at v4.14-rc5 32 kB view raw
1#ifndef _LINUX_KERNEL_H 2#define _LINUX_KERNEL_H 3 4 5#include <stdarg.h> 6#include <linux/linkage.h> 7#include <linux/stddef.h> 8#include <linux/types.h> 9#include <linux/compiler.h> 10#include <linux/bitops.h> 11#include <linux/log2.h> 12#include <linux/typecheck.h> 13#include <linux/printk.h> 14#include <linux/build_bug.h> 15#include <asm/byteorder.h> 16#include <uapi/linux/kernel.h> 17 18#define USHRT_MAX ((u16)(~0U)) 19#define SHRT_MAX ((s16)(USHRT_MAX>>1)) 20#define SHRT_MIN ((s16)(-SHRT_MAX - 1)) 21#define INT_MAX ((int)(~0U>>1)) 22#define INT_MIN (-INT_MAX - 1) 23#define UINT_MAX (~0U) 24#define LONG_MAX ((long)(~0UL>>1)) 25#define LONG_MIN (-LONG_MAX - 1) 26#define ULONG_MAX (~0UL) 27#define LLONG_MAX ((long long)(~0ULL>>1)) 28#define LLONG_MIN (-LLONG_MAX - 1) 29#define ULLONG_MAX (~0ULL) 30#define SIZE_MAX (~(size_t)0) 31 32#define U8_MAX ((u8)~0U) 33#define S8_MAX ((s8)(U8_MAX>>1)) 34#define S8_MIN ((s8)(-S8_MAX - 1)) 35#define U16_MAX ((u16)~0U) 36#define S16_MAX ((s16)(U16_MAX>>1)) 37#define S16_MIN ((s16)(-S16_MAX - 1)) 38#define U32_MAX ((u32)~0U) 39#define S32_MAX ((s32)(U32_MAX>>1)) 40#define S32_MIN ((s32)(-S32_MAX - 1)) 41#define U64_MAX ((u64)~0ULL) 42#define S64_MAX ((s64)(U64_MAX>>1)) 43#define S64_MIN ((s64)(-S64_MAX - 1)) 44 45#define STACK_MAGIC 0xdeadbeef 46 47/** 48 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value 49 * @x: value to repeat 50 * 51 * NOTE: @x is not checked for > 0xff; larger values produce odd results. 52 */ 53#define REPEAT_BYTE(x) ((~0ul / 0xff) * (x)) 54 55/* @a is a power of 2 value */ 56#define ALIGN(x, a) __ALIGN_KERNEL((x), (a)) 57#define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a)) 58#define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask)) 59#define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) 60#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) 61 62/* generic data direction definitions */ 63#define READ 0 64#define WRITE 1 65 66/** 67 * ARRAY_SIZE - get the number of elements in array @arr 68 * @arr: array to be sized 69 */ 70#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) 71 72#define u64_to_user_ptr(x) ( \ 73{ \ 74 typecheck(u64, x); \ 75 (void __user *)(uintptr_t)x; \ 76} \ 77) 78 79/* 80 * This looks more complex than it should be. But we need to 81 * get the type for the ~ right in round_down (it needs to be 82 * as wide as the result!), and we want to evaluate the macro 83 * arguments just once each. 84 */ 85#define __round_mask(x, y) ((__typeof__(x))((y)-1)) 86#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) 87#define round_down(x, y) ((x) & ~__round_mask(x, y)) 88 89/** 90 * FIELD_SIZEOF - get the size of a struct's field 91 * @t: the target struct 92 * @f: the target struct's field 93 * Return: the size of @f in the struct definition without having a 94 * declared instance of @t. 95 */ 96#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) 97 98#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP 99 100#define DIV_ROUND_DOWN_ULL(ll, d) \ 101 ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; }) 102 103#define DIV_ROUND_UP_ULL(ll, d) DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d)) 104 105#if BITS_PER_LONG == 32 106# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) 107#else 108# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) 109#endif 110 111/* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */ 112#define roundup(x, y) ( \ 113{ \ 114 const typeof(y) __y = y; \ 115 (((x) + (__y - 1)) / __y) * __y; \ 116} \ 117) 118#define rounddown(x, y) ( \ 119{ \ 120 typeof(x) __x = (x); \ 121 __x - (__x % (y)); \ 122} \ 123) 124 125/* 126 * Divide positive or negative dividend by positive or negative divisor 127 * and round to closest integer. Result is undefined for negative 128 * divisors if the dividend variable type is unsigned and for negative 129 * dividends if the divisor variable type is unsigned. 130 */ 131#define DIV_ROUND_CLOSEST(x, divisor)( \ 132{ \ 133 typeof(x) __x = x; \ 134 typeof(divisor) __d = divisor; \ 135 (((typeof(x))-1) > 0 || \ 136 ((typeof(divisor))-1) > 0 || \ 137 (((__x) > 0) == ((__d) > 0))) ? \ 138 (((__x) + ((__d) / 2)) / (__d)) : \ 139 (((__x) - ((__d) / 2)) / (__d)); \ 140} \ 141) 142/* 143 * Same as above but for u64 dividends. divisor must be a 32-bit 144 * number. 145 */ 146#define DIV_ROUND_CLOSEST_ULL(x, divisor)( \ 147{ \ 148 typeof(divisor) __d = divisor; \ 149 unsigned long long _tmp = (x) + (__d) / 2; \ 150 do_div(_tmp, __d); \ 151 _tmp; \ 152} \ 153) 154 155/* 156 * Multiplies an integer by a fraction, while avoiding unnecessary 157 * overflow or loss of precision. 158 */ 159#define mult_frac(x, numer, denom)( \ 160{ \ 161 typeof(x) quot = (x) / (denom); \ 162 typeof(x) rem = (x) % (denom); \ 163 (quot * (numer)) + ((rem * (numer)) / (denom)); \ 164} \ 165) 166 167 168#define _RET_IP_ (unsigned long)__builtin_return_address(0) 169#define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) 170 171#ifdef CONFIG_LBDAF 172# include <asm/div64.h> 173# define sector_div(a, b) do_div(a, b) 174#else 175# define sector_div(n, b)( \ 176{ \ 177 int _res; \ 178 _res = (n) % (b); \ 179 (n) /= (b); \ 180 _res; \ 181} \ 182) 183#endif 184 185/** 186 * upper_32_bits - return bits 32-63 of a number 187 * @n: the number we're accessing 188 * 189 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress 190 * the "right shift count >= width of type" warning when that quantity is 191 * 32-bits. 192 */ 193#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) 194 195/** 196 * lower_32_bits - return bits 0-31 of a number 197 * @n: the number we're accessing 198 */ 199#define lower_32_bits(n) ((u32)(n)) 200 201struct completion; 202struct pt_regs; 203struct user; 204 205#ifdef CONFIG_PREEMPT_VOLUNTARY 206extern int _cond_resched(void); 207# define might_resched() _cond_resched() 208#else 209# define might_resched() do { } while (0) 210#endif 211 212#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 213 void ___might_sleep(const char *file, int line, int preempt_offset); 214 void __might_sleep(const char *file, int line, int preempt_offset); 215/** 216 * might_sleep - annotation for functions that can sleep 217 * 218 * this macro will print a stack trace if it is executed in an atomic 219 * context (spinlock, irq-handler, ...). 220 * 221 * This is a useful debugging help to be able to catch problems early and not 222 * be bitten later when the calling function happens to sleep when it is not 223 * supposed to. 224 */ 225# define might_sleep() \ 226 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0) 227# define sched_annotate_sleep() (current->task_state_change = 0) 228#else 229 static inline void ___might_sleep(const char *file, int line, 230 int preempt_offset) { } 231 static inline void __might_sleep(const char *file, int line, 232 int preempt_offset) { } 233# define might_sleep() do { might_resched(); } while (0) 234# define sched_annotate_sleep() do { } while (0) 235#endif 236 237#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0) 238 239/** 240 * abs - return absolute value of an argument 241 * @x: the value. If it is unsigned type, it is converted to signed type first. 242 * char is treated as if it was signed (regardless of whether it really is) 243 * but the macro's return type is preserved as char. 244 * 245 * Return: an absolute value of x. 246 */ 247#define abs(x) __abs_choose_expr(x, long long, \ 248 __abs_choose_expr(x, long, \ 249 __abs_choose_expr(x, int, \ 250 __abs_choose_expr(x, short, \ 251 __abs_choose_expr(x, char, \ 252 __builtin_choose_expr( \ 253 __builtin_types_compatible_p(typeof(x), char), \ 254 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ 255 ((void)0))))))) 256 257#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ 258 __builtin_types_compatible_p(typeof(x), signed type) || \ 259 __builtin_types_compatible_p(typeof(x), unsigned type), \ 260 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) 261 262/** 263 * reciprocal_scale - "scale" a value into range [0, ep_ro) 264 * @val: value 265 * @ep_ro: right open interval endpoint 266 * 267 * Perform a "reciprocal multiplication" in order to "scale" a value into 268 * range [0, @ep_ro), where the upper interval endpoint is right-open. 269 * This is useful, e.g. for accessing a index of an array containing 270 * @ep_ro elements, for example. Think of it as sort of modulus, only that 271 * the result isn't that of modulo. ;) Note that if initial input is a 272 * small value, then result will return 0. 273 * 274 * Return: a result based on @val in interval [0, @ep_ro). 275 */ 276static inline u32 reciprocal_scale(u32 val, u32 ep_ro) 277{ 278 return (u32)(((u64) val * ep_ro) >> 32); 279} 280 281#if defined(CONFIG_MMU) && \ 282 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)) 283#define might_fault() __might_fault(__FILE__, __LINE__) 284void __might_fault(const char *file, int line); 285#else 286static inline void might_fault(void) { } 287#endif 288 289extern struct atomic_notifier_head panic_notifier_list; 290extern long (*panic_blink)(int state); 291__printf(1, 2) 292void panic(const char *fmt, ...) __noreturn __cold; 293void nmi_panic(struct pt_regs *regs, const char *msg); 294extern void oops_enter(void); 295extern void oops_exit(void); 296void print_oops_end_marker(void); 297extern int oops_may_print(void); 298void do_exit(long error_code) __noreturn; 299void complete_and_exit(struct completion *, long) __noreturn; 300 301#ifdef CONFIG_ARCH_HAS_REFCOUNT 302void refcount_error_report(struct pt_regs *regs, const char *err); 303#else 304static inline void refcount_error_report(struct pt_regs *regs, const char *err) 305{ } 306#endif 307 308/* Internal, do not use. */ 309int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res); 310int __must_check _kstrtol(const char *s, unsigned int base, long *res); 311 312int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res); 313int __must_check kstrtoll(const char *s, unsigned int base, long long *res); 314 315/** 316 * kstrtoul - convert a string to an unsigned long 317 * @s: The start of the string. The string must be null-terminated, and may also 318 * include a single newline before its terminating null. The first character 319 * may also be a plus sign, but not a minus sign. 320 * @base: The number base to use. The maximum supported base is 16. If base is 321 * given as 0, then the base of the string is automatically detected with the 322 * conventional semantics - If it begins with 0x the number will be parsed as a 323 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 324 * parsed as an octal number. Otherwise it will be parsed as a decimal. 325 * @res: Where to write the result of the conversion on success. 326 * 327 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 328 * Used as a replacement for the obsolete simple_strtoull. Return code must 329 * be checked. 330*/ 331static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res) 332{ 333 /* 334 * We want to shortcut function call, but 335 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0. 336 */ 337 if (sizeof(unsigned long) == sizeof(unsigned long long) && 338 __alignof__(unsigned long) == __alignof__(unsigned long long)) 339 return kstrtoull(s, base, (unsigned long long *)res); 340 else 341 return _kstrtoul(s, base, res); 342} 343 344/** 345 * kstrtol - convert a string to a long 346 * @s: The start of the string. The string must be null-terminated, and may also 347 * include a single newline before its terminating null. The first character 348 * may also be a plus sign or a minus sign. 349 * @base: The number base to use. The maximum supported base is 16. If base is 350 * given as 0, then the base of the string is automatically detected with the 351 * conventional semantics - If it begins with 0x the number will be parsed as a 352 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 353 * parsed as an octal number. Otherwise it will be parsed as a decimal. 354 * @res: Where to write the result of the conversion on success. 355 * 356 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 357 * Used as a replacement for the obsolete simple_strtoull. Return code must 358 * be checked. 359 */ 360static inline int __must_check kstrtol(const char *s, unsigned int base, long *res) 361{ 362 /* 363 * We want to shortcut function call, but 364 * __builtin_types_compatible_p(long, long long) = 0. 365 */ 366 if (sizeof(long) == sizeof(long long) && 367 __alignof__(long) == __alignof__(long long)) 368 return kstrtoll(s, base, (long long *)res); 369 else 370 return _kstrtol(s, base, res); 371} 372 373int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res); 374int __must_check kstrtoint(const char *s, unsigned int base, int *res); 375 376static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res) 377{ 378 return kstrtoull(s, base, res); 379} 380 381static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res) 382{ 383 return kstrtoll(s, base, res); 384} 385 386static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res) 387{ 388 return kstrtouint(s, base, res); 389} 390 391static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res) 392{ 393 return kstrtoint(s, base, res); 394} 395 396int __must_check kstrtou16(const char *s, unsigned int base, u16 *res); 397int __must_check kstrtos16(const char *s, unsigned int base, s16 *res); 398int __must_check kstrtou8(const char *s, unsigned int base, u8 *res); 399int __must_check kstrtos8(const char *s, unsigned int base, s8 *res); 400int __must_check kstrtobool(const char *s, bool *res); 401 402int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res); 403int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res); 404int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res); 405int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res); 406int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res); 407int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res); 408int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res); 409int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res); 410int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res); 411int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res); 412int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res); 413 414static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res) 415{ 416 return kstrtoull_from_user(s, count, base, res); 417} 418 419static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res) 420{ 421 return kstrtoll_from_user(s, count, base, res); 422} 423 424static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res) 425{ 426 return kstrtouint_from_user(s, count, base, res); 427} 428 429static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res) 430{ 431 return kstrtoint_from_user(s, count, base, res); 432} 433 434/* Obsolete, do not use. Use kstrto<foo> instead */ 435 436extern unsigned long simple_strtoul(const char *,char **,unsigned int); 437extern long simple_strtol(const char *,char **,unsigned int); 438extern unsigned long long simple_strtoull(const char *,char **,unsigned int); 439extern long long simple_strtoll(const char *,char **,unsigned int); 440 441extern int num_to_str(char *buf, int size, unsigned long long num); 442 443/* lib/printf utilities */ 444 445extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...); 446extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list); 447extern __printf(3, 4) 448int snprintf(char *buf, size_t size, const char *fmt, ...); 449extern __printf(3, 0) 450int vsnprintf(char *buf, size_t size, const char *fmt, va_list args); 451extern __printf(3, 4) 452int scnprintf(char *buf, size_t size, const char *fmt, ...); 453extern __printf(3, 0) 454int vscnprintf(char *buf, size_t size, const char *fmt, va_list args); 455extern __printf(2, 3) __malloc 456char *kasprintf(gfp_t gfp, const char *fmt, ...); 457extern __printf(2, 0) __malloc 458char *kvasprintf(gfp_t gfp, const char *fmt, va_list args); 459extern __printf(2, 0) 460const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args); 461 462extern __scanf(2, 3) 463int sscanf(const char *, const char *, ...); 464extern __scanf(2, 0) 465int vsscanf(const char *, const char *, va_list); 466 467extern int get_option(char **str, int *pint); 468extern char *get_options(const char *str, int nints, int *ints); 469extern unsigned long long memparse(const char *ptr, char **retptr); 470extern bool parse_option_str(const char *str, const char *option); 471extern char *next_arg(char *args, char **param, char **val); 472 473extern int core_kernel_text(unsigned long addr); 474extern int core_kernel_data(unsigned long addr); 475extern int __kernel_text_address(unsigned long addr); 476extern int kernel_text_address(unsigned long addr); 477extern int func_ptr_is_kernel_text(void *ptr); 478 479unsigned long int_sqrt(unsigned long); 480 481extern void bust_spinlocks(int yes); 482extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ 483extern int panic_timeout; 484extern int panic_on_oops; 485extern int panic_on_unrecovered_nmi; 486extern int panic_on_io_nmi; 487extern int panic_on_warn; 488extern int sysctl_panic_on_rcu_stall; 489extern int sysctl_panic_on_stackoverflow; 490 491extern bool crash_kexec_post_notifiers; 492 493/* 494 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It 495 * holds a CPU number which is executing panic() currently. A value of 496 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec(). 497 */ 498extern atomic_t panic_cpu; 499#define PANIC_CPU_INVALID -1 500 501/* 502 * Only to be used by arch init code. If the user over-wrote the default 503 * CONFIG_PANIC_TIMEOUT, honor it. 504 */ 505static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout) 506{ 507 if (panic_timeout == arch_default_timeout) 508 panic_timeout = timeout; 509} 510extern const char *print_tainted(void); 511enum lockdep_ok { 512 LOCKDEP_STILL_OK, 513 LOCKDEP_NOW_UNRELIABLE 514}; 515extern void add_taint(unsigned flag, enum lockdep_ok); 516extern int test_taint(unsigned flag); 517extern unsigned long get_taint(void); 518extern int root_mountflags; 519 520extern bool early_boot_irqs_disabled; 521 522/* 523 * Values used for system_state. Ordering of the states must not be changed 524 * as code checks for <, <=, >, >= STATE. 525 */ 526extern enum system_states { 527 SYSTEM_BOOTING, 528 SYSTEM_SCHEDULING, 529 SYSTEM_RUNNING, 530 SYSTEM_HALT, 531 SYSTEM_POWER_OFF, 532 SYSTEM_RESTART, 533} system_state; 534 535#define TAINT_PROPRIETARY_MODULE 0 536#define TAINT_FORCED_MODULE 1 537#define TAINT_CPU_OUT_OF_SPEC 2 538#define TAINT_FORCED_RMMOD 3 539#define TAINT_MACHINE_CHECK 4 540#define TAINT_BAD_PAGE 5 541#define TAINT_USER 6 542#define TAINT_DIE 7 543#define TAINT_OVERRIDDEN_ACPI_TABLE 8 544#define TAINT_WARN 9 545#define TAINT_CRAP 10 546#define TAINT_FIRMWARE_WORKAROUND 11 547#define TAINT_OOT_MODULE 12 548#define TAINT_UNSIGNED_MODULE 13 549#define TAINT_SOFTLOCKUP 14 550#define TAINT_LIVEPATCH 15 551#define TAINT_FLAGS_COUNT 16 552 553struct taint_flag { 554 char c_true; /* character printed when tainted */ 555 char c_false; /* character printed when not tainted */ 556 bool module; /* also show as a per-module taint flag */ 557}; 558 559extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT]; 560 561extern const char hex_asc[]; 562#define hex_asc_lo(x) hex_asc[((x) & 0x0f)] 563#define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4] 564 565static inline char *hex_byte_pack(char *buf, u8 byte) 566{ 567 *buf++ = hex_asc_hi(byte); 568 *buf++ = hex_asc_lo(byte); 569 return buf; 570} 571 572extern const char hex_asc_upper[]; 573#define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)] 574#define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4] 575 576static inline char *hex_byte_pack_upper(char *buf, u8 byte) 577{ 578 *buf++ = hex_asc_upper_hi(byte); 579 *buf++ = hex_asc_upper_lo(byte); 580 return buf; 581} 582 583extern int hex_to_bin(char ch); 584extern int __must_check hex2bin(u8 *dst, const char *src, size_t count); 585extern char *bin2hex(char *dst, const void *src, size_t count); 586 587bool mac_pton(const char *s, u8 *mac); 588 589/* 590 * General tracing related utility functions - trace_printk(), 591 * tracing_on/tracing_off and tracing_start()/tracing_stop 592 * 593 * Use tracing_on/tracing_off when you want to quickly turn on or off 594 * tracing. It simply enables or disables the recording of the trace events. 595 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on 596 * file, which gives a means for the kernel and userspace to interact. 597 * Place a tracing_off() in the kernel where you want tracing to end. 598 * From user space, examine the trace, and then echo 1 > tracing_on 599 * to continue tracing. 600 * 601 * tracing_stop/tracing_start has slightly more overhead. It is used 602 * by things like suspend to ram where disabling the recording of the 603 * trace is not enough, but tracing must actually stop because things 604 * like calling smp_processor_id() may crash the system. 605 * 606 * Most likely, you want to use tracing_on/tracing_off. 607 */ 608 609enum ftrace_dump_mode { 610 DUMP_NONE, 611 DUMP_ALL, 612 DUMP_ORIG, 613}; 614 615#ifdef CONFIG_TRACING 616void tracing_on(void); 617void tracing_off(void); 618int tracing_is_on(void); 619void tracing_snapshot(void); 620void tracing_snapshot_alloc(void); 621 622extern void tracing_start(void); 623extern void tracing_stop(void); 624 625static inline __printf(1, 2) 626void ____trace_printk_check_format(const char *fmt, ...) 627{ 628} 629#define __trace_printk_check_format(fmt, args...) \ 630do { \ 631 if (0) \ 632 ____trace_printk_check_format(fmt, ##args); \ 633} while (0) 634 635/** 636 * trace_printk - printf formatting in the ftrace buffer 637 * @fmt: the printf format for printing 638 * 639 * Note: __trace_printk is an internal function for trace_printk() and 640 * the @ip is passed in via the trace_printk() macro. 641 * 642 * This function allows a kernel developer to debug fast path sections 643 * that printk is not appropriate for. By scattering in various 644 * printk like tracing in the code, a developer can quickly see 645 * where problems are occurring. 646 * 647 * This is intended as a debugging tool for the developer only. 648 * Please refrain from leaving trace_printks scattered around in 649 * your code. (Extra memory is used for special buffers that are 650 * allocated when trace_printk() is used.) 651 * 652 * A little optization trick is done here. If there's only one 653 * argument, there's no need to scan the string for printf formats. 654 * The trace_puts() will suffice. But how can we take advantage of 655 * using trace_puts() when trace_printk() has only one argument? 656 * By stringifying the args and checking the size we can tell 657 * whether or not there are args. __stringify((__VA_ARGS__)) will 658 * turn into "()\0" with a size of 3 when there are no args, anything 659 * else will be bigger. All we need to do is define a string to this, 660 * and then take its size and compare to 3. If it's bigger, use 661 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just 662 * let gcc optimize the rest. 663 */ 664 665#define trace_printk(fmt, ...) \ 666do { \ 667 char _______STR[] = __stringify((__VA_ARGS__)); \ 668 if (sizeof(_______STR) > 3) \ 669 do_trace_printk(fmt, ##__VA_ARGS__); \ 670 else \ 671 trace_puts(fmt); \ 672} while (0) 673 674#define do_trace_printk(fmt, args...) \ 675do { \ 676 static const char *trace_printk_fmt __used \ 677 __attribute__((section("__trace_printk_fmt"))) = \ 678 __builtin_constant_p(fmt) ? fmt : NULL; \ 679 \ 680 __trace_printk_check_format(fmt, ##args); \ 681 \ 682 if (__builtin_constant_p(fmt)) \ 683 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \ 684 else \ 685 __trace_printk(_THIS_IP_, fmt, ##args); \ 686} while (0) 687 688extern __printf(2, 3) 689int __trace_bprintk(unsigned long ip, const char *fmt, ...); 690 691extern __printf(2, 3) 692int __trace_printk(unsigned long ip, const char *fmt, ...); 693 694/** 695 * trace_puts - write a string into the ftrace buffer 696 * @str: the string to record 697 * 698 * Note: __trace_bputs is an internal function for trace_puts and 699 * the @ip is passed in via the trace_puts macro. 700 * 701 * This is similar to trace_printk() but is made for those really fast 702 * paths that a developer wants the least amount of "Heisenbug" effects, 703 * where the processing of the print format is still too much. 704 * 705 * This function allows a kernel developer to debug fast path sections 706 * that printk is not appropriate for. By scattering in various 707 * printk like tracing in the code, a developer can quickly see 708 * where problems are occurring. 709 * 710 * This is intended as a debugging tool for the developer only. 711 * Please refrain from leaving trace_puts scattered around in 712 * your code. (Extra memory is used for special buffers that are 713 * allocated when trace_puts() is used.) 714 * 715 * Returns: 0 if nothing was written, positive # if string was. 716 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used) 717 */ 718 719#define trace_puts(str) ({ \ 720 static const char *trace_printk_fmt __used \ 721 __attribute__((section("__trace_printk_fmt"))) = \ 722 __builtin_constant_p(str) ? str : NULL; \ 723 \ 724 if (__builtin_constant_p(str)) \ 725 __trace_bputs(_THIS_IP_, trace_printk_fmt); \ 726 else \ 727 __trace_puts(_THIS_IP_, str, strlen(str)); \ 728}) 729extern int __trace_bputs(unsigned long ip, const char *str); 730extern int __trace_puts(unsigned long ip, const char *str, int size); 731 732extern void trace_dump_stack(int skip); 733 734/* 735 * The double __builtin_constant_p is because gcc will give us an error 736 * if we try to allocate the static variable to fmt if it is not a 737 * constant. Even with the outer if statement. 738 */ 739#define ftrace_vprintk(fmt, vargs) \ 740do { \ 741 if (__builtin_constant_p(fmt)) { \ 742 static const char *trace_printk_fmt __used \ 743 __attribute__((section("__trace_printk_fmt"))) = \ 744 __builtin_constant_p(fmt) ? fmt : NULL; \ 745 \ 746 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \ 747 } else \ 748 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \ 749} while (0) 750 751extern __printf(2, 0) int 752__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap); 753 754extern __printf(2, 0) int 755__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap); 756 757extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode); 758#else 759static inline void tracing_start(void) { } 760static inline void tracing_stop(void) { } 761static inline void trace_dump_stack(int skip) { } 762 763static inline void tracing_on(void) { } 764static inline void tracing_off(void) { } 765static inline int tracing_is_on(void) { return 0; } 766static inline void tracing_snapshot(void) { } 767static inline void tracing_snapshot_alloc(void) { } 768 769static inline __printf(1, 2) 770int trace_printk(const char *fmt, ...) 771{ 772 return 0; 773} 774static __printf(1, 0) inline int 775ftrace_vprintk(const char *fmt, va_list ap) 776{ 777 return 0; 778} 779static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { } 780#endif /* CONFIG_TRACING */ 781 782/* 783 * min()/max()/clamp() macros that also do 784 * strict type-checking.. See the 785 * "unnecessary" pointer comparison. 786 */ 787#define __min(t1, t2, min1, min2, x, y) ({ \ 788 t1 min1 = (x); \ 789 t2 min2 = (y); \ 790 (void) (&min1 == &min2); \ 791 min1 < min2 ? min1 : min2; }) 792 793/** 794 * min - return minimum of two values of the same or compatible types 795 * @x: first value 796 * @y: second value 797 */ 798#define min(x, y) \ 799 __min(typeof(x), typeof(y), \ 800 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \ 801 x, y) 802 803#define __max(t1, t2, max1, max2, x, y) ({ \ 804 t1 max1 = (x); \ 805 t2 max2 = (y); \ 806 (void) (&max1 == &max2); \ 807 max1 > max2 ? max1 : max2; }) 808 809/** 810 * max - return maximum of two values of the same or compatible types 811 * @x: first value 812 * @y: second value 813 */ 814#define max(x, y) \ 815 __max(typeof(x), typeof(y), \ 816 __UNIQUE_ID(max1_), __UNIQUE_ID(max2_), \ 817 x, y) 818 819/** 820 * min3 - return minimum of three values 821 * @x: first value 822 * @y: second value 823 * @z: third value 824 */ 825#define min3(x, y, z) min((typeof(x))min(x, y), z) 826 827/** 828 * max3 - return maximum of three values 829 * @x: first value 830 * @y: second value 831 * @z: third value 832 */ 833#define max3(x, y, z) max((typeof(x))max(x, y), z) 834 835/** 836 * min_not_zero - return the minimum that is _not_ zero, unless both are zero 837 * @x: value1 838 * @y: value2 839 */ 840#define min_not_zero(x, y) ({ \ 841 typeof(x) __x = (x); \ 842 typeof(y) __y = (y); \ 843 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); }) 844 845/** 846 * clamp - return a value clamped to a given range with strict typechecking 847 * @val: current value 848 * @lo: lowest allowable value 849 * @hi: highest allowable value 850 * 851 * This macro does strict typechecking of @lo/@hi to make sure they are of the 852 * same type as @val. See the unnecessary pointer comparisons. 853 */ 854#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi) 855 856/* 857 * ..and if you can't take the strict 858 * types, you can specify one yourself. 859 * 860 * Or not use min/max/clamp at all, of course. 861 */ 862 863/** 864 * min_t - return minimum of two values, using the specified type 865 * @type: data type to use 866 * @x: first value 867 * @y: second value 868 */ 869#define min_t(type, x, y) \ 870 __min(type, type, \ 871 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \ 872 x, y) 873 874/** 875 * max_t - return maximum of two values, using the specified type 876 * @type: data type to use 877 * @x: first value 878 * @y: second value 879 */ 880#define max_t(type, x, y) \ 881 __max(type, type, \ 882 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \ 883 x, y) 884 885/** 886 * clamp_t - return a value clamped to a given range using a given type 887 * @type: the type of variable to use 888 * @val: current value 889 * @lo: minimum allowable value 890 * @hi: maximum allowable value 891 * 892 * This macro does no typechecking and uses temporary variables of type 893 * @type to make all the comparisons. 894 */ 895#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi) 896 897/** 898 * clamp_val - return a value clamped to a given range using val's type 899 * @val: current value 900 * @lo: minimum allowable value 901 * @hi: maximum allowable value 902 * 903 * This macro does no typechecking and uses temporary variables of whatever 904 * type the input argument @val is. This is useful when @val is an unsigned 905 * type and @lo and @hi are literals that will otherwise be assigned a signed 906 * integer type. 907 */ 908#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi) 909 910 911/** 912 * swap - swap values of @a and @b 913 * @a: first value 914 * @b: second value 915 */ 916#define swap(a, b) \ 917 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) 918 919/** 920 * container_of - cast a member of a structure out to the containing structure 921 * @ptr: the pointer to the member. 922 * @type: the type of the container struct this is embedded in. 923 * @member: the name of the member within the struct. 924 * 925 */ 926#define container_of(ptr, type, member) ({ \ 927 void *__mptr = (void *)(ptr); \ 928 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ 929 !__same_type(*(ptr), void), \ 930 "pointer type mismatch in container_of()"); \ 931 ((type *)(__mptr - offsetof(type, member))); }) 932 933/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */ 934#ifdef CONFIG_FTRACE_MCOUNT_RECORD 935# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD 936#endif 937 938/* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */ 939#define VERIFY_OCTAL_PERMISSIONS(perms) \ 940 (BUILD_BUG_ON_ZERO((perms) < 0) + \ 941 BUILD_BUG_ON_ZERO((perms) > 0777) + \ 942 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \ 943 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \ 944 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \ 945 /* USER_WRITABLE >= GROUP_WRITABLE */ \ 946 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \ 947 /* OTHER_WRITABLE? Generally considered a bad idea. */ \ 948 BUILD_BUG_ON_ZERO((perms) & 2) + \ 949 (perms)) 950#endif