WARN_ON_ONCE(1);
1146 return -ENOMEM;
1147 }
1148 if (skb_uarg(nskb) == skb_uarg(orig))
1149 return 0;
1150 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1151 return -EIO;
1152 }
1153 skb_zcopy_set(nskb, skb_uarg(orig));
1154 }
1155 return 0;
1156}
1157
1158/**
1159 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1160 * @skb: the skb to modify
1161 * @gfp_mask: allocation priority
1162 *
1163 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1164 * It will copy all frags into kernel and drop the reference
1165 * to userspace pages.
1166 *
1167 * If this function is called from an interrupt gfp_mask() must be
1168 * %GFP_ATOMIC.
1169 *
1170 * Returns 0 on success or a negative error code on failure
1171 * to allocate kernel memory to copy to.
1172 */
1173int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1174{
1175 int num_frags = skb_shinfo(skb)->nr_frags;
1176 struct page *page, *head = NULL;
1177 int i, new_frags;
1178 u32 d_off;
1179
1180 if (!num_frags)
1181 return 0;
1182
1183 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1184 return -EINVAL;
1185
1186 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1187 for (i = 0; i < new_frags; i++) {
1188 page = alloc_page(gfp_mask);
1189 if (!page) {
1190 while (head) {
1191 struct page *next = (struct page *)page_private(head);
1192 put_page(head);
1193 head = next;
1194 }
1195 return -ENOMEM;
1196 }
1197 set_page_private(page, (unsigned long)head);
1198 head = page;
1199 }
1200
1201 page = head;
1202 d_off = 0;
1203 for (i = 0; i < num_frags; i++) {
1204 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1205 u32 p_off, p_len, copied;
1206 struct page *p;
1207 u8 *vaddr;
1208
1209 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1210 p, p_off, p_len, copied) {
1211 u32 copy, done = 0;
1212 vaddr = kmap_atomic(p);
1213
1214 while (done < p_len) {
1215 if (d_off == PAGE_SIZE) {
1216 d_off = 0;
1217 page = (struct page *)page_private(page);
1218 }
1219 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1220 memcpy(page_address(page) + d_off,
1221 vaddr + p_off + done, copy);
1222 done += copy;
1223 d_off += copy;
1224 }
1225 kunmap_atomic(vaddr);
1226 }
1227 }
1228
1229 /* skb frags release userspace buffers */
1230 for (i = 0; i < num_frags; i++)
1231 skb_frag_unref(skb, i);
1232
1233 /* skb frags point to kernel buffers */
1234 for (i = 0; i < new_frags - 1; i++) {
1235 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1236 head = (struct page *)page_private(head);
1237 }
1238 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1239 skb_shinfo(skb)->nr_frags = new_frags;
1240
1241 skb_zcopy_clear(skb, false);
1242 return 0;
1243}
1244EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1245
1246/**
1247 * skb_clone - duplicate an sk_buff
1248 * @skb: buffer to clone
1249 * @gfp_mask: allocation priority
1250 *
1251 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1252 * copies share the same packet data but not structure. The new
1253 * buffer has a reference count of 1. If the allocation fails the
1254 * function returns %NULL otherwise the new buffer is returned.
1255 *
1256 * If this function is called from an interrupt gfp_mask() must be
1257 * %GFP_ATOMIC.
1258 */
1259
1260struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1261{
1262 struct sk_buff_fclones *fclones = container_of(skb,
1263 struct sk_buff_fclones,
1264 skb1);
1265 struct sk_buff *n;
1266
1267 if (skb_orphan_frags(skb, gfp_mask))
1268 return NULL;
1269
1270 if (skb->fclone == SKB_FCLONE_ORIG &&
1271 refcount_read(&fclones->fclone_ref) == 1) {
1272 n = &fclones->skb2;
1273 refcount_set(&fclones->fclone_ref, 2);
1274 } else {
1275 if (skb_pfmemalloc(skb))
1276 gfp_mask |= __GFP_MEMALLOC;
1277
1278 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1279 if (!n)
1280 return NULL;
1281
1282 kmemcheck_annotate_bitfield(n, flags1);
1283 n->fclone = SKB_FCLONE_UNAVAILABLE;
1284 }
1285
1286 return __skb_clone(n, skb);
1287}
1288EXPORT_SYMBOL(skb_clone);
1289
1290static void skb_headers_offset_update(struct sk_buff *skb, int off)
1291{
1292 /* Only adjust this if it actually is csum_start rather than csum */
1293 if (skb->ip_summed == CHECKSUM_PARTIAL)
1294 skb->csum_start += off;
1295 /* {transport,network,mac}_header and tail are relative to skb->head */
1296 skb->transport_header += off;
1297 skb->network_header += off;
1298 if (skb_mac_header_was_set(skb))
1299 skb->mac_header += off;
1300 skb->inner_transport_header += off;
1301 skb->inner_network_header += off;
1302 skb->inner_mac_header += off;
1303}
1304
1305static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1306{
1307 __copy_skb_header(new, old);
1308
1309 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1310 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1311 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1312}
1313
1314static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1315{
1316 if (skb_pfmemalloc(skb))
1317 return SKB_ALLOC_RX;
1318 return 0;
1319}
1320
1321/**
1322 * skb_copy - create private copy of an sk_buff
1323 * @skb: buffer to copy
1324 * @gfp_mask: allocation priority
1325 *
1326 * Make a copy of both an &sk_buff and its data. This is used when the
1327 * caller wishes to modify the data and needs a private copy of the
1328 * data to alter. Returns %NULL on failure or the pointer to the buffer
1329 * on success. The returned buffer has a reference count of 1.
1330 *
1331 * As by-product this function converts non-linear &sk_buff to linear
1332 * one, so that &sk_buff becomes completely private and caller is allowed
1333 * to modify all the data of returned buffer. This means that this
1334 * function is not recommended for use in circumstances when only
1335 * header is going to be modified. Use pskb_copy() instead.
1336 */
1337
1338struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1339{
1340 int headerlen = skb_headroom(skb);
1341 unsigned int size = skb_end_offset(skb) + skb->data_len;
1342 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1343 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1344
1345 if (!n)
1346 return NULL;
1347
1348 /* Set the data pointer */
1349 skb_reserve(n, headerlen);
1350 /* Set the tail pointer and length */
1351 skb_put(n, skb->len);
1352
1353 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1354 BUG();
1355
1356 copy_skb_header(n, skb);
1357 return n;
1358}
1359EXPORT_SYMBOL(skb_copy);
1360
1361/**
1362 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1363 * @skb: buffer to copy
1364 * @headroom: headroom of new skb
1365 * @gfp_mask: allocation priority
1366 * @fclone: if true allocate the copy of the skb from the fclone
1367 * cache instead of the head cache; it is recommended to set this
1368 * to true for the cases where the copy will likely be cloned
1369 *
1370 * Make a copy of both an &sk_buff and part of its data, located
1371 * in header. Fragmented data remain shared. This is used when
1372 * the caller wishes to modify only header of &sk_buff and needs
1373 * private copy of the header to alter. Returns %NULL on failure
1374 * or the pointer to the buffer on success.
1375 * The returned buffer has a reference count of 1.
1376 */
1377
1378struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1379 gfp_t gfp_mask, bool fclone)
1380{
1381 unsigned int size = skb_headlen(skb) + headroom;
1382 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1383 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1384
1385 if (!n)
1386 goto out;
1387
1388 /* Set the data pointer */
1389 skb_reserve(n, headroom);
1390 /* Set the tail pointer and length */
1391 skb_put(n, skb_headlen(skb));
1392 /* Copy the bytes */
1393 skb_copy_from_linear_data(skb, n->data, n->len);
1394
1395 n->truesize += skb->data_len;
1396 n->data_len = skb->data_len;
1397 n->len = skb->len;
1398
1399 if (skb_shinfo(skb)->nr_frags) {
1400 int i;
1401
1402 if (skb_orphan_frags(skb, gfp_mask) ||
1403 skb_zerocopy_clone(n, skb, gfp_mask)) {
1404 kfree_skb(n);
1405 n = NULL;
1406 goto out;
1407 }
1408 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1409 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1410 skb_frag_ref(skb, i);
1411 }
1412 skb_shinfo(n)->nr_frags = i;
1413 }
1414
1415 if (skb_has_frag_list(skb)) {
1416 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1417 skb_clone_fraglist(n);
1418 }
1419
1420 copy_skb_header(n, skb);
1421out:
1422 return n;
1423}
1424EXPORT_SYMBOL(__pskb_copy_fclone);
1425
1426/**
1427 * pskb_expand_head - reallocate header of &sk_buff
1428 * @skb: buffer to reallocate
1429 * @nhead: room to add at head
1430 * @ntail: room to add at tail
1431 * @gfp_mask: allocation priority
1432 *
1433 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1434 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1435 * reference count of 1. Returns zero in the case of success or error,
1436 * if expansion failed. In the last case, &sk_buff is not changed.
1437 *
1438 * All the pointers pointing into skb header may change and must be
1439 * reloaded after call to this function.
1440 */
1441
1442int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1443 gfp_t gfp_mask)
1444{
1445 int i, osize = skb_end_offset(skb);
1446 int size = osize + nhead + ntail;
1447 long off;
1448 u8 *data;
1449
1450 BUG_ON(nhead < 0);
1451
1452 if (skb_shared(skb))
1453 BUG();
1454
1455 size = SKB_DATA_ALIGN(size);
1456
1457 if (skb_pfmemalloc(skb))
1458 gfp_mask |= __GFP_MEMALLOC;
1459 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1460 gfp_mask, NUMA_NO_NODE, NULL);
1461 if (!data)
1462 goto nodata;
1463 size = SKB_WITH_OVERHEAD(ksize(data));
1464
1465 /* Copy only real data... and, alas, header. This should be
1466 * optimized for the cases when header is void.
1467 */
1468 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1469
1470 memcpy((struct skb_shared_info *)(data + size),
1471 skb_shinfo(skb),
1472 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1473
1474 /*
1475 * if shinfo is shared we must drop the old head gracefully, but if it
1476 * is not we can just drop the old head and let the existing refcount
1477 * be since all we did is relocate the values
1478 */
1479 if (skb_cloned(skb)) {
1480 if (skb_orphan_frags(skb, gfp_mask))
1481 goto nofrags;
1482 if (skb_zcopy(skb))
1483 refcount_inc(&skb_uarg(skb)->refcnt);
1484 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1485 skb_frag_ref(skb, i);
1486
1487 if (skb_has_frag_list(skb))
1488 skb_clone_fraglist(skb);
1489
1490 skb_release_data(skb);
1491 } else {
1492 skb_free_head(skb);
1493 }
1494 off = (data + nhead) - skb->head;
1495
1496 skb->head = data;
1497 skb->head_frag = 0;
1498 skb->data += off;
1499#ifdef NET_SKBUFF_DATA_USES_OFFSET
1500 skb->end = size;
1501 off = nhead;
1502#else
1503 skb->end = skb->head + size;
1504#endif
1505 skb->tail += off;
1506 skb_headers_offset_update(skb, nhead);
1507 skb->cloned = 0;
1508 skb->hdr_len = 0;
1509 skb->nohdr = 0;
1510 atomic_set(&skb_shinfo(skb)->dataref, 1);
1511
1512 /* It is not generally safe to change skb->truesize.
1513 * For the moment, we really care of rx path, or
1514 * when skb is orphaned (not attached to a socket).
1515 */
1516 if (!skb->sk || skb->destructor == sock_edemux)
1517 skb->truesize += size - osize;
1518
1519 return 0;
1520
1521nofrags:
1522 kfree(data);
1523nodata:
1524 return -ENOMEM;
1525}
1526EXPORT_SYMBOL(pskb_expand_head);
1527
1528/* Make private copy of skb with writable head and some headroom */
1529
1530struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1531{
1532 struct sk_buff *skb2;
1533 int delta = headroom - skb_headroom(skb);
1534
1535 if (delta <= 0)
1536 skb2 = pskb_copy(skb, GFP_ATOMIC);
1537 else {
1538 skb2 = skb_clone(skb, GFP_ATOMIC);
1539 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1540 GFP_ATOMIC)) {
1541 kfree_skb(skb2);
1542 skb2 = NULL;
1543 }
1544 }
1545 return skb2;
1546}
1547EXPORT_SYMBOL(skb_realloc_headroom);
1548
1549/**
1550 * skb_copy_expand - copy and expand sk_buff
1551 * @skb: buffer to copy
1552 * @newheadroom: new free bytes at head
1553 * @newtailroom: new free bytes at tail
1554 * @gfp_mask: allocation priority
1555 *
1556 * Make a copy of both an &sk_buff and its data and while doing so
1557 * allocate additional space.
1558 *
1559 * This is used when the caller wishes to modify the data and needs a
1560 * private copy of the data to alter as well as more space for new fields.
1561 * Returns %NULL on failure or the pointer to the buffer
1562 * on success. The returned buffer has a reference count of 1.
1563 *
1564 * You must pass %GFP_ATOMIC as the allocation priority if this function
1565 * is called from an interrupt.
1566 */
1567struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1568 int newheadroom, int newtailroom,
1569 gfp_t gfp_mask)
1570{
1571 /*
1572 * Allocate the copy buffer
1573 */
1574 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1575 gfp_mask, skb_alloc_rx_flag(skb),
1576 NUMA_NO_NODE);
1577 int oldheadroom = skb_headroom(skb);
1578 int head_copy_len, head_copy_off;
1579
1580 if (!n)
1581 return NULL;
1582
1583 skb_reserve(n, newheadroom);
1584
1585 /* Set the tail pointer and length */
1586 skb_put(n, skb->len);
1587
1588 head_copy_len = oldheadroom;
1589 head_copy_off = 0;
1590 if (newheadroom <= head_copy_len)
1591 head_copy_len = newheadroom;
1592 else
1593 head_copy_off = newheadroom - head_copy_len;
1594
1595 /* Copy the linear header and data. */
1596 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1597 skb->len + head_copy_len))
1598 BUG();
1599
1600 copy_skb_header(n, skb);
1601
1602 skb_headers_offset_update(n, newheadroom - oldheadroom);
1603
1604 return n;
1605}
1606EXPORT_SYMBOL(skb_copy_expand);
1607
1608/**
1609 * __skb_pad - zero pad the tail of an skb
1610 * @skb: buffer to pad
1611 * @pad: space to pad
1612 * @free_on_error: free buffer on error
1613 *
1614 * Ensure that a buffer is followed by a padding area that is zero
1615 * filled. Used by network drivers which may DMA or transfer data
1616 * beyond the buffer end onto the wire.
1617 *
1618 * May return error in out of memory cases. The skb is freed on error
1619 * if @free_on_error is true.
1620 */
1621
1622int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1623{
1624 int err;
1625 int ntail;
1626
1627 /* If the skbuff is non linear tailroom is always zero.. */
1628 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1629 memset(skb->data+skb->len, 0, pad);
1630 return 0;
1631 }
1632
1633 ntail = skb->data_len + pad - (skb->end - skb->tail);
1634 if (likely(skb_cloned(skb) || ntail > 0)) {
1635 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1636 if (unlikely(err))
1637 goto free_skb;
1638 }
1639
1640 /* FIXME: The use of this function with non-linear skb's really needs
1641 * to be audited.
1642 */
1643 err = skb_linearize(skb);
1644 if (unlikely(err))
1645 goto free_skb;
1646
1647 memset(skb->data + skb->len, 0, pad);
1648 return 0;
1649
1650free_skb:
1651 if (free_on_error)
1652 kfree_skb(skb);
1653 return err;
1654}
1655EXPORT_SYMBOL(__skb_pad);
1656
1657/**
1658 * pskb_put - add data to the tail of a potentially fragmented buffer
1659 * @skb: start of the buffer to use
1660 * @tail: tail fragment of the buffer to use
1661 * @len: amount of data to add
1662 *
1663 * This function extends the used data area of the potentially
1664 * fragmented buffer. @tail must be the last fragment of @skb -- or
1665 * @skb itself. If this would exceed the total buffer size the kernel
1666 * will panic. A pointer to the first byte of the extra data is
1667 * returned.
1668 */
1669
1670void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1671{
1672 if (tail != skb) {
1673 skb->data_len += len;
1674 skb->len += len;
1675 }
1676 return skb_put(tail, len);
1677}
1678EXPORT_SYMBOL_GPL(pskb_put);
1679
1680/**
1681 * skb_put - add data to a buffer
1682 * @skb: buffer to use
1683 * @len: amount of data to add
1684 *
1685 * This function extends the used data area of the buffer. If this would
1686 * exceed the total buffer size the kernel will panic. A pointer to the
1687 * first byte of the extra data is returned.
1688 */
1689void *skb_put(struct sk_buff *skb, unsigned int len)
1690{
1691 void *tmp = skb_tail_pointer(skb);
1692 SKB_LINEAR_ASSERT(skb);
1693 skb->tail += len;
1694 skb->len += len;
1695 if (unlikely(skb->tail > skb->end))
1696 skb_over_panic(skb, len, __builtin_return_address(0));
1697 return tmp;
1698}
1699EXPORT_SYMBOL(skb_put);
1700
1701/**
1702 * skb_push - add data to the start of a buffer
1703 * @skb: buffer to use
1704 * @len: amount of data to add
1705 *
1706 * This function extends the used data area of the buffer at the buffer
1707 * start. If this would exceed the total buffer headroom the kernel will
1708 * panic. A pointer to the first byte of the extra data is returned.
1709 */
1710void *skb_push(struct sk_buff *skb, unsigned int len)
1711{
1712 skb->data -= len;
1713 skb->len += len;
1714 if (unlikely(skb->data<skb->head))
1715 skb_under_panic(skb, len, __builtin_return_address(0));
1716 return skb->data;
1717}
1718EXPORT_SYMBOL(skb_push);
1719
1720/**
1721 * skb_pull - remove data from the start of a buffer
1722 * @skb: buffer to use
1723 * @len: amount of data to remove
1724 *
1725 * This function removes data from the start of a buffer, returning
1726 * the memory to the headroom. A pointer to the next data in the buffer
1727 * is returned. Once the data has been pulled future pushes will overwrite
1728 * the old data.
1729 */
1730void *skb_pull(struct sk_buff *skb, unsigned int len)
1731{
1732 return skb_pull_inline(skb, len);
1733}
1734EXPORT_SYMBOL(skb_pull);
1735
1736/**
1737 * skb_trim - remove end from a buffer
1738 * @skb: buffer to alter
1739 * @len: new length
1740 *
1741 * Cut the length of a buffer down by removing data from the tail. If
1742 * the buffer is already under the length specified it is not modified.
1743 * The skb must be linear.
1744 */
1745void skb_trim(struct sk_buff *skb, unsigned int len)
1746{
1747 if (skb->len > len)
1748 __skb_trim(skb, len);
1749}
1750EXPORT_SYMBOL(skb_trim);
1751
1752/* Trims skb to length len. It can change skb pointers.
1753 */
1754
1755int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1756{
1757 struct sk_buff **fragp;
1758 struct sk_buff *frag;
1759 int offset = skb_headlen(skb);
1760 int nfrags = skb_shinfo(skb)->nr_frags;
1761 int i;
1762 int err;
1763
1764 if (skb_cloned(skb) &&
1765 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1766 return err;
1767
1768 i = 0;
1769 if (offset >= len)
1770 goto drop_pages;
1771
1772 for (; i < nfrags; i++) {
1773 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1774
1775 if (end < len) {
1776 offset = end;
1777 continue;
1778 }
1779
1780 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1781
1782drop_pages:
1783 skb_shinfo(skb)->nr_frags = i;
1784
1785 for (; i < nfrags; i++)
1786 skb_frag_unref(skb, i);
1787
1788 if (skb_has_frag_list(skb))
1789 skb_drop_fraglist(skb);
1790 goto done;
1791 }
1792
1793 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1794 fragp = &frag->next) {
1795 int end = offset + frag->len;
1796
1797 if (skb_shared(frag)) {
1798 struct sk_buff *nfrag;
1799
1800 nfrag = skb_clone(frag, GFP_ATOMIC);
1801 if (unlikely(!nfrag))
1802 return -ENOMEM;
1803
1804 nfrag->next = frag->next;
1805 consume_skb(frag);
1806 frag = nfrag;
1807 *fragp = frag;
1808 }
1809
1810 if (end < len) {
1811 offset = end;
1812 continue;
1813 }
1814
1815 if (end > len &&
1816 unlikely((err = pskb_trim(frag, len - offset))))
1817 return err;
1818
1819 if (frag->next)
1820 skb_drop_list(&frag->next);
1821 break;
1822 }
1823
1824done:
1825 if (len > skb_headlen(skb)) {
1826 skb->data_len -= skb->len - len;
1827 skb->len = len;
1828 } else {
1829 skb->len = len;
1830 skb->data_len = 0;
1831 skb_set_tail_pointer(skb, len);
1832 }
1833
1834 if (!skb->sk || skb->destructor == sock_edemux)
1835 skb_condense(skb);
1836 return 0;
1837}
1838EXPORT_SYMBOL(___pskb_trim);
1839
1840/**
1841 * __pskb_pull_tail - advance tail of skb header
1842 * @skb: buffer to reallocate
1843 * @delta: number of bytes to advance tail
1844 *
1845 * The function makes a sense only on a fragmented &sk_buff,
1846 * it expands header moving its tail forward and copying necessary
1847 * data from fragmented part.
1848 *
1849 * &sk_buff MUST have reference count of 1.
1850 *
1851 * Returns %NULL (and &sk_buff does not change) if pull failed
1852 * or value of new tail of skb in the case of success.
1853 *
1854 * All the pointers pointing into skb header may change and must be
1855 * reloaded after call to this function.
1856 */
1857
1858/* Moves tail of skb head forward, copying data from fragmented part,
1859 * when it is necessary.
1860 * 1. It may fail due to malloc failure.
1861 * 2. It may change skb pointers.
1862 *
1863 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1864 */
1865void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1866{
1867 /* If skb has not enough free space at tail, get new one
1868 * plus 128 bytes for future expansions. If we have enough
1869 * room at tail, reallocate without expansion only if skb is cloned.
1870 */
1871 int i, k, eat = (skb->tail + delta) - skb->end;
1872
1873 if (eat > 0 || skb_cloned(skb)) {
1874 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1875 GFP_ATOMIC))
1876 return NULL;
1877 }
1878
1879 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1880 BUG();
1881
1882 /* Optimization: no fragments, no reasons to preestimate
1883 * size of pulled pages. Superb.
1884 */
1885 if (!skb_has_frag_list(skb))
1886 goto pull_pages;
1887
1888 /* Estimate size of pulled pages. */
1889 eat = delta;
1890 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1891 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1892
1893 if (size >= eat)
1894 goto pull_pages;
1895 eat -= size;
1896 }
1897
1898 /* If we need update frag list, we are in troubles.
1899 * Certainly, it possible to add an offset to skb data,
1900 * but taking into account that pulling is expected to
1901 * be very rare operation, it is worth to fight against
1902 * further bloating skb head and crucify ourselves here instead.
1903 * Pure masohism, indeed. 8)8)
1904 */
1905 if (eat) {
1906 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1907 struct sk_buff *clone = NULL;
1908 struct sk_buff *insp = NULL;
1909
1910 do {
1911 BUG_ON(!list);
1912
1913 if (list->len <= eat) {
1914 /* Eaten as whole. */
1915 eat -= list->len;
1916 list = list->next;
1917 insp = list;
1918 } else {
1919 /* Eaten partially. */
1920
1921 if (skb_shared(list)) {
1922 /* Sucks! We need to fork list. :-( */
1923 clone = skb_clone(list, GFP_ATOMIC);
1924 if (!clone)
1925 return NULL;
1926 insp = list->next;
1927 list = clone;
1928 } else {
1929 /* This may be pulled without
1930 * problems. */
1931 insp = list;
1932 }
1933 if (!pskb_pull(list, eat)) {
1934 kfree_skb(clone);
1935 return NULL;
1936 }
1937 break;
1938 }
1939 } while (eat);
1940
1941 /* Free pulled out fragments. */
1942 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1943 skb_shinfo(skb)->frag_list = list->next;
1944 kfree_skb(list);
1945 }
1946 /* And insert new clone at head. */
1947 if (clone) {
1948 clone->next = list;
1949 skb_shinfo(skb)->frag_list = clone;
1950 }
1951 }
1952 /* Success! Now we may commit changes to skb data. */
1953
1954pull_pages:
1955 eat = delta;
1956 k = 0;
1957 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1958 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1959
1960 if (size <= eat) {
1961 skb_frag_unref(skb, i);
1962 eat -= size;
1963 } else {
1964 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1965 if (eat) {
1966 skb_shinfo(skb)->frags[k].page_offset += eat;
1967 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1968 if (!i)
1969 goto end;
1970 eat = 0;
1971 }
1972 k++;
1973 }
1974 }
1975 skb_shinfo(skb)->nr_frags = k;
1976
1977end:
1978 skb->tail += delta;
1979 skb->data_len -= delta;
1980
1981 if (!skb->data_len)
1982 skb_zcopy_clear(skb, false);
1983
1984 return skb_tail_pointer(skb);
1985}
1986EXPORT_SYMBOL(__pskb_pull_tail);
1987
1988/**
1989 * skb_copy_bits - copy bits from skb to kernel buffer
1990 * @skb: source skb
1991 * @offset: offset in source
1992 * @to: destination buffer
1993 * @len: number of bytes to copy
1994 *
1995 * Copy the specified number of bytes from the source skb to the
1996 * destination buffer.
1997 *
1998 * CAUTION ! :
1999 * If its prototype is ever changed,
2000 * check arch/{*}/net/{*}.S files,
2001 * since it is called from BPF assembly code.
2002 */
2003int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2004{
2005 int start = skb_headlen(skb);
2006 struct sk_buff *frag_iter;
2007 int i, copy;
2008
2009 if (offset > (int)skb->len - len)
2010 goto fault;
2011
2012 /* Copy header. */
2013 if ((copy = start - offset) > 0) {
2014 if (copy > len)
2015 copy = len;
2016 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2017 if ((len -= copy) == 0)
2018 return 0;
2019 offset += copy;
2020 to += copy;
2021 }
2022
2023 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2024 int end;
2025 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2026
2027 WARN_ON(start > offset + len);
2028
2029 end = start + skb_frag_size(f);
2030 if ((copy = end - offset) > 0) {
2031 u32 p_off, p_len, copied;
2032 struct page *p;
2033 u8 *vaddr;
2034
2035 if (copy > len)
2036 copy = len;
2037
2038 skb_frag_foreach_page(f,
2039 f->page_offset + offset - start,
2040 copy, p, p_off, p_len, copied) {
2041 vaddr = kmap_atomic(p);
2042 memcpy(to + copied, vaddr + p_off, p_len);
2043 kunmap_atomic(vaddr);
2044 }
2045
2046 if ((len -= copy) == 0)
2047 return 0;
2048 offset += copy;
2049 to += copy;
2050 }
2051 start = end;
2052 }
2053
2054 skb_walk_frags(skb, frag_iter) {
2055 int end;
2056
2057 WARN_ON(start > offset + len);
2058
2059 end = start + frag_iter->len;
2060 if ((copy = end - offset) > 0) {
2061 if (copy > len)
2062 copy = len;
2063 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2064 goto fault;
2065 if ((len -= copy) == 0)
2066 return 0;
2067 offset += copy;
2068 to += copy;
2069 }
2070 start = end;
2071 }
2072
2073 if (!len)
2074 return 0;
2075
2076fault:
2077 return -EFAULT;
2078}
2079EXPORT_SYMBOL(skb_copy_bits);
2080
2081/*
2082 * Callback from splice_to_pipe(), if we need to release some pages
2083 * at the end of the spd in case we error'ed out in filling the pipe.
2084 */
2085static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2086{
2087 put_page(spd->pages[i]);
2088}
2089
2090static struct page *linear_to_page(struct page *page, unsigned int *len,
2091 unsigned int *offset,
2092 struct sock *sk)
2093{
2094 struct page_frag *pfrag = sk_page_frag(sk);
2095
2096 if (!sk_page_frag_refill(sk, pfrag))
2097 return NULL;
2098
2099 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2100
2101 memcpy(page_address(pfrag->page) + pfrag->offset,
2102 page_address(page) + *offset, *len);
2103 *offset = pfrag->offset;
2104 pfrag->offset += *len;
2105
2106 return pfrag->page;
2107}
2108
2109static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2110 struct page *page,
2111 unsigned int offset)
2112{
2113 return spd->nr_pages &&
2114 spd->pages[spd->nr_pages - 1] == page &&
2115 (spd->partial[spd->nr_pages - 1].offset +
2116 spd->partial[spd->nr_pages - 1].len == offset);
2117}
2118
2119/*
2120 * Fill page/offset/length into spd, if it can hold more pages.
2121 */
2122static bool spd_fill_page(struct splice_pipe_desc *spd,
2123 struct pipe_inode_info *pipe, struct page *page,
2124 unsigned int *len, unsigned int offset,
2125 bool linear,
2126 struct sock *sk)
2127{
2128 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2129 return true;
2130
2131 if (linear) {
2132 page = linear_to_page(page, len, &offset, sk);
2133 if (!page)
2134 return true;
2135 }
2136 if (spd_can_coalesce(spd, page, offset)) {
2137 spd->partial[spd->nr_pages - 1].len += *len;
2138 return false;
2139 }
2140 get_page(page);
2141 spd->pages[spd->nr_pages] = page;
2142 spd->partial[spd->nr_pages].len = *len;
2143 spd->partial[spd->nr_pages].offset = offset;
2144 spd->nr_pages++;
2145
2146 return false;
2147}
2148
2149static bool __splice_segment(struct page *page, unsigned int poff,
2150 unsigned int plen, unsigned int *off,
2151 unsigned int *len,
2152 struct splice_pipe_desc *spd, bool linear,
2153 struct sock *sk,
2154 struct pipe_inode_info *pipe)
2155{
2156 if (!*len)
2157 return true;
2158
2159 /* skip this segment if already processed */
2160 if (*off >= plen) {
2161 *off -= plen;
2162 return false;
2163 }
2164
2165 /* ignore any bits we already processed */
2166 poff += *off;
2167 plen -= *off;
2168 *off = 0;
2169
2170 do {
2171 unsigned int flen = min(*len, plen);
2172
2173 if (spd_fill_page(spd, pipe, page, &flen, poff,
2174 linear, sk))
2175 return true;
2176 poff += flen;
2177 plen -= flen;
2178 *len -= flen;
2179 } while (*len && plen);
2180
2181 return false;
2182}
2183
2184/*
2185 * Map linear and fragment data from the skb to spd. It reports true if the
2186 * pipe is full or if we already spliced the requested length.
2187 */
2188static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2189 unsigned int *offset, unsigned int *len,
2190 struct splice_pipe_desc *spd, struct sock *sk)
2191{
2192 int seg;
2193 struct sk_buff *iter;
2194
2195 /* map the linear part :
2196 * If skb->head_frag is set, this 'linear' part is backed by a
2197 * fragment, and if the head is not shared with any clones then
2198 * we can avoid a copy since we own the head portion of this page.
2199 */
2200 if (__splice_segment(virt_to_page(skb->data),
2201 (unsigned long) skb->data & (PAGE_SIZE - 1),
2202 skb_headlen(skb),
2203 offset, len, spd,
2204 skb_head_is_locked(skb),
2205 sk, pipe))
2206 return true;
2207
2208 /*
2209 * then map the fragments
2210 */
2211 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2212 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2213
2214 if (__splice_segment(skb_frag_page(f),
2215 f->page_offset, skb_frag_size(f),
2216 offset, len, spd, false, sk, pipe))
2217 return true;
2218 }
2219
2220 skb_walk_frags(skb, iter) {
2221 if (*offset >= iter->len) {
2222 *offset -= iter->len;
2223 continue;
2224 }
2225 /* __skb_splice_bits() only fails if the output has no room
2226 * left, so no point in going over the frag_list for the error
2227 * case.
2228 */
2229 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2230 return true;
2231 }
2232
2233 return false;
2234}
2235
2236/*
2237 * Map data from the skb to a pipe. Should handle both the linear part,
2238 * the fragments, and the frag list.
2239 */
2240int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2241 struct pipe_inode_info *pipe, unsigned int tlen,
2242 unsigned int flags)
2243{
2244 struct partial_page partial[MAX_SKB_FRAGS];
2245 struct page *pages[MAX_SKB_FRAGS];
2246 struct splice_pipe_desc spd = {
2247 .pages = pages,
2248 .partial = partial,
2249 .nr_pages_max = MAX_SKB_FRAGS,
2250 .ops = &nosteal_pipe_buf_ops,
2251 .spd_release = sock_spd_release,
2252 };
2253 int ret = 0;
2254
2255 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2256
2257 if (spd.nr_pages)
2258 ret = splice_to_pipe(pipe, &spd);
2259
2260 return ret;
2261}
2262EXPORT_SYMBOL_GPL(skb_splice_bits);
2263
2264/* Send skb data on a socket. Socket must be locked. */
2265int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2266 int len)
2267{
2268 unsigned int orig_len = len;
2269 struct sk_buff *head = skb;
2270 unsigned short fragidx;
2271 int slen, ret;
2272
2273do_frag_list:
2274
2275 /* Deal with head data */
2276 while (offset < skb_headlen(skb) && len) {
2277 struct kvec kv;
2278 struct msghdr msg;
2279
2280 slen = min_t(int, len, skb_headlen(skb) - offset);
2281 kv.iov_base = skb->data + offset;
2282 kv.iov_len = slen;
2283 memset(&msg, 0, sizeof(msg));
2284
2285 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2286 if (ret <= 0)
2287 goto error;
2288
2289 offset += ret;
2290 len -= ret;
2291 }
2292
2293 /* All the data was skb head? */
2294 if (!len)
2295 goto out;
2296
2297 /* Make offset relative to start of frags */
2298 offset -= skb_headlen(skb);
2299
2300 /* Find where we are in frag list */
2301 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2302 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2303
2304 if (offset < frag->size)
2305 break;
2306
2307 offset -= frag->size;
2308 }
2309
2310 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2311 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2312
2313 slen = min_t(size_t, len, frag->size - offset);
2314
2315 while (slen) {
2316 ret = kernel_sendpage_locked(sk, frag->page.p,
2317 frag->page_offset + offset,
2318 slen, MSG_DONTWAIT);
2319 if (ret <= 0)
2320 goto error;
2321
2322 len -= ret;
2323 offset += ret;
2324 slen -= ret;
2325 }
2326
2327 offset = 0;
2328 }
2329
2330 if (len) {
2331 /* Process any frag lists */
2332
2333 if (skb == head) {
2334 if (skb_has_frag_list(skb)) {
2335 skb = skb_shinfo(skb)->frag_list;
2336 goto do_frag_list;
2337 }
2338 } else if (skb->next) {
2339 skb = skb->next;
2340 goto do_frag_list;
2341 }
2342 }
2343
2344out:
2345 return orig_len - len;
2346
2347error:
2348 return orig_len == len ? ret : orig_len - len;
2349}
2350EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2351
2352/* Send skb data on a socket. */
2353int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2354{
2355 int ret = 0;
2356
2357 lock_sock(sk);
2358 ret = skb_send_sock_locked(sk, skb, offset, len);
2359 release_sock(sk);
2360
2361 return ret;
2362}
2363EXPORT_SYMBOL_GPL(skb_send_sock);
2364
2365/**
2366 * skb_store_bits - store bits from kernel buffer to skb
2367 * @skb: destination buffer
2368 * @offset: offset in destination
2369 * @from: source buffer
2370 * @len: number of bytes to copy
2371 *
2372 * Copy the specified number of bytes from the source buffer to the
2373 * destination skb. This function handles all the messy bits of
2374 * traversing fragment lists and such.
2375 */
2376
2377int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2378{
2379 int start = skb_headlen(skb);
2380 struct sk_buff *frag_iter;
2381 int i, copy;
2382
2383 if (offset > (int)skb->len - len)
2384 goto fault;
2385
2386 if ((copy = start - offset) > 0) {
2387 if (copy > len)
2388 copy = len;
2389 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2390 if ((len -= copy) == 0)
2391 return 0;
2392 offset += copy;
2393 from += copy;
2394 }
2395
2396 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2397 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2398 int end;
2399
2400 WARN_ON(start > offset + len);
2401
2402 end = start + skb_frag_size(frag);
2403 if ((copy = end - offset) > 0) {
2404 u32 p_off, p_len, copied;
2405 struct page *p;
2406 u8 *vaddr;
2407
2408 if (copy > len)
2409 copy = len;
2410
2411 skb_frag_foreach_page(frag,
2412 frag->page_offset + offset - start,
2413 copy, p, p_off, p_len, copied) {
2414 vaddr = kmap_atomic(p);
2415 memcpy(vaddr + p_off, from + copied, p_len);
2416 kunmap_atomic(vaddr);
2417 }
2418
2419 if ((len -= copy) == 0)
2420 return 0;
2421 offset += copy;
2422 from += copy;
2423 }
2424 start = end;
2425 }
2426
2427 skb_walk_frags(skb, frag_iter) {
2428 int end;
2429
2430 WARN_ON(start > offset + len);
2431
2432 end = start + frag_iter->len;
2433 if ((copy = end - offset) > 0) {
2434 if (copy > len)
2435 copy = len;
2436 if (skb_store_bits(frag_iter, offset - start,
2437 from, copy))
2438 goto fault;
2439 if ((len -= copy) == 0)
2440 return 0;
2441 offset += copy;
2442 from += copy;
2443 }
2444 start = end;
2445 }
2446 if (!len)
2447 return 0;
2448
2449fault:
2450 return -EFAULT;
2451}
2452EXPORT_SYMBOL(skb_store_bits);
2453
2454/* Checksum skb data. */
2455__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2456 __wsum csum, const struct skb_checksum_ops *ops)
2457{
2458 int start = skb_headlen(skb);
2459 int i, copy = start - offset;
2460 struct sk_buff *frag_iter;
2461 int pos = 0;
2462
2463 /* Checksum header. */
2464 if (copy > 0) {
2465 if (copy > len)
2466 copy = len;
2467 csum = ops->update(skb->data + offset, copy, csum);
2468 if ((len -= copy) == 0)
2469 return csum;
2470 offset += copy;
2471 pos = copy;
2472 }
2473
2474 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2475 int end;
2476 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2477
2478 WARN_ON(start > offset + len);
2479
2480 end = start + skb_frag_size(frag);
2481 if ((copy = end - offset) > 0) {
2482 u32 p_off, p_len, copied;
2483 struct page *p;
2484 __wsum csum2;
2485 u8 *vaddr;
2486
2487 if (copy > len)
2488 copy = len;
2489
2490 skb_frag_foreach_page(frag,
2491 frag->page_offset + offset - start,
2492 copy, p, p_off, p_len, copied) {
2493 vaddr = kmap_atomic(p);
2494 csum2 = ops->update(vaddr + p_off, p_len, 0);
2495 kunmap_atomic(vaddr);
2496 csum = ops->combine(csum, csum2, pos, p_len);
2497 pos += p_len;
2498 }
2499
2500 if (!(len -= copy))
2501 return csum;
2502 offset += copy;
2503 }
2504 start = end;
2505 }
2506
2507 skb_walk_frags(skb, frag_iter) {
2508 int end;
2509
2510 WARN_ON(start > offset + len);
2511
2512 end = start + frag_iter->len;
2513 if ((copy = end - offset) > 0) {
2514 __wsum csum2;
2515 if (copy > len)
2516 copy = len;
2517 csum2 = __skb_checksum(frag_iter, offset - start,
2518 copy, 0, ops);
2519 csum = ops->combine(csum, csum2, pos, copy);
2520 if ((len -= copy) == 0)
2521 return csum;
2522 offset += copy;
2523 pos += copy;
2524 }
2525 start = end;
2526 }
2527 BUG_ON(len);
2528
2529 return csum;
2530}
2531EXPORT_SYMBOL(__skb_checksum);
2532
2533__wsum skb_checksum(const struct sk_buff *skb, int offset,
2534 int len, __wsum csum)
2535{
2536 const struct skb_checksum_ops ops = {
2537 .update = csum_partial_ext,
2538 .combine = csum_block_add_ext,
2539 };
2540
2541 return __skb_checksum(skb, offset, len, csum, &ops);
2542}
2543EXPORT_SYMBOL(skb_checksum);
2544
2545/* Both of above in one bottle. */
2546
2547__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2548 u8 *to, int len, __wsum csum)
2549{
2550 int start = skb_headlen(skb);
2551 int i, copy = start - offset;
2552 struct sk_buff *frag_iter;
2553 int pos = 0;
2554
2555 /* Copy header. */
2556 if (copy > 0) {
2557 if (copy > len)
2558 copy = len;
2559 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2560 copy, csum);
2561 if ((len -= copy) == 0)
2562 return csum;
2563 offset += copy;
2564 to += copy;
2565 pos = copy;
2566 }
2567
2568 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2569 int end;
2570
2571 WARN_ON(start > offset + len);
2572
2573 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2574 if ((copy = end - offset) > 0) {
2575 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2576 u32 p_off, p_len, copied;
2577 struct page *p;
2578 __wsum csum2;
2579 u8 *vaddr;
2580
2581 if (copy > len)
2582 copy = len;
2583
2584 skb_frag_foreach_page(frag,
2585 frag->page_offset + offset - start,
2586 copy, p, p_off, p_len, copied) {
2587 vaddr = kmap_atomic(p);
2588 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2589 to + copied,
2590 p_len, 0);
2591 kunmap_atomic(vaddr);
2592 csum = csum_block_add(csum, csum2, pos);
2593 pos += p_len;
2594 }
2595
2596 if (!(len -= copy))
2597 return csum;
2598 offset += copy;
2599 to += copy;
2600 }
2601 start = end;
2602 }
2603
2604 skb_walk_frags(skb, frag_iter) {
2605 __wsum csum2;
2606 int end;
2607
2608 WARN_ON(start > offset + len);
2609
2610 end = start + frag_iter->len;
2611 if ((copy = end - offset) > 0) {
2612 if (copy > len)
2613 copy = len;
2614 csum2 = skb_copy_and_csum_bits(frag_iter,
2615 offset - start,
2616 to, copy, 0);
2617 csum = csum_block_add(csum, csum2, pos);
2618 if ((len -= copy) == 0)
2619 return csum;
2620 offset += copy;
2621 to += copy;
2622 pos += copy;
2623 }
2624 start = end;
2625 }
2626 BUG_ON(len);
2627 return csum;
2628}
2629EXPORT_SYMBOL(skb_copy_and_csum_bits);
2630
2631static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2632{
2633 net_warn_ratelimited(
2634 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2635 __func__);
2636 return 0;
2637}
2638
2639static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2640 int offset, int len)
2641{
2642 net_warn_ratelimited(
2643 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2644 __func__);
2645 return 0;
2646}
2647
2648static const struct skb_checksum_ops default_crc32c_ops = {
2649 .update = warn_crc32c_csum_update,
2650 .combine = warn_crc32c_csum_combine,
2651};
2652
2653const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2654 &default_crc32c_ops;
2655EXPORT_SYMBOL(crc32c_csum_stub);
2656
2657 /**
2658 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2659 * @from: source buffer
2660 *
2661 * Calculates the amount of linear headroom needed in the 'to' skb passed
2662 * into skb_zerocopy().
2663 */
2664unsigned int
2665skb_zerocopy_headlen(const struct sk_buff *from)
2666{
2667 unsigned int hlen = 0;
2668
2669 if (!from->head_frag ||
2670 skb_headlen(from) < L1_CACHE_BYTES ||
2671 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2672 hlen = skb_headlen(from);
2673
2674 if (skb_has_frag_list(from))
2675 hlen = from->len;
2676
2677 return hlen;
2678}
2679EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2680
2681/**
2682 * skb_zerocopy - Zero copy skb to skb
2683 * @to: destination buffer
2684 * @from: source buffer
2685 * @len: number of bytes to copy from source buffer
2686 * @hlen: size of linear headroom in destination buffer
2687 *
2688 * Copies up to `len` bytes from `from` to `to` by creating references
2689 * to the frags in the source buffer.
2690 *
2691 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2692 * headroom in the `to` buffer.
2693 *
2694 * Return value:
2695 * 0: everything is OK
2696 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2697 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2698 */
2699int
2700skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2701{
2702 int i, j = 0;
2703 int plen = 0; /* length of skb->head fragment */
2704 int ret;
2705 struct page *page;
2706 unsigned int offset;
2707
2708 BUG_ON(!from->head_frag && !hlen);
2709
2710 /* dont bother with small payloads */
2711 if (len <= skb_tailroom(to))
2712 return skb_copy_bits(from, 0, skb_put(to, len), len);
2713
2714 if (hlen) {
2715 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2716 if (unlikely(ret))
2717 return ret;
2718 len -= hlen;
2719 } else {
2720 plen = min_t(int, skb_headlen(from), len);
2721 if (plen) {
2722 page = virt_to_head_page(from->head);
2723 offset = from->data - (unsigned char *)page_address(page);
2724 __skb_fill_page_desc(to, 0, page, offset, plen);
2725 get_page(page);
2726 j = 1;
2727 len -= plen;
2728 }
2729 }
2730
2731 to->truesize += len + plen;
2732 to->len += len + plen;
2733 to->data_len += len + plen;
2734
2735 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2736 skb_tx_error(from);
2737 return -ENOMEM;
2738 }
2739 skb_zerocopy_clone(to, from, GFP_ATOMIC);
2740
2741 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2742 if (!len)
2743 break;
2744 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2745 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2746 len -= skb_shinfo(to)->frags[j].size;
2747 skb_frag_ref(to, j);
2748 j++;
2749 }
2750 skb_shinfo(to)->nr_frags = j;
2751
2752 return 0;
2753}
2754EXPORT_SYMBOL_GPL(skb_zerocopy);
2755
2756void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2757{
2758 __wsum csum;
2759 long csstart;
2760
2761 if (skb->ip_summed == CHECKSUM_PARTIAL)
2762 csstart = skb_checksum_start_offset(skb);
2763 else
2764 csstart = skb_headlen(skb);
2765
2766 BUG_ON(csstart > skb_headlen(skb));
2767
2768 skb_copy_from_linear_data(skb, to, csstart);
2769
2770 csum = 0;
2771 if (csstart != skb->len)
2772 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2773 skb->len - csstart, 0);
2774
2775 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2776 long csstuff = csstart + skb->csum_offset;
2777
2778 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2779 }
2780}
2781EXPORT_SYMBOL(skb_copy_and_csum_dev);
2782
2783/**
2784 * skb_dequeue - remove from the head of the queue
2785 * @list: list to dequeue from
2786 *
2787 * Remove the head of the list. The list lock is taken so the function
2788 * may be used safely with other locking list functions. The head item is
2789 * returned or %NULL if the list is empty.
2790 */
2791
2792struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2793{
2794 unsigned long flags;
2795 struct sk_buff *result;
2796
2797 spin_lock_irqsave(&list->lock, flags);
2798 result = __skb_dequeue(list);
2799 spin_unlock_irqrestore(&list->lock, flags);
2800 return result;
2801}
2802EXPORT_SYMBOL(skb_dequeue);
2803
2804/**
2805 * skb_dequeue_tail - remove from the tail of the queue
2806 * @list: list to dequeue from
2807 *
2808 * Remove the tail of the list. The list lock is taken so the function
2809 * may be used safely with other locking list functions. The tail item is
2810 * returned or %NULL if the list is empty.
2811 */
2812struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2813{
2814 unsigned long flags;
2815 struct sk_buff *result;
2816
2817 spin_lock_irqsave(&list->lock, flags);
2818 result = __skb_dequeue_tail(list);
2819 spin_unlock_irqrestore(&list->lock, flags);
2820 return result;
2821}
2822EXPORT_SYMBOL(skb_dequeue_tail);
2823
2824/**
2825 * skb_queue_purge - empty a list
2826 * @list: list to empty
2827 *
2828 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2829 * the list and one reference dropped. This function takes the list
2830 * lock and is atomic with respect to other list locking functions.
2831 */
2832void skb_queue_purge(struct sk_buff_head *list)
2833{
2834 struct sk_buff *skb;
2835 while ((skb = skb_dequeue(list)) != NULL)
2836 kfree_skb(skb);
2837}
2838EXPORT_SYMBOL(skb_queue_purge);
2839
2840/**
2841 * skb_rbtree_purge - empty a skb rbtree
2842 * @root: root of the rbtree to empty
2843 *
2844 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2845 * the list and one reference dropped. This function does not take
2846 * any lock. Synchronization should be handled by the caller (e.g., TCP
2847 * out-of-order queue is protected by the socket lock).
2848 */
2849void skb_rbtree_purge(struct rb_root *root)
2850{
2851 struct sk_buff *skb, *next;
2852
2853 rbtree_postorder_for_each_entry_safe(skb, next, root, rbnode)
2854 kfree_skb(skb);
2855
2856 *root = RB_ROOT;
2857}
2858
2859/**
2860 * skb_queue_head - queue a buffer at the list head
2861 * @list: list to use
2862 * @newsk: buffer to queue
2863 *
2864 * Queue a buffer at the start of the list. This function takes the
2865 * list lock and can be used safely with other locking &sk_buff functions
2866 * safely.
2867 *
2868 * A buffer cannot be placed on two lists at the same time.
2869 */
2870void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2871{
2872 unsigned long flags;
2873
2874 spin_lock_irqsave(&list->lock, flags);
2875 __skb_queue_head(list, newsk);
2876 spin_unlock_irqrestore(&list->lock, flags);
2877}
2878EXPORT_SYMBOL(skb_queue_head);
2879
2880/**
2881 * skb_queue_tail - queue a buffer at the list tail
2882 * @list: list to use
2883 * @newsk: buffer to queue
2884 *
2885 * Queue a buffer at the tail of the list. This function takes the
2886 * list lock and can be used safely with other locking &sk_buff functions
2887 * safely.
2888 *
2889 * A buffer cannot be placed on two lists at the same time.
2890 */
2891void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2892{
2893 unsigned long flags;
2894
2895 spin_lock_irqsave(&list->lock, flags);
2896 __skb_queue_tail(list, newsk);
2897 spin_unlock_irqrestore(&list->lock, flags);
2898}
2899EXPORT_SYMBOL(skb_queue_tail);
2900
2901/**
2902 * skb_unlink - remove a buffer from a list
2903 * @skb: buffer to remove
2904 * @list: list to use
2905 *
2906 * Remove a packet from a list. The list locks are taken and this
2907 * function is atomic with respect to other list locked calls
2908 *
2909 * You must know what list the SKB is on.
2910 */
2911void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2912{
2913 unsigned long flags;
2914
2915 spin_lock_irqsave(&list->lock, flags);
2916 __skb_unlink(skb, list);
2917 spin_unlock_irqrestore(&list->lock, flags);
2918}
2919EXPORT_SYMBOL(skb_unlink);
2920
2921/**
2922 * skb_append - append a buffer
2923 * @old: buffer to insert after
2924 * @newsk: buffer to insert
2925 * @list: list to use
2926 *
2927 * Place a packet after a given packet in a list. The list locks are taken
2928 * and this function is atomic with respect to other list locked calls.
2929 * A buffer cannot be placed on two lists at the same time.
2930 */
2931void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2932{
2933 unsigned long flags;
2934
2935 spin_lock_irqsave(&list->lock, flags);
2936 __skb_queue_after(list, old, newsk);
2937 spin_unlock_irqrestore(&list->lock, flags);
2938}
2939EXPORT_SYMBOL(skb_append);
2940
2941/**
2942 * skb_insert - insert a buffer
2943 * @old: buffer to insert before
2944 * @newsk: buffer to insert
2945 * @list: list to use
2946 *
2947 * Place a packet before a given packet in a list. The list locks are
2948 * taken and this function is atomic with respect to other list locked
2949 * calls.
2950 *
2951 * A buffer cannot be placed on two lists at the same time.
2952 */
2953void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2954{
2955 unsigned long flags;
2956
2957 spin_lock_irqsave(&list->lock, flags);
2958 __skb_insert(newsk, old->prev, old, list);
2959 spin_unlock_irqrestore(&list->lock, flags);
2960}
2961EXPORT_SYMBOL(skb_insert);
2962
2963static inline void skb_split_inside_header(struct sk_buff *skb,
2964 struct sk_buff* skb1,
2965 const u32 len, const int pos)
2966{
2967 int i;
2968
2969 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2970 pos - len);
2971 /* And move data appendix as is. */
2972 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2973 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2974
2975 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2976 skb_shinfo(skb)->nr_frags = 0;
2977 skb1->data_len = skb->data_len;
2978 skb1->len += skb1->data_len;
2979 skb->data_len = 0;
2980 skb->len = len;
2981 skb_set_tail_pointer(skb, len);
2982}
2983
2984static inline void skb_split_no_header(struct sk_buff *skb,
2985 struct sk_buff* skb1,
2986 const u32 len, int pos)
2987{
2988 int i, k = 0;
2989 const int nfrags = skb_shinfo(skb)->nr_frags;
2990
2991 skb_shinfo(skb)->nr_frags = 0;
2992 skb1->len = skb1->data_len = skb->len - len;
2993 skb->len = len;
2994 skb->data_len = len - pos;
2995
2996 for (i = 0; i < nfrags; i++) {
2997 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2998
2999 if (pos + size > len) {
3000 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3001
3002 if (pos < len) {
3003 /* Split frag.
3004 * We have two variants in this case:
3005 * 1. Move all the frag to the second
3006 * part, if it is possible. F.e.
3007 * this approach is mandatory for TUX,
3008 * where splitting is expensive.
3009 * 2. Split is accurately. We make this.
3010 */
3011 skb_frag_ref(skb, i);
3012 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3013 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3014 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3015 skb_shinfo(skb)->nr_frags++;
3016 }
3017 k++;
3018 } else
3019 skb_shinfo(skb)->nr_frags++;
3020 pos += size;
3021 }
3022 skb_shinfo(skb1)->nr_frags = k;
3023}
3024
3025/**
3026 * skb_split - Split fragmented skb to two parts at length len.
3027 * @skb: the buffer to split
3028 * @skb1: the buffer to receive the second part
3029 * @len: new length for skb
3030 */
3031void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3032{
3033 int pos = skb_headlen(skb);
3034
3035 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3036 SKBTX_SHARED_FRAG;
3037 skb_zerocopy_clone(skb1, skb, 0);
3038 if (len < pos) /* Split line is inside header. */
3039 skb_split_inside_header(skb, skb1, len, pos);
3040 else /* Second chunk has no header, nothing to copy. */
3041 skb_split_no_header(skb, skb1, len, pos);
3042}
3043EXPORT_SYMBOL(skb_split);
3044
3045/* Shifting from/to a cloned skb is a no-go.
3046 *
3047 * Caller cannot keep skb_shinfo related pointers past calling here!
3048 */
3049static int skb_prepare_for_shift(struct sk_buff *skb)
3050{
3051 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3052}
3053
3054/**
3055 * skb_shift - Shifts paged data partially from skb to another
3056 * @tgt: buffer into which tail data gets added
3057 * @skb: buffer from which the paged data comes from
3058 * @shiftlen: shift up to this many bytes
3059 *
3060 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3061 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3062 * It's up to caller to free skb if everything was shifted.
3063 *
3064 * If @tgt runs out of frags, the whole operation is aborted.
3065 *
3066 * Skb cannot include anything else but paged data while tgt is allowed
3067 * to have non-paged data as well.
3068 *
3069 * TODO: full sized shift could be optimized but that would need
3070 * specialized skb free'er to handle frags without up-to-date nr_frags.
3071 */
3072int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3073{
3074 int from, to, merge, todo;
3075 struct skb_frag_struct *fragfrom, *fragto;
3076
3077 BUG_ON(shiftlen > skb->len);
3078
3079 if (skb_headlen(skb))
3080 return 0;
3081 if (skb_zcopy(tgt) || skb_zcopy(skb))
3082 return 0;
3083
3084 todo = shiftlen;
3085 from = 0;
3086 to = skb_shinfo(tgt)->nr_frags;
3087 fragfrom = &skb_shinfo(skb)->frags[from];
3088
3089 /* Actual merge is delayed until the point when we know we can
3090 * commit all, so that we don't have to undo partial changes
3091 */
3092 if (!to ||
3093 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3094 fragfrom->page_offset)) {
3095 merge = -1;
3096 } else {
3097 merge = to - 1;
3098
3099 todo -= skb_frag_size(fragfrom);
3100 if (todo < 0) {
3101 if (skb_prepare_for_shift(skb) ||
3102 skb_prepare_for_shift(tgt))
3103 return 0;
3104
3105 /* All previous frag pointers might be stale! */
3106 fragfrom = &skb_shinfo(skb)->frags[from];
3107 fragto = &skb_shinfo(tgt)->frags[merge];
3108
3109 skb_frag_size_add(fragto, shiftlen);
3110 skb_frag_size_sub(fragfrom, shiftlen);
3111 fragfrom->page_offset += shiftlen;
3112
3113 goto onlymerged;
3114 }
3115
3116 from++;
3117 }
3118
3119 /* Skip full, not-fitting skb to avoid expensive operations */
3120 if ((shiftlen == skb->len) &&
3121 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3122 return 0;
3123
3124 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3125 return 0;
3126
3127 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3128 if (to == MAX_SKB_FRAGS)
3129 return 0;
3130
3131 fragfrom = &skb_shinfo(skb)->frags[from];
3132 fragto = &skb_shinfo(tgt)->frags[to];
3133
3134 if (todo >= skb_frag_size(fragfrom)) {
3135 *fragto = *fragfrom;
3136 todo -= skb_frag_size(fragfrom);
3137 from++;
3138 to++;
3139
3140 } else {
3141 __skb_frag_ref(fragfrom);
3142 fragto->page = fragfrom->page;
3143 fragto->page_offset = fragfrom->page_offset;
3144 skb_frag_size_set(fragto, todo);
3145
3146 fragfrom->page_offset += todo;
3147 skb_frag_size_sub(fragfrom, todo);
3148 todo = 0;
3149
3150 to++;
3151 break;
3152 }
3153 }
3154
3155 /* Ready to "commit" this state change to tgt */
3156 skb_shinfo(tgt)->nr_frags = to;
3157
3158 if (merge >= 0) {
3159 fragfrom = &skb_shinfo(skb)->frags[0];
3160 fragto = &skb_shinfo(tgt)->frags[merge];
3161
3162 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3163 __skb_frag_unref(fragfrom);
3164 }
3165
3166 /* Reposition in the original skb */
3167 to = 0;
3168 while (from < skb_shinfo(skb)->nr_frags)
3169 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3170 skb_shinfo(skb)->nr_frags = to;
3171
3172 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3173
3174onlymerged:
3175 /* Most likely the tgt won't ever need its checksum anymore, skb on
3176 * the other hand might need it if it needs to be resent
3177 */
3178 tgt->ip_summed = CHECKSUM_PARTIAL;
3179 skb->ip_summed = CHECKSUM_PARTIAL;
3180
3181 /* Yak, is it really working this way? Some helper please? */
3182 skb->len -= shiftlen;
3183 skb->data_len -= shiftlen;
3184 skb->truesize -= shiftlen;
3185 tgt->len += shiftlen;
3186 tgt->data_len += shiftlen;
3187 tgt->truesize += shiftlen;
3188
3189 return shiftlen;
3190}
3191
3192/**
3193 * skb_prepare_seq_read - Prepare a sequential read of skb data
3194 * @skb: the buffer to read
3195 * @from: lower offset of data to be read
3196 * @to: upper offset of data to be read
3197 * @st: state variable
3198 *
3199 * Initializes the specified state variable. Must be called before
3200 * invoking skb_seq_read() for the first time.
3201 */
3202void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3203 unsigned int to, struct skb_seq_state *st)
3204{
3205 st->lower_offset = from;
3206 st->upper_offset = to;
3207 st->root_skb = st->cur_skb = skb;
3208 st->frag_idx = st->stepped_offset = 0;
3209 st->frag_data = NULL;
3210}
3211EXPORT_SYMBOL(skb_prepare_seq_read);
3212
3213/**
3214 * skb_seq_read - Sequentially read skb data
3215 * @consumed: number of bytes consumed by the caller so far
3216 * @data: destination pointer for data to be returned
3217 * @st: state variable
3218 *
3219 * Reads a block of skb data at @consumed relative to the
3220 * lower offset specified to skb_prepare_seq_read(). Assigns
3221 * the head of the data block to @data and returns the length
3222 * of the block or 0 if the end of the skb data or the upper
3223 * offset has been reached.
3224 *
3225 * The caller is not required to consume all of the data
3226 * returned, i.e. @consumed is typically set to the number
3227 * of bytes already consumed and the next call to
3228 * skb_seq_read() will return the remaining part of the block.
3229 *
3230 * Note 1: The size of each block of data returned can be arbitrary,
3231 * this limitation is the cost for zerocopy sequential
3232 * reads of potentially non linear data.
3233 *
3234 * Note 2: Fragment lists within fragments are not implemented
3235 * at the moment, state->root_skb could be replaced with
3236 * a stack for this purpose.
3237 */
3238unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3239 struct skb_seq_state *st)
3240{
3241 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3242 skb_frag_t *frag;
3243
3244 if (unlikely(abs_offset >= st->upper_offset)) {
3245 if (st->frag_data) {
3246 kunmap_atomic(st->frag_data);
3247 st->frag_data = NULL;
3248 }
3249 return 0;
3250 }
3251
3252next_skb:
3253 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3254
3255 if (abs_offset < block_limit && !st->frag_data) {
3256 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3257 return block_limit - abs_offset;
3258 }
3259
3260 if (st->frag_idx == 0 && !st->frag_data)
3261 st->stepped_offset += skb_headlen(st->cur_skb);
3262
3263 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3264 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3265 block_limit = skb_frag_size(frag) + st->stepped_offset;
3266
3267 if (abs_offset < block_limit) {
3268 if (!st->frag_data)
3269 st->frag_data = kmap_atomic(skb_frag_page(frag));
3270
3271 *data = (u8 *) st->frag_data + frag->page_offset +
3272 (abs_offset - st->stepped_offset);
3273
3274 return block_limit - abs_offset;
3275 }
3276
3277 if (st->frag_data) {
3278 kunmap_atomic(st->frag_data);
3279 st->frag_data = NULL;
3280 }
3281
3282 st->frag_idx++;
3283 st->stepped_offset += skb_frag_size(frag);
3284 }
3285
3286 if (st->frag_data) {
3287 kunmap_atomic(st->frag_data);
3288 st->frag_data = NULL;
3289 }
3290
3291 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3292 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3293 st->frag_idx = 0;
3294 goto next_skb;
3295 } else if (st->cur_skb->next) {
3296 st->cur_skb = st->cur_skb->next;
3297 st->frag_idx = 0;
3298 goto next_skb;
3299 }
3300
3301 return 0;
3302}
3303EXPORT_SYMBOL(skb_seq_read);
3304
3305/**
3306 * skb_abort_seq_read - Abort a sequential read of skb data
3307 * @st: state variable
3308 *
3309 * Must be called if skb_seq_read() was not called until it
3310 * returned 0.
3311 */
3312void skb_abort_seq_read(struct skb_seq_state *st)
3313{
3314 if (st->frag_data)
3315 kunmap_atomic(st->frag_data);
3316}
3317EXPORT_SYMBOL(skb_abort_seq_read);
3318
3319#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3320
3321static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3322 struct ts_config *conf,
3323 struct ts_state *state)
3324{
3325 return skb_seq_read(offset, text, TS_SKB_CB(state));
3326}
3327
3328static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3329{
3330 skb_abort_seq_read(TS_SKB_CB(state));
3331}
3332
3333/**
3334 * skb_find_text - Find a text pattern in skb data
3335 * @skb: the buffer to look in
3336 * @from: search offset
3337 * @to: search limit
3338 * @config: textsearch configuration
3339 *
3340 * Finds a pattern in the skb data according to the specified
3341 * textsearch configuration. Use textsearch_next() to retrieve
3342 * subsequent occurrences of the pattern. Returns the offset
3343 * to the first occurrence or UINT_MAX if no match was found.
3344 */
3345unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3346 unsigned int to, struct ts_config *config)
3347{
3348 struct ts_state state;
3349 unsigned int ret;
3350
3351 config->get_next_block = skb_ts_get_next_block;
3352 config->finish = skb_ts_finish;
3353
3354 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3355
3356 ret = textsearch_find(config, &state);
3357 return (ret <= to - from ? ret : UINT_MAX);
3358}
3359EXPORT_SYMBOL(skb_find_text);
3360
3361/**
3362 * skb_append_datato_frags - append the user data to a skb
3363 * @sk: sock structure
3364 * @skb: skb structure to be appended with user data.
3365 * @getfrag: call back function to be used for getting the user data
3366 * @from: pointer to user message iov
3367 * @length: length of the iov message
3368 *
3369 * Description: This procedure append the user data in the fragment part
3370 * of the skb if any page alloc fails user this procedure returns -ENOMEM
3371 */
3372int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
3373 int (*getfrag)(void *from, char *to, int offset,
3374 int len, int odd, struct sk_buff *skb),
3375 void *from, int length)
3376{
3377 int frg_cnt = skb_shinfo(skb)->nr_frags;
3378 int copy;
3379 int offset = 0;
3380 int ret;
3381 struct page_frag *pfrag = ¤t->task_frag;
3382
3383 do {
3384 /* Return error if we don't have space for new frag */
3385 if (frg_cnt >= MAX_SKB_FRAGS)
3386 return -EMSGSIZE;
3387
3388 if (!sk_page_frag_refill(sk, pfrag))
3389 return -ENOMEM;
3390
3391 /* copy the user data to page */
3392 copy = min_t(int, length, pfrag->size - pfrag->offset);
3393
3394 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3395 offset, copy, 0, skb);
3396 if (ret < 0)
3397 return -EFAULT;
3398
3399 /* copy was successful so update the size parameters */
3400 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3401 copy);
3402 frg_cnt++;
3403 pfrag->offset += copy;
3404 get_page(pfrag->page);
3405
3406 skb->truesize += copy;
3407 refcount_add(copy, &sk->sk_wmem_alloc);
3408 skb->len += copy;
3409 skb->data_len += copy;
3410 offset += copy;
3411 length -= copy;
3412
3413 } while (length > 0);
3414
3415 return 0;
3416}
3417EXPORT_SYMBOL(skb_append_datato_frags);
3418
3419int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3420 int offset, size_t size)
3421{
3422 int i = skb_shinfo(skb)->nr_frags;
3423
3424 if (skb_can_coalesce(skb, i, page, offset)) {
3425 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3426 } else if (i < MAX_SKB_FRAGS) {
3427 get_page(page);
3428 skb_fill_page_desc(skb, i, page, offset, size);
3429 } else {
3430 return -EMSGSIZE;
3431 }
3432
3433 return 0;
3434}
3435EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3436
3437/**
3438 * skb_pull_rcsum - pull skb and update receive checksum
3439 * @skb: buffer to update
3440 * @len: length of data pulled
3441 *
3442 * This function performs an skb_pull on the packet and updates
3443 * the CHECKSUM_COMPLETE checksum. It should be used on
3444 * receive path processing instead of skb_pull unless you know
3445 * that the checksum difference is zero (e.g., a valid IP header)
3446 * or you are setting ip_summed to CHECKSUM_NONE.
3447 */
3448void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3449{
3450 unsigned char *data = skb->data;
3451
3452 BUG_ON(len > skb->len);
3453 __skb_pull(skb, len);
3454 skb_postpull_rcsum(skb, data, len);
3455 return skb->data;
3456}
3457EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3458
3459/**
3460 * skb_segment - Perform protocol segmentation on skb.
3461 * @head_skb: buffer to segment
3462 * @features: features for the output path (see dev->features)
3463 *
3464 * This function performs segmentation on the given skb. It returns
3465 * a pointer to the first in a list of new skbs for the segments.
3466 * In case of error it returns ERR_PTR(err).
3467 */
3468struct sk_buff *skb_segment(struct sk_buff *head_skb,
3469 netdev_features_t features)
3470{
3471 struct sk_buff *segs = NULL;
3472 struct sk_buff *tail = NULL;
3473 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3474 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3475 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3476 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3477 struct sk_buff *frag_skb = head_skb;
3478 unsigned int offset = doffset;
3479 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3480 unsigned int partial_segs = 0;
3481 unsigned int headroom;
3482 unsigned int len = head_skb->len;
3483 __be16 proto;
3484 bool csum, sg;
3485 int nfrags = skb_shinfo(head_skb)->nr_frags;
3486 int err = -ENOMEM;
3487 int i = 0;
3488 int pos;
3489 int dummy;
3490
3491 __skb_push(head_skb, doffset);
3492 proto = skb_network_protocol(head_skb, &dummy);
3493 if (unlikely(!proto))
3494 return ERR_PTR(-EINVAL);
3495
3496 sg = !!(features & NETIF_F_SG);
3497 csum = !!can_checksum_protocol(features, proto);
3498
3499 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3500 if (!(features & NETIF_F_GSO_PARTIAL)) {
3501 struct sk_buff *iter;
3502 unsigned int frag_len;
3503
3504 if (!list_skb ||
3505 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3506 goto normal;
3507
3508 /* If we get here then all the required
3509 * GSO features except frag_list are supported.
3510 * Try to split the SKB to multiple GSO SKBs
3511 * with no frag_list.
3512 * Currently we can do that only when the buffers don't
3513 * have a linear part and all the buffers except
3514 * the last are of the same length.
3515 */
3516 frag_len = list_skb->len;
3517 skb_walk_frags(head_skb, iter) {
3518 if (frag_len != iter->len && iter->next)
3519 goto normal;
3520 if (skb_headlen(iter) && !iter->head_frag)
3521 goto normal;
3522
3523 len -= iter->len;
3524 }
3525
3526 if (len != frag_len)
3527 goto normal;
3528 }
3529
3530 /* GSO partial only requires that we trim off any excess that
3531 * doesn't fit into an MSS sized block, so take care of that
3532 * now.
3533 */
3534 partial_segs = len / mss;
3535 if (partial_segs > 1)
3536 mss *= partial_segs;
3537 else
3538 partial_segs = 0;
3539 }
3540
3541normal:
3542 headroom = skb_headroom(head_skb);
3543 pos = skb_headlen(head_skb);
3544
3545 do {
3546 struct sk_buff *nskb;
3547 skb_frag_t *nskb_frag;
3548 int hsize;
3549 int size;
3550
3551 if (unlikely(mss == GSO_BY_FRAGS)) {
3552 len = list_skb->len;
3553 } else {
3554 len = head_skb->len - offset;
3555 if (len > mss)
3556 len = mss;
3557 }
3558
3559 hsize = skb_headlen(head_skb) - offset;
3560 if (hsize < 0)
3561 hsize = 0;
3562 if (hsize > len || !sg)
3563 hsize = len;
3564
3565 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3566 (skb_headlen(list_skb) == len || sg)) {
3567 BUG_ON(skb_headlen(list_skb) > len);
3568
3569 i = 0;
3570 nfrags = skb_shinfo(list_skb)->nr_frags;
3571 frag = skb_shinfo(list_skb)->frags;
3572 frag_skb = list_skb;
3573 pos += skb_headlen(list_skb);
3574
3575 while (pos < offset + len) {
3576 BUG_ON(i >= nfrags);
3577
3578 size = skb_frag_size(frag);
3579 if (pos + size > offset + len)
3580 break;
3581
3582 i++;
3583 pos += size;
3584 frag++;
3585 }
3586
3587 nskb = skb_clone(list_skb, GFP_ATOMIC);
3588 list_skb = list_skb->next;
3589
3590 if (unlikely(!nskb))
3591 goto err;
3592
3593 if (unlikely(pskb_trim(nskb, len))) {
3594 kfree_skb(nskb);
3595 goto err;
3596 }
3597
3598 hsize = skb_end_offset(nskb);
3599 if (skb_cow_head(nskb, doffset + headroom)) {
3600 kfree_skb(nskb);
3601 goto err;
3602 }
3603
3604 nskb->truesize += skb_end_offset(nskb) - hsize;
3605 skb_release_head_state(nskb);
3606 __skb_push(nskb, doffset);
3607 } else {
3608 nskb = __alloc_skb(hsize + doffset + headroom,
3609 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3610 NUMA_NO_NODE);
3611
3612 if (unlikely(!nskb))
3613 goto err;
3614
3615 skb_reserve(nskb, headroom);
3616 __skb_put(nskb, doffset);
3617 }
3618
3619 if (segs)
3620 tail->next = nskb;
3621 else
3622 segs = nskb;
3623 tail = nskb;
3624
3625 __copy_skb_header(nskb, head_skb);
3626
3627 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3628 skb_reset_mac_len(nskb);
3629
3630 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3631 nskb->data - tnl_hlen,
3632 doffset + tnl_hlen);
3633
3634 if (nskb->len == len + doffset)
3635 goto perform_csum_check;
3636
3637 if (!sg) {
3638 if (!nskb->remcsum_offload)
3639 nskb->ip_summed = CHECKSUM_NONE;
3640 SKB_GSO_CB(nskb)->csum =
3641 skb_copy_and_csum_bits(head_skb, offset,
3642 skb_put(nskb, len),
3643 len, 0);
3644 SKB_GSO_CB(nskb)->csum_start =
3645 skb_headroom(nskb) + doffset;
3646 continue;
3647 }
3648
3649 nskb_frag = skb_shinfo(nskb)->frags;
3650
3651 skb_copy_from_linear_data_offset(head_skb, offset,
3652 skb_put(nskb, hsize), hsize);
3653
3654 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3655 SKBTX_SHARED_FRAG;
3656 if (skb_zerocopy_clone(nskb, head_skb, GFP_ATOMIC))
3657 goto err;
3658
3659 while (pos < offset + len) {
3660 if (i >= nfrags) {
3661 BUG_ON(skb_headlen(list_skb));
3662
3663 i = 0;
3664 nfrags = skb_shinfo(list_skb)->nr_frags;
3665 frag = skb_shinfo(list_skb)->frags;
3666 frag_skb = list_skb;
3667
3668 BUG_ON(!nfrags);
3669
3670 list_skb = list_skb->next;
3671 }
3672
3673 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3674 MAX_SKB_FRAGS)) {
3675 net_warn_ratelimited(
3676 "skb_segment: too many frags: %u %u\n",
3677 pos, mss);
3678 goto err;
3679 }
3680
3681 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3682 goto err;
3683
3684 *nskb_frag = *frag;
3685 __skb_frag_ref(nskb_frag);
3686 size = skb_frag_size(nskb_frag);
3687
3688 if (pos < offset) {
3689 nskb_frag->page_offset += offset - pos;
3690 skb_frag_size_sub(nskb_frag, offset - pos);
3691 }
3692
3693 skb_shinfo(nskb)->nr_frags++;
3694
3695 if (pos + size <= offset + len) {
3696 i++;
3697 frag++;
3698 pos += size;
3699 } else {
3700 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3701 goto skip_fraglist;
3702 }
3703
3704 nskb_frag++;
3705 }
3706
3707skip_fraglist:
3708 nskb->data_len = len - hsize;
3709 nskb->len += nskb->data_len;
3710 nskb->truesize += nskb->data_len;
3711
3712perform_csum_check:
3713 if (!csum) {
3714 if (skb_has_shared_frag(nskb)) {
3715 err = __skb_linearize(nskb);
3716 if (err)
3717 goto err;
3718 }
3719 if (!nskb->remcsum_offload)
3720 nskb->ip_summed = CHECKSUM_NONE;
3721 SKB_GSO_CB(nskb)->csum =
3722 skb_checksum(nskb, doffset,
3723 nskb->len - doffset, 0);
3724 SKB_GSO_CB(nskb)->csum_start =
3725 skb_headroom(nskb) + doffset;
3726 }
3727 } while ((offset += len) < head_skb->len);
3728
3729 /* Some callers want to get the end of the list.
3730 * Put it in segs->prev to avoid walking the list.
3731 * (see validate_xmit_skb_list() for example)
3732 */
3733 segs->prev = tail;
3734
3735 if (partial_segs) {
3736 struct sk_buff *iter;
3737 int type = skb_shinfo(head_skb)->gso_type;
3738 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3739
3740 /* Update type to add partial and then remove dodgy if set */
3741 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3742 type &= ~SKB_GSO_DODGY;
3743
3744 /* Update GSO info and prepare to start updating headers on
3745 * our way back down the stack of protocols.
3746 */
3747 for (iter = segs; iter; iter = iter->next) {
3748 skb_shinfo(iter)->gso_size = gso_size;
3749 skb_shinfo(iter)->gso_segs = partial_segs;
3750 skb_shinfo(iter)->gso_type = type;
3751 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3752 }
3753
3754 if (tail->len - doffset <= gso_size)
3755 skb_shinfo(tail)->gso_size = 0;
3756 else if (tail != segs)
3757 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3758 }
3759
3760 /* Following permits correct backpressure, for protocols
3761 * using skb_set_owner_w().
3762 * Idea is to tranfert ownership from head_skb to last segment.
3763 */
3764 if (head_skb->destructor == sock_wfree) {
3765 swap(tail->truesize, head_skb->truesize);
3766 swap(tail->destructor, head_skb->destructor);
3767 swap(tail->sk, head_skb->sk);
3768 }
3769 return segs;
3770
3771err:
3772 kfree_skb_list(segs);
3773 return ERR_PTR(err);
3774}
3775EXPORT_SYMBOL_GPL(skb_segment);
3776
3777int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3778{
3779 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3780 unsigned int offset = skb_gro_offset(skb);
3781 unsigned int headlen = skb_headlen(skb);
3782 unsigned int len = skb_gro_len(skb);
3783 struct sk_buff *lp, *p = *head;
3784 unsigned int delta_truesize;
3785
3786 if (unlikely(p->len + len >= 65536))
3787 return -E2BIG;
3788
3789 lp = NAPI_GRO_CB(p)->last;
3790 pinfo = skb_shinfo(lp);
3791
3792 if (headlen <= offset) {
3793 skb_frag_t *frag;
3794 skb_frag_t *frag2;
3795 int i = skbinfo->nr_frags;
3796 int nr_frags = pinfo->nr_frags + i;
3797
3798 if (nr_frags > MAX_SKB_FRAGS)
3799 goto merge;
3800
3801 offset -= headlen;
3802 pinfo->nr_frags = nr_frags;
3803 skbinfo->nr_frags = 0;
3804
3805 frag = pinfo->frags + nr_frags;
3806 frag2 = skbinfo->frags + i;
3807 do {
3808 *--frag = *--frag2;
3809 } while (--i);
3810
3811 frag->page_offset += offset;
3812 skb_frag_size_sub(frag, offset);
3813
3814 /* all fragments truesize : remove (head size + sk_buff) */
3815 delta_truesize = skb->truesize -
3816 SKB_TRUESIZE(skb_end_offset(skb));
3817
3818 skb->truesize -= skb->data_len;
3819 skb->len -= skb->data_len;
3820 skb->data_len = 0;
3821
3822 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3823 goto done;
3824 } else if (skb->head_frag) {
3825 int nr_frags = pinfo->nr_frags;
3826 skb_frag_t *frag = pinfo->frags + nr_frags;
3827 struct page *page = virt_to_head_page(skb->head);
3828 unsigned int first_size = headlen - offset;
3829 unsigned int first_offset;
3830
3831 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3832 goto merge;
3833
3834 first_offset = skb->data -
3835 (unsigned char *)page_address(page) +
3836 offset;
3837
3838 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3839
3840 frag->page.p = page;
3841 frag->page_offset = first_offset;
3842 skb_frag_size_set(frag, first_size);
3843
3844 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3845 /* We dont need to clear skbinfo->nr_frags here */
3846
3847 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3848 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3849 goto done;
3850 }
3851
3852merge:
3853 delta_truesize = skb->truesize;
3854 if (offset > headlen) {
3855 unsigned int eat = offset - headlen;
3856
3857 skbinfo->frags[0].page_offset += eat;
3858 skb_frag_size_sub(&skbinfo->frags[0], eat);
3859 skb->data_len -= eat;
3860 skb->len -= eat;
3861 offset = headlen;
3862 }
3863
3864 __skb_pull(skb, offset);
3865
3866 if (NAPI_GRO_CB(p)->last == p)
3867 skb_shinfo(p)->frag_list = skb;
3868 else
3869 NAPI_GRO_CB(p)->last->next = skb;
3870 NAPI_GRO_CB(p)->last = skb;
3871 __skb_header_release(skb);
3872 lp = p;
3873
3874done:
3875 NAPI_GRO_CB(p)->count++;
3876 p->data_len += len;
3877 p->truesize += delta_truesize;
3878 p->len += len;
3879 if (lp != p) {
3880 lp->data_len += len;
3881 lp->truesize += delta_truesize;
3882 lp->len += len;
3883 }
3884 NAPI_GRO_CB(skb)->same_flow = 1;
3885 return 0;
3886}
3887EXPORT_SYMBOL_GPL(skb_gro_receive);
3888
3889void __init skb_init(void)
3890{
3891 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3892 sizeof(struct sk_buff),
3893 0,
3894 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3895 NULL);
3896 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3897 sizeof(struct sk_buff_fclones),
3898 0,
3899 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3900 NULL);
3901}
3902
3903static int
3904__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3905 unsigned int recursion_level)
3906{
3907 int start = skb_headlen(skb);
3908 int i, copy = start - offset;
3909 struct sk_buff *frag_iter;
3910 int elt = 0;
3911
3912 if (unlikely(recursion_level >= 24))
3913 return -EMSGSIZE;
3914
3915 if (copy > 0) {
3916 if (copy > len)
3917 copy = len;
3918 sg_set_buf(sg, skb->data + offset, copy);
3919 elt++;
3920 if ((len -= copy) == 0)
3921 return elt;
3922 offset += copy;
3923 }
3924
3925 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3926 int end;
3927
3928 WARN_ON(start > offset + len);
3929
3930 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3931 if ((copy = end - offset) > 0) {
3932 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3933 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3934 return -EMSGSIZE;
3935
3936 if (copy > len)
3937 copy = len;
3938 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3939 frag->page_offset+offset-start);
3940 elt++;
3941 if (!(len -= copy))
3942 return elt;
3943 offset += copy;
3944 }
3945 start = end;
3946 }
3947
3948 skb_walk_frags(skb, frag_iter) {
3949 int end, ret;
3950
3951 WARN_ON(start > offset + len);
3952
3953 end = start + frag_iter->len;
3954 if ((copy = end - offset) > 0) {
3955 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3956 return -EMSGSIZE;
3957
3958 if (copy > len)
3959 copy = len;
3960 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3961 copy, recursion_level + 1);
3962 if (unlikely(ret < 0))
3963 return ret;
3964 elt += ret;
3965 if ((len -= copy) == 0)
3966 return elt;
3967 offset += copy;
3968 }
3969 start = end;
3970 }
3971 BUG_ON(len);
3972 return elt;
3973}
3974
3975/**
3976 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3977 * @skb: Socket buffer containing the buffers to be mapped
3978 * @sg: The scatter-gather list to map into
3979 * @offset: The offset into the buffer's contents to start mapping
3980 * @len: Length of buffer space to be mapped
3981 *
3982 * Fill the specified scatter-gather list with mappings/pointers into a
3983 * region of the buffer space attached to a socket buffer. Returns either
3984 * the number of scatterlist items used, or -EMSGSIZE if the contents
3985 * could not fit.
3986 */
3987int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3988{
3989 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
3990
3991 if (nsg <= 0)
3992 return nsg;
3993
3994 sg_mark_end(&sg[nsg - 1]);
3995
3996 return nsg;
3997}
3998EXPORT_SYMBOL_GPL(skb_to_sgvec);
3999
4000/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4001 * sglist without mark the sg which contain last skb data as the end.
4002 * So the caller can mannipulate sg list as will when padding new data after
4003 * the first call without calling sg_unmark_end to expend sg list.
4004 *
4005 * Scenario to use skb_to_sgvec_nomark:
4006 * 1. sg_init_table
4007 * 2. skb_to_sgvec_nomark(payload1)
4008 * 3. skb_to_sgvec_nomark(payload2)
4009 *
4010 * This is equivalent to:
4011 * 1. sg_init_table
4012 * 2. skb_to_sgvec(payload1)
4013 * 3. sg_unmark_end
4014 * 4. skb_to_sgvec(payload2)
4015 *
4016 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4017 * is more preferable.
4018 */
4019int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4020 int offset, int len)
4021{
4022 return __skb_to_sgvec(skb, sg, offset, len, 0);
4023}
4024EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4025
4026
4027
4028/**
4029 * skb_cow_data - Check that a socket buffer's data buffers are writable
4030 * @skb: The socket buffer to check.
4031 * @tailbits: Amount of trailing space to be added
4032 * @trailer: Returned pointer to the skb where the @tailbits space begins
4033 *
4034 * Make sure that the data buffers attached to a socket buffer are
4035 * writable. If they are not, private copies are made of the data buffers
4036 * and the socket buffer is set to use these instead.
4037 *
4038 * If @tailbits is given, make sure that there is space to write @tailbits
4039 * bytes of data beyond current end of socket buffer. @trailer will be
4040 * set to point to the skb in which this space begins.
4041 *
4042 * The number of scatterlist elements required to completely map the
4043 * COW'd and extended socket buffer will be returned.
4044 */
4045int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4046{
4047 int copyflag;
4048 int elt;
4049 struct sk_buff *skb1, **skb_p;
4050
4051 /* If skb is cloned or its head is paged, reallocate
4052 * head pulling out all the pages (pages are considered not writable
4053 * at the moment even if they are anonymous).
4054 */
4055 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4056 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4057 return -ENOMEM;
4058
4059 /* Easy case. Most of packets will go this way. */
4060 if (!skb_has_frag_list(skb)) {
4061 /* A little of trouble, not enough of space for trailer.
4062 * This should not happen, when stack is tuned to generate
4063 * good frames. OK, on miss we reallocate and reserve even more
4064 * space, 128 bytes is fair. */
4065
4066 if (skb_tailroom(skb) < tailbits &&
4067 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4068 return -ENOMEM;
4069
4070 /* Voila! */
4071 *trailer = skb;
4072 return 1;
4073 }
4074
4075 /* Misery. We are in troubles, going to mincer fragments... */
4076
4077 elt = 1;
4078 skb_p = &skb_shinfo(skb)->frag_list;
4079 copyflag = 0;
4080
4081 while ((skb1 = *skb_p) != NULL) {
4082 int ntail = 0;
4083
4084 /* The fragment is partially pulled by someone,
4085 * this can happen on input. Copy it and everything
4086 * after it. */
4087
4088 if (skb_shared(skb1))
4089 copyflag = 1;
4090
4091 /* If the skb is the last, worry about trailer. */
4092
4093 if (skb1->next == NULL && tailbits) {
4094 if (skb_shinfo(skb1)->nr_frags ||
4095 skb_has_frag_list(skb1) ||
4096 skb_tailroom(skb1) < tailbits)
4097 ntail = tailbits + 128;
4098 }
4099
4100 if (copyflag ||
4101 skb_cloned(skb1) ||
4102 ntail ||
4103 skb_shinfo(skb1)->nr_frags ||
4104 skb_has_frag_list(skb1)) {
4105 struct sk_buff *skb2;
4106
4107 /* Fuck, we are miserable poor guys... */
4108 if (ntail == 0)
4109 skb2 = skb_copy(skb1, GFP_ATOMIC);
4110 else
4111 skb2 = skb_copy_expand(skb1,
4112 skb_headroom(skb1),
4113 ntail,
4114 GFP_ATOMIC);
4115 if (unlikely(skb2 == NULL))
4116 return -ENOMEM;
4117
4118 if (skb1->sk)
4119 skb_set_owner_w(skb2, skb1->sk);
4120
4121 /* Looking around. Are we still alive?
4122 * OK, link new skb, drop old one */
4123
4124 skb2->next = skb1->next;
4125 *skb_p = skb2;
4126 kfree_skb(skb1);
4127 skb1 = skb2;
4128 }
4129 elt++;
4130 *trailer = skb1;
4131 skb_p = &skb1->next;
4132 }
4133
4134 return elt;
4135}
4136EXPORT_SYMBOL_GPL(skb_cow_data);
4137
4138static void sock_rmem_free(struct sk_buff *skb)
4139{
4140 struct sock *sk = skb->sk;
4141
4142 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4143}
4144
4145static void skb_set_err_queue(struct sk_buff *skb)
4146{
4147 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4148 * So, it is safe to (mis)use it to mark skbs on the error queue.
4149 */
4150 skb->pkt_type = PACKET_OUTGOING;
4151 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4152}
4153
4154/*
4155 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4156 */
4157int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4158{
4159 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4160 (unsigned int)sk->sk_rcvbuf)
4161 return -ENOMEM;
4162
4163 skb_orphan(skb);
4164 skb->sk = sk;
4165 skb->destructor = sock_rmem_free;
4166 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4167 skb_set_err_queue(skb);
4168
4169 /* before exiting rcu section, make sure dst is refcounted */
4170 skb_dst_force(skb);
4171
4172 skb_queue_tail(&sk->sk_error_queue, skb);
4173 if (!sock_flag(sk, SOCK_DEAD))
4174 sk->sk_data_ready(sk);
4175 return 0;
4176}
4177EXPORT_SYMBOL(sock_queue_err_skb);
4178
4179static bool is_icmp_err_skb(const struct sk_buff *skb)
4180{
4181 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4182 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4183}
4184
4185struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4186{
4187 struct sk_buff_head *q = &sk->sk_error_queue;
4188 struct sk_buff *skb, *skb_next = NULL;
4189 bool icmp_next = false;
4190 unsigned long flags;
4191
4192 spin_lock_irqsave(&q->lock, flags);
4193 skb = __skb_dequeue(q);
4194 if (skb && (skb_next = skb_peek(q))) {
4195 icmp_next = is_icmp_err_skb(skb_next);
4196 if (icmp_next)
4197 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4198 }
4199 spin_unlock_irqrestore(&q->lock, flags);
4200
4201 if (is_icmp_err_skb(skb) && !icmp_next)
4202 sk->sk_err = 0;
4203
4204 if (skb_next)
4205 sk->sk_error_report(sk);
4206
4207 return skb;
4208}
4209EXPORT_SYMBOL(sock_dequeue_err_skb);
4210
4211/**
4212 * skb_clone_sk - create clone of skb, and take reference to socket
4213 * @skb: the skb to clone
4214 *
4215 * This function creates a clone of a buffer that holds a reference on
4216 * sk_refcnt. Buffers created via this function are meant to be
4217 * returned using sock_queue_err_skb, or free via kfree_skb.
4218 *
4219 * When passing buffers allocated with this function to sock_queue_err_skb
4220 * it is necessary to wrap the call with sock_hold/sock_put in order to
4221 * prevent the socket from being released prior to being enqueued on
4222 * the sk_error_queue.
4223 */
4224struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4225{
4226 struct sock *sk = skb->sk;
4227 struct sk_buff *clone;
4228
4229 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4230 return NULL;
4231
4232 clone = skb_clone(skb, GFP_ATOMIC);
4233 if (!clone) {
4234 sock_put(sk);
4235 return NULL;
4236 }
4237
4238 clone->sk = sk;
4239 clone->destructor = sock_efree;
4240
4241 return clone;
4242}
4243EXPORT_SYMBOL(skb_clone_sk);
4244
4245static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4246 struct sock *sk,
4247 int tstype,
4248 bool opt_stats)
4249{
4250 struct sock_exterr_skb *serr;
4251 int err;
4252
4253 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4254
4255 serr = SKB_EXT_ERR(skb);
4256 memset(serr, 0, sizeof(*serr));
4257 serr->ee.ee_errno = ENOMSG;
4258 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4259 serr->ee.ee_info = tstype;
4260 serr->opt_stats = opt_stats;
4261 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4262 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4263 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4264 if (sk->sk_protocol == IPPROTO_TCP &&
4265 sk->sk_type == SOCK_STREAM)
4266 serr->ee.ee_data -= sk->sk_tskey;
4267 }
4268
4269 err = sock_queue_err_skb(sk, skb);
4270
4271 if (err)
4272 kfree_skb(skb);
4273}
4274
4275static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4276{
4277 bool ret;
4278
4279 if (likely(sysctl_tstamp_allow_data || tsonly))
4280 return true;
4281
4282 read_lock_bh(&sk->sk_callback_lock);
4283 ret = sk->sk_socket && sk->sk_socket->file &&
4284 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4285 read_unlock_bh(&sk->sk_callback_lock);
4286 return ret;
4287}
4288
4289void skb_complete_tx_timestamp(struct sk_buff *skb,
4290 struct skb_shared_hwtstamps *hwtstamps)
4291{
4292 struct sock *sk = skb->sk;
4293
4294 if (!skb_may_tx_timestamp(sk, false))
4295 return;
4296
4297 /* Take a reference to prevent skb_orphan() from freeing the socket,
4298 * but only if the socket refcount is not zero.
4299 */
4300 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4301 *skb_hwtstamps(skb) = *hwtstamps;
4302 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4303 sock_put(sk);
4304 }
4305}
4306EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4307
4308void __skb_tstamp_tx(struct sk_buff *orig_skb,
4309 struct skb_shared_hwtstamps *hwtstamps,
4310 struct sock *sk, int tstype)
4311{
4312 struct sk_buff *skb;
4313 bool tsonly, opt_stats = false;
4314
4315 if (!sk)
4316 return;
4317
4318 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4319 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4320 return;
4321
4322 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4323 if (!skb_may_tx_timestamp(sk, tsonly))
4324 return;
4325
4326 if (tsonly) {
4327#ifdef CONFIG_INET
4328 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4329 sk->sk_protocol == IPPROTO_TCP &&
4330 sk->sk_type == SOCK_STREAM) {
4331 skb = tcp_get_timestamping_opt_stats(sk);
4332 opt_stats = true;
4333 } else
4334#endif
4335 skb = alloc_skb(0, GFP_ATOMIC);
4336 } else {
4337 skb = skb_clone(orig_skb, GFP_ATOMIC);
4338 }
4339 if (!skb)
4340 return;
4341
4342 if (tsonly) {
4343 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4344 SKBTX_ANY_TSTAMP;
4345 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4346 }
4347
4348 if (hwtstamps)
4349 *skb_hwtstamps(skb) = *hwtstamps;
4350 else
4351 skb->tstamp = ktime_get_real();
4352
4353 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4354}
4355EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4356
4357void skb_tstamp_tx(struct sk_buff *orig_skb,
4358 struct skb_shared_hwtstamps *hwtstamps)
4359{
4360 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4361 SCM_TSTAMP_SND);
4362}
4363EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4364
4365void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4366{
4367 struct sock *sk = skb->sk;
4368 struct sock_exterr_skb *serr;
4369 int err = 1;
4370
4371 skb->wifi_acked_valid = 1;
4372 skb->wifi_acked = acked;
4373
4374 serr = SKB_EXT_ERR(skb);
4375 memset(serr, 0, sizeof(*serr));
4376 serr->ee.ee_errno = ENOMSG;
4377 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4378
4379 /* Take a reference to prevent skb_orphan() from freeing the socket,
4380 * but only if the socket refcount is not zero.
4381 */
4382 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4383 err = sock_queue_err_skb(sk, skb);
4384 sock_put(sk);
4385 }
4386 if (err)
4387 kfree_skb(skb);
4388}
4389EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4390
4391/**
4392 * skb_partial_csum_set - set up and verify partial csum values for packet
4393 * @skb: the skb to set
4394 * @start: the number of bytes after skb->data to start checksumming.
4395 * @off: the offset from start to place the checksum.
4396 *
4397 * For untrusted partially-checksummed packets, we need to make sure the values
4398 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4399 *
4400 * This function checks and sets those values and skb->ip_summed: if this
4401 * returns false you should drop the packet.
4402 */
4403bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4404{
4405 if (unlikely(start > skb_headlen(skb)) ||
4406 unlikely((int)start + off > skb_headlen(skb) - 2)) {
4407 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4408 start, off, skb_headlen(skb));
4409 return false;
4410 }
4411 skb->ip_summed = CHECKSUM_PARTIAL;
4412 skb->csum_start = skb_headroom(skb) + start;
4413 skb->csum_offset = off;
4414 skb_set_transport_header(skb, start);
4415 return true;
4416}
4417EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4418
4419static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4420 unsigned int max)
4421{
4422 if (skb_headlen(skb) >= len)
4423 return 0;
4424
4425 /* If we need to pullup then pullup to the max, so we
4426 * won't need to do it again.
4427 */
4428 if (max > skb->len)
4429 max = skb->len;
4430
4431 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4432 return -ENOMEM;
4433
4434 if (skb_headlen(skb) < len)
4435 return -EPROTO;
4436
4437 return 0;
4438}
4439
4440#define MAX_TCP_HDR_LEN (15 * 4)
4441
4442static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4443 typeof(IPPROTO_IP) proto,
4444 unsigned int off)
4445{
4446 switch (proto) {
4447 int err;
4448
4449 case IPPROTO_TCP:
4450 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4451 off + MAX_TCP_HDR_LEN);
4452 if (!err && !skb_partial_csum_set(skb, off,
4453 offsetof(struct tcphdr,
4454 check)))
4455 err = -EPROTO;
4456 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4457
4458 case IPPROTO_UDP:
4459 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4460 off + sizeof(struct udphdr));
4461 if (!err && !skb_partial_csum_set(skb, off,
4462 offsetof(struct udphdr,
4463 check)))
4464 err = -EPROTO;
4465 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4466 }
4467
4468 return ERR_PTR(-EPROTO);
4469}
4470
4471/* This value should be large enough to cover a tagged ethernet header plus
4472 * maximally sized IP and TCP or UDP headers.
4473 */
4474#define MAX_IP_HDR_LEN 128
4475
4476static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4477{
4478 unsigned int off;
4479 bool fragment;
4480 __sum16 *csum;
4481 int err;
4482
4483 fragment = false;
4484
4485 err = skb_maybe_pull_tail(skb,
4486 sizeof(struct iphdr),
4487 MAX_IP_HDR_LEN);
4488 if (err < 0)
4489 goto out;
4490
4491 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4492 fragment = true;
4493
4494 off = ip_hdrlen(skb);
4495
4496 err = -EPROTO;
4497
4498 if (fragment)
4499 goto out;
4500
4501 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4502 if (IS_ERR(csum))
4503 return PTR_ERR(csum);
4504
4505 if (recalculate)
4506 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4507 ip_hdr(skb)->daddr,
4508 skb->len - off,
4509 ip_hdr(skb)->protocol, 0);
4510 err = 0;
4511
4512out:
4513 return err;
4514}
4515
4516/* This value should be large enough to cover a tagged ethernet header plus
4517 * an IPv6 header, all options, and a maximal TCP or UDP header.
4518 */
4519#define MAX_IPV6_HDR_LEN 256
4520
4521#define OPT_HDR(type, skb, off) \
4522 (type *)(skb_network_header(skb) + (off))
4523
4524static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4525{
4526 int err;
4527 u8 nexthdr;
4528 unsigned int off;
4529 unsigned int len;
4530 bool fragment;
4531 bool done;
4532 __sum16 *csum;
4533
4534 fragment = false;
4535 done = false;
4536
4537 off = sizeof(struct ipv6hdr);
4538
4539 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4540 if (err < 0)
4541 goto out;
4542
4543 nexthdr = ipv6_hdr(skb)->nexthdr;
4544
4545 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4546 while (off <= len && !done) {
4547 switch (nexthdr) {
4548 case IPPROTO_DSTOPTS:
4549 case IPPROTO_HOPOPTS:
4550 case IPPROTO_ROUTING: {
4551 struct ipv6_opt_hdr *hp;
4552
4553 err = skb_maybe_pull_tail(skb,
4554 off +
4555 sizeof(struct ipv6_opt_hdr),
4556 MAX_IPV6_HDR_LEN);
4557 if (err < 0)
4558 goto out;
4559
4560 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4561 nexthdr = hp->nexthdr;
4562 off += ipv6_optlen(hp);
4563 break;
4564 }
4565 case IPPROTO_AH: {
4566 struct ip_auth_hdr *hp;
4567
4568 err = skb_maybe_pull_tail(skb,
4569 off +
4570 sizeof(struct ip_auth_hdr),
4571 MAX_IPV6_HDR_LEN);
4572 if (err < 0)
4573 goto out;
4574
4575 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4576 nexthdr = hp->nexthdr;
4577 off += ipv6_authlen(hp);
4578 break;
4579 }
4580 case IPPROTO_FRAGMENT: {
4581 struct frag_hdr *hp;
4582
4583 err = skb_maybe_pull_tail(skb,
4584 off +
4585 sizeof(struct frag_hdr),
4586 MAX_IPV6_HDR_LEN);
4587 if (err < 0)
4588 goto out;
4589
4590 hp = OPT_HDR(struct frag_hdr, skb, off);
4591
4592 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4593 fragment = true;
4594
4595 nexthdr = hp->nexthdr;
4596 off += sizeof(struct frag_hdr);
4597 break;
4598 }
4599 default:
4600 done = true;
4601 break;
4602 }
4603 }
4604
4605 err = -EPROTO;
4606
4607 if (!done || fragment)
4608 goto out;
4609
4610 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4611 if (IS_ERR(csum))
4612 return PTR_ERR(csum);
4613
4614 if (recalculate)
4615 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4616 &ipv6_hdr(skb)->daddr,
4617 skb->len - off, nexthdr, 0);
4618 err = 0;
4619
4620out:
4621 return err;
4622}
4623
4624/**
4625 * skb_checksum_setup - set up partial checksum offset
4626 * @skb: the skb to set up
4627 * @recalculate: if true the pseudo-header checksum will be recalculated
4628 */
4629int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4630{
4631 int err;
4632
4633 switch (skb->protocol) {
4634 case htons(ETH_P_IP):
4635 err = skb_checksum_setup_ipv4(skb, recalculate);
4636 break;
4637
4638 case htons(ETH_P_IPV6):
4639 err = skb_checksum_setup_ipv6(skb, recalculate);
4640 break;
4641
4642 default:
4643 err = -EPROTO;
4644 break;
4645 }
4646
4647 return err;
4648}
4649EXPORT_SYMBOL(skb_checksum_setup);
4650
4651/**
4652 * skb_checksum_maybe_trim - maybe trims the given skb
4653 * @skb: the skb to check
4654 * @transport_len: the data length beyond the network header
4655 *
4656 * Checks whether the given skb has data beyond the given transport length.
4657 * If so, returns a cloned skb trimmed to this transport length.
4658 * Otherwise returns the provided skb. Returns NULL in error cases
4659 * (e.g. transport_len exceeds skb length or out-of-memory).
4660 *
4661 * Caller needs to set the skb transport header and free any returned skb if it
4662 * differs from the provided skb.
4663 */
4664static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4665 unsigned int transport_len)
4666{
4667 struct sk_buff *skb_chk;
4668 unsigned int len = skb_transport_offset(skb) + transport_len;
4669 int ret;
4670
4671 if (skb->len < len)
4672 return NULL;
4673 else if (skb->len == len)
4674 return skb;
4675
4676 skb_chk = skb_clone(skb, GFP_ATOMIC);
4677 if (!skb_chk)
4678 return NULL;
4679
4680 ret = pskb_trim_rcsum(skb_chk, len);
4681 if (ret) {
4682 kfree_skb(skb_chk);
4683 return NULL;
4684 }
4685
4686 return skb_chk;
4687}
4688
4689/**
4690 * skb_checksum_trimmed - validate checksum of an skb
4691 * @skb: the skb to check
4692 * @transport_len: the data length beyond the network header
4693 * @skb_chkf: checksum function to use
4694 *
4695 * Applies the given checksum function skb_chkf to the provided skb.
4696 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4697 *
4698 * If the skb has data beyond the given transport length, then a
4699 * trimmed & cloned skb is checked and returned.
4700 *
4701 * Caller needs to set the skb transport header and free any returned skb if it
4702 * differs from the provided skb.
4703 */
4704struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4705 unsigned int transport_len,
4706 __sum16(*skb_chkf)(struct sk_buff *skb))
4707{
4708 struct sk_buff *skb_chk;
4709 unsigned int offset = skb_transport_offset(skb);
4710 __sum16 ret;
4711
4712 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4713 if (!skb_chk)
4714 goto err;
4715
4716 if (!pskb_may_pull(skb_chk, offset))
4717 goto err;
4718
4719 skb_pull_rcsum(skb_chk, offset);
4720 ret = skb_chkf(skb_chk);
4721 skb_push_rcsum(skb_chk, offset);
4722
4723 if (ret)
4724 goto err;
4725
4726 return skb_chk;
4727
4728err:
4729 if (skb_chk && skb_chk != skb)
4730 kfree_skb(skb_chk);
4731
4732 return NULL;
4733
4734}
4735EXPORT_SYMBOL(skb_checksum_trimmed);
4736
4737void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4738{
4739 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4740 skb->dev->name);
4741}
4742EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4743
4744void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4745{
4746 if (head_stolen) {
4747 skb_release_head_state(skb);
4748 kmem_cache_free(skbuff_head_cache, skb);
4749 } else {
4750 __kfree_skb(skb);
4751 }
4752}
4753EXPORT_SYMBOL(kfree_skb_partial);
4754
4755/**
4756 * skb_try_coalesce - try to merge skb to prior one
4757 * @to: prior buffer
4758 * @from: buffer to add
4759 * @fragstolen: pointer to boolean
4760 * @delta_truesize: how much more was allocated than was requested
4761 */
4762bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4763 bool *fragstolen, int *delta_truesize)
4764{
4765 int i, delta, len = from->len;
4766
4767 *fragstolen = false;
4768
4769 if (skb_cloned(to))
4770 return false;
4771
4772 if (len <= skb_tailroom(to)) {
4773 if (len)
4774 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4775 *delta_truesize = 0;
4776 return true;
4777 }
4778
4779 if (skb_has_frag_list(to) || skb_has_frag_list(from))
4780 return false;
4781 if (skb_zcopy(to) || skb_zcopy(from))
4782 return false;
4783
4784 if (skb_headlen(from) != 0) {
4785 struct page *page;
4786 unsigned int offset;
4787
4788 if (skb_shinfo(to)->nr_frags +
4789 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4790 return false;
4791
4792 if (skb_head_is_locked(from))
4793 return false;
4794
4795 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4796
4797 page = virt_to_head_page(from->head);
4798 offset = from->data - (unsigned char *)page_address(page);
4799
4800 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4801 page, offset, skb_headlen(from));
4802 *fragstolen = true;
4803 } else {
4804 if (skb_shinfo(to)->nr_frags +
4805 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4806 return false;
4807
4808 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4809 }
4810
4811 WARN_ON_ONCE(delta < len);
4812
4813 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4814 skb_shinfo(from)->frags,
4815 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4816 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4817
4818 if (!skb_cloned(from))
4819 skb_shinfo(from)->nr_frags = 0;
4820
4821 /* if the skb is not cloned this does nothing
4822 * since we set nr_frags to 0.
4823 */
4824 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4825 skb_frag_ref(from, i);
4826
4827 to->truesize += delta;
4828 to->len += len;
4829 to->data_len += len;
4830
4831 *delta_truesize = delta;
4832 return true;
4833}
4834EXPORT_SYMBOL(skb_try_coalesce);
4835
4836/**
4837 * skb_scrub_packet - scrub an skb
4838 *
4839 * @skb: buffer to clean
4840 * @xnet: packet is crossing netns
4841 *
4842 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4843 * into/from a tunnel. Some information have to be cleared during these
4844 * operations.
4845 * skb_scrub_packet can also be used to clean a skb before injecting it in
4846 * another namespace (@xnet == true). We have to clear all information in the
4847 * skb that could impact namespace isolation.
4848 */
4849void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4850{
4851 skb->tstamp = 0;
4852 skb->pkt_type = PACKET_HOST;
4853 skb->skb_iif = 0;
4854 skb->ignore_df = 0;
4855 skb_dst_drop(skb);
4856 secpath_reset(skb);
4857 nf_reset(skb);
4858 nf_reset_trace(skb);
4859
4860 if (!xnet)
4861 return;
4862
4863 skb_orphan(skb);
4864 skb->mark = 0;
4865}
4866EXPORT_SYMBOL_GPL(skb_scrub_packet);
4867
4868/**
4869 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4870 *
4871 * @skb: GSO skb
4872 *
4873 * skb_gso_transport_seglen is used to determine the real size of the
4874 * individual segments, including Layer4 headers (TCP/UDP).
4875 *
4876 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4877 */
4878unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4879{
4880 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4881 unsigned int thlen = 0;
4882
4883 if (skb->encapsulation) {
4884 thlen = skb_inner_transport_header(skb) -
4885 skb_transport_header(skb);
4886
4887 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4888 thlen += inner_tcp_hdrlen(skb);
4889 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4890 thlen = tcp_hdrlen(skb);
4891 } else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
4892 thlen = sizeof(struct sctphdr);
4893 }
4894 /* UFO sets gso_size to the size of the fragmentation
4895 * payload, i.e. the size of the L4 (UDP) header is already
4896 * accounted for.
4897 */
4898 return thlen + shinfo->gso_size;
4899}
4900EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4901
4902/**
4903 * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4904 *
4905 * @skb: GSO skb
4906 * @mtu: MTU to validate against
4907 *
4908 * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
4909 * once split.
4910 */
4911bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu)
4912{
4913 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4914 const struct sk_buff *iter;
4915 unsigned int hlen;
4916
4917 hlen = skb_gso_network_seglen(skb);
4918
4919 if (shinfo->gso_size != GSO_BY_FRAGS)
4920 return hlen <= mtu;
4921
4922 /* Undo this so we can re-use header sizes */
4923 hlen -= GSO_BY_FRAGS;
4924
4925 skb_walk_frags(skb, iter) {
4926 if (hlen + skb_headlen(iter) > mtu)
4927 return false;
4928 }
4929
4930 return true;
4931}
4932EXPORT_SYMBOL_GPL(skb_gso_validate_mtu);
4933
4934static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4935{
4936 if (skb_cow(skb, skb_headroom(skb)) < 0) {
4937 kfree_skb(skb);
4938 return NULL;
4939 }
4940
4941 memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4942 2 * ETH_ALEN);
4943 skb->mac_header += VLAN_HLEN;
4944 return skb;
4945}
4946
4947struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4948{
4949 struct vlan_hdr *vhdr;
4950 u16 vlan_tci;
4951
4952 if (unlikely(skb_vlan_tag_present(skb))) {
4953 /* vlan_tci is already set-up so leave this for another time */
4954 return skb;
4955 }
4956
4957 skb = skb_share_check(skb, GFP_ATOMIC);
4958 if (unlikely(!skb))
4959 goto err_free;
4960
4961 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4962 goto err_free;
4963
4964 vhdr = (struct vlan_hdr *)skb->data;
4965 vlan_tci = ntohs(vhdr->h_vlan_TCI);
4966 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4967
4968 skb_pull_rcsum(skb, VLAN_HLEN);
4969 vlan_set_encap_proto(skb, vhdr);
4970
4971 skb = skb_reorder_vlan_header(skb);
4972 if (unlikely(!skb))
4973 goto err_free;
4974
4975 skb_reset_network_header(skb);
4976 skb_reset_transport_header(skb);
4977 skb_reset_mac_len(skb);
4978
4979 return skb;
4980
4981err_free:
4982 kfree_skb(skb);
4983 return NULL;
4984}
4985EXPORT_SYMBOL(skb_vlan_untag);
4986
4987int skb_ensure_writable(struct sk_buff *skb, int write_len)
4988{
4989 if (!pskb_may_pull(skb, write_len))
4990 return -ENOMEM;
4991
4992 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4993 return 0;
4994
4995 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4996}
4997EXPORT_SYMBOL(skb_ensure_writable);
4998
4999/* remove VLAN header from packet and update csum accordingly.
5000 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5001 */
5002int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5003{
5004 struct vlan_hdr *vhdr;
5005 int offset = skb->data - skb_mac_header(skb);
5006 int err;
5007
5008 if (WARN_ONCE(offset,
5009 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5010 offset)) {
5011 return -EINVAL;
5012 }
5013
5014 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5015 if (unlikely(err))
5016 return err;
5017
5018 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5019
5020 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5021 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5022
5023 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5024 __skb_pull(skb, VLAN_HLEN);
5025
5026 vlan_set_encap_proto(skb, vhdr);
5027 skb->mac_header += VLAN_HLEN;
5028
5029 if (skb_network_offset(skb) < ETH_HLEN)
5030 skb_set_network_header(skb, ETH_HLEN);
5031
5032 skb_reset_mac_len(skb);
5033
5034 return err;
5035}
5036EXPORT_SYMBOL(__skb_vlan_pop);
5037
5038/* Pop a vlan tag either from hwaccel or from payload.
5039 * Expects skb->data at mac header.
5040 */
5041int skb_vlan_pop(struct sk_buff *skb)
5042{
5043 u16 vlan_tci;
5044 __be16 vlan_proto;
5045 int err;
5046
5047 if (likely(skb_vlan_tag_present(skb))) {
5048 skb->vlan_tci = 0;
5049 } else {
5050 if (unlikely(!eth_type_vlan(skb->protocol)))
5051 return 0;
5052
5053 err = __skb_vlan_pop(skb, &vlan_tci);
5054 if (err)
5055 return err;
5056 }
5057 /* move next vlan tag to hw accel tag */
5058 if (likely(!eth_type_vlan(skb->protocol)))
5059 return 0;
5060
5061 vlan_proto = skb->protocol;
5062 err = __skb_vlan_pop(skb, &vlan_tci);
5063 if (unlikely(err))
5064 return err;
5065
5066 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5067 return 0;
5068}
5069EXPORT_SYMBOL(skb_vlan_pop);
5070
5071/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5072 * Expects skb->data at mac header.
5073 */
5074int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5075{
5076 if (skb_vlan_tag_present(skb)) {
5077 int offset = skb->data - skb_mac_header(skb);
5078 int err;
5079
5080 if (WARN_ONCE(offset,
5081 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5082 offset)) {
5083 return -EINVAL;
5084 }
5085
5086 err = __vlan_insert_tag(skb, skb->vlan_proto,
5087 skb_vlan_tag_get(skb));
5088 if (err)
5089 return err;
5090
5091 skb->protocol = skb->vlan_proto;
5092 skb->mac_len += VLAN_HLEN;
5093
5094 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5095 }
5096 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5097 return 0;
5098}
5099EXPORT_SYMBOL(skb_vlan_push);
5100
5101/**
5102 * alloc_skb_with_frags - allocate skb with page frags
5103 *
5104 * @header_len: size of linear part
5105 * @data_len: needed length in frags
5106 * @max_page_order: max page order desired.
5107 * @errcode: pointer to error code if any
5108 * @gfp_mask: allocation mask
5109 *
5110 * This can be used to allocate a paged skb, given a maximal order for frags.
5111 */
5112struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5113 unsigned long data_len,
5114 int max_page_order,
5115 int *errcode,
5116 gfp_t gfp_mask)
5117{
5118 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5119 unsigned long chunk;
5120 struct sk_buff *skb;
5121 struct page *page;
5122 gfp_t gfp_head;
5123 int i;
5124
5125 *errcode = -EMSGSIZE;
5126 /* Note this test could be relaxed, if we succeed to allocate
5127 * high order pages...
5128 */
5129 if (npages > MAX_SKB_FRAGS)
5130 return NULL;
5131
5132 gfp_head = gfp_mask;
5133 if (gfp_head & __GFP_DIRECT_RECLAIM)
5134 gfp_head |= __GFP_RETRY_MAYFAIL;
5135
5136 *errcode = -ENOBUFS;
5137 skb = alloc_skb(header_len, gfp_head);
5138 if (!skb)
5139 return NULL;
5140
5141 skb->truesize += npages << PAGE_SHIFT;
5142
5143 for (i = 0; npages > 0; i++) {
5144 int order = max_page_order;
5145
5146 while (order) {
5147 if (npages >= 1 << order) {
5148 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5149 __GFP_COMP |
5150 __GFP_NOWARN |
5151 __GFP_NORETRY,
5152 order);
5153 if (page)
5154 goto fill_page;
5155 /* Do not retry other high order allocations */
5156 order = 1;
5157 max_page_order = 0;
5158 }
5159 order--;
5160 }
5161 page = alloc_page(gfp_mask);
5162 if (!page)
5163 goto failure;
5164fill_page:
5165 chunk = min_t(unsigned long, data_len,
5166 PAGE_SIZE << order);
5167 skb_fill_page_desc(skb, i, page, 0, chunk);
5168 data_len -= chunk;
5169 npages -= 1 << order;
5170 }
5171 return skb;
5172
5173failure:
5174 kfree_skb(skb);
5175 return NULL;
5176}
5177EXPORT_SYMBOL(alloc_skb_with_frags);
5178
5179/* carve out the first off bytes from skb when off < headlen */
5180static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5181 const int headlen, gfp_t gfp_mask)
5182{
5183 int i;
5184 int size = skb_end_offset(skb);
5185 int new_hlen = headlen - off;
5186 u8 *data;
5187
5188 size = SKB_DATA_ALIGN(size);
5189
5190 if (skb_pfmemalloc(skb))
5191 gfp_mask |= __GFP_MEMALLOC;
5192 data = kmalloc_reserve(size +
5193 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5194 gfp_mask, NUMA_NO_NODE, NULL);
5195 if (!data)
5196 return -ENOMEM;
5197
5198 size = SKB_WITH_OVERHEAD(ksize(data));
5199
5200 /* Copy real data, and all frags */
5201 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5202 skb->len -= off;
5203
5204 memcpy((struct skb_shared_info *)(data + size),
5205 skb_shinfo(skb),
5206 offsetof(struct skb_shared_info,
5207 frags[skb_shinfo(skb)->nr_frags]));
5208 if (skb_cloned(skb)) {
5209 /* drop the old head gracefully */
5210 if (skb_orphan_frags(skb, gfp_mask)) {
5211 kfree(data);
5212 return -ENOMEM;
5213 }
5214 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5215 skb_frag_ref(skb, i);
5216 if (skb_has_frag_list(skb))
5217 skb_clone_fraglist(skb);
5218 skb_release_data(skb);
5219 } else {
5220 /* we can reuse existing recount- all we did was
5221 * relocate values
5222 */
5223 skb_free_head(skb);
5224 }
5225
5226 skb->head = data;
5227 skb->data = data;
5228 skb->head_frag = 0;
5229#ifdef NET_SKBUFF_DATA_USES_OFFSET
5230 skb->end = size;
5231#else
5232 skb->end = skb->head + size;
5233#endif
5234 skb_set_tail_pointer(skb, skb_headlen(skb));
5235 skb_headers_offset_update(skb, 0);
5236 skb->cloned = 0;
5237 skb->hdr_len = 0;
5238 skb->nohdr = 0;
5239 atomic_set(&skb_shinfo(skb)->dataref, 1);
5240
5241 return 0;
5242}
5243
5244static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5245
5246/* carve out the first eat bytes from skb's frag_list. May recurse into
5247 * pskb_carve()
5248 */
5249static int pskb_carve_frag_list(struct sk_buff *skb,
5250 struct skb_shared_info *shinfo, int eat,
5251 gfp_t gfp_mask)
5252{
5253 struct sk_buff *list = shinfo->frag_list;
5254 struct sk_buff *clone = NULL;
5255 struct sk_buff *insp = NULL;
5256
5257 do {
5258 if (!list) {
5259 pr_err("Not enough bytes to eat. Want %d\n", eat);
5260 return -EFAULT;
5261 }
5262 if (list->len <= eat) {
5263 /* Eaten as whole. */
5264 eat -= list->len;
5265 list = list->next;
5266 insp = list;
5267 } else {
5268 /* Eaten partially. */
5269 if (skb_shared(list)) {
5270 clone = skb_clone(list, gfp_mask);
5271 if (!clone)
5272 return -ENOMEM;
5273 insp = list->next;
5274 list = clone;
5275 } else {
5276 /* This may be pulled without problems. */
5277 insp = list;
5278 }
5279 if (pskb_carve(list, eat, gfp_mask) < 0) {
5280 kfree_skb(clone);
5281 return -ENOMEM;
5282 }
5283 break;
5284 }
5285 } while (eat);
5286
5287 /* Free pulled out fragments. */
5288 while ((list = shinfo->frag_list) != insp) {
5289 shinfo->frag_list = list->next;
5290 kfree_skb(list);
5291 }
5292 /* And insert new clone at head. */
5293 if (clone) {
5294 clone->next = list;
5295 shinfo->frag_list = clone;
5296 }
5297 return 0;
5298}
5299
5300/* carve off first len bytes from skb. Split line (off) is in the
5301 * non-linear part of skb
5302 */
5303static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5304 int pos, gfp_t gfp_mask)
5305{
5306 int i, k = 0;
5307 int size = skb_end_offset(skb);
5308 u8 *data;
5309 const int nfrags = skb_shinfo(skb)->nr_frags;
5310 struct skb_shared_info *shinfo;
5311
5312 size = SKB_DATA_ALIGN(size);
5313
5314 if (skb_pfmemalloc(skb))
5315 gfp_mask |= __GFP_MEMALLOC;
5316 data = kmalloc_reserve(size +
5317 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5318 gfp_mask, NUMA_NO_NODE, NULL);
5319 if (!data)
5320 return -ENOMEM;
5321
5322 size = SKB_WITH_OVERHEAD(ksize(data));
5323
5324 memcpy((struct skb_shared_info *)(data + size),
5325 skb_shinfo(skb), offsetof(struct skb_shared_info,
5326 frags[skb_shinfo(skb)->nr_frags]));
5327 if (skb_orphan_frags(skb, gfp_mask)) {
5328 kfree(data);
5329 return -ENOMEM;
5330 }
5331 shinfo = (struct skb_shared_info *)(data + size);
5332 for (i = 0; i < nfrags; i++) {
5333 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5334
5335 if (pos + fsize > off) {
5336 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5337
5338 if (pos < off) {
5339 /* Split frag.
5340 * We have two variants in this case:
5341 * 1. Move all the frag to the second
5342 * part, if it is possible. F.e.
5343 * this approach is mandatory for TUX,
5344 * where splitting is expensive.
5345 * 2. Split is accurately. We make this.
5346 */
5347 shinfo->frags[0].page_offset += off - pos;
5348 skb_frag_size_sub(&shinfo->frags[0], off - pos);
5349 }
5350 skb_frag_ref(skb, i);
5351 k++;
5352 }
5353 pos += fsize;
5354 }
5355 shinfo->nr_frags = k;
5356 if (skb_has_frag_list(skb))
5357 skb_clone_fraglist(skb);
5358
5359 if (k == 0) {
5360 /* split line is in frag list */
5361 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5362 }
5363 skb_release_data(skb);
5364
5365 skb->head = data;
5366 skb->head_frag = 0;
5367 skb->data = data;
5368#ifdef NET_SKBUFF_DATA_USES_OFFSET
5369 skb->end = size;
5370#else
5371 skb->end = skb->head + size;
5372#endif
5373 skb_reset_tail_pointer(skb);
5374 skb_headers_offset_update(skb, 0);
5375 skb->cloned = 0;
5376 skb->hdr_len = 0;
5377 skb->nohdr = 0;
5378 skb->len -= off;
5379 skb->data_len = skb->len;
5380 atomic_set(&skb_shinfo(skb)->dataref, 1);
5381 return 0;
5382}
5383
5384/* remove len bytes from the beginning of the skb */
5385static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5386{
5387 int headlen = skb_headlen(skb);
5388
5389 if (len < headlen)
5390 return pskb_carve_inside_header(skb, len, headlen, gfp);
5391 else
5392 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5393}
5394
5395/* Extract to_copy bytes starting at off from skb, and return this in
5396 * a new skb
5397 */
5398struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5399 int to_copy, gfp_t gfp)
5400{
5401 struct sk_buff *clone = skb_clone(skb, gfp);
5402
5403 if (!clone)
5404 return NULL;
5405
5406 if (pskb_carve(clone, off, gfp) < 0 ||
5407 pskb_trim(clone, to_copy)) {
5408 kfree_skb(clone);
5409 return NULL;
5410 }
5411 return clone;
5412}
5413EXPORT_SYMBOL(pskb_extract);
5414
5415/**
5416 * skb_condense - try to get rid of fragments/frag_list if possible
5417 * @skb: buffer
5418 *
5419 * Can be used to save memory before skb is added to a busy queue.
5420 * If packet has bytes in frags and enough tail room in skb->head,
5421 * pull all of them, so that we can free the frags right now and adjust
5422 * truesize.
5423 * Notes:
5424 * We do not reallocate skb->head thus can not fail.
5425 * Caller must re-evaluate skb->truesize if needed.
5426 */
5427void skb_condense(struct sk_buff *skb)
5428{
5429 if (skb->data_len) {
5430 if (skb->data_len > skb->end - skb->tail ||
5431 skb_cloned(skb))
5432 return;
5433
5434 /* Nice, we can free page frag(s) right now */
5435 __pskb_pull_tail(skb, skb->data_len);
5436 }
5437 /* At this point, skb->truesize might be over estimated,
5438 * because skb had a fragment, and fragments do not tell
5439 * their truesize.
5440 * When we pulled its content into skb->head, fragment
5441 * was freed, but __pskb_pull_tail() could not possibly
5442 * adjust skb->truesize, not knowing the frag truesize.
5443 */
5444 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5445}