at v4.14-rc3 2164 lines 55 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/backing-dev.h> 18#include <linux/module.h> 19#include <linux/blkpg.h> 20#include <linux/magic.h> 21#include <linux/dax.h> 22#include <linux/buffer_head.h> 23#include <linux/swap.h> 24#include <linux/pagevec.h> 25#include <linux/writeback.h> 26#include <linux/mpage.h> 27#include <linux/mount.h> 28#include <linux/uio.h> 29#include <linux/namei.h> 30#include <linux/log2.h> 31#include <linux/cleancache.h> 32#include <linux/dax.h> 33#include <linux/badblocks.h> 34#include <linux/task_io_accounting_ops.h> 35#include <linux/falloc.h> 36#include <linux/uaccess.h> 37#include "internal.h" 38 39struct bdev_inode { 40 struct block_device bdev; 41 struct inode vfs_inode; 42}; 43 44static const struct address_space_operations def_blk_aops; 45 46static inline struct bdev_inode *BDEV_I(struct inode *inode) 47{ 48 return container_of(inode, struct bdev_inode, vfs_inode); 49} 50 51struct block_device *I_BDEV(struct inode *inode) 52{ 53 return &BDEV_I(inode)->bdev; 54} 55EXPORT_SYMBOL(I_BDEV); 56 57void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 58{ 59 struct va_format vaf; 60 va_list args; 61 62 va_start(args, fmt); 63 vaf.fmt = fmt; 64 vaf.va = &args; 65 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf); 66 va_end(args); 67} 68 69static void bdev_write_inode(struct block_device *bdev) 70{ 71 struct inode *inode = bdev->bd_inode; 72 int ret; 73 74 spin_lock(&inode->i_lock); 75 while (inode->i_state & I_DIRTY) { 76 spin_unlock(&inode->i_lock); 77 ret = write_inode_now(inode, true); 78 if (ret) { 79 char name[BDEVNAME_SIZE]; 80 pr_warn_ratelimited("VFS: Dirty inode writeback failed " 81 "for block device %s (err=%d).\n", 82 bdevname(bdev, name), ret); 83 } 84 spin_lock(&inode->i_lock); 85 } 86 spin_unlock(&inode->i_lock); 87} 88 89/* Kill _all_ buffers and pagecache , dirty or not.. */ 90void kill_bdev(struct block_device *bdev) 91{ 92 struct address_space *mapping = bdev->bd_inode->i_mapping; 93 94 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 95 return; 96 97 invalidate_bh_lrus(); 98 truncate_inode_pages(mapping, 0); 99} 100EXPORT_SYMBOL(kill_bdev); 101 102/* Invalidate clean unused buffers and pagecache. */ 103void invalidate_bdev(struct block_device *bdev) 104{ 105 struct address_space *mapping = bdev->bd_inode->i_mapping; 106 107 if (mapping->nrpages) { 108 invalidate_bh_lrus(); 109 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 110 invalidate_mapping_pages(mapping, 0, -1); 111 } 112 /* 99% of the time, we don't need to flush the cleancache on the bdev. 113 * But, for the strange corners, lets be cautious 114 */ 115 cleancache_invalidate_inode(mapping); 116} 117EXPORT_SYMBOL(invalidate_bdev); 118 119int set_blocksize(struct block_device *bdev, int size) 120{ 121 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 122 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 123 return -EINVAL; 124 125 /* Size cannot be smaller than the size supported by the device */ 126 if (size < bdev_logical_block_size(bdev)) 127 return -EINVAL; 128 129 /* Don't change the size if it is same as current */ 130 if (bdev->bd_block_size != size) { 131 sync_blockdev(bdev); 132 bdev->bd_block_size = size; 133 bdev->bd_inode->i_blkbits = blksize_bits(size); 134 kill_bdev(bdev); 135 } 136 return 0; 137} 138 139EXPORT_SYMBOL(set_blocksize); 140 141int sb_set_blocksize(struct super_block *sb, int size) 142{ 143 if (set_blocksize(sb->s_bdev, size)) 144 return 0; 145 /* If we get here, we know size is power of two 146 * and it's value is between 512 and PAGE_SIZE */ 147 sb->s_blocksize = size; 148 sb->s_blocksize_bits = blksize_bits(size); 149 return sb->s_blocksize; 150} 151 152EXPORT_SYMBOL(sb_set_blocksize); 153 154int sb_min_blocksize(struct super_block *sb, int size) 155{ 156 int minsize = bdev_logical_block_size(sb->s_bdev); 157 if (size < minsize) 158 size = minsize; 159 return sb_set_blocksize(sb, size); 160} 161 162EXPORT_SYMBOL(sb_min_blocksize); 163 164static int 165blkdev_get_block(struct inode *inode, sector_t iblock, 166 struct buffer_head *bh, int create) 167{ 168 bh->b_bdev = I_BDEV(inode); 169 bh->b_blocknr = iblock; 170 set_buffer_mapped(bh); 171 return 0; 172} 173 174static struct inode *bdev_file_inode(struct file *file) 175{ 176 return file->f_mapping->host; 177} 178 179static unsigned int dio_bio_write_op(struct kiocb *iocb) 180{ 181 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 182 183 /* avoid the need for a I/O completion work item */ 184 if (iocb->ki_flags & IOCB_DSYNC) 185 op |= REQ_FUA; 186 return op; 187} 188 189#define DIO_INLINE_BIO_VECS 4 190 191static void blkdev_bio_end_io_simple(struct bio *bio) 192{ 193 struct task_struct *waiter = bio->bi_private; 194 195 WRITE_ONCE(bio->bi_private, NULL); 196 wake_up_process(waiter); 197} 198 199static ssize_t 200__blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter, 201 int nr_pages) 202{ 203 struct file *file = iocb->ki_filp; 204 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 205 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec; 206 loff_t pos = iocb->ki_pos; 207 bool should_dirty = false; 208 struct bio bio; 209 ssize_t ret; 210 blk_qc_t qc; 211 int i; 212 213 if ((pos | iov_iter_alignment(iter)) & 214 (bdev_logical_block_size(bdev) - 1)) 215 return -EINVAL; 216 217 if (nr_pages <= DIO_INLINE_BIO_VECS) 218 vecs = inline_vecs; 219 else { 220 vecs = kmalloc(nr_pages * sizeof(struct bio_vec), GFP_KERNEL); 221 if (!vecs) 222 return -ENOMEM; 223 } 224 225 bio_init(&bio, vecs, nr_pages); 226 bio_set_dev(&bio, bdev); 227 bio.bi_iter.bi_sector = pos >> 9; 228 bio.bi_write_hint = iocb->ki_hint; 229 bio.bi_private = current; 230 bio.bi_end_io = blkdev_bio_end_io_simple; 231 232 ret = bio_iov_iter_get_pages(&bio, iter); 233 if (unlikely(ret)) 234 return ret; 235 ret = bio.bi_iter.bi_size; 236 237 if (iov_iter_rw(iter) == READ) { 238 bio.bi_opf = REQ_OP_READ; 239 if (iter_is_iovec(iter)) 240 should_dirty = true; 241 } else { 242 bio.bi_opf = dio_bio_write_op(iocb); 243 task_io_account_write(ret); 244 } 245 246 qc = submit_bio(&bio); 247 for (;;) { 248 set_current_state(TASK_UNINTERRUPTIBLE); 249 if (!READ_ONCE(bio.bi_private)) 250 break; 251 if (!(iocb->ki_flags & IOCB_HIPRI) || 252 !blk_mq_poll(bdev_get_queue(bdev), qc)) 253 io_schedule(); 254 } 255 __set_current_state(TASK_RUNNING); 256 257 bio_for_each_segment_all(bvec, &bio, i) { 258 if (should_dirty && !PageCompound(bvec->bv_page)) 259 set_page_dirty_lock(bvec->bv_page); 260 put_page(bvec->bv_page); 261 } 262 263 if (vecs != inline_vecs) 264 kfree(vecs); 265 266 if (unlikely(bio.bi_status)) 267 ret = blk_status_to_errno(bio.bi_status); 268 269 bio_uninit(&bio); 270 271 return ret; 272} 273 274struct blkdev_dio { 275 union { 276 struct kiocb *iocb; 277 struct task_struct *waiter; 278 }; 279 size_t size; 280 atomic_t ref; 281 bool multi_bio : 1; 282 bool should_dirty : 1; 283 bool is_sync : 1; 284 struct bio bio; 285}; 286 287static struct bio_set *blkdev_dio_pool __read_mostly; 288 289static void blkdev_bio_end_io(struct bio *bio) 290{ 291 struct blkdev_dio *dio = bio->bi_private; 292 bool should_dirty = dio->should_dirty; 293 294 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) { 295 if (bio->bi_status && !dio->bio.bi_status) 296 dio->bio.bi_status = bio->bi_status; 297 } else { 298 if (!dio->is_sync) { 299 struct kiocb *iocb = dio->iocb; 300 ssize_t ret; 301 302 if (likely(!dio->bio.bi_status)) { 303 ret = dio->size; 304 iocb->ki_pos += ret; 305 } else { 306 ret = blk_status_to_errno(dio->bio.bi_status); 307 } 308 309 dio->iocb->ki_complete(iocb, ret, 0); 310 bio_put(&dio->bio); 311 } else { 312 struct task_struct *waiter = dio->waiter; 313 314 WRITE_ONCE(dio->waiter, NULL); 315 wake_up_process(waiter); 316 } 317 } 318 319 if (should_dirty) { 320 bio_check_pages_dirty(bio); 321 } else { 322 struct bio_vec *bvec; 323 int i; 324 325 bio_for_each_segment_all(bvec, bio, i) 326 put_page(bvec->bv_page); 327 bio_put(bio); 328 } 329} 330 331static ssize_t 332__blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages) 333{ 334 struct file *file = iocb->ki_filp; 335 struct inode *inode = bdev_file_inode(file); 336 struct block_device *bdev = I_BDEV(inode); 337 struct blk_plug plug; 338 struct blkdev_dio *dio; 339 struct bio *bio; 340 bool is_read = (iov_iter_rw(iter) == READ), is_sync; 341 loff_t pos = iocb->ki_pos; 342 blk_qc_t qc = BLK_QC_T_NONE; 343 int ret = 0; 344 345 if ((pos | iov_iter_alignment(iter)) & 346 (bdev_logical_block_size(bdev) - 1)) 347 return -EINVAL; 348 349 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, blkdev_dio_pool); 350 bio_get(bio); /* extra ref for the completion handler */ 351 352 dio = container_of(bio, struct blkdev_dio, bio); 353 dio->is_sync = is_sync = is_sync_kiocb(iocb); 354 if (dio->is_sync) 355 dio->waiter = current; 356 else 357 dio->iocb = iocb; 358 359 dio->size = 0; 360 dio->multi_bio = false; 361 dio->should_dirty = is_read && (iter->type == ITER_IOVEC); 362 363 blk_start_plug(&plug); 364 for (;;) { 365 bio_set_dev(bio, bdev); 366 bio->bi_iter.bi_sector = pos >> 9; 367 bio->bi_write_hint = iocb->ki_hint; 368 bio->bi_private = dio; 369 bio->bi_end_io = blkdev_bio_end_io; 370 371 ret = bio_iov_iter_get_pages(bio, iter); 372 if (unlikely(ret)) { 373 bio->bi_status = BLK_STS_IOERR; 374 bio_endio(bio); 375 break; 376 } 377 378 if (is_read) { 379 bio->bi_opf = REQ_OP_READ; 380 if (dio->should_dirty) 381 bio_set_pages_dirty(bio); 382 } else { 383 bio->bi_opf = dio_bio_write_op(iocb); 384 task_io_account_write(bio->bi_iter.bi_size); 385 } 386 387 dio->size += bio->bi_iter.bi_size; 388 pos += bio->bi_iter.bi_size; 389 390 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES); 391 if (!nr_pages) { 392 qc = submit_bio(bio); 393 break; 394 } 395 396 if (!dio->multi_bio) { 397 dio->multi_bio = true; 398 atomic_set(&dio->ref, 2); 399 } else { 400 atomic_inc(&dio->ref); 401 } 402 403 submit_bio(bio); 404 bio = bio_alloc(GFP_KERNEL, nr_pages); 405 } 406 blk_finish_plug(&plug); 407 408 if (!is_sync) 409 return -EIOCBQUEUED; 410 411 for (;;) { 412 set_current_state(TASK_UNINTERRUPTIBLE); 413 if (!READ_ONCE(dio->waiter)) 414 break; 415 416 if (!(iocb->ki_flags & IOCB_HIPRI) || 417 !blk_mq_poll(bdev_get_queue(bdev), qc)) 418 io_schedule(); 419 } 420 __set_current_state(TASK_RUNNING); 421 422 if (!ret) 423 ret = blk_status_to_errno(dio->bio.bi_status); 424 if (likely(!ret)) 425 ret = dio->size; 426 427 bio_put(&dio->bio); 428 return ret; 429} 430 431static ssize_t 432blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 433{ 434 int nr_pages; 435 436 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1); 437 if (!nr_pages) 438 return 0; 439 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES) 440 return __blkdev_direct_IO_simple(iocb, iter, nr_pages); 441 442 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES)); 443} 444 445static __init int blkdev_init(void) 446{ 447 blkdev_dio_pool = bioset_create(4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS); 448 if (!blkdev_dio_pool) 449 return -ENOMEM; 450 return 0; 451} 452module_init(blkdev_init); 453 454int __sync_blockdev(struct block_device *bdev, int wait) 455{ 456 if (!bdev) 457 return 0; 458 if (!wait) 459 return filemap_flush(bdev->bd_inode->i_mapping); 460 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 461} 462 463/* 464 * Write out and wait upon all the dirty data associated with a block 465 * device via its mapping. Does not take the superblock lock. 466 */ 467int sync_blockdev(struct block_device *bdev) 468{ 469 return __sync_blockdev(bdev, 1); 470} 471EXPORT_SYMBOL(sync_blockdev); 472 473/* 474 * Write out and wait upon all dirty data associated with this 475 * device. Filesystem data as well as the underlying block 476 * device. Takes the superblock lock. 477 */ 478int fsync_bdev(struct block_device *bdev) 479{ 480 struct super_block *sb = get_super(bdev); 481 if (sb) { 482 int res = sync_filesystem(sb); 483 drop_super(sb); 484 return res; 485 } 486 return sync_blockdev(bdev); 487} 488EXPORT_SYMBOL(fsync_bdev); 489 490/** 491 * freeze_bdev -- lock a filesystem and force it into a consistent state 492 * @bdev: blockdevice to lock 493 * 494 * If a superblock is found on this device, we take the s_umount semaphore 495 * on it to make sure nobody unmounts until the snapshot creation is done. 496 * The reference counter (bd_fsfreeze_count) guarantees that only the last 497 * unfreeze process can unfreeze the frozen filesystem actually when multiple 498 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 499 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 500 * actually. 501 */ 502struct super_block *freeze_bdev(struct block_device *bdev) 503{ 504 struct super_block *sb; 505 int error = 0; 506 507 mutex_lock(&bdev->bd_fsfreeze_mutex); 508 if (++bdev->bd_fsfreeze_count > 1) { 509 /* 510 * We don't even need to grab a reference - the first call 511 * to freeze_bdev grab an active reference and only the last 512 * thaw_bdev drops it. 513 */ 514 sb = get_super(bdev); 515 if (sb) 516 drop_super(sb); 517 mutex_unlock(&bdev->bd_fsfreeze_mutex); 518 return sb; 519 } 520 521 sb = get_active_super(bdev); 522 if (!sb) 523 goto out; 524 if (sb->s_op->freeze_super) 525 error = sb->s_op->freeze_super(sb); 526 else 527 error = freeze_super(sb); 528 if (error) { 529 deactivate_super(sb); 530 bdev->bd_fsfreeze_count--; 531 mutex_unlock(&bdev->bd_fsfreeze_mutex); 532 return ERR_PTR(error); 533 } 534 deactivate_super(sb); 535 out: 536 sync_blockdev(bdev); 537 mutex_unlock(&bdev->bd_fsfreeze_mutex); 538 return sb; /* thaw_bdev releases s->s_umount */ 539} 540EXPORT_SYMBOL(freeze_bdev); 541 542/** 543 * thaw_bdev -- unlock filesystem 544 * @bdev: blockdevice to unlock 545 * @sb: associated superblock 546 * 547 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 548 */ 549int thaw_bdev(struct block_device *bdev, struct super_block *sb) 550{ 551 int error = -EINVAL; 552 553 mutex_lock(&bdev->bd_fsfreeze_mutex); 554 if (!bdev->bd_fsfreeze_count) 555 goto out; 556 557 error = 0; 558 if (--bdev->bd_fsfreeze_count > 0) 559 goto out; 560 561 if (!sb) 562 goto out; 563 564 if (sb->s_op->thaw_super) 565 error = sb->s_op->thaw_super(sb); 566 else 567 error = thaw_super(sb); 568 if (error) 569 bdev->bd_fsfreeze_count++; 570out: 571 mutex_unlock(&bdev->bd_fsfreeze_mutex); 572 return error; 573} 574EXPORT_SYMBOL(thaw_bdev); 575 576static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 577{ 578 return block_write_full_page(page, blkdev_get_block, wbc); 579} 580 581static int blkdev_readpage(struct file * file, struct page * page) 582{ 583 return block_read_full_page(page, blkdev_get_block); 584} 585 586static int blkdev_readpages(struct file *file, struct address_space *mapping, 587 struct list_head *pages, unsigned nr_pages) 588{ 589 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block); 590} 591 592static int blkdev_write_begin(struct file *file, struct address_space *mapping, 593 loff_t pos, unsigned len, unsigned flags, 594 struct page **pagep, void **fsdata) 595{ 596 return block_write_begin(mapping, pos, len, flags, pagep, 597 blkdev_get_block); 598} 599 600static int blkdev_write_end(struct file *file, struct address_space *mapping, 601 loff_t pos, unsigned len, unsigned copied, 602 struct page *page, void *fsdata) 603{ 604 int ret; 605 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 606 607 unlock_page(page); 608 put_page(page); 609 610 return ret; 611} 612 613/* 614 * private llseek: 615 * for a block special file file_inode(file)->i_size is zero 616 * so we compute the size by hand (just as in block_read/write above) 617 */ 618static loff_t block_llseek(struct file *file, loff_t offset, int whence) 619{ 620 struct inode *bd_inode = bdev_file_inode(file); 621 loff_t retval; 622 623 inode_lock(bd_inode); 624 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 625 inode_unlock(bd_inode); 626 return retval; 627} 628 629int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 630{ 631 struct inode *bd_inode = bdev_file_inode(filp); 632 struct block_device *bdev = I_BDEV(bd_inode); 633 int error; 634 635 error = file_write_and_wait_range(filp, start, end); 636 if (error) 637 return error; 638 639 /* 640 * There is no need to serialise calls to blkdev_issue_flush with 641 * i_mutex and doing so causes performance issues with concurrent 642 * O_SYNC writers to a block device. 643 */ 644 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 645 if (error == -EOPNOTSUPP) 646 error = 0; 647 648 return error; 649} 650EXPORT_SYMBOL(blkdev_fsync); 651 652/** 653 * bdev_read_page() - Start reading a page from a block device 654 * @bdev: The device to read the page from 655 * @sector: The offset on the device to read the page to (need not be aligned) 656 * @page: The page to read 657 * 658 * On entry, the page should be locked. It will be unlocked when the page 659 * has been read. If the block driver implements rw_page synchronously, 660 * that will be true on exit from this function, but it need not be. 661 * 662 * Errors returned by this function are usually "soft", eg out of memory, or 663 * queue full; callers should try a different route to read this page rather 664 * than propagate an error back up the stack. 665 * 666 * Return: negative errno if an error occurs, 0 if submission was successful. 667 */ 668int bdev_read_page(struct block_device *bdev, sector_t sector, 669 struct page *page) 670{ 671 const struct block_device_operations *ops = bdev->bd_disk->fops; 672 int result = -EOPNOTSUPP; 673 674 if (!ops->rw_page || bdev_get_integrity(bdev)) 675 return result; 676 677 result = blk_queue_enter(bdev->bd_queue, false); 678 if (result) 679 return result; 680 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false); 681 blk_queue_exit(bdev->bd_queue); 682 return result; 683} 684EXPORT_SYMBOL_GPL(bdev_read_page); 685 686/** 687 * bdev_write_page() - Start writing a page to a block device 688 * @bdev: The device to write the page to 689 * @sector: The offset on the device to write the page to (need not be aligned) 690 * @page: The page to write 691 * @wbc: The writeback_control for the write 692 * 693 * On entry, the page should be locked and not currently under writeback. 694 * On exit, if the write started successfully, the page will be unlocked and 695 * under writeback. If the write failed already (eg the driver failed to 696 * queue the page to the device), the page will still be locked. If the 697 * caller is a ->writepage implementation, it will need to unlock the page. 698 * 699 * Errors returned by this function are usually "soft", eg out of memory, or 700 * queue full; callers should try a different route to write this page rather 701 * than propagate an error back up the stack. 702 * 703 * Return: negative errno if an error occurs, 0 if submission was successful. 704 */ 705int bdev_write_page(struct block_device *bdev, sector_t sector, 706 struct page *page, struct writeback_control *wbc) 707{ 708 int result; 709 const struct block_device_operations *ops = bdev->bd_disk->fops; 710 711 if (!ops->rw_page || bdev_get_integrity(bdev)) 712 return -EOPNOTSUPP; 713 result = blk_queue_enter(bdev->bd_queue, false); 714 if (result) 715 return result; 716 717 set_page_writeback(page); 718 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true); 719 if (result) 720 end_page_writeback(page); 721 else 722 unlock_page(page); 723 blk_queue_exit(bdev->bd_queue); 724 return result; 725} 726EXPORT_SYMBOL_GPL(bdev_write_page); 727 728/* 729 * pseudo-fs 730 */ 731 732static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 733static struct kmem_cache * bdev_cachep __read_mostly; 734 735static struct inode *bdev_alloc_inode(struct super_block *sb) 736{ 737 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 738 if (!ei) 739 return NULL; 740 return &ei->vfs_inode; 741} 742 743static void bdev_i_callback(struct rcu_head *head) 744{ 745 struct inode *inode = container_of(head, struct inode, i_rcu); 746 struct bdev_inode *bdi = BDEV_I(inode); 747 748 kmem_cache_free(bdev_cachep, bdi); 749} 750 751static void bdev_destroy_inode(struct inode *inode) 752{ 753 call_rcu(&inode->i_rcu, bdev_i_callback); 754} 755 756static void init_once(void *foo) 757{ 758 struct bdev_inode *ei = (struct bdev_inode *) foo; 759 struct block_device *bdev = &ei->bdev; 760 761 memset(bdev, 0, sizeof(*bdev)); 762 mutex_init(&bdev->bd_mutex); 763 INIT_LIST_HEAD(&bdev->bd_list); 764#ifdef CONFIG_SYSFS 765 INIT_LIST_HEAD(&bdev->bd_holder_disks); 766#endif 767 bdev->bd_bdi = &noop_backing_dev_info; 768 inode_init_once(&ei->vfs_inode); 769 /* Initialize mutex for freeze. */ 770 mutex_init(&bdev->bd_fsfreeze_mutex); 771} 772 773static void bdev_evict_inode(struct inode *inode) 774{ 775 struct block_device *bdev = &BDEV_I(inode)->bdev; 776 truncate_inode_pages_final(&inode->i_data); 777 invalidate_inode_buffers(inode); /* is it needed here? */ 778 clear_inode(inode); 779 spin_lock(&bdev_lock); 780 list_del_init(&bdev->bd_list); 781 spin_unlock(&bdev_lock); 782 /* Detach inode from wb early as bdi_put() may free bdi->wb */ 783 inode_detach_wb(inode); 784 if (bdev->bd_bdi != &noop_backing_dev_info) { 785 bdi_put(bdev->bd_bdi); 786 bdev->bd_bdi = &noop_backing_dev_info; 787 } 788} 789 790static const struct super_operations bdev_sops = { 791 .statfs = simple_statfs, 792 .alloc_inode = bdev_alloc_inode, 793 .destroy_inode = bdev_destroy_inode, 794 .drop_inode = generic_delete_inode, 795 .evict_inode = bdev_evict_inode, 796}; 797 798static struct dentry *bd_mount(struct file_system_type *fs_type, 799 int flags, const char *dev_name, void *data) 800{ 801 struct dentry *dent; 802 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 803 if (!IS_ERR(dent)) 804 dent->d_sb->s_iflags |= SB_I_CGROUPWB; 805 return dent; 806} 807 808static struct file_system_type bd_type = { 809 .name = "bdev", 810 .mount = bd_mount, 811 .kill_sb = kill_anon_super, 812}; 813 814struct super_block *blockdev_superblock __read_mostly; 815EXPORT_SYMBOL_GPL(blockdev_superblock); 816 817void __init bdev_cache_init(void) 818{ 819 int err; 820 static struct vfsmount *bd_mnt; 821 822 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 823 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 824 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC), 825 init_once); 826 err = register_filesystem(&bd_type); 827 if (err) 828 panic("Cannot register bdev pseudo-fs"); 829 bd_mnt = kern_mount(&bd_type); 830 if (IS_ERR(bd_mnt)) 831 panic("Cannot create bdev pseudo-fs"); 832 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 833} 834 835/* 836 * Most likely _very_ bad one - but then it's hardly critical for small 837 * /dev and can be fixed when somebody will need really large one. 838 * Keep in mind that it will be fed through icache hash function too. 839 */ 840static inline unsigned long hash(dev_t dev) 841{ 842 return MAJOR(dev)+MINOR(dev); 843} 844 845static int bdev_test(struct inode *inode, void *data) 846{ 847 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 848} 849 850static int bdev_set(struct inode *inode, void *data) 851{ 852 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 853 return 0; 854} 855 856static LIST_HEAD(all_bdevs); 857 858/* 859 * If there is a bdev inode for this device, unhash it so that it gets evicted 860 * as soon as last inode reference is dropped. 861 */ 862void bdev_unhash_inode(dev_t dev) 863{ 864 struct inode *inode; 865 866 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev); 867 if (inode) { 868 remove_inode_hash(inode); 869 iput(inode); 870 } 871} 872 873struct block_device *bdget(dev_t dev) 874{ 875 struct block_device *bdev; 876 struct inode *inode; 877 878 inode = iget5_locked(blockdev_superblock, hash(dev), 879 bdev_test, bdev_set, &dev); 880 881 if (!inode) 882 return NULL; 883 884 bdev = &BDEV_I(inode)->bdev; 885 886 if (inode->i_state & I_NEW) { 887 bdev->bd_contains = NULL; 888 bdev->bd_super = NULL; 889 bdev->bd_inode = inode; 890 bdev->bd_block_size = i_blocksize(inode); 891 bdev->bd_part_count = 0; 892 bdev->bd_invalidated = 0; 893 inode->i_mode = S_IFBLK; 894 inode->i_rdev = dev; 895 inode->i_bdev = bdev; 896 inode->i_data.a_ops = &def_blk_aops; 897 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 898 spin_lock(&bdev_lock); 899 list_add(&bdev->bd_list, &all_bdevs); 900 spin_unlock(&bdev_lock); 901 unlock_new_inode(inode); 902 } 903 return bdev; 904} 905 906EXPORT_SYMBOL(bdget); 907 908/** 909 * bdgrab -- Grab a reference to an already referenced block device 910 * @bdev: Block device to grab a reference to. 911 */ 912struct block_device *bdgrab(struct block_device *bdev) 913{ 914 ihold(bdev->bd_inode); 915 return bdev; 916} 917EXPORT_SYMBOL(bdgrab); 918 919long nr_blockdev_pages(void) 920{ 921 struct block_device *bdev; 922 long ret = 0; 923 spin_lock(&bdev_lock); 924 list_for_each_entry(bdev, &all_bdevs, bd_list) { 925 ret += bdev->bd_inode->i_mapping->nrpages; 926 } 927 spin_unlock(&bdev_lock); 928 return ret; 929} 930 931void bdput(struct block_device *bdev) 932{ 933 iput(bdev->bd_inode); 934} 935 936EXPORT_SYMBOL(bdput); 937 938static struct block_device *bd_acquire(struct inode *inode) 939{ 940 struct block_device *bdev; 941 942 spin_lock(&bdev_lock); 943 bdev = inode->i_bdev; 944 if (bdev && !inode_unhashed(bdev->bd_inode)) { 945 bdgrab(bdev); 946 spin_unlock(&bdev_lock); 947 return bdev; 948 } 949 spin_unlock(&bdev_lock); 950 951 /* 952 * i_bdev references block device inode that was already shut down 953 * (corresponding device got removed). Remove the reference and look 954 * up block device inode again just in case new device got 955 * reestablished under the same device number. 956 */ 957 if (bdev) 958 bd_forget(inode); 959 960 bdev = bdget(inode->i_rdev); 961 if (bdev) { 962 spin_lock(&bdev_lock); 963 if (!inode->i_bdev) { 964 /* 965 * We take an additional reference to bd_inode, 966 * and it's released in clear_inode() of inode. 967 * So, we can access it via ->i_mapping always 968 * without igrab(). 969 */ 970 bdgrab(bdev); 971 inode->i_bdev = bdev; 972 inode->i_mapping = bdev->bd_inode->i_mapping; 973 } 974 spin_unlock(&bdev_lock); 975 } 976 return bdev; 977} 978 979/* Call when you free inode */ 980 981void bd_forget(struct inode *inode) 982{ 983 struct block_device *bdev = NULL; 984 985 spin_lock(&bdev_lock); 986 if (!sb_is_blkdev_sb(inode->i_sb)) 987 bdev = inode->i_bdev; 988 inode->i_bdev = NULL; 989 inode->i_mapping = &inode->i_data; 990 spin_unlock(&bdev_lock); 991 992 if (bdev) 993 bdput(bdev); 994} 995 996/** 997 * bd_may_claim - test whether a block device can be claimed 998 * @bdev: block device of interest 999 * @whole: whole block device containing @bdev, may equal @bdev 1000 * @holder: holder trying to claim @bdev 1001 * 1002 * Test whether @bdev can be claimed by @holder. 1003 * 1004 * CONTEXT: 1005 * spin_lock(&bdev_lock). 1006 * 1007 * RETURNS: 1008 * %true if @bdev can be claimed, %false otherwise. 1009 */ 1010static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 1011 void *holder) 1012{ 1013 if (bdev->bd_holder == holder) 1014 return true; /* already a holder */ 1015 else if (bdev->bd_holder != NULL) 1016 return false; /* held by someone else */ 1017 else if (whole == bdev) 1018 return true; /* is a whole device which isn't held */ 1019 1020 else if (whole->bd_holder == bd_may_claim) 1021 return true; /* is a partition of a device that is being partitioned */ 1022 else if (whole->bd_holder != NULL) 1023 return false; /* is a partition of a held device */ 1024 else 1025 return true; /* is a partition of an un-held device */ 1026} 1027 1028/** 1029 * bd_prepare_to_claim - prepare to claim a block device 1030 * @bdev: block device of interest 1031 * @whole: the whole device containing @bdev, may equal @bdev 1032 * @holder: holder trying to claim @bdev 1033 * 1034 * Prepare to claim @bdev. This function fails if @bdev is already 1035 * claimed by another holder and waits if another claiming is in 1036 * progress. This function doesn't actually claim. On successful 1037 * return, the caller has ownership of bd_claiming and bd_holder[s]. 1038 * 1039 * CONTEXT: 1040 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 1041 * it multiple times. 1042 * 1043 * RETURNS: 1044 * 0 if @bdev can be claimed, -EBUSY otherwise. 1045 */ 1046static int bd_prepare_to_claim(struct block_device *bdev, 1047 struct block_device *whole, void *holder) 1048{ 1049retry: 1050 /* if someone else claimed, fail */ 1051 if (!bd_may_claim(bdev, whole, holder)) 1052 return -EBUSY; 1053 1054 /* if claiming is already in progress, wait for it to finish */ 1055 if (whole->bd_claiming) { 1056 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 1057 DEFINE_WAIT(wait); 1058 1059 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 1060 spin_unlock(&bdev_lock); 1061 schedule(); 1062 finish_wait(wq, &wait); 1063 spin_lock(&bdev_lock); 1064 goto retry; 1065 } 1066 1067 /* yay, all mine */ 1068 return 0; 1069} 1070 1071/** 1072 * bd_start_claiming - start claiming a block device 1073 * @bdev: block device of interest 1074 * @holder: holder trying to claim @bdev 1075 * 1076 * @bdev is about to be opened exclusively. Check @bdev can be opened 1077 * exclusively and mark that an exclusive open is in progress. Each 1078 * successful call to this function must be matched with a call to 1079 * either bd_finish_claiming() or bd_abort_claiming() (which do not 1080 * fail). 1081 * 1082 * This function is used to gain exclusive access to the block device 1083 * without actually causing other exclusive open attempts to fail. It 1084 * should be used when the open sequence itself requires exclusive 1085 * access but may subsequently fail. 1086 * 1087 * CONTEXT: 1088 * Might sleep. 1089 * 1090 * RETURNS: 1091 * Pointer to the block device containing @bdev on success, ERR_PTR() 1092 * value on failure. 1093 */ 1094static struct block_device *bd_start_claiming(struct block_device *bdev, 1095 void *holder) 1096{ 1097 struct gendisk *disk; 1098 struct block_device *whole; 1099 int partno, err; 1100 1101 might_sleep(); 1102 1103 /* 1104 * @bdev might not have been initialized properly yet, look up 1105 * and grab the outer block device the hard way. 1106 */ 1107 disk = get_gendisk(bdev->bd_dev, &partno); 1108 if (!disk) 1109 return ERR_PTR(-ENXIO); 1110 1111 /* 1112 * Normally, @bdev should equal what's returned from bdget_disk() 1113 * if partno is 0; however, some drivers (floppy) use multiple 1114 * bdev's for the same physical device and @bdev may be one of the 1115 * aliases. Keep @bdev if partno is 0. This means claimer 1116 * tracking is broken for those devices but it has always been that 1117 * way. 1118 */ 1119 if (partno) 1120 whole = bdget_disk(disk, 0); 1121 else 1122 whole = bdgrab(bdev); 1123 1124 module_put(disk->fops->owner); 1125 put_disk(disk); 1126 if (!whole) 1127 return ERR_PTR(-ENOMEM); 1128 1129 /* prepare to claim, if successful, mark claiming in progress */ 1130 spin_lock(&bdev_lock); 1131 1132 err = bd_prepare_to_claim(bdev, whole, holder); 1133 if (err == 0) { 1134 whole->bd_claiming = holder; 1135 spin_unlock(&bdev_lock); 1136 return whole; 1137 } else { 1138 spin_unlock(&bdev_lock); 1139 bdput(whole); 1140 return ERR_PTR(err); 1141 } 1142} 1143 1144#ifdef CONFIG_SYSFS 1145struct bd_holder_disk { 1146 struct list_head list; 1147 struct gendisk *disk; 1148 int refcnt; 1149}; 1150 1151static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 1152 struct gendisk *disk) 1153{ 1154 struct bd_holder_disk *holder; 1155 1156 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 1157 if (holder->disk == disk) 1158 return holder; 1159 return NULL; 1160} 1161 1162static int add_symlink(struct kobject *from, struct kobject *to) 1163{ 1164 return sysfs_create_link(from, to, kobject_name(to)); 1165} 1166 1167static void del_symlink(struct kobject *from, struct kobject *to) 1168{ 1169 sysfs_remove_link(from, kobject_name(to)); 1170} 1171 1172/** 1173 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 1174 * @bdev: the claimed slave bdev 1175 * @disk: the holding disk 1176 * 1177 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1178 * 1179 * This functions creates the following sysfs symlinks. 1180 * 1181 * - from "slaves" directory of the holder @disk to the claimed @bdev 1182 * - from "holders" directory of the @bdev to the holder @disk 1183 * 1184 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 1185 * passed to bd_link_disk_holder(), then: 1186 * 1187 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 1188 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 1189 * 1190 * The caller must have claimed @bdev before calling this function and 1191 * ensure that both @bdev and @disk are valid during the creation and 1192 * lifetime of these symlinks. 1193 * 1194 * CONTEXT: 1195 * Might sleep. 1196 * 1197 * RETURNS: 1198 * 0 on success, -errno on failure. 1199 */ 1200int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 1201{ 1202 struct bd_holder_disk *holder; 1203 int ret = 0; 1204 1205 mutex_lock(&bdev->bd_mutex); 1206 1207 WARN_ON_ONCE(!bdev->bd_holder); 1208 1209 /* FIXME: remove the following once add_disk() handles errors */ 1210 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 1211 goto out_unlock; 1212 1213 holder = bd_find_holder_disk(bdev, disk); 1214 if (holder) { 1215 holder->refcnt++; 1216 goto out_unlock; 1217 } 1218 1219 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 1220 if (!holder) { 1221 ret = -ENOMEM; 1222 goto out_unlock; 1223 } 1224 1225 INIT_LIST_HEAD(&holder->list); 1226 holder->disk = disk; 1227 holder->refcnt = 1; 1228 1229 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1230 if (ret) 1231 goto out_free; 1232 1233 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 1234 if (ret) 1235 goto out_del; 1236 /* 1237 * bdev could be deleted beneath us which would implicitly destroy 1238 * the holder directory. Hold on to it. 1239 */ 1240 kobject_get(bdev->bd_part->holder_dir); 1241 1242 list_add(&holder->list, &bdev->bd_holder_disks); 1243 goto out_unlock; 1244 1245out_del: 1246 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1247out_free: 1248 kfree(holder); 1249out_unlock: 1250 mutex_unlock(&bdev->bd_mutex); 1251 return ret; 1252} 1253EXPORT_SYMBOL_GPL(bd_link_disk_holder); 1254 1255/** 1256 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 1257 * @bdev: the calimed slave bdev 1258 * @disk: the holding disk 1259 * 1260 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1261 * 1262 * CONTEXT: 1263 * Might sleep. 1264 */ 1265void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 1266{ 1267 struct bd_holder_disk *holder; 1268 1269 mutex_lock(&bdev->bd_mutex); 1270 1271 holder = bd_find_holder_disk(bdev, disk); 1272 1273 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 1274 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1275 del_symlink(bdev->bd_part->holder_dir, 1276 &disk_to_dev(disk)->kobj); 1277 kobject_put(bdev->bd_part->holder_dir); 1278 list_del_init(&holder->list); 1279 kfree(holder); 1280 } 1281 1282 mutex_unlock(&bdev->bd_mutex); 1283} 1284EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 1285#endif 1286 1287/** 1288 * flush_disk - invalidates all buffer-cache entries on a disk 1289 * 1290 * @bdev: struct block device to be flushed 1291 * @kill_dirty: flag to guide handling of dirty inodes 1292 * 1293 * Invalidates all buffer-cache entries on a disk. It should be called 1294 * when a disk has been changed -- either by a media change or online 1295 * resize. 1296 */ 1297static void flush_disk(struct block_device *bdev, bool kill_dirty) 1298{ 1299 if (__invalidate_device(bdev, kill_dirty)) { 1300 printk(KERN_WARNING "VFS: busy inodes on changed media or " 1301 "resized disk %s\n", 1302 bdev->bd_disk ? bdev->bd_disk->disk_name : ""); 1303 } 1304 1305 if (!bdev->bd_disk) 1306 return; 1307 if (disk_part_scan_enabled(bdev->bd_disk)) 1308 bdev->bd_invalidated = 1; 1309} 1310 1311/** 1312 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1313 * @disk: struct gendisk to check 1314 * @bdev: struct bdev to adjust. 1315 * 1316 * This routine checks to see if the bdev size does not match the disk size 1317 * and adjusts it if it differs. 1318 */ 1319void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) 1320{ 1321 loff_t disk_size, bdev_size; 1322 1323 disk_size = (loff_t)get_capacity(disk) << 9; 1324 bdev_size = i_size_read(bdev->bd_inode); 1325 if (disk_size != bdev_size) { 1326 printk(KERN_INFO 1327 "%s: detected capacity change from %lld to %lld\n", 1328 disk->disk_name, bdev_size, disk_size); 1329 i_size_write(bdev->bd_inode, disk_size); 1330 flush_disk(bdev, false); 1331 } 1332} 1333EXPORT_SYMBOL(check_disk_size_change); 1334 1335/** 1336 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1337 * @disk: struct gendisk to be revalidated 1338 * 1339 * This routine is a wrapper for lower-level driver's revalidate_disk 1340 * call-backs. It is used to do common pre and post operations needed 1341 * for all revalidate_disk operations. 1342 */ 1343int revalidate_disk(struct gendisk *disk) 1344{ 1345 struct block_device *bdev; 1346 int ret = 0; 1347 1348 if (disk->fops->revalidate_disk) 1349 ret = disk->fops->revalidate_disk(disk); 1350 bdev = bdget_disk(disk, 0); 1351 if (!bdev) 1352 return ret; 1353 1354 mutex_lock(&bdev->bd_mutex); 1355 check_disk_size_change(disk, bdev); 1356 bdev->bd_invalidated = 0; 1357 mutex_unlock(&bdev->bd_mutex); 1358 bdput(bdev); 1359 return ret; 1360} 1361EXPORT_SYMBOL(revalidate_disk); 1362 1363/* 1364 * This routine checks whether a removable media has been changed, 1365 * and invalidates all buffer-cache-entries in that case. This 1366 * is a relatively slow routine, so we have to try to minimize using 1367 * it. Thus it is called only upon a 'mount' or 'open'. This 1368 * is the best way of combining speed and utility, I think. 1369 * People changing diskettes in the middle of an operation deserve 1370 * to lose :-) 1371 */ 1372int check_disk_change(struct block_device *bdev) 1373{ 1374 struct gendisk *disk = bdev->bd_disk; 1375 const struct block_device_operations *bdops = disk->fops; 1376 unsigned int events; 1377 1378 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1379 DISK_EVENT_EJECT_REQUEST); 1380 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1381 return 0; 1382 1383 flush_disk(bdev, true); 1384 if (bdops->revalidate_disk) 1385 bdops->revalidate_disk(bdev->bd_disk); 1386 return 1; 1387} 1388 1389EXPORT_SYMBOL(check_disk_change); 1390 1391void bd_set_size(struct block_device *bdev, loff_t size) 1392{ 1393 unsigned bsize = bdev_logical_block_size(bdev); 1394 1395 inode_lock(bdev->bd_inode); 1396 i_size_write(bdev->bd_inode, size); 1397 inode_unlock(bdev->bd_inode); 1398 while (bsize < PAGE_SIZE) { 1399 if (size & bsize) 1400 break; 1401 bsize <<= 1; 1402 } 1403 bdev->bd_block_size = bsize; 1404 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1405} 1406EXPORT_SYMBOL(bd_set_size); 1407 1408static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1409 1410/* 1411 * bd_mutex locking: 1412 * 1413 * mutex_lock(part->bd_mutex) 1414 * mutex_lock_nested(whole->bd_mutex, 1) 1415 */ 1416 1417static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1418{ 1419 struct gendisk *disk; 1420 struct module *owner; 1421 int ret; 1422 int partno; 1423 int perm = 0; 1424 1425 if (mode & FMODE_READ) 1426 perm |= MAY_READ; 1427 if (mode & FMODE_WRITE) 1428 perm |= MAY_WRITE; 1429 /* 1430 * hooks: /n/, see "layering violations". 1431 */ 1432 if (!for_part) { 1433 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1434 if (ret != 0) { 1435 bdput(bdev); 1436 return ret; 1437 } 1438 } 1439 1440 restart: 1441 1442 ret = -ENXIO; 1443 disk = get_gendisk(bdev->bd_dev, &partno); 1444 if (!disk) 1445 goto out; 1446 owner = disk->fops->owner; 1447 1448 disk_block_events(disk); 1449 mutex_lock_nested(&bdev->bd_mutex, for_part); 1450 if (!bdev->bd_openers) { 1451 bdev->bd_disk = disk; 1452 bdev->bd_queue = disk->queue; 1453 bdev->bd_contains = bdev; 1454 bdev->bd_partno = partno; 1455 1456 if (!partno) { 1457 ret = -ENXIO; 1458 bdev->bd_part = disk_get_part(disk, partno); 1459 if (!bdev->bd_part) 1460 goto out_clear; 1461 1462 ret = 0; 1463 if (disk->fops->open) { 1464 ret = disk->fops->open(bdev, mode); 1465 if (ret == -ERESTARTSYS) { 1466 /* Lost a race with 'disk' being 1467 * deleted, try again. 1468 * See md.c 1469 */ 1470 disk_put_part(bdev->bd_part); 1471 bdev->bd_part = NULL; 1472 bdev->bd_disk = NULL; 1473 bdev->bd_queue = NULL; 1474 mutex_unlock(&bdev->bd_mutex); 1475 disk_unblock_events(disk); 1476 put_disk(disk); 1477 module_put(owner); 1478 goto restart; 1479 } 1480 } 1481 1482 if (!ret) 1483 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1484 1485 /* 1486 * If the device is invalidated, rescan partition 1487 * if open succeeded or failed with -ENOMEDIUM. 1488 * The latter is necessary to prevent ghost 1489 * partitions on a removed medium. 1490 */ 1491 if (bdev->bd_invalidated) { 1492 if (!ret) 1493 rescan_partitions(disk, bdev); 1494 else if (ret == -ENOMEDIUM) 1495 invalidate_partitions(disk, bdev); 1496 } 1497 1498 if (ret) 1499 goto out_clear; 1500 } else { 1501 struct block_device *whole; 1502 whole = bdget_disk(disk, 0); 1503 ret = -ENOMEM; 1504 if (!whole) 1505 goto out_clear; 1506 BUG_ON(for_part); 1507 ret = __blkdev_get(whole, mode, 1); 1508 if (ret) 1509 goto out_clear; 1510 bdev->bd_contains = whole; 1511 bdev->bd_part = disk_get_part(disk, partno); 1512 if (!(disk->flags & GENHD_FL_UP) || 1513 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1514 ret = -ENXIO; 1515 goto out_clear; 1516 } 1517 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1518 } 1519 1520 if (bdev->bd_bdi == &noop_backing_dev_info) 1521 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info); 1522 } else { 1523 if (bdev->bd_contains == bdev) { 1524 ret = 0; 1525 if (bdev->bd_disk->fops->open) 1526 ret = bdev->bd_disk->fops->open(bdev, mode); 1527 /* the same as first opener case, read comment there */ 1528 if (bdev->bd_invalidated) { 1529 if (!ret) 1530 rescan_partitions(bdev->bd_disk, bdev); 1531 else if (ret == -ENOMEDIUM) 1532 invalidate_partitions(bdev->bd_disk, bdev); 1533 } 1534 if (ret) 1535 goto out_unlock_bdev; 1536 } 1537 /* only one opener holds refs to the module and disk */ 1538 put_disk(disk); 1539 module_put(owner); 1540 } 1541 bdev->bd_openers++; 1542 if (for_part) 1543 bdev->bd_part_count++; 1544 mutex_unlock(&bdev->bd_mutex); 1545 disk_unblock_events(disk); 1546 return 0; 1547 1548 out_clear: 1549 disk_put_part(bdev->bd_part); 1550 bdev->bd_disk = NULL; 1551 bdev->bd_part = NULL; 1552 bdev->bd_queue = NULL; 1553 if (bdev != bdev->bd_contains) 1554 __blkdev_put(bdev->bd_contains, mode, 1); 1555 bdev->bd_contains = NULL; 1556 out_unlock_bdev: 1557 mutex_unlock(&bdev->bd_mutex); 1558 disk_unblock_events(disk); 1559 put_disk(disk); 1560 module_put(owner); 1561 out: 1562 bdput(bdev); 1563 1564 return ret; 1565} 1566 1567/** 1568 * blkdev_get - open a block device 1569 * @bdev: block_device to open 1570 * @mode: FMODE_* mask 1571 * @holder: exclusive holder identifier 1572 * 1573 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1574 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1575 * @holder is invalid. Exclusive opens may nest for the same @holder. 1576 * 1577 * On success, the reference count of @bdev is unchanged. On failure, 1578 * @bdev is put. 1579 * 1580 * CONTEXT: 1581 * Might sleep. 1582 * 1583 * RETURNS: 1584 * 0 on success, -errno on failure. 1585 */ 1586int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1587{ 1588 struct block_device *whole = NULL; 1589 int res; 1590 1591 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1592 1593 if ((mode & FMODE_EXCL) && holder) { 1594 whole = bd_start_claiming(bdev, holder); 1595 if (IS_ERR(whole)) { 1596 bdput(bdev); 1597 return PTR_ERR(whole); 1598 } 1599 } 1600 1601 res = __blkdev_get(bdev, mode, 0); 1602 1603 if (whole) { 1604 struct gendisk *disk = whole->bd_disk; 1605 1606 /* finish claiming */ 1607 mutex_lock(&bdev->bd_mutex); 1608 spin_lock(&bdev_lock); 1609 1610 if (!res) { 1611 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1612 /* 1613 * Note that for a whole device bd_holders 1614 * will be incremented twice, and bd_holder 1615 * will be set to bd_may_claim before being 1616 * set to holder 1617 */ 1618 whole->bd_holders++; 1619 whole->bd_holder = bd_may_claim; 1620 bdev->bd_holders++; 1621 bdev->bd_holder = holder; 1622 } 1623 1624 /* tell others that we're done */ 1625 BUG_ON(whole->bd_claiming != holder); 1626 whole->bd_claiming = NULL; 1627 wake_up_bit(&whole->bd_claiming, 0); 1628 1629 spin_unlock(&bdev_lock); 1630 1631 /* 1632 * Block event polling for write claims if requested. Any 1633 * write holder makes the write_holder state stick until 1634 * all are released. This is good enough and tracking 1635 * individual writeable reference is too fragile given the 1636 * way @mode is used in blkdev_get/put(). 1637 */ 1638 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1639 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1640 bdev->bd_write_holder = true; 1641 disk_block_events(disk); 1642 } 1643 1644 mutex_unlock(&bdev->bd_mutex); 1645 bdput(whole); 1646 } 1647 1648 return res; 1649} 1650EXPORT_SYMBOL(blkdev_get); 1651 1652/** 1653 * blkdev_get_by_path - open a block device by name 1654 * @path: path to the block device to open 1655 * @mode: FMODE_* mask 1656 * @holder: exclusive holder identifier 1657 * 1658 * Open the blockdevice described by the device file at @path. @mode 1659 * and @holder are identical to blkdev_get(). 1660 * 1661 * On success, the returned block_device has reference count of one. 1662 * 1663 * CONTEXT: 1664 * Might sleep. 1665 * 1666 * RETURNS: 1667 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1668 */ 1669struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1670 void *holder) 1671{ 1672 struct block_device *bdev; 1673 int err; 1674 1675 bdev = lookup_bdev(path); 1676 if (IS_ERR(bdev)) 1677 return bdev; 1678 1679 err = blkdev_get(bdev, mode, holder); 1680 if (err) 1681 return ERR_PTR(err); 1682 1683 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1684 blkdev_put(bdev, mode); 1685 return ERR_PTR(-EACCES); 1686 } 1687 1688 return bdev; 1689} 1690EXPORT_SYMBOL(blkdev_get_by_path); 1691 1692/** 1693 * blkdev_get_by_dev - open a block device by device number 1694 * @dev: device number of block device to open 1695 * @mode: FMODE_* mask 1696 * @holder: exclusive holder identifier 1697 * 1698 * Open the blockdevice described by device number @dev. @mode and 1699 * @holder are identical to blkdev_get(). 1700 * 1701 * Use it ONLY if you really do not have anything better - i.e. when 1702 * you are behind a truly sucky interface and all you are given is a 1703 * device number. _Never_ to be used for internal purposes. If you 1704 * ever need it - reconsider your API. 1705 * 1706 * On success, the returned block_device has reference count of one. 1707 * 1708 * CONTEXT: 1709 * Might sleep. 1710 * 1711 * RETURNS: 1712 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1713 */ 1714struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1715{ 1716 struct block_device *bdev; 1717 int err; 1718 1719 bdev = bdget(dev); 1720 if (!bdev) 1721 return ERR_PTR(-ENOMEM); 1722 1723 err = blkdev_get(bdev, mode, holder); 1724 if (err) 1725 return ERR_PTR(err); 1726 1727 return bdev; 1728} 1729EXPORT_SYMBOL(blkdev_get_by_dev); 1730 1731static int blkdev_open(struct inode * inode, struct file * filp) 1732{ 1733 struct block_device *bdev; 1734 1735 /* 1736 * Preserve backwards compatibility and allow large file access 1737 * even if userspace doesn't ask for it explicitly. Some mkfs 1738 * binary needs it. We might want to drop this workaround 1739 * during an unstable branch. 1740 */ 1741 filp->f_flags |= O_LARGEFILE; 1742 1743 filp->f_mode |= FMODE_NOWAIT; 1744 1745 if (filp->f_flags & O_NDELAY) 1746 filp->f_mode |= FMODE_NDELAY; 1747 if (filp->f_flags & O_EXCL) 1748 filp->f_mode |= FMODE_EXCL; 1749 if ((filp->f_flags & O_ACCMODE) == 3) 1750 filp->f_mode |= FMODE_WRITE_IOCTL; 1751 1752 bdev = bd_acquire(inode); 1753 if (bdev == NULL) 1754 return -ENOMEM; 1755 1756 filp->f_mapping = bdev->bd_inode->i_mapping; 1757 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping); 1758 1759 return blkdev_get(bdev, filp->f_mode, filp); 1760} 1761 1762static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1763{ 1764 struct gendisk *disk = bdev->bd_disk; 1765 struct block_device *victim = NULL; 1766 1767 mutex_lock_nested(&bdev->bd_mutex, for_part); 1768 if (for_part) 1769 bdev->bd_part_count--; 1770 1771 if (!--bdev->bd_openers) { 1772 WARN_ON_ONCE(bdev->bd_holders); 1773 sync_blockdev(bdev); 1774 kill_bdev(bdev); 1775 1776 bdev_write_inode(bdev); 1777 } 1778 if (bdev->bd_contains == bdev) { 1779 if (disk->fops->release) 1780 disk->fops->release(disk, mode); 1781 } 1782 if (!bdev->bd_openers) { 1783 struct module *owner = disk->fops->owner; 1784 1785 disk_put_part(bdev->bd_part); 1786 bdev->bd_part = NULL; 1787 bdev->bd_disk = NULL; 1788 if (bdev != bdev->bd_contains) 1789 victim = bdev->bd_contains; 1790 bdev->bd_contains = NULL; 1791 1792 put_disk(disk); 1793 module_put(owner); 1794 } 1795 mutex_unlock(&bdev->bd_mutex); 1796 bdput(bdev); 1797 if (victim) 1798 __blkdev_put(victim, mode, 1); 1799} 1800 1801void blkdev_put(struct block_device *bdev, fmode_t mode) 1802{ 1803 mutex_lock(&bdev->bd_mutex); 1804 1805 if (mode & FMODE_EXCL) { 1806 bool bdev_free; 1807 1808 /* 1809 * Release a claim on the device. The holder fields 1810 * are protected with bdev_lock. bd_mutex is to 1811 * synchronize disk_holder unlinking. 1812 */ 1813 spin_lock(&bdev_lock); 1814 1815 WARN_ON_ONCE(--bdev->bd_holders < 0); 1816 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1817 1818 /* bd_contains might point to self, check in a separate step */ 1819 if ((bdev_free = !bdev->bd_holders)) 1820 bdev->bd_holder = NULL; 1821 if (!bdev->bd_contains->bd_holders) 1822 bdev->bd_contains->bd_holder = NULL; 1823 1824 spin_unlock(&bdev_lock); 1825 1826 /* 1827 * If this was the last claim, remove holder link and 1828 * unblock evpoll if it was a write holder. 1829 */ 1830 if (bdev_free && bdev->bd_write_holder) { 1831 disk_unblock_events(bdev->bd_disk); 1832 bdev->bd_write_holder = false; 1833 } 1834 } 1835 1836 /* 1837 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1838 * event. This is to ensure detection of media removal commanded 1839 * from userland - e.g. eject(1). 1840 */ 1841 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1842 1843 mutex_unlock(&bdev->bd_mutex); 1844 1845 __blkdev_put(bdev, mode, 0); 1846} 1847EXPORT_SYMBOL(blkdev_put); 1848 1849static int blkdev_close(struct inode * inode, struct file * filp) 1850{ 1851 struct block_device *bdev = I_BDEV(bdev_file_inode(filp)); 1852 blkdev_put(bdev, filp->f_mode); 1853 return 0; 1854} 1855 1856static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1857{ 1858 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1859 fmode_t mode = file->f_mode; 1860 1861 /* 1862 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1863 * to updated it before every ioctl. 1864 */ 1865 if (file->f_flags & O_NDELAY) 1866 mode |= FMODE_NDELAY; 1867 else 1868 mode &= ~FMODE_NDELAY; 1869 1870 return blkdev_ioctl(bdev, mode, cmd, arg); 1871} 1872 1873/* 1874 * Write data to the block device. Only intended for the block device itself 1875 * and the raw driver which basically is a fake block device. 1876 * 1877 * Does not take i_mutex for the write and thus is not for general purpose 1878 * use. 1879 */ 1880ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1881{ 1882 struct file *file = iocb->ki_filp; 1883 struct inode *bd_inode = bdev_file_inode(file); 1884 loff_t size = i_size_read(bd_inode); 1885 struct blk_plug plug; 1886 ssize_t ret; 1887 1888 if (bdev_read_only(I_BDEV(bd_inode))) 1889 return -EPERM; 1890 1891 if (!iov_iter_count(from)) 1892 return 0; 1893 1894 if (iocb->ki_pos >= size) 1895 return -ENOSPC; 1896 1897 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT) 1898 return -EOPNOTSUPP; 1899 1900 iov_iter_truncate(from, size - iocb->ki_pos); 1901 1902 blk_start_plug(&plug); 1903 ret = __generic_file_write_iter(iocb, from); 1904 if (ret > 0) 1905 ret = generic_write_sync(iocb, ret); 1906 blk_finish_plug(&plug); 1907 return ret; 1908} 1909EXPORT_SYMBOL_GPL(blkdev_write_iter); 1910 1911ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 1912{ 1913 struct file *file = iocb->ki_filp; 1914 struct inode *bd_inode = bdev_file_inode(file); 1915 loff_t size = i_size_read(bd_inode); 1916 loff_t pos = iocb->ki_pos; 1917 1918 if (pos >= size) 1919 return 0; 1920 1921 size -= pos; 1922 iov_iter_truncate(to, size); 1923 return generic_file_read_iter(iocb, to); 1924} 1925EXPORT_SYMBOL_GPL(blkdev_read_iter); 1926 1927/* 1928 * Try to release a page associated with block device when the system 1929 * is under memory pressure. 1930 */ 1931static int blkdev_releasepage(struct page *page, gfp_t wait) 1932{ 1933 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1934 1935 if (super && super->s_op->bdev_try_to_free_page) 1936 return super->s_op->bdev_try_to_free_page(super, page, wait); 1937 1938 return try_to_free_buffers(page); 1939} 1940 1941static int blkdev_writepages(struct address_space *mapping, 1942 struct writeback_control *wbc) 1943{ 1944 if (dax_mapping(mapping)) { 1945 struct block_device *bdev = I_BDEV(mapping->host); 1946 1947 return dax_writeback_mapping_range(mapping, bdev, wbc); 1948 } 1949 return generic_writepages(mapping, wbc); 1950} 1951 1952static const struct address_space_operations def_blk_aops = { 1953 .readpage = blkdev_readpage, 1954 .readpages = blkdev_readpages, 1955 .writepage = blkdev_writepage, 1956 .write_begin = blkdev_write_begin, 1957 .write_end = blkdev_write_end, 1958 .writepages = blkdev_writepages, 1959 .releasepage = blkdev_releasepage, 1960 .direct_IO = blkdev_direct_IO, 1961 .is_dirty_writeback = buffer_check_dirty_writeback, 1962}; 1963 1964#define BLKDEV_FALLOC_FL_SUPPORTED \ 1965 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 1966 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE) 1967 1968static long blkdev_fallocate(struct file *file, int mode, loff_t start, 1969 loff_t len) 1970{ 1971 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1972 struct address_space *mapping; 1973 loff_t end = start + len - 1; 1974 loff_t isize; 1975 int error; 1976 1977 /* Fail if we don't recognize the flags. */ 1978 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED) 1979 return -EOPNOTSUPP; 1980 1981 /* Don't go off the end of the device. */ 1982 isize = i_size_read(bdev->bd_inode); 1983 if (start >= isize) 1984 return -EINVAL; 1985 if (end >= isize) { 1986 if (mode & FALLOC_FL_KEEP_SIZE) { 1987 len = isize - start; 1988 end = start + len - 1; 1989 } else 1990 return -EINVAL; 1991 } 1992 1993 /* 1994 * Don't allow IO that isn't aligned to logical block size. 1995 */ 1996 if ((start | len) & (bdev_logical_block_size(bdev) - 1)) 1997 return -EINVAL; 1998 1999 /* Invalidate the page cache, including dirty pages. */ 2000 mapping = bdev->bd_inode->i_mapping; 2001 truncate_inode_pages_range(mapping, start, end); 2002 2003 switch (mode) { 2004 case FALLOC_FL_ZERO_RANGE: 2005 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE: 2006 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2007 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP); 2008 break; 2009 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE: 2010 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2011 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK); 2012 break; 2013 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE: 2014 error = blkdev_issue_discard(bdev, start >> 9, len >> 9, 2015 GFP_KERNEL, 0); 2016 break; 2017 default: 2018 return -EOPNOTSUPP; 2019 } 2020 if (error) 2021 return error; 2022 2023 /* 2024 * Invalidate again; if someone wandered in and dirtied a page, 2025 * the caller will be given -EBUSY. The third argument is 2026 * inclusive, so the rounding here is safe. 2027 */ 2028 return invalidate_inode_pages2_range(mapping, 2029 start >> PAGE_SHIFT, 2030 end >> PAGE_SHIFT); 2031} 2032 2033const struct file_operations def_blk_fops = { 2034 .open = blkdev_open, 2035 .release = blkdev_close, 2036 .llseek = block_llseek, 2037 .read_iter = blkdev_read_iter, 2038 .write_iter = blkdev_write_iter, 2039 .mmap = generic_file_mmap, 2040 .fsync = blkdev_fsync, 2041 .unlocked_ioctl = block_ioctl, 2042#ifdef CONFIG_COMPAT 2043 .compat_ioctl = compat_blkdev_ioctl, 2044#endif 2045 .splice_read = generic_file_splice_read, 2046 .splice_write = iter_file_splice_write, 2047 .fallocate = blkdev_fallocate, 2048}; 2049 2050int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 2051{ 2052 int res; 2053 mm_segment_t old_fs = get_fs(); 2054 set_fs(KERNEL_DS); 2055 res = blkdev_ioctl(bdev, 0, cmd, arg); 2056 set_fs(old_fs); 2057 return res; 2058} 2059 2060EXPORT_SYMBOL(ioctl_by_bdev); 2061 2062/** 2063 * lookup_bdev - lookup a struct block_device by name 2064 * @pathname: special file representing the block device 2065 * 2066 * Get a reference to the blockdevice at @pathname in the current 2067 * namespace if possible and return it. Return ERR_PTR(error) 2068 * otherwise. 2069 */ 2070struct block_device *lookup_bdev(const char *pathname) 2071{ 2072 struct block_device *bdev; 2073 struct inode *inode; 2074 struct path path; 2075 int error; 2076 2077 if (!pathname || !*pathname) 2078 return ERR_PTR(-EINVAL); 2079 2080 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 2081 if (error) 2082 return ERR_PTR(error); 2083 2084 inode = d_backing_inode(path.dentry); 2085 error = -ENOTBLK; 2086 if (!S_ISBLK(inode->i_mode)) 2087 goto fail; 2088 error = -EACCES; 2089 if (!may_open_dev(&path)) 2090 goto fail; 2091 error = -ENOMEM; 2092 bdev = bd_acquire(inode); 2093 if (!bdev) 2094 goto fail; 2095out: 2096 path_put(&path); 2097 return bdev; 2098fail: 2099 bdev = ERR_PTR(error); 2100 goto out; 2101} 2102EXPORT_SYMBOL(lookup_bdev); 2103 2104int __invalidate_device(struct block_device *bdev, bool kill_dirty) 2105{ 2106 struct super_block *sb = get_super(bdev); 2107 int res = 0; 2108 2109 if (sb) { 2110 /* 2111 * no need to lock the super, get_super holds the 2112 * read mutex so the filesystem cannot go away 2113 * under us (->put_super runs with the write lock 2114 * hold). 2115 */ 2116 shrink_dcache_sb(sb); 2117 res = invalidate_inodes(sb, kill_dirty); 2118 drop_super(sb); 2119 } 2120 invalidate_bdev(bdev); 2121 return res; 2122} 2123EXPORT_SYMBOL(__invalidate_device); 2124 2125void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 2126{ 2127 struct inode *inode, *old_inode = NULL; 2128 2129 spin_lock(&blockdev_superblock->s_inode_list_lock); 2130 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 2131 struct address_space *mapping = inode->i_mapping; 2132 struct block_device *bdev; 2133 2134 spin_lock(&inode->i_lock); 2135 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 2136 mapping->nrpages == 0) { 2137 spin_unlock(&inode->i_lock); 2138 continue; 2139 } 2140 __iget(inode); 2141 spin_unlock(&inode->i_lock); 2142 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2143 /* 2144 * We hold a reference to 'inode' so it couldn't have been 2145 * removed from s_inodes list while we dropped the 2146 * s_inode_list_lock We cannot iput the inode now as we can 2147 * be holding the last reference and we cannot iput it under 2148 * s_inode_list_lock. So we keep the reference and iput it 2149 * later. 2150 */ 2151 iput(old_inode); 2152 old_inode = inode; 2153 bdev = I_BDEV(inode); 2154 2155 mutex_lock(&bdev->bd_mutex); 2156 if (bdev->bd_openers) 2157 func(bdev, arg); 2158 mutex_unlock(&bdev->bd_mutex); 2159 2160 spin_lock(&blockdev_superblock->s_inode_list_lock); 2161 } 2162 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2163 iput(old_inode); 2164}