at v4.14-rc2 7.4 kB view raw
1/* linux/include/linux/clockchips.h 2 * 3 * This file contains the structure definitions for clockchips. 4 * 5 * If you are not a clockchip, or the time of day code, you should 6 * not be including this file! 7 */ 8#ifndef _LINUX_CLOCKCHIPS_H 9#define _LINUX_CLOCKCHIPS_H 10 11#ifdef CONFIG_GENERIC_CLOCKEVENTS 12 13# include <linux/clocksource.h> 14# include <linux/cpumask.h> 15# include <linux/ktime.h> 16# include <linux/notifier.h> 17 18struct clock_event_device; 19struct module; 20 21/* 22 * Possible states of a clock event device. 23 * 24 * DETACHED: Device is not used by clockevents core. Initial state or can be 25 * reached from SHUTDOWN. 26 * SHUTDOWN: Device is powered-off. Can be reached from PERIODIC or ONESHOT. 27 * PERIODIC: Device is programmed to generate events periodically. Can be 28 * reached from DETACHED or SHUTDOWN. 29 * ONESHOT: Device is programmed to generate event only once. Can be reached 30 * from DETACHED or SHUTDOWN. 31 * ONESHOT_STOPPED: Device was programmed in ONESHOT mode and is temporarily 32 * stopped. 33 */ 34enum clock_event_state { 35 CLOCK_EVT_STATE_DETACHED, 36 CLOCK_EVT_STATE_SHUTDOWN, 37 CLOCK_EVT_STATE_PERIODIC, 38 CLOCK_EVT_STATE_ONESHOT, 39 CLOCK_EVT_STATE_ONESHOT_STOPPED, 40}; 41 42/* 43 * Clock event features 44 */ 45# define CLOCK_EVT_FEAT_PERIODIC 0x000001 46# define CLOCK_EVT_FEAT_ONESHOT 0x000002 47# define CLOCK_EVT_FEAT_KTIME 0x000004 48 49/* 50 * x86(64) specific (mis)features: 51 * 52 * - Clockevent source stops in C3 State and needs broadcast support. 53 * - Local APIC timer is used as a dummy device. 54 */ 55# define CLOCK_EVT_FEAT_C3STOP 0x000008 56# define CLOCK_EVT_FEAT_DUMMY 0x000010 57 58/* 59 * Core shall set the interrupt affinity dynamically in broadcast mode 60 */ 61# define CLOCK_EVT_FEAT_DYNIRQ 0x000020 62# define CLOCK_EVT_FEAT_PERCPU 0x000040 63 64/* 65 * Clockevent device is based on a hrtimer for broadcast 66 */ 67# define CLOCK_EVT_FEAT_HRTIMER 0x000080 68 69/** 70 * struct clock_event_device - clock event device descriptor 71 * @event_handler: Assigned by the framework to be called by the low 72 * level handler of the event source 73 * @set_next_event: set next event function using a clocksource delta 74 * @set_next_ktime: set next event function using a direct ktime value 75 * @next_event: local storage for the next event in oneshot mode 76 * @max_delta_ns: maximum delta value in ns 77 * @min_delta_ns: minimum delta value in ns 78 * @mult: nanosecond to cycles multiplier 79 * @shift: nanoseconds to cycles divisor (power of two) 80 * @state_use_accessors:current state of the device, assigned by the core code 81 * @features: features 82 * @retries: number of forced programming retries 83 * @set_state_periodic: switch state to periodic 84 * @set_state_oneshot: switch state to oneshot 85 * @set_state_oneshot_stopped: switch state to oneshot_stopped 86 * @set_state_shutdown: switch state to shutdown 87 * @tick_resume: resume clkevt device 88 * @broadcast: function to broadcast events 89 * @min_delta_ticks: minimum delta value in ticks stored for reconfiguration 90 * @max_delta_ticks: maximum delta value in ticks stored for reconfiguration 91 * @name: ptr to clock event name 92 * @rating: variable to rate clock event devices 93 * @irq: IRQ number (only for non CPU local devices) 94 * @bound_on: Bound on CPU 95 * @cpumask: cpumask to indicate for which CPUs this device works 96 * @list: list head for the management code 97 * @owner: module reference 98 */ 99struct clock_event_device { 100 void (*event_handler)(struct clock_event_device *); 101 int (*set_next_event)(unsigned long evt, struct clock_event_device *); 102 int (*set_next_ktime)(ktime_t expires, struct clock_event_device *); 103 ktime_t next_event; 104 u64 max_delta_ns; 105 u64 min_delta_ns; 106 u32 mult; 107 u32 shift; 108 enum clock_event_state state_use_accessors; 109 unsigned int features; 110 unsigned long retries; 111 112 int (*set_state_periodic)(struct clock_event_device *); 113 int (*set_state_oneshot)(struct clock_event_device *); 114 int (*set_state_oneshot_stopped)(struct clock_event_device *); 115 int (*set_state_shutdown)(struct clock_event_device *); 116 int (*tick_resume)(struct clock_event_device *); 117 118 void (*broadcast)(const struct cpumask *mask); 119 void (*suspend)(struct clock_event_device *); 120 void (*resume)(struct clock_event_device *); 121 unsigned long min_delta_ticks; 122 unsigned long max_delta_ticks; 123 124 const char *name; 125 int rating; 126 int irq; 127 int bound_on; 128 const struct cpumask *cpumask; 129 struct list_head list; 130 struct module *owner; 131} ____cacheline_aligned; 132 133/* Helpers to verify state of a clockevent device */ 134static inline bool clockevent_state_detached(struct clock_event_device *dev) 135{ 136 return dev->state_use_accessors == CLOCK_EVT_STATE_DETACHED; 137} 138 139static inline bool clockevent_state_shutdown(struct clock_event_device *dev) 140{ 141 return dev->state_use_accessors == CLOCK_EVT_STATE_SHUTDOWN; 142} 143 144static inline bool clockevent_state_periodic(struct clock_event_device *dev) 145{ 146 return dev->state_use_accessors == CLOCK_EVT_STATE_PERIODIC; 147} 148 149static inline bool clockevent_state_oneshot(struct clock_event_device *dev) 150{ 151 return dev->state_use_accessors == CLOCK_EVT_STATE_ONESHOT; 152} 153 154static inline bool clockevent_state_oneshot_stopped(struct clock_event_device *dev) 155{ 156 return dev->state_use_accessors == CLOCK_EVT_STATE_ONESHOT_STOPPED; 157} 158 159/* 160 * Calculate a multiplication factor for scaled math, which is used to convert 161 * nanoseconds based values to clock ticks: 162 * 163 * clock_ticks = (nanoseconds * factor) >> shift. 164 * 165 * div_sc is the rearranged equation to calculate a factor from a given clock 166 * ticks / nanoseconds ratio: 167 * 168 * factor = (clock_ticks << shift) / nanoseconds 169 */ 170static inline unsigned long 171div_sc(unsigned long ticks, unsigned long nsec, int shift) 172{ 173 u64 tmp = ((u64)ticks) << shift; 174 175 do_div(tmp, nsec); 176 177 return (unsigned long) tmp; 178} 179 180/* Clock event layer functions */ 181extern u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt); 182extern void clockevents_register_device(struct clock_event_device *dev); 183extern int clockevents_unbind_device(struct clock_event_device *ced, int cpu); 184 185extern void clockevents_config_and_register(struct clock_event_device *dev, 186 u32 freq, unsigned long min_delta, 187 unsigned long max_delta); 188 189extern int clockevents_update_freq(struct clock_event_device *ce, u32 freq); 190 191static inline void 192clockevents_calc_mult_shift(struct clock_event_device *ce, u32 freq, u32 maxsec) 193{ 194 return clocks_calc_mult_shift(&ce->mult, &ce->shift, NSEC_PER_SEC, freq, maxsec); 195} 196 197extern void clockevents_suspend(void); 198extern void clockevents_resume(void); 199 200# ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 201# ifdef CONFIG_ARCH_HAS_TICK_BROADCAST 202extern void tick_broadcast(const struct cpumask *mask); 203# else 204# define tick_broadcast NULL 205# endif 206extern int tick_receive_broadcast(void); 207# endif 208 209# if defined(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST) && defined(CONFIG_TICK_ONESHOT) 210extern void tick_setup_hrtimer_broadcast(void); 211extern int tick_check_broadcast_expired(void); 212# else 213static inline int tick_check_broadcast_expired(void) { return 0; } 214static inline void tick_setup_hrtimer_broadcast(void) { } 215# endif 216 217#else /* !CONFIG_GENERIC_CLOCKEVENTS: */ 218 219static inline void clockevents_suspend(void) { } 220static inline void clockevents_resume(void) { } 221static inline int tick_check_broadcast_expired(void) { return 0; } 222static inline void tick_setup_hrtimer_broadcast(void) { } 223 224#endif /* !CONFIG_GENERIC_CLOCKEVENTS */ 225 226#endif /* _LINUX_CLOCKCHIPS_H */