at v4.14-rc2 13 kB view raw
1/* 2 * include/linux/writeback.h 3 */ 4#ifndef WRITEBACK_H 5#define WRITEBACK_H 6 7#include <linux/sched.h> 8#include <linux/workqueue.h> 9#include <linux/fs.h> 10#include <linux/flex_proportions.h> 11#include <linux/backing-dev-defs.h> 12#include <linux/blk_types.h> 13 14struct bio; 15 16DECLARE_PER_CPU(int, dirty_throttle_leaks); 17 18/* 19 * The 1/4 region under the global dirty thresh is for smooth dirty throttling: 20 * 21 * (thresh - thresh/DIRTY_FULL_SCOPE, thresh) 22 * 23 * Further beyond, all dirtier tasks will enter a loop waiting (possibly long 24 * time) for the dirty pages to drop, unless written enough pages. 25 * 26 * The global dirty threshold is normally equal to the global dirty limit, 27 * except when the system suddenly allocates a lot of anonymous memory and 28 * knocks down the global dirty threshold quickly, in which case the global 29 * dirty limit will follow down slowly to prevent livelocking all dirtier tasks. 30 */ 31#define DIRTY_SCOPE 8 32#define DIRTY_FULL_SCOPE (DIRTY_SCOPE / 2) 33 34struct backing_dev_info; 35 36/* 37 * fs/fs-writeback.c 38 */ 39enum writeback_sync_modes { 40 WB_SYNC_NONE, /* Don't wait on anything */ 41 WB_SYNC_ALL, /* Wait on every mapping */ 42}; 43 44/* 45 * why some writeback work was initiated 46 */ 47enum wb_reason { 48 WB_REASON_BACKGROUND, 49 WB_REASON_VMSCAN, 50 WB_REASON_SYNC, 51 WB_REASON_PERIODIC, 52 WB_REASON_LAPTOP_TIMER, 53 WB_REASON_FREE_MORE_MEM, 54 WB_REASON_FS_FREE_SPACE, 55 /* 56 * There is no bdi forker thread any more and works are done 57 * by emergency worker, however, this is TPs userland visible 58 * and we'll be exposing exactly the same information, 59 * so it has a mismatch name. 60 */ 61 WB_REASON_FORKER_THREAD, 62 63 WB_REASON_MAX, 64}; 65 66/* 67 * A control structure which tells the writeback code what to do. These are 68 * always on the stack, and hence need no locking. They are always initialised 69 * in a manner such that unspecified fields are set to zero. 70 */ 71struct writeback_control { 72 long nr_to_write; /* Write this many pages, and decrement 73 this for each page written */ 74 long pages_skipped; /* Pages which were not written */ 75 76 /* 77 * For a_ops->writepages(): if start or end are non-zero then this is 78 * a hint that the filesystem need only write out the pages inside that 79 * byterange. The byte at `end' is included in the writeout request. 80 */ 81 loff_t range_start; 82 loff_t range_end; 83 84 enum writeback_sync_modes sync_mode; 85 86 unsigned for_kupdate:1; /* A kupdate writeback */ 87 unsigned for_background:1; /* A background writeback */ 88 unsigned tagged_writepages:1; /* tag-and-write to avoid livelock */ 89 unsigned for_reclaim:1; /* Invoked from the page allocator */ 90 unsigned range_cyclic:1; /* range_start is cyclic */ 91 unsigned for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 92#ifdef CONFIG_CGROUP_WRITEBACK 93 struct bdi_writeback *wb; /* wb this writeback is issued under */ 94 struct inode *inode; /* inode being written out */ 95 96 /* foreign inode detection, see wbc_detach_inode() */ 97 int wb_id; /* current wb id */ 98 int wb_lcand_id; /* last foreign candidate wb id */ 99 int wb_tcand_id; /* this foreign candidate wb id */ 100 size_t wb_bytes; /* bytes written by current wb */ 101 size_t wb_lcand_bytes; /* bytes written by last candidate */ 102 size_t wb_tcand_bytes; /* bytes written by this candidate */ 103#endif 104}; 105 106static inline int wbc_to_write_flags(struct writeback_control *wbc) 107{ 108 if (wbc->sync_mode == WB_SYNC_ALL) 109 return REQ_SYNC; 110 else if (wbc->for_kupdate || wbc->for_background) 111 return REQ_BACKGROUND; 112 113 return 0; 114} 115 116/* 117 * A wb_domain represents a domain that wb's (bdi_writeback's) belong to 118 * and are measured against each other in. There always is one global 119 * domain, global_wb_domain, that every wb in the system is a member of. 120 * This allows measuring the relative bandwidth of each wb to distribute 121 * dirtyable memory accordingly. 122 */ 123struct wb_domain { 124 spinlock_t lock; 125 126 /* 127 * Scale the writeback cache size proportional to the relative 128 * writeout speed. 129 * 130 * We do this by keeping a floating proportion between BDIs, based 131 * on page writeback completions [end_page_writeback()]. Those 132 * devices that write out pages fastest will get the larger share, 133 * while the slower will get a smaller share. 134 * 135 * We use page writeout completions because we are interested in 136 * getting rid of dirty pages. Having them written out is the 137 * primary goal. 138 * 139 * We introduce a concept of time, a period over which we measure 140 * these events, because demand can/will vary over time. The length 141 * of this period itself is measured in page writeback completions. 142 */ 143 struct fprop_global completions; 144 struct timer_list period_timer; /* timer for aging of completions */ 145 unsigned long period_time; 146 147 /* 148 * The dirtyable memory and dirty threshold could be suddenly 149 * knocked down by a large amount (eg. on the startup of KVM in a 150 * swapless system). This may throw the system into deep dirty 151 * exceeded state and throttle heavy/light dirtiers alike. To 152 * retain good responsiveness, maintain global_dirty_limit for 153 * tracking slowly down to the knocked down dirty threshold. 154 * 155 * Both fields are protected by ->lock. 156 */ 157 unsigned long dirty_limit_tstamp; 158 unsigned long dirty_limit; 159}; 160 161/** 162 * wb_domain_size_changed - memory available to a wb_domain has changed 163 * @dom: wb_domain of interest 164 * 165 * This function should be called when the amount of memory available to 166 * @dom has changed. It resets @dom's dirty limit parameters to prevent 167 * the past values which don't match the current configuration from skewing 168 * dirty throttling. Without this, when memory size of a wb_domain is 169 * greatly reduced, the dirty throttling logic may allow too many pages to 170 * be dirtied leading to consecutive unnecessary OOMs and may get stuck in 171 * that situation. 172 */ 173static inline void wb_domain_size_changed(struct wb_domain *dom) 174{ 175 spin_lock(&dom->lock); 176 dom->dirty_limit_tstamp = jiffies; 177 dom->dirty_limit = 0; 178 spin_unlock(&dom->lock); 179} 180 181/* 182 * fs/fs-writeback.c 183 */ 184struct bdi_writeback; 185void writeback_inodes_sb(struct super_block *, enum wb_reason reason); 186void writeback_inodes_sb_nr(struct super_block *, unsigned long nr, 187 enum wb_reason reason); 188bool try_to_writeback_inodes_sb(struct super_block *, enum wb_reason reason); 189bool try_to_writeback_inodes_sb_nr(struct super_block *, unsigned long nr, 190 enum wb_reason reason); 191void sync_inodes_sb(struct super_block *); 192void wakeup_flusher_threads(long nr_pages, enum wb_reason reason); 193void inode_wait_for_writeback(struct inode *inode); 194 195/* writeback.h requires fs.h; it, too, is not included from here. */ 196static inline void wait_on_inode(struct inode *inode) 197{ 198 might_sleep(); 199 wait_on_bit(&inode->i_state, __I_NEW, TASK_UNINTERRUPTIBLE); 200} 201 202#ifdef CONFIG_CGROUP_WRITEBACK 203 204#include <linux/cgroup.h> 205#include <linux/bio.h> 206 207void __inode_attach_wb(struct inode *inode, struct page *page); 208void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 209 struct inode *inode) 210 __releases(&inode->i_lock); 211void wbc_detach_inode(struct writeback_control *wbc); 212void wbc_account_io(struct writeback_control *wbc, struct page *page, 213 size_t bytes); 214void cgroup_writeback_umount(void); 215 216/** 217 * inode_attach_wb - associate an inode with its wb 218 * @inode: inode of interest 219 * @page: page being dirtied (may be NULL) 220 * 221 * If @inode doesn't have its wb, associate it with the wb matching the 222 * memcg of @page or, if @page is NULL, %current. May be called w/ or w/o 223 * @inode->i_lock. 224 */ 225static inline void inode_attach_wb(struct inode *inode, struct page *page) 226{ 227 if (!inode->i_wb) 228 __inode_attach_wb(inode, page); 229} 230 231/** 232 * inode_detach_wb - disassociate an inode from its wb 233 * @inode: inode of interest 234 * 235 * @inode is being freed. Detach from its wb. 236 */ 237static inline void inode_detach_wb(struct inode *inode) 238{ 239 if (inode->i_wb) { 240 WARN_ON_ONCE(!(inode->i_state & I_CLEAR)); 241 wb_put(inode->i_wb); 242 inode->i_wb = NULL; 243 } 244} 245 246/** 247 * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite 248 * @wbc: writeback_control of interest 249 * @inode: target inode 250 * 251 * This function is to be used by __filemap_fdatawrite_range(), which is an 252 * alternative entry point into writeback code, and first ensures @inode is 253 * associated with a bdi_writeback and attaches it to @wbc. 254 */ 255static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc, 256 struct inode *inode) 257{ 258 spin_lock(&inode->i_lock); 259 inode_attach_wb(inode, NULL); 260 wbc_attach_and_unlock_inode(wbc, inode); 261} 262 263/** 264 * wbc_init_bio - writeback specific initializtion of bio 265 * @wbc: writeback_control for the writeback in progress 266 * @bio: bio to be initialized 267 * 268 * @bio is a part of the writeback in progress controlled by @wbc. Perform 269 * writeback specific initialization. This is used to apply the cgroup 270 * writeback context. 271 */ 272static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio) 273{ 274 /* 275 * pageout() path doesn't attach @wbc to the inode being written 276 * out. This is intentional as we don't want the function to block 277 * behind a slow cgroup. Ultimately, we want pageout() to kick off 278 * regular writeback instead of writing things out itself. 279 */ 280 if (wbc->wb) 281 bio_associate_blkcg(bio, wbc->wb->blkcg_css); 282} 283 284#else /* CONFIG_CGROUP_WRITEBACK */ 285 286static inline void inode_attach_wb(struct inode *inode, struct page *page) 287{ 288} 289 290static inline void inode_detach_wb(struct inode *inode) 291{ 292} 293 294static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 295 struct inode *inode) 296 __releases(&inode->i_lock) 297{ 298 spin_unlock(&inode->i_lock); 299} 300 301static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc, 302 struct inode *inode) 303{ 304} 305 306static inline void wbc_detach_inode(struct writeback_control *wbc) 307{ 308} 309 310static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio) 311{ 312} 313 314static inline void wbc_account_io(struct writeback_control *wbc, 315 struct page *page, size_t bytes) 316{ 317} 318 319static inline void cgroup_writeback_umount(void) 320{ 321} 322 323#endif /* CONFIG_CGROUP_WRITEBACK */ 324 325/* 326 * mm/page-writeback.c 327 */ 328#ifdef CONFIG_BLOCK 329void laptop_io_completion(struct backing_dev_info *info); 330void laptop_sync_completion(void); 331void laptop_mode_sync(struct work_struct *work); 332void laptop_mode_timer_fn(unsigned long data); 333#else 334static inline void laptop_sync_completion(void) { } 335#endif 336bool node_dirty_ok(struct pglist_data *pgdat); 337int wb_domain_init(struct wb_domain *dom, gfp_t gfp); 338#ifdef CONFIG_CGROUP_WRITEBACK 339void wb_domain_exit(struct wb_domain *dom); 340#endif 341 342extern struct wb_domain global_wb_domain; 343 344/* These are exported to sysctl. */ 345extern int dirty_background_ratio; 346extern unsigned long dirty_background_bytes; 347extern int vm_dirty_ratio; 348extern unsigned long vm_dirty_bytes; 349extern unsigned int dirty_writeback_interval; 350extern unsigned int dirty_expire_interval; 351extern unsigned int dirtytime_expire_interval; 352extern int vm_highmem_is_dirtyable; 353extern int block_dump; 354extern int laptop_mode; 355 356extern int dirty_background_ratio_handler(struct ctl_table *table, int write, 357 void __user *buffer, size_t *lenp, 358 loff_t *ppos); 359extern int dirty_background_bytes_handler(struct ctl_table *table, int write, 360 void __user *buffer, size_t *lenp, 361 loff_t *ppos); 362extern int dirty_ratio_handler(struct ctl_table *table, int write, 363 void __user *buffer, size_t *lenp, 364 loff_t *ppos); 365extern int dirty_bytes_handler(struct ctl_table *table, int write, 366 void __user *buffer, size_t *lenp, 367 loff_t *ppos); 368int dirtytime_interval_handler(struct ctl_table *table, int write, 369 void __user *buffer, size_t *lenp, loff_t *ppos); 370 371struct ctl_table; 372int dirty_writeback_centisecs_handler(struct ctl_table *, int, 373 void __user *, size_t *, loff_t *); 374 375void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty); 376unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh); 377 378void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time); 379void balance_dirty_pages_ratelimited(struct address_space *mapping); 380bool wb_over_bg_thresh(struct bdi_writeback *wb); 381 382typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc, 383 void *data); 384 385int generic_writepages(struct address_space *mapping, 386 struct writeback_control *wbc); 387void tag_pages_for_writeback(struct address_space *mapping, 388 pgoff_t start, pgoff_t end); 389int write_cache_pages(struct address_space *mapping, 390 struct writeback_control *wbc, writepage_t writepage, 391 void *data); 392int do_writepages(struct address_space *mapping, struct writeback_control *wbc); 393void writeback_set_ratelimit(void); 394void tag_pages_for_writeback(struct address_space *mapping, 395 pgoff_t start, pgoff_t end); 396 397void account_page_redirty(struct page *page); 398 399void sb_mark_inode_writeback(struct inode *inode); 400void sb_clear_inode_writeback(struct inode *inode); 401 402#endif /* WRITEBACK_H */