at v4.14-rc4 30 kB view raw
1#ifndef _LINUX_KERNEL_H 2#define _LINUX_KERNEL_H 3 4 5#include <stdarg.h> 6#include <linux/linkage.h> 7#include <linux/stddef.h> 8#include <linux/types.h> 9#include <linux/compiler.h> 10#include <linux/bitops.h> 11#include <linux/log2.h> 12#include <linux/typecheck.h> 13#include <linux/printk.h> 14#include <linux/build_bug.h> 15#include <asm/byteorder.h> 16#include <uapi/linux/kernel.h> 17 18#define USHRT_MAX ((u16)(~0U)) 19#define SHRT_MAX ((s16)(USHRT_MAX>>1)) 20#define SHRT_MIN ((s16)(-SHRT_MAX - 1)) 21#define INT_MAX ((int)(~0U>>1)) 22#define INT_MIN (-INT_MAX - 1) 23#define UINT_MAX (~0U) 24#define LONG_MAX ((long)(~0UL>>1)) 25#define LONG_MIN (-LONG_MAX - 1) 26#define ULONG_MAX (~0UL) 27#define LLONG_MAX ((long long)(~0ULL>>1)) 28#define LLONG_MIN (-LLONG_MAX - 1) 29#define ULLONG_MAX (~0ULL) 30#define SIZE_MAX (~(size_t)0) 31 32#define U8_MAX ((u8)~0U) 33#define S8_MAX ((s8)(U8_MAX>>1)) 34#define S8_MIN ((s8)(-S8_MAX - 1)) 35#define U16_MAX ((u16)~0U) 36#define S16_MAX ((s16)(U16_MAX>>1)) 37#define S16_MIN ((s16)(-S16_MAX - 1)) 38#define U32_MAX ((u32)~0U) 39#define S32_MAX ((s32)(U32_MAX>>1)) 40#define S32_MIN ((s32)(-S32_MAX - 1)) 41#define U64_MAX ((u64)~0ULL) 42#define S64_MAX ((s64)(U64_MAX>>1)) 43#define S64_MIN ((s64)(-S64_MAX - 1)) 44 45#define STACK_MAGIC 0xdeadbeef 46 47#define REPEAT_BYTE(x) ((~0ul / 0xff) * (x)) 48 49/* @a is a power of 2 value */ 50#define ALIGN(x, a) __ALIGN_KERNEL((x), (a)) 51#define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a)) 52#define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask)) 53#define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) 54#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) 55 56/* generic data direction definitions */ 57#define READ 0 58#define WRITE 1 59 60#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) 61 62#define u64_to_user_ptr(x) ( \ 63{ \ 64 typecheck(u64, x); \ 65 (void __user *)(uintptr_t)x; \ 66} \ 67) 68 69/* 70 * This looks more complex than it should be. But we need to 71 * get the type for the ~ right in round_down (it needs to be 72 * as wide as the result!), and we want to evaluate the macro 73 * arguments just once each. 74 */ 75#define __round_mask(x, y) ((__typeof__(x))((y)-1)) 76#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) 77#define round_down(x, y) ((x) & ~__round_mask(x, y)) 78 79#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) 80#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP 81 82#define DIV_ROUND_DOWN_ULL(ll, d) \ 83 ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; }) 84 85#define DIV_ROUND_UP_ULL(ll, d) DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d)) 86 87#if BITS_PER_LONG == 32 88# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) 89#else 90# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) 91#endif 92 93/* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */ 94#define roundup(x, y) ( \ 95{ \ 96 const typeof(y) __y = y; \ 97 (((x) + (__y - 1)) / __y) * __y; \ 98} \ 99) 100#define rounddown(x, y) ( \ 101{ \ 102 typeof(x) __x = (x); \ 103 __x - (__x % (y)); \ 104} \ 105) 106 107/* 108 * Divide positive or negative dividend by positive or negative divisor 109 * and round to closest integer. Result is undefined for negative 110 * divisors if he dividend variable type is unsigned and for negative 111 * dividends if the divisor variable type is unsigned. 112 */ 113#define DIV_ROUND_CLOSEST(x, divisor)( \ 114{ \ 115 typeof(x) __x = x; \ 116 typeof(divisor) __d = divisor; \ 117 (((typeof(x))-1) > 0 || \ 118 ((typeof(divisor))-1) > 0 || \ 119 (((__x) > 0) == ((__d) > 0))) ? \ 120 (((__x) + ((__d) / 2)) / (__d)) : \ 121 (((__x) - ((__d) / 2)) / (__d)); \ 122} \ 123) 124/* 125 * Same as above but for u64 dividends. divisor must be a 32-bit 126 * number. 127 */ 128#define DIV_ROUND_CLOSEST_ULL(x, divisor)( \ 129{ \ 130 typeof(divisor) __d = divisor; \ 131 unsigned long long _tmp = (x) + (__d) / 2; \ 132 do_div(_tmp, __d); \ 133 _tmp; \ 134} \ 135) 136 137/* 138 * Multiplies an integer by a fraction, while avoiding unnecessary 139 * overflow or loss of precision. 140 */ 141#define mult_frac(x, numer, denom)( \ 142{ \ 143 typeof(x) quot = (x) / (denom); \ 144 typeof(x) rem = (x) % (denom); \ 145 (quot * (numer)) + ((rem * (numer)) / (denom)); \ 146} \ 147) 148 149 150#define _RET_IP_ (unsigned long)__builtin_return_address(0) 151#define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) 152 153#ifdef CONFIG_LBDAF 154# include <asm/div64.h> 155# define sector_div(a, b) do_div(a, b) 156#else 157# define sector_div(n, b)( \ 158{ \ 159 int _res; \ 160 _res = (n) % (b); \ 161 (n) /= (b); \ 162 _res; \ 163} \ 164) 165#endif 166 167/** 168 * upper_32_bits - return bits 32-63 of a number 169 * @n: the number we're accessing 170 * 171 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress 172 * the "right shift count >= width of type" warning when that quantity is 173 * 32-bits. 174 */ 175#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) 176 177/** 178 * lower_32_bits - return bits 0-31 of a number 179 * @n: the number we're accessing 180 */ 181#define lower_32_bits(n) ((u32)(n)) 182 183struct completion; 184struct pt_regs; 185struct user; 186 187#ifdef CONFIG_PREEMPT_VOLUNTARY 188extern int _cond_resched(void); 189# define might_resched() _cond_resched() 190#else 191# define might_resched() do { } while (0) 192#endif 193 194#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 195 void ___might_sleep(const char *file, int line, int preempt_offset); 196 void __might_sleep(const char *file, int line, int preempt_offset); 197/** 198 * might_sleep - annotation for functions that can sleep 199 * 200 * this macro will print a stack trace if it is executed in an atomic 201 * context (spinlock, irq-handler, ...). 202 * 203 * This is a useful debugging help to be able to catch problems early and not 204 * be bitten later when the calling function happens to sleep when it is not 205 * supposed to. 206 */ 207# define might_sleep() \ 208 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0) 209# define sched_annotate_sleep() (current->task_state_change = 0) 210#else 211 static inline void ___might_sleep(const char *file, int line, 212 int preempt_offset) { } 213 static inline void __might_sleep(const char *file, int line, 214 int preempt_offset) { } 215# define might_sleep() do { might_resched(); } while (0) 216# define sched_annotate_sleep() do { } while (0) 217#endif 218 219#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0) 220 221/** 222 * abs - return absolute value of an argument 223 * @x: the value. If it is unsigned type, it is converted to signed type first. 224 * char is treated as if it was signed (regardless of whether it really is) 225 * but the macro's return type is preserved as char. 226 * 227 * Return: an absolute value of x. 228 */ 229#define abs(x) __abs_choose_expr(x, long long, \ 230 __abs_choose_expr(x, long, \ 231 __abs_choose_expr(x, int, \ 232 __abs_choose_expr(x, short, \ 233 __abs_choose_expr(x, char, \ 234 __builtin_choose_expr( \ 235 __builtin_types_compatible_p(typeof(x), char), \ 236 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ 237 ((void)0))))))) 238 239#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ 240 __builtin_types_compatible_p(typeof(x), signed type) || \ 241 __builtin_types_compatible_p(typeof(x), unsigned type), \ 242 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) 243 244/** 245 * reciprocal_scale - "scale" a value into range [0, ep_ro) 246 * @val: value 247 * @ep_ro: right open interval endpoint 248 * 249 * Perform a "reciprocal multiplication" in order to "scale" a value into 250 * range [0, ep_ro), where the upper interval endpoint is right-open. 251 * This is useful, e.g. for accessing a index of an array containing 252 * ep_ro elements, for example. Think of it as sort of modulus, only that 253 * the result isn't that of modulo. ;) Note that if initial input is a 254 * small value, then result will return 0. 255 * 256 * Return: a result based on val in interval [0, ep_ro). 257 */ 258static inline u32 reciprocal_scale(u32 val, u32 ep_ro) 259{ 260 return (u32)(((u64) val * ep_ro) >> 32); 261} 262 263#if defined(CONFIG_MMU) && \ 264 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)) 265#define might_fault() __might_fault(__FILE__, __LINE__) 266void __might_fault(const char *file, int line); 267#else 268static inline void might_fault(void) { } 269#endif 270 271extern struct atomic_notifier_head panic_notifier_list; 272extern long (*panic_blink)(int state); 273__printf(1, 2) 274void panic(const char *fmt, ...) __noreturn __cold; 275void nmi_panic(struct pt_regs *regs, const char *msg); 276extern void oops_enter(void); 277extern void oops_exit(void); 278void print_oops_end_marker(void); 279extern int oops_may_print(void); 280void do_exit(long error_code) __noreturn; 281void complete_and_exit(struct completion *, long) __noreturn; 282 283#ifdef CONFIG_ARCH_HAS_REFCOUNT 284void refcount_error_report(struct pt_regs *regs, const char *err); 285#else 286static inline void refcount_error_report(struct pt_regs *regs, const char *err) 287{ } 288#endif 289 290/* Internal, do not use. */ 291int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res); 292int __must_check _kstrtol(const char *s, unsigned int base, long *res); 293 294int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res); 295int __must_check kstrtoll(const char *s, unsigned int base, long long *res); 296 297/** 298 * kstrtoul - convert a string to an unsigned long 299 * @s: The start of the string. The string must be null-terminated, and may also 300 * include a single newline before its terminating null. The first character 301 * may also be a plus sign, but not a minus sign. 302 * @base: The number base to use. The maximum supported base is 16. If base is 303 * given as 0, then the base of the string is automatically detected with the 304 * conventional semantics - If it begins with 0x the number will be parsed as a 305 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 306 * parsed as an octal number. Otherwise it will be parsed as a decimal. 307 * @res: Where to write the result of the conversion on success. 308 * 309 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 310 * Used as a replacement for the obsolete simple_strtoull. Return code must 311 * be checked. 312*/ 313static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res) 314{ 315 /* 316 * We want to shortcut function call, but 317 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0. 318 */ 319 if (sizeof(unsigned long) == sizeof(unsigned long long) && 320 __alignof__(unsigned long) == __alignof__(unsigned long long)) 321 return kstrtoull(s, base, (unsigned long long *)res); 322 else 323 return _kstrtoul(s, base, res); 324} 325 326/** 327 * kstrtol - convert a string to a long 328 * @s: The start of the string. The string must be null-terminated, and may also 329 * include a single newline before its terminating null. The first character 330 * may also be a plus sign or a minus sign. 331 * @base: The number base to use. The maximum supported base is 16. If base is 332 * given as 0, then the base of the string is automatically detected with the 333 * conventional semantics - If it begins with 0x the number will be parsed as a 334 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 335 * parsed as an octal number. Otherwise it will be parsed as a decimal. 336 * @res: Where to write the result of the conversion on success. 337 * 338 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 339 * Used as a replacement for the obsolete simple_strtoull. Return code must 340 * be checked. 341 */ 342static inline int __must_check kstrtol(const char *s, unsigned int base, long *res) 343{ 344 /* 345 * We want to shortcut function call, but 346 * __builtin_types_compatible_p(long, long long) = 0. 347 */ 348 if (sizeof(long) == sizeof(long long) && 349 __alignof__(long) == __alignof__(long long)) 350 return kstrtoll(s, base, (long long *)res); 351 else 352 return _kstrtol(s, base, res); 353} 354 355int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res); 356int __must_check kstrtoint(const char *s, unsigned int base, int *res); 357 358static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res) 359{ 360 return kstrtoull(s, base, res); 361} 362 363static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res) 364{ 365 return kstrtoll(s, base, res); 366} 367 368static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res) 369{ 370 return kstrtouint(s, base, res); 371} 372 373static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res) 374{ 375 return kstrtoint(s, base, res); 376} 377 378int __must_check kstrtou16(const char *s, unsigned int base, u16 *res); 379int __must_check kstrtos16(const char *s, unsigned int base, s16 *res); 380int __must_check kstrtou8(const char *s, unsigned int base, u8 *res); 381int __must_check kstrtos8(const char *s, unsigned int base, s8 *res); 382int __must_check kstrtobool(const char *s, bool *res); 383 384int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res); 385int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res); 386int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res); 387int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res); 388int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res); 389int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res); 390int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res); 391int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res); 392int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res); 393int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res); 394int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res); 395 396static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res) 397{ 398 return kstrtoull_from_user(s, count, base, res); 399} 400 401static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res) 402{ 403 return kstrtoll_from_user(s, count, base, res); 404} 405 406static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res) 407{ 408 return kstrtouint_from_user(s, count, base, res); 409} 410 411static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res) 412{ 413 return kstrtoint_from_user(s, count, base, res); 414} 415 416/* Obsolete, do not use. Use kstrto<foo> instead */ 417 418extern unsigned long simple_strtoul(const char *,char **,unsigned int); 419extern long simple_strtol(const char *,char **,unsigned int); 420extern unsigned long long simple_strtoull(const char *,char **,unsigned int); 421extern long long simple_strtoll(const char *,char **,unsigned int); 422 423extern int num_to_str(char *buf, int size, unsigned long long num); 424 425/* lib/printf utilities */ 426 427extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...); 428extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list); 429extern __printf(3, 4) 430int snprintf(char *buf, size_t size, const char *fmt, ...); 431extern __printf(3, 0) 432int vsnprintf(char *buf, size_t size, const char *fmt, va_list args); 433extern __printf(3, 4) 434int scnprintf(char *buf, size_t size, const char *fmt, ...); 435extern __printf(3, 0) 436int vscnprintf(char *buf, size_t size, const char *fmt, va_list args); 437extern __printf(2, 3) __malloc 438char *kasprintf(gfp_t gfp, const char *fmt, ...); 439extern __printf(2, 0) __malloc 440char *kvasprintf(gfp_t gfp, const char *fmt, va_list args); 441extern __printf(2, 0) 442const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args); 443 444extern __scanf(2, 3) 445int sscanf(const char *, const char *, ...); 446extern __scanf(2, 0) 447int vsscanf(const char *, const char *, va_list); 448 449extern int get_option(char **str, int *pint); 450extern char *get_options(const char *str, int nints, int *ints); 451extern unsigned long long memparse(const char *ptr, char **retptr); 452extern bool parse_option_str(const char *str, const char *option); 453extern char *next_arg(char *args, char **param, char **val); 454 455extern int core_kernel_text(unsigned long addr); 456extern int core_kernel_data(unsigned long addr); 457extern int __kernel_text_address(unsigned long addr); 458extern int kernel_text_address(unsigned long addr); 459extern int func_ptr_is_kernel_text(void *ptr); 460 461unsigned long int_sqrt(unsigned long); 462 463extern void bust_spinlocks(int yes); 464extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ 465extern int panic_timeout; 466extern int panic_on_oops; 467extern int panic_on_unrecovered_nmi; 468extern int panic_on_io_nmi; 469extern int panic_on_warn; 470extern int sysctl_panic_on_rcu_stall; 471extern int sysctl_panic_on_stackoverflow; 472 473extern bool crash_kexec_post_notifiers; 474 475/* 476 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It 477 * holds a CPU number which is executing panic() currently. A value of 478 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec(). 479 */ 480extern atomic_t panic_cpu; 481#define PANIC_CPU_INVALID -1 482 483/* 484 * Only to be used by arch init code. If the user over-wrote the default 485 * CONFIG_PANIC_TIMEOUT, honor it. 486 */ 487static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout) 488{ 489 if (panic_timeout == arch_default_timeout) 490 panic_timeout = timeout; 491} 492extern const char *print_tainted(void); 493enum lockdep_ok { 494 LOCKDEP_STILL_OK, 495 LOCKDEP_NOW_UNRELIABLE 496}; 497extern void add_taint(unsigned flag, enum lockdep_ok); 498extern int test_taint(unsigned flag); 499extern unsigned long get_taint(void); 500extern int root_mountflags; 501 502extern bool early_boot_irqs_disabled; 503 504/* 505 * Values used for system_state. Ordering of the states must not be changed 506 * as code checks for <, <=, >, >= STATE. 507 */ 508extern enum system_states { 509 SYSTEM_BOOTING, 510 SYSTEM_SCHEDULING, 511 SYSTEM_RUNNING, 512 SYSTEM_HALT, 513 SYSTEM_POWER_OFF, 514 SYSTEM_RESTART, 515} system_state; 516 517#define TAINT_PROPRIETARY_MODULE 0 518#define TAINT_FORCED_MODULE 1 519#define TAINT_CPU_OUT_OF_SPEC 2 520#define TAINT_FORCED_RMMOD 3 521#define TAINT_MACHINE_CHECK 4 522#define TAINT_BAD_PAGE 5 523#define TAINT_USER 6 524#define TAINT_DIE 7 525#define TAINT_OVERRIDDEN_ACPI_TABLE 8 526#define TAINT_WARN 9 527#define TAINT_CRAP 10 528#define TAINT_FIRMWARE_WORKAROUND 11 529#define TAINT_OOT_MODULE 12 530#define TAINT_UNSIGNED_MODULE 13 531#define TAINT_SOFTLOCKUP 14 532#define TAINT_LIVEPATCH 15 533#define TAINT_FLAGS_COUNT 16 534 535struct taint_flag { 536 char c_true; /* character printed when tainted */ 537 char c_false; /* character printed when not tainted */ 538 bool module; /* also show as a per-module taint flag */ 539}; 540 541extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT]; 542 543extern const char hex_asc[]; 544#define hex_asc_lo(x) hex_asc[((x) & 0x0f)] 545#define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4] 546 547static inline char *hex_byte_pack(char *buf, u8 byte) 548{ 549 *buf++ = hex_asc_hi(byte); 550 *buf++ = hex_asc_lo(byte); 551 return buf; 552} 553 554extern const char hex_asc_upper[]; 555#define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)] 556#define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4] 557 558static inline char *hex_byte_pack_upper(char *buf, u8 byte) 559{ 560 *buf++ = hex_asc_upper_hi(byte); 561 *buf++ = hex_asc_upper_lo(byte); 562 return buf; 563} 564 565extern int hex_to_bin(char ch); 566extern int __must_check hex2bin(u8 *dst, const char *src, size_t count); 567extern char *bin2hex(char *dst, const void *src, size_t count); 568 569bool mac_pton(const char *s, u8 *mac); 570 571/* 572 * General tracing related utility functions - trace_printk(), 573 * tracing_on/tracing_off and tracing_start()/tracing_stop 574 * 575 * Use tracing_on/tracing_off when you want to quickly turn on or off 576 * tracing. It simply enables or disables the recording of the trace events. 577 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on 578 * file, which gives a means for the kernel and userspace to interact. 579 * Place a tracing_off() in the kernel where you want tracing to end. 580 * From user space, examine the trace, and then echo 1 > tracing_on 581 * to continue tracing. 582 * 583 * tracing_stop/tracing_start has slightly more overhead. It is used 584 * by things like suspend to ram where disabling the recording of the 585 * trace is not enough, but tracing must actually stop because things 586 * like calling smp_processor_id() may crash the system. 587 * 588 * Most likely, you want to use tracing_on/tracing_off. 589 */ 590 591enum ftrace_dump_mode { 592 DUMP_NONE, 593 DUMP_ALL, 594 DUMP_ORIG, 595}; 596 597#ifdef CONFIG_TRACING 598void tracing_on(void); 599void tracing_off(void); 600int tracing_is_on(void); 601void tracing_snapshot(void); 602void tracing_snapshot_alloc(void); 603 604extern void tracing_start(void); 605extern void tracing_stop(void); 606 607static inline __printf(1, 2) 608void ____trace_printk_check_format(const char *fmt, ...) 609{ 610} 611#define __trace_printk_check_format(fmt, args...) \ 612do { \ 613 if (0) \ 614 ____trace_printk_check_format(fmt, ##args); \ 615} while (0) 616 617/** 618 * trace_printk - printf formatting in the ftrace buffer 619 * @fmt: the printf format for printing 620 * 621 * Note: __trace_printk is an internal function for trace_printk and 622 * the @ip is passed in via the trace_printk macro. 623 * 624 * This function allows a kernel developer to debug fast path sections 625 * that printk is not appropriate for. By scattering in various 626 * printk like tracing in the code, a developer can quickly see 627 * where problems are occurring. 628 * 629 * This is intended as a debugging tool for the developer only. 630 * Please refrain from leaving trace_printks scattered around in 631 * your code. (Extra memory is used for special buffers that are 632 * allocated when trace_printk() is used) 633 * 634 * A little optization trick is done here. If there's only one 635 * argument, there's no need to scan the string for printf formats. 636 * The trace_puts() will suffice. But how can we take advantage of 637 * using trace_puts() when trace_printk() has only one argument? 638 * By stringifying the args and checking the size we can tell 639 * whether or not there are args. __stringify((__VA_ARGS__)) will 640 * turn into "()\0" with a size of 3 when there are no args, anything 641 * else will be bigger. All we need to do is define a string to this, 642 * and then take its size and compare to 3. If it's bigger, use 643 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just 644 * let gcc optimize the rest. 645 */ 646 647#define trace_printk(fmt, ...) \ 648do { \ 649 char _______STR[] = __stringify((__VA_ARGS__)); \ 650 if (sizeof(_______STR) > 3) \ 651 do_trace_printk(fmt, ##__VA_ARGS__); \ 652 else \ 653 trace_puts(fmt); \ 654} while (0) 655 656#define do_trace_printk(fmt, args...) \ 657do { \ 658 static const char *trace_printk_fmt __used \ 659 __attribute__((section("__trace_printk_fmt"))) = \ 660 __builtin_constant_p(fmt) ? fmt : NULL; \ 661 \ 662 __trace_printk_check_format(fmt, ##args); \ 663 \ 664 if (__builtin_constant_p(fmt)) \ 665 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \ 666 else \ 667 __trace_printk(_THIS_IP_, fmt, ##args); \ 668} while (0) 669 670extern __printf(2, 3) 671int __trace_bprintk(unsigned long ip, const char *fmt, ...); 672 673extern __printf(2, 3) 674int __trace_printk(unsigned long ip, const char *fmt, ...); 675 676/** 677 * trace_puts - write a string into the ftrace buffer 678 * @str: the string to record 679 * 680 * Note: __trace_bputs is an internal function for trace_puts and 681 * the @ip is passed in via the trace_puts macro. 682 * 683 * This is similar to trace_printk() but is made for those really fast 684 * paths that a developer wants the least amount of "Heisenbug" affects, 685 * where the processing of the print format is still too much. 686 * 687 * This function allows a kernel developer to debug fast path sections 688 * that printk is not appropriate for. By scattering in various 689 * printk like tracing in the code, a developer can quickly see 690 * where problems are occurring. 691 * 692 * This is intended as a debugging tool for the developer only. 693 * Please refrain from leaving trace_puts scattered around in 694 * your code. (Extra memory is used for special buffers that are 695 * allocated when trace_puts() is used) 696 * 697 * Returns: 0 if nothing was written, positive # if string was. 698 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used) 699 */ 700 701#define trace_puts(str) ({ \ 702 static const char *trace_printk_fmt __used \ 703 __attribute__((section("__trace_printk_fmt"))) = \ 704 __builtin_constant_p(str) ? str : NULL; \ 705 \ 706 if (__builtin_constant_p(str)) \ 707 __trace_bputs(_THIS_IP_, trace_printk_fmt); \ 708 else \ 709 __trace_puts(_THIS_IP_, str, strlen(str)); \ 710}) 711extern int __trace_bputs(unsigned long ip, const char *str); 712extern int __trace_puts(unsigned long ip, const char *str, int size); 713 714extern void trace_dump_stack(int skip); 715 716/* 717 * The double __builtin_constant_p is because gcc will give us an error 718 * if we try to allocate the static variable to fmt if it is not a 719 * constant. Even with the outer if statement. 720 */ 721#define ftrace_vprintk(fmt, vargs) \ 722do { \ 723 if (__builtin_constant_p(fmt)) { \ 724 static const char *trace_printk_fmt __used \ 725 __attribute__((section("__trace_printk_fmt"))) = \ 726 __builtin_constant_p(fmt) ? fmt : NULL; \ 727 \ 728 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \ 729 } else \ 730 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \ 731} while (0) 732 733extern __printf(2, 0) int 734__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap); 735 736extern __printf(2, 0) int 737__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap); 738 739extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode); 740#else 741static inline void tracing_start(void) { } 742static inline void tracing_stop(void) { } 743static inline void trace_dump_stack(int skip) { } 744 745static inline void tracing_on(void) { } 746static inline void tracing_off(void) { } 747static inline int tracing_is_on(void) { return 0; } 748static inline void tracing_snapshot(void) { } 749static inline void tracing_snapshot_alloc(void) { } 750 751static inline __printf(1, 2) 752int trace_printk(const char *fmt, ...) 753{ 754 return 0; 755} 756static __printf(1, 0) inline int 757ftrace_vprintk(const char *fmt, va_list ap) 758{ 759 return 0; 760} 761static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { } 762#endif /* CONFIG_TRACING */ 763 764/* 765 * min()/max()/clamp() macros that also do 766 * strict type-checking.. See the 767 * "unnecessary" pointer comparison. 768 */ 769#define __min(t1, t2, min1, min2, x, y) ({ \ 770 t1 min1 = (x); \ 771 t2 min2 = (y); \ 772 (void) (&min1 == &min2); \ 773 min1 < min2 ? min1 : min2; }) 774#define min(x, y) \ 775 __min(typeof(x), typeof(y), \ 776 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \ 777 x, y) 778 779#define __max(t1, t2, max1, max2, x, y) ({ \ 780 t1 max1 = (x); \ 781 t2 max2 = (y); \ 782 (void) (&max1 == &max2); \ 783 max1 > max2 ? max1 : max2; }) 784#define max(x, y) \ 785 __max(typeof(x), typeof(y), \ 786 __UNIQUE_ID(max1_), __UNIQUE_ID(max2_), \ 787 x, y) 788 789#define min3(x, y, z) min((typeof(x))min(x, y), z) 790#define max3(x, y, z) max((typeof(x))max(x, y), z) 791 792/** 793 * min_not_zero - return the minimum that is _not_ zero, unless both are zero 794 * @x: value1 795 * @y: value2 796 */ 797#define min_not_zero(x, y) ({ \ 798 typeof(x) __x = (x); \ 799 typeof(y) __y = (y); \ 800 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); }) 801 802/** 803 * clamp - return a value clamped to a given range with strict typechecking 804 * @val: current value 805 * @lo: lowest allowable value 806 * @hi: highest allowable value 807 * 808 * This macro does strict typechecking of lo/hi to make sure they are of the 809 * same type as val. See the unnecessary pointer comparisons. 810 */ 811#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi) 812 813/* 814 * ..and if you can't take the strict 815 * types, you can specify one yourself. 816 * 817 * Or not use min/max/clamp at all, of course. 818 */ 819#define min_t(type, x, y) \ 820 __min(type, type, \ 821 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \ 822 x, y) 823 824#define max_t(type, x, y) \ 825 __max(type, type, \ 826 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \ 827 x, y) 828 829/** 830 * clamp_t - return a value clamped to a given range using a given type 831 * @type: the type of variable to use 832 * @val: current value 833 * @lo: minimum allowable value 834 * @hi: maximum allowable value 835 * 836 * This macro does no typechecking and uses temporary variables of type 837 * 'type' to make all the comparisons. 838 */ 839#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi) 840 841/** 842 * clamp_val - return a value clamped to a given range using val's type 843 * @val: current value 844 * @lo: minimum allowable value 845 * @hi: maximum allowable value 846 * 847 * This macro does no typechecking and uses temporary variables of whatever 848 * type the input argument 'val' is. This is useful when val is an unsigned 849 * type and min and max are literals that will otherwise be assigned a signed 850 * integer type. 851 */ 852#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi) 853 854 855/* 856 * swap - swap value of @a and @b 857 */ 858#define swap(a, b) \ 859 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) 860 861/** 862 * container_of - cast a member of a structure out to the containing structure 863 * @ptr: the pointer to the member. 864 * @type: the type of the container struct this is embedded in. 865 * @member: the name of the member within the struct. 866 * 867 */ 868#define container_of(ptr, type, member) ({ \ 869 void *__mptr = (void *)(ptr); \ 870 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ 871 !__same_type(*(ptr), void), \ 872 "pointer type mismatch in container_of()"); \ 873 ((type *)(__mptr - offsetof(type, member))); }) 874 875/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */ 876#ifdef CONFIG_FTRACE_MCOUNT_RECORD 877# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD 878#endif 879 880/* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */ 881#define VERIFY_OCTAL_PERMISSIONS(perms) \ 882 (BUILD_BUG_ON_ZERO((perms) < 0) + \ 883 BUILD_BUG_ON_ZERO((perms) > 0777) + \ 884 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \ 885 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \ 886 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \ 887 /* USER_WRITABLE >= GROUP_WRITABLE */ \ 888 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \ 889 /* OTHER_WRITABLE? Generally considered a bad idea. */ \ 890 BUILD_BUG_ON_ZERO((perms) & 2) + \ 891 (perms)) 892#endif