Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <linux/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/sched/mm.h>
85#include <linux/mutex.h>
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
95#include <linux/ethtool.h>
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
98#include <linux/bpf.h>
99#include <linux/bpf_trace.h>
100#include <net/net_namespace.h>
101#include <net/sock.h>
102#include <net/busy_poll.h>
103#include <linux/rtnetlink.h>
104#include <linux/stat.h>
105#include <net/dst.h>
106#include <net/dst_metadata.h>
107#include <net/pkt_sched.h>
108#include <net/pkt_cls.h>
109#include <net/checksum.h>
110#include <net/xfrm.h>
111#include <linux/highmem.h>
112#include <linux/init.h>
113#include <linux/module.h>
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
117#include <net/iw_handler.h>
118#include <asm/current.h>
119#include <linux/audit.h>
120#include <linux/dmaengine.h>
121#include <linux/err.h>
122#include <linux/ctype.h>
123#include <linux/if_arp.h>
124#include <linux/if_vlan.h>
125#include <linux/ip.h>
126#include <net/ip.h>
127#include <net/mpls.h>
128#include <linux/ipv6.h>
129#include <linux/in.h>
130#include <linux/jhash.h>
131#include <linux/random.h>
132#include <trace/events/napi.h>
133#include <trace/events/net.h>
134#include <trace/events/skb.h>
135#include <linux/pci.h>
136#include <linux/inetdevice.h>
137#include <linux/cpu_rmap.h>
138#include <linux/static_key.h>
139#include <linux/hashtable.h>
140#include <linux/vmalloc.h>
141#include <linux/if_macvlan.h>
142#include <linux/errqueue.h>
143#include <linux/hrtimer.h>
144#include <linux/netfilter_ingress.h>
145#include <linux/crash_dump.h>
146#include <linux/sctp.h>
147#include <net/udp_tunnel.h>
148
149#include "net-sysfs.h"
150
151/* Instead of increasing this, you should create a hash table. */
152#define MAX_GRO_SKBS 8
153
154/* This should be increased if a protocol with a bigger head is added. */
155#define GRO_MAX_HEAD (MAX_HEADER + 128)
156
157static DEFINE_SPINLOCK(ptype_lock);
158static DEFINE_SPINLOCK(offload_lock);
159struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160struct list_head ptype_all __read_mostly; /* Taps */
161static struct list_head offload_base __read_mostly;
162
163static int netif_rx_internal(struct sk_buff *skb);
164static int call_netdevice_notifiers_info(unsigned long val,
165 struct net_device *dev,
166 struct netdev_notifier_info *info);
167static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169/*
170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171 * semaphore.
172 *
173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
176 * dev_base_head list, and hold dev_base_lock for writing when they do the
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
188DEFINE_RWLOCK(dev_base_lock);
189EXPORT_SYMBOL(dev_base_lock);
190
191/* protects napi_hash addition/deletion and napi_gen_id */
192static DEFINE_SPINLOCK(napi_hash_lock);
193
194static unsigned int napi_gen_id = NR_CPUS;
195static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197static seqcount_t devnet_rename_seq;
198
199static inline void dev_base_seq_inc(struct net *net)
200{
201 while (++net->dev_base_seq == 0)
202 ;
203}
204
205static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206{
207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210}
211
212static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213{
214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215}
216
217static inline void rps_lock(struct softnet_data *sd)
218{
219#ifdef CONFIG_RPS
220 spin_lock(&sd->input_pkt_queue.lock);
221#endif
222}
223
224static inline void rps_unlock(struct softnet_data *sd)
225{
226#ifdef CONFIG_RPS
227 spin_unlock(&sd->input_pkt_queue.lock);
228#endif
229}
230
231/* Device list insertion */
232static void list_netdevice(struct net_device *dev)
233{
234 struct net *net = dev_net(dev);
235
236 ASSERT_RTNL();
237
238 write_lock_bh(&dev_base_lock);
239 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241 hlist_add_head_rcu(&dev->index_hlist,
242 dev_index_hash(net, dev->ifindex));
243 write_unlock_bh(&dev_base_lock);
244
245 dev_base_seq_inc(net);
246}
247
248/* Device list removal
249 * caller must respect a RCU grace period before freeing/reusing dev
250 */
251static void unlist_netdevice(struct net_device *dev)
252{
253 ASSERT_RTNL();
254
255 /* Unlink dev from the device chain */
256 write_lock_bh(&dev_base_lock);
257 list_del_rcu(&dev->dev_list);
258 hlist_del_rcu(&dev->name_hlist);
259 hlist_del_rcu(&dev->index_hlist);
260 write_unlock_bh(&dev_base_lock);
261
262 dev_base_seq_inc(dev_net(dev));
263}
264
265/*
266 * Our notifier list
267 */
268
269static RAW_NOTIFIER_HEAD(netdev_chain);
270
271/*
272 * Device drivers call our routines to queue packets here. We empty the
273 * queue in the local softnet handler.
274 */
275
276DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277EXPORT_PER_CPU_SYMBOL(softnet_data);
278
279#ifdef CONFIG_LOCKDEP
280/*
281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282 * according to dev->type
283 */
284static const unsigned short netdev_lock_type[] = {
285 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300
301static const char *const netdev_lock_name[] = {
302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317
318static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320
321static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322{
323 int i;
324
325 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326 if (netdev_lock_type[i] == dev_type)
327 return i;
328 /* the last key is used by default */
329 return ARRAY_SIZE(netdev_lock_type) - 1;
330}
331
332static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 unsigned short dev_type)
334{
335 int i;
336
337 i = netdev_lock_pos(dev_type);
338 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339 netdev_lock_name[i]);
340}
341
342static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343{
344 int i;
345
346 i = netdev_lock_pos(dev->type);
347 lockdep_set_class_and_name(&dev->addr_list_lock,
348 &netdev_addr_lock_key[i],
349 netdev_lock_name[i]);
350}
351#else
352static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353 unsigned short dev_type)
354{
355}
356static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357{
358}
359#endif
360
361/*******************************************************************************
362 *
363 * Protocol management and registration routines
364 *
365 *******************************************************************************/
366
367
368/*
369 * Add a protocol ID to the list. Now that the input handler is
370 * smarter we can dispense with all the messy stuff that used to be
371 * here.
372 *
373 * BEWARE!!! Protocol handlers, mangling input packets,
374 * MUST BE last in hash buckets and checking protocol handlers
375 * MUST start from promiscuous ptype_all chain in net_bh.
376 * It is true now, do not change it.
377 * Explanation follows: if protocol handler, mangling packet, will
378 * be the first on list, it is not able to sense, that packet
379 * is cloned and should be copied-on-write, so that it will
380 * change it and subsequent readers will get broken packet.
381 * --ANK (980803)
382 */
383
384static inline struct list_head *ptype_head(const struct packet_type *pt)
385{
386 if (pt->type == htons(ETH_P_ALL))
387 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388 else
389 return pt->dev ? &pt->dev->ptype_specific :
390 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391}
392
393/**
394 * dev_add_pack - add packet handler
395 * @pt: packet type declaration
396 *
397 * Add a protocol handler to the networking stack. The passed &packet_type
398 * is linked into kernel lists and may not be freed until it has been
399 * removed from the kernel lists.
400 *
401 * This call does not sleep therefore it can not
402 * guarantee all CPU's that are in middle of receiving packets
403 * will see the new packet type (until the next received packet).
404 */
405
406void dev_add_pack(struct packet_type *pt)
407{
408 struct list_head *head = ptype_head(pt);
409
410 spin_lock(&ptype_lock);
411 list_add_rcu(&pt->list, head);
412 spin_unlock(&ptype_lock);
413}
414EXPORT_SYMBOL(dev_add_pack);
415
416/**
417 * __dev_remove_pack - remove packet handler
418 * @pt: packet type declaration
419 *
420 * Remove a protocol handler that was previously added to the kernel
421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
422 * from the kernel lists and can be freed or reused once this function
423 * returns.
424 *
425 * The packet type might still be in use by receivers
426 * and must not be freed until after all the CPU's have gone
427 * through a quiescent state.
428 */
429void __dev_remove_pack(struct packet_type *pt)
430{
431 struct list_head *head = ptype_head(pt);
432 struct packet_type *pt1;
433
434 spin_lock(&ptype_lock);
435
436 list_for_each_entry(pt1, head, list) {
437 if (pt == pt1) {
438 list_del_rcu(&pt->list);
439 goto out;
440 }
441 }
442
443 pr_warn("dev_remove_pack: %p not found\n", pt);
444out:
445 spin_unlock(&ptype_lock);
446}
447EXPORT_SYMBOL(__dev_remove_pack);
448
449/**
450 * dev_remove_pack - remove packet handler
451 * @pt: packet type declaration
452 *
453 * Remove a protocol handler that was previously added to the kernel
454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
455 * from the kernel lists and can be freed or reused once this function
456 * returns.
457 *
458 * This call sleeps to guarantee that no CPU is looking at the packet
459 * type after return.
460 */
461void dev_remove_pack(struct packet_type *pt)
462{
463 __dev_remove_pack(pt);
464
465 synchronize_net();
466}
467EXPORT_SYMBOL(dev_remove_pack);
468
469
470/**
471 * dev_add_offload - register offload handlers
472 * @po: protocol offload declaration
473 *
474 * Add protocol offload handlers to the networking stack. The passed
475 * &proto_offload is linked into kernel lists and may not be freed until
476 * it has been removed from the kernel lists.
477 *
478 * This call does not sleep therefore it can not
479 * guarantee all CPU's that are in middle of receiving packets
480 * will see the new offload handlers (until the next received packet).
481 */
482void dev_add_offload(struct packet_offload *po)
483{
484 struct packet_offload *elem;
485
486 spin_lock(&offload_lock);
487 list_for_each_entry(elem, &offload_base, list) {
488 if (po->priority < elem->priority)
489 break;
490 }
491 list_add_rcu(&po->list, elem->list.prev);
492 spin_unlock(&offload_lock);
493}
494EXPORT_SYMBOL(dev_add_offload);
495
496/**
497 * __dev_remove_offload - remove offload handler
498 * @po: packet offload declaration
499 *
500 * Remove a protocol offload handler that was previously added to the
501 * kernel offload handlers by dev_add_offload(). The passed &offload_type
502 * is removed from the kernel lists and can be freed or reused once this
503 * function returns.
504 *
505 * The packet type might still be in use by receivers
506 * and must not be freed until after all the CPU's have gone
507 * through a quiescent state.
508 */
509static void __dev_remove_offload(struct packet_offload *po)
510{
511 struct list_head *head = &offload_base;
512 struct packet_offload *po1;
513
514 spin_lock(&offload_lock);
515
516 list_for_each_entry(po1, head, list) {
517 if (po == po1) {
518 list_del_rcu(&po->list);
519 goto out;
520 }
521 }
522
523 pr_warn("dev_remove_offload: %p not found\n", po);
524out:
525 spin_unlock(&offload_lock);
526}
527
528/**
529 * dev_remove_offload - remove packet offload handler
530 * @po: packet offload declaration
531 *
532 * Remove a packet offload handler that was previously added to the kernel
533 * offload handlers by dev_add_offload(). The passed &offload_type is
534 * removed from the kernel lists and can be freed or reused once this
535 * function returns.
536 *
537 * This call sleeps to guarantee that no CPU is looking at the packet
538 * type after return.
539 */
540void dev_remove_offload(struct packet_offload *po)
541{
542 __dev_remove_offload(po);
543
544 synchronize_net();
545}
546EXPORT_SYMBOL(dev_remove_offload);
547
548/******************************************************************************
549 *
550 * Device Boot-time Settings Routines
551 *
552 ******************************************************************************/
553
554/* Boot time configuration table */
555static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556
557/**
558 * netdev_boot_setup_add - add new setup entry
559 * @name: name of the device
560 * @map: configured settings for the device
561 *
562 * Adds new setup entry to the dev_boot_setup list. The function
563 * returns 0 on error and 1 on success. This is a generic routine to
564 * all netdevices.
565 */
566static int netdev_boot_setup_add(char *name, struct ifmap *map)
567{
568 struct netdev_boot_setup *s;
569 int i;
570
571 s = dev_boot_setup;
572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574 memset(s[i].name, 0, sizeof(s[i].name));
575 strlcpy(s[i].name, name, IFNAMSIZ);
576 memcpy(&s[i].map, map, sizeof(s[i].map));
577 break;
578 }
579 }
580
581 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582}
583
584/**
585 * netdev_boot_setup_check - check boot time settings
586 * @dev: the netdevice
587 *
588 * Check boot time settings for the device.
589 * The found settings are set for the device to be used
590 * later in the device probing.
591 * Returns 0 if no settings found, 1 if they are.
592 */
593int netdev_boot_setup_check(struct net_device *dev)
594{
595 struct netdev_boot_setup *s = dev_boot_setup;
596 int i;
597
598 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600 !strcmp(dev->name, s[i].name)) {
601 dev->irq = s[i].map.irq;
602 dev->base_addr = s[i].map.base_addr;
603 dev->mem_start = s[i].map.mem_start;
604 dev->mem_end = s[i].map.mem_end;
605 return 1;
606 }
607 }
608 return 0;
609}
610EXPORT_SYMBOL(netdev_boot_setup_check);
611
612
613/**
614 * netdev_boot_base - get address from boot time settings
615 * @prefix: prefix for network device
616 * @unit: id for network device
617 *
618 * Check boot time settings for the base address of device.
619 * The found settings are set for the device to be used
620 * later in the device probing.
621 * Returns 0 if no settings found.
622 */
623unsigned long netdev_boot_base(const char *prefix, int unit)
624{
625 const struct netdev_boot_setup *s = dev_boot_setup;
626 char name[IFNAMSIZ];
627 int i;
628
629 sprintf(name, "%s%d", prefix, unit);
630
631 /*
632 * If device already registered then return base of 1
633 * to indicate not to probe for this interface
634 */
635 if (__dev_get_by_name(&init_net, name))
636 return 1;
637
638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639 if (!strcmp(name, s[i].name))
640 return s[i].map.base_addr;
641 return 0;
642}
643
644/*
645 * Saves at boot time configured settings for any netdevice.
646 */
647int __init netdev_boot_setup(char *str)
648{
649 int ints[5];
650 struct ifmap map;
651
652 str = get_options(str, ARRAY_SIZE(ints), ints);
653 if (!str || !*str)
654 return 0;
655
656 /* Save settings */
657 memset(&map, 0, sizeof(map));
658 if (ints[0] > 0)
659 map.irq = ints[1];
660 if (ints[0] > 1)
661 map.base_addr = ints[2];
662 if (ints[0] > 2)
663 map.mem_start = ints[3];
664 if (ints[0] > 3)
665 map.mem_end = ints[4];
666
667 /* Add new entry to the list */
668 return netdev_boot_setup_add(str, &map);
669}
670
671__setup("netdev=", netdev_boot_setup);
672
673/*******************************************************************************
674 *
675 * Device Interface Subroutines
676 *
677 *******************************************************************************/
678
679/**
680 * dev_get_iflink - get 'iflink' value of a interface
681 * @dev: targeted interface
682 *
683 * Indicates the ifindex the interface is linked to.
684 * Physical interfaces have the same 'ifindex' and 'iflink' values.
685 */
686
687int dev_get_iflink(const struct net_device *dev)
688{
689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 return dev->netdev_ops->ndo_get_iflink(dev);
691
692 return dev->ifindex;
693}
694EXPORT_SYMBOL(dev_get_iflink);
695
696/**
697 * dev_fill_metadata_dst - Retrieve tunnel egress information.
698 * @dev: targeted interface
699 * @skb: The packet.
700 *
701 * For better visibility of tunnel traffic OVS needs to retrieve
702 * egress tunnel information for a packet. Following API allows
703 * user to get this info.
704 */
705int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706{
707 struct ip_tunnel_info *info;
708
709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
710 return -EINVAL;
711
712 info = skb_tunnel_info_unclone(skb);
713 if (!info)
714 return -ENOMEM;
715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 return -EINVAL;
717
718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719}
720EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721
722/**
723 * __dev_get_by_name - find a device by its name
724 * @net: the applicable net namespace
725 * @name: name to find
726 *
727 * Find an interface by name. Must be called under RTNL semaphore
728 * or @dev_base_lock. If the name is found a pointer to the device
729 * is returned. If the name is not found then %NULL is returned. The
730 * reference counters are not incremented so the caller must be
731 * careful with locks.
732 */
733
734struct net_device *__dev_get_by_name(struct net *net, const char *name)
735{
736 struct net_device *dev;
737 struct hlist_head *head = dev_name_hash(net, name);
738
739 hlist_for_each_entry(dev, head, name_hlist)
740 if (!strncmp(dev->name, name, IFNAMSIZ))
741 return dev;
742
743 return NULL;
744}
745EXPORT_SYMBOL(__dev_get_by_name);
746
747/**
748 * dev_get_by_name_rcu - find a device by its name
749 * @net: the applicable net namespace
750 * @name: name to find
751 *
752 * Find an interface by name.
753 * If the name is found a pointer to the device is returned.
754 * If the name is not found then %NULL is returned.
755 * The reference counters are not incremented so the caller must be
756 * careful with locks. The caller must hold RCU lock.
757 */
758
759struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760{
761 struct net_device *dev;
762 struct hlist_head *head = dev_name_hash(net, name);
763
764 hlist_for_each_entry_rcu(dev, head, name_hlist)
765 if (!strncmp(dev->name, name, IFNAMSIZ))
766 return dev;
767
768 return NULL;
769}
770EXPORT_SYMBOL(dev_get_by_name_rcu);
771
772/**
773 * dev_get_by_name - find a device by its name
774 * @net: the applicable net namespace
775 * @name: name to find
776 *
777 * Find an interface by name. This can be called from any
778 * context and does its own locking. The returned handle has
779 * the usage count incremented and the caller must use dev_put() to
780 * release it when it is no longer needed. %NULL is returned if no
781 * matching device is found.
782 */
783
784struct net_device *dev_get_by_name(struct net *net, const char *name)
785{
786 struct net_device *dev;
787
788 rcu_read_lock();
789 dev = dev_get_by_name_rcu(net, name);
790 if (dev)
791 dev_hold(dev);
792 rcu_read_unlock();
793 return dev;
794}
795EXPORT_SYMBOL(dev_get_by_name);
796
797/**
798 * __dev_get_by_index - find a device by its ifindex
799 * @net: the applicable net namespace
800 * @ifindex: index of device
801 *
802 * Search for an interface by index. Returns %NULL if the device
803 * is not found or a pointer to the device. The device has not
804 * had its reference counter increased so the caller must be careful
805 * about locking. The caller must hold either the RTNL semaphore
806 * or @dev_base_lock.
807 */
808
809struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810{
811 struct net_device *dev;
812 struct hlist_head *head = dev_index_hash(net, ifindex);
813
814 hlist_for_each_entry(dev, head, index_hlist)
815 if (dev->ifindex == ifindex)
816 return dev;
817
818 return NULL;
819}
820EXPORT_SYMBOL(__dev_get_by_index);
821
822/**
823 * dev_get_by_index_rcu - find a device by its ifindex
824 * @net: the applicable net namespace
825 * @ifindex: index of device
826 *
827 * Search for an interface by index. Returns %NULL if the device
828 * is not found or a pointer to the device. The device has not
829 * had its reference counter increased so the caller must be careful
830 * about locking. The caller must hold RCU lock.
831 */
832
833struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834{
835 struct net_device *dev;
836 struct hlist_head *head = dev_index_hash(net, ifindex);
837
838 hlist_for_each_entry_rcu(dev, head, index_hlist)
839 if (dev->ifindex == ifindex)
840 return dev;
841
842 return NULL;
843}
844EXPORT_SYMBOL(dev_get_by_index_rcu);
845
846
847/**
848 * dev_get_by_index - find a device by its ifindex
849 * @net: the applicable net namespace
850 * @ifindex: index of device
851 *
852 * Search for an interface by index. Returns NULL if the device
853 * is not found or a pointer to the device. The device returned has
854 * had a reference added and the pointer is safe until the user calls
855 * dev_put to indicate they have finished with it.
856 */
857
858struct net_device *dev_get_by_index(struct net *net, int ifindex)
859{
860 struct net_device *dev;
861
862 rcu_read_lock();
863 dev = dev_get_by_index_rcu(net, ifindex);
864 if (dev)
865 dev_hold(dev);
866 rcu_read_unlock();
867 return dev;
868}
869EXPORT_SYMBOL(dev_get_by_index);
870
871/**
872 * dev_get_by_napi_id - find a device by napi_id
873 * @napi_id: ID of the NAPI struct
874 *
875 * Search for an interface by NAPI ID. Returns %NULL if the device
876 * is not found or a pointer to the device. The device has not had
877 * its reference counter increased so the caller must be careful
878 * about locking. The caller must hold RCU lock.
879 */
880
881struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882{
883 struct napi_struct *napi;
884
885 WARN_ON_ONCE(!rcu_read_lock_held());
886
887 if (napi_id < MIN_NAPI_ID)
888 return NULL;
889
890 napi = napi_by_id(napi_id);
891
892 return napi ? napi->dev : NULL;
893}
894EXPORT_SYMBOL(dev_get_by_napi_id);
895
896/**
897 * netdev_get_name - get a netdevice name, knowing its ifindex.
898 * @net: network namespace
899 * @name: a pointer to the buffer where the name will be stored.
900 * @ifindex: the ifindex of the interface to get the name from.
901 *
902 * The use of raw_seqcount_begin() and cond_resched() before
903 * retrying is required as we want to give the writers a chance
904 * to complete when CONFIG_PREEMPT is not set.
905 */
906int netdev_get_name(struct net *net, char *name, int ifindex)
907{
908 struct net_device *dev;
909 unsigned int seq;
910
911retry:
912 seq = raw_seqcount_begin(&devnet_rename_seq);
913 rcu_read_lock();
914 dev = dev_get_by_index_rcu(net, ifindex);
915 if (!dev) {
916 rcu_read_unlock();
917 return -ENODEV;
918 }
919
920 strcpy(name, dev->name);
921 rcu_read_unlock();
922 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923 cond_resched();
924 goto retry;
925 }
926
927 return 0;
928}
929
930/**
931 * dev_getbyhwaddr_rcu - find a device by its hardware address
932 * @net: the applicable net namespace
933 * @type: media type of device
934 * @ha: hardware address
935 *
936 * Search for an interface by MAC address. Returns NULL if the device
937 * is not found or a pointer to the device.
938 * The caller must hold RCU or RTNL.
939 * The returned device has not had its ref count increased
940 * and the caller must therefore be careful about locking
941 *
942 */
943
944struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945 const char *ha)
946{
947 struct net_device *dev;
948
949 for_each_netdev_rcu(net, dev)
950 if (dev->type == type &&
951 !memcmp(dev->dev_addr, ha, dev->addr_len))
952 return dev;
953
954 return NULL;
955}
956EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957
958struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959{
960 struct net_device *dev;
961
962 ASSERT_RTNL();
963 for_each_netdev(net, dev)
964 if (dev->type == type)
965 return dev;
966
967 return NULL;
968}
969EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970
971struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972{
973 struct net_device *dev, *ret = NULL;
974
975 rcu_read_lock();
976 for_each_netdev_rcu(net, dev)
977 if (dev->type == type) {
978 dev_hold(dev);
979 ret = dev;
980 break;
981 }
982 rcu_read_unlock();
983 return ret;
984}
985EXPORT_SYMBOL(dev_getfirstbyhwtype);
986
987/**
988 * __dev_get_by_flags - find any device with given flags
989 * @net: the applicable net namespace
990 * @if_flags: IFF_* values
991 * @mask: bitmask of bits in if_flags to check
992 *
993 * Search for any interface with the given flags. Returns NULL if a device
994 * is not found or a pointer to the device. Must be called inside
995 * rtnl_lock(), and result refcount is unchanged.
996 */
997
998struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999 unsigned short mask)
1000{
1001 struct net_device *dev, *ret;
1002
1003 ASSERT_RTNL();
1004
1005 ret = NULL;
1006 for_each_netdev(net, dev) {
1007 if (((dev->flags ^ if_flags) & mask) == 0) {
1008 ret = dev;
1009 break;
1010 }
1011 }
1012 return ret;
1013}
1014EXPORT_SYMBOL(__dev_get_by_flags);
1015
1016/**
1017 * dev_valid_name - check if name is okay for network device
1018 * @name: name string
1019 *
1020 * Network device names need to be valid file names to
1021 * to allow sysfs to work. We also disallow any kind of
1022 * whitespace.
1023 */
1024bool dev_valid_name(const char *name)
1025{
1026 if (*name == '\0')
1027 return false;
1028 if (strlen(name) >= IFNAMSIZ)
1029 return false;
1030 if (!strcmp(name, ".") || !strcmp(name, ".."))
1031 return false;
1032
1033 while (*name) {
1034 if (*name == '/' || *name == ':' || isspace(*name))
1035 return false;
1036 name++;
1037 }
1038 return true;
1039}
1040EXPORT_SYMBOL(dev_valid_name);
1041
1042/**
1043 * __dev_alloc_name - allocate a name for a device
1044 * @net: network namespace to allocate the device name in
1045 * @name: name format string
1046 * @buf: scratch buffer and result name string
1047 *
1048 * Passed a format string - eg "lt%d" it will try and find a suitable
1049 * id. It scans list of devices to build up a free map, then chooses
1050 * the first empty slot. The caller must hold the dev_base or rtnl lock
1051 * while allocating the name and adding the device in order to avoid
1052 * duplicates.
1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054 * Returns the number of the unit assigned or a negative errno code.
1055 */
1056
1057static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058{
1059 int i = 0;
1060 const char *p;
1061 const int max_netdevices = 8*PAGE_SIZE;
1062 unsigned long *inuse;
1063 struct net_device *d;
1064
1065 p = strnchr(name, IFNAMSIZ-1, '%');
1066 if (p) {
1067 /*
1068 * Verify the string as this thing may have come from
1069 * the user. There must be either one "%d" and no other "%"
1070 * characters.
1071 */
1072 if (p[1] != 'd' || strchr(p + 2, '%'))
1073 return -EINVAL;
1074
1075 /* Use one page as a bit array of possible slots */
1076 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1077 if (!inuse)
1078 return -ENOMEM;
1079
1080 for_each_netdev(net, d) {
1081 if (!sscanf(d->name, name, &i))
1082 continue;
1083 if (i < 0 || i >= max_netdevices)
1084 continue;
1085
1086 /* avoid cases where sscanf is not exact inverse of printf */
1087 snprintf(buf, IFNAMSIZ, name, i);
1088 if (!strncmp(buf, d->name, IFNAMSIZ))
1089 set_bit(i, inuse);
1090 }
1091
1092 i = find_first_zero_bit(inuse, max_netdevices);
1093 free_page((unsigned long) inuse);
1094 }
1095
1096 if (buf != name)
1097 snprintf(buf, IFNAMSIZ, name, i);
1098 if (!__dev_get_by_name(net, buf))
1099 return i;
1100
1101 /* It is possible to run out of possible slots
1102 * when the name is long and there isn't enough space left
1103 * for the digits, or if all bits are used.
1104 */
1105 return -ENFILE;
1106}
1107
1108/**
1109 * dev_alloc_name - allocate a name for a device
1110 * @dev: device
1111 * @name: name format string
1112 *
1113 * Passed a format string - eg "lt%d" it will try and find a suitable
1114 * id. It scans list of devices to build up a free map, then chooses
1115 * the first empty slot. The caller must hold the dev_base or rtnl lock
1116 * while allocating the name and adding the device in order to avoid
1117 * duplicates.
1118 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1119 * Returns the number of the unit assigned or a negative errno code.
1120 */
1121
1122int dev_alloc_name(struct net_device *dev, const char *name)
1123{
1124 char buf[IFNAMSIZ];
1125 struct net *net;
1126 int ret;
1127
1128 BUG_ON(!dev_net(dev));
1129 net = dev_net(dev);
1130 ret = __dev_alloc_name(net, name, buf);
1131 if (ret >= 0)
1132 strlcpy(dev->name, buf, IFNAMSIZ);
1133 return ret;
1134}
1135EXPORT_SYMBOL(dev_alloc_name);
1136
1137static int dev_alloc_name_ns(struct net *net,
1138 struct net_device *dev,
1139 const char *name)
1140{
1141 char buf[IFNAMSIZ];
1142 int ret;
1143
1144 ret = __dev_alloc_name(net, name, buf);
1145 if (ret >= 0)
1146 strlcpy(dev->name, buf, IFNAMSIZ);
1147 return ret;
1148}
1149
1150static int dev_get_valid_name(struct net *net,
1151 struct net_device *dev,
1152 const char *name)
1153{
1154 BUG_ON(!net);
1155
1156 if (!dev_valid_name(name))
1157 return -EINVAL;
1158
1159 if (strchr(name, '%'))
1160 return dev_alloc_name_ns(net, dev, name);
1161 else if (__dev_get_by_name(net, name))
1162 return -EEXIST;
1163 else if (dev->name != name)
1164 strlcpy(dev->name, name, IFNAMSIZ);
1165
1166 return 0;
1167}
1168
1169/**
1170 * dev_change_name - change name of a device
1171 * @dev: device
1172 * @newname: name (or format string) must be at least IFNAMSIZ
1173 *
1174 * Change name of a device, can pass format strings "eth%d".
1175 * for wildcarding.
1176 */
1177int dev_change_name(struct net_device *dev, const char *newname)
1178{
1179 unsigned char old_assign_type;
1180 char oldname[IFNAMSIZ];
1181 int err = 0;
1182 int ret;
1183 struct net *net;
1184
1185 ASSERT_RTNL();
1186 BUG_ON(!dev_net(dev));
1187
1188 net = dev_net(dev);
1189 if (dev->flags & IFF_UP)
1190 return -EBUSY;
1191
1192 write_seqcount_begin(&devnet_rename_seq);
1193
1194 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1195 write_seqcount_end(&devnet_rename_seq);
1196 return 0;
1197 }
1198
1199 memcpy(oldname, dev->name, IFNAMSIZ);
1200
1201 err = dev_get_valid_name(net, dev, newname);
1202 if (err < 0) {
1203 write_seqcount_end(&devnet_rename_seq);
1204 return err;
1205 }
1206
1207 if (oldname[0] && !strchr(oldname, '%'))
1208 netdev_info(dev, "renamed from %s\n", oldname);
1209
1210 old_assign_type = dev->name_assign_type;
1211 dev->name_assign_type = NET_NAME_RENAMED;
1212
1213rollback:
1214 ret = device_rename(&dev->dev, dev->name);
1215 if (ret) {
1216 memcpy(dev->name, oldname, IFNAMSIZ);
1217 dev->name_assign_type = old_assign_type;
1218 write_seqcount_end(&devnet_rename_seq);
1219 return ret;
1220 }
1221
1222 write_seqcount_end(&devnet_rename_seq);
1223
1224 netdev_adjacent_rename_links(dev, oldname);
1225
1226 write_lock_bh(&dev_base_lock);
1227 hlist_del_rcu(&dev->name_hlist);
1228 write_unlock_bh(&dev_base_lock);
1229
1230 synchronize_rcu();
1231
1232 write_lock_bh(&dev_base_lock);
1233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1234 write_unlock_bh(&dev_base_lock);
1235
1236 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1237 ret = notifier_to_errno(ret);
1238
1239 if (ret) {
1240 /* err >= 0 after dev_alloc_name() or stores the first errno */
1241 if (err >= 0) {
1242 err = ret;
1243 write_seqcount_begin(&devnet_rename_seq);
1244 memcpy(dev->name, oldname, IFNAMSIZ);
1245 memcpy(oldname, newname, IFNAMSIZ);
1246 dev->name_assign_type = old_assign_type;
1247 old_assign_type = NET_NAME_RENAMED;
1248 goto rollback;
1249 } else {
1250 pr_err("%s: name change rollback failed: %d\n",
1251 dev->name, ret);
1252 }
1253 }
1254
1255 return err;
1256}
1257
1258/**
1259 * dev_set_alias - change ifalias of a device
1260 * @dev: device
1261 * @alias: name up to IFALIASZ
1262 * @len: limit of bytes to copy from info
1263 *
1264 * Set ifalias for a device,
1265 */
1266int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1267{
1268 char *new_ifalias;
1269
1270 ASSERT_RTNL();
1271
1272 if (len >= IFALIASZ)
1273 return -EINVAL;
1274
1275 if (!len) {
1276 kfree(dev->ifalias);
1277 dev->ifalias = NULL;
1278 return 0;
1279 }
1280
1281 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1282 if (!new_ifalias)
1283 return -ENOMEM;
1284 dev->ifalias = new_ifalias;
1285 memcpy(dev->ifalias, alias, len);
1286 dev->ifalias[len] = 0;
1287
1288 return len;
1289}
1290
1291
1292/**
1293 * netdev_features_change - device changes features
1294 * @dev: device to cause notification
1295 *
1296 * Called to indicate a device has changed features.
1297 */
1298void netdev_features_change(struct net_device *dev)
1299{
1300 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1301}
1302EXPORT_SYMBOL(netdev_features_change);
1303
1304/**
1305 * netdev_state_change - device changes state
1306 * @dev: device to cause notification
1307 *
1308 * Called to indicate a device has changed state. This function calls
1309 * the notifier chains for netdev_chain and sends a NEWLINK message
1310 * to the routing socket.
1311 */
1312void netdev_state_change(struct net_device *dev)
1313{
1314 if (dev->flags & IFF_UP) {
1315 struct netdev_notifier_change_info change_info;
1316
1317 change_info.flags_changed = 0;
1318 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1319 &change_info.info);
1320 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1321 }
1322}
1323EXPORT_SYMBOL(netdev_state_change);
1324
1325/**
1326 * netdev_notify_peers - notify network peers about existence of @dev
1327 * @dev: network device
1328 *
1329 * Generate traffic such that interested network peers are aware of
1330 * @dev, such as by generating a gratuitous ARP. This may be used when
1331 * a device wants to inform the rest of the network about some sort of
1332 * reconfiguration such as a failover event or virtual machine
1333 * migration.
1334 */
1335void netdev_notify_peers(struct net_device *dev)
1336{
1337 rtnl_lock();
1338 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1339 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1340 rtnl_unlock();
1341}
1342EXPORT_SYMBOL(netdev_notify_peers);
1343
1344static int __dev_open(struct net_device *dev)
1345{
1346 const struct net_device_ops *ops = dev->netdev_ops;
1347 int ret;
1348
1349 ASSERT_RTNL();
1350
1351 if (!netif_device_present(dev))
1352 return -ENODEV;
1353
1354 /* Block netpoll from trying to do any rx path servicing.
1355 * If we don't do this there is a chance ndo_poll_controller
1356 * or ndo_poll may be running while we open the device
1357 */
1358 netpoll_poll_disable(dev);
1359
1360 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1361 ret = notifier_to_errno(ret);
1362 if (ret)
1363 return ret;
1364
1365 set_bit(__LINK_STATE_START, &dev->state);
1366
1367 if (ops->ndo_validate_addr)
1368 ret = ops->ndo_validate_addr(dev);
1369
1370 if (!ret && ops->ndo_open)
1371 ret = ops->ndo_open(dev);
1372
1373 netpoll_poll_enable(dev);
1374
1375 if (ret)
1376 clear_bit(__LINK_STATE_START, &dev->state);
1377 else {
1378 dev->flags |= IFF_UP;
1379 dev_set_rx_mode(dev);
1380 dev_activate(dev);
1381 add_device_randomness(dev->dev_addr, dev->addr_len);
1382 }
1383
1384 return ret;
1385}
1386
1387/**
1388 * dev_open - prepare an interface for use.
1389 * @dev: device to open
1390 *
1391 * Takes a device from down to up state. The device's private open
1392 * function is invoked and then the multicast lists are loaded. Finally
1393 * the device is moved into the up state and a %NETDEV_UP message is
1394 * sent to the netdev notifier chain.
1395 *
1396 * Calling this function on an active interface is a nop. On a failure
1397 * a negative errno code is returned.
1398 */
1399int dev_open(struct net_device *dev)
1400{
1401 int ret;
1402
1403 if (dev->flags & IFF_UP)
1404 return 0;
1405
1406 ret = __dev_open(dev);
1407 if (ret < 0)
1408 return ret;
1409
1410 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1411 call_netdevice_notifiers(NETDEV_UP, dev);
1412
1413 return ret;
1414}
1415EXPORT_SYMBOL(dev_open);
1416
1417static void __dev_close_many(struct list_head *head)
1418{
1419 struct net_device *dev;
1420
1421 ASSERT_RTNL();
1422 might_sleep();
1423
1424 list_for_each_entry(dev, head, close_list) {
1425 /* Temporarily disable netpoll until the interface is down */
1426 netpoll_poll_disable(dev);
1427
1428 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1429
1430 clear_bit(__LINK_STATE_START, &dev->state);
1431
1432 /* Synchronize to scheduled poll. We cannot touch poll list, it
1433 * can be even on different cpu. So just clear netif_running().
1434 *
1435 * dev->stop() will invoke napi_disable() on all of it's
1436 * napi_struct instances on this device.
1437 */
1438 smp_mb__after_atomic(); /* Commit netif_running(). */
1439 }
1440
1441 dev_deactivate_many(head);
1442
1443 list_for_each_entry(dev, head, close_list) {
1444 const struct net_device_ops *ops = dev->netdev_ops;
1445
1446 /*
1447 * Call the device specific close. This cannot fail.
1448 * Only if device is UP
1449 *
1450 * We allow it to be called even after a DETACH hot-plug
1451 * event.
1452 */
1453 if (ops->ndo_stop)
1454 ops->ndo_stop(dev);
1455
1456 dev->flags &= ~IFF_UP;
1457 netpoll_poll_enable(dev);
1458 }
1459}
1460
1461static void __dev_close(struct net_device *dev)
1462{
1463 LIST_HEAD(single);
1464
1465 list_add(&dev->close_list, &single);
1466 __dev_close_many(&single);
1467 list_del(&single);
1468}
1469
1470void dev_close_many(struct list_head *head, bool unlink)
1471{
1472 struct net_device *dev, *tmp;
1473
1474 /* Remove the devices that don't need to be closed */
1475 list_for_each_entry_safe(dev, tmp, head, close_list)
1476 if (!(dev->flags & IFF_UP))
1477 list_del_init(&dev->close_list);
1478
1479 __dev_close_many(head);
1480
1481 list_for_each_entry_safe(dev, tmp, head, close_list) {
1482 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1483 call_netdevice_notifiers(NETDEV_DOWN, dev);
1484 if (unlink)
1485 list_del_init(&dev->close_list);
1486 }
1487}
1488EXPORT_SYMBOL(dev_close_many);
1489
1490/**
1491 * dev_close - shutdown an interface.
1492 * @dev: device to shutdown
1493 *
1494 * This function moves an active device into down state. A
1495 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1496 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1497 * chain.
1498 */
1499void dev_close(struct net_device *dev)
1500{
1501 if (dev->flags & IFF_UP) {
1502 LIST_HEAD(single);
1503
1504 list_add(&dev->close_list, &single);
1505 dev_close_many(&single, true);
1506 list_del(&single);
1507 }
1508}
1509EXPORT_SYMBOL(dev_close);
1510
1511
1512/**
1513 * dev_disable_lro - disable Large Receive Offload on a device
1514 * @dev: device
1515 *
1516 * Disable Large Receive Offload (LRO) on a net device. Must be
1517 * called under RTNL. This is needed if received packets may be
1518 * forwarded to another interface.
1519 */
1520void dev_disable_lro(struct net_device *dev)
1521{
1522 struct net_device *lower_dev;
1523 struct list_head *iter;
1524
1525 dev->wanted_features &= ~NETIF_F_LRO;
1526 netdev_update_features(dev);
1527
1528 if (unlikely(dev->features & NETIF_F_LRO))
1529 netdev_WARN(dev, "failed to disable LRO!\n");
1530
1531 netdev_for_each_lower_dev(dev, lower_dev, iter)
1532 dev_disable_lro(lower_dev);
1533}
1534EXPORT_SYMBOL(dev_disable_lro);
1535
1536static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1537 struct net_device *dev)
1538{
1539 struct netdev_notifier_info info;
1540
1541 netdev_notifier_info_init(&info, dev);
1542 return nb->notifier_call(nb, val, &info);
1543}
1544
1545static int dev_boot_phase = 1;
1546
1547/**
1548 * register_netdevice_notifier - register a network notifier block
1549 * @nb: notifier
1550 *
1551 * Register a notifier to be called when network device events occur.
1552 * The notifier passed is linked into the kernel structures and must
1553 * not be reused until it has been unregistered. A negative errno code
1554 * is returned on a failure.
1555 *
1556 * When registered all registration and up events are replayed
1557 * to the new notifier to allow device to have a race free
1558 * view of the network device list.
1559 */
1560
1561int register_netdevice_notifier(struct notifier_block *nb)
1562{
1563 struct net_device *dev;
1564 struct net_device *last;
1565 struct net *net;
1566 int err;
1567
1568 rtnl_lock();
1569 err = raw_notifier_chain_register(&netdev_chain, nb);
1570 if (err)
1571 goto unlock;
1572 if (dev_boot_phase)
1573 goto unlock;
1574 for_each_net(net) {
1575 for_each_netdev(net, dev) {
1576 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1577 err = notifier_to_errno(err);
1578 if (err)
1579 goto rollback;
1580
1581 if (!(dev->flags & IFF_UP))
1582 continue;
1583
1584 call_netdevice_notifier(nb, NETDEV_UP, dev);
1585 }
1586 }
1587
1588unlock:
1589 rtnl_unlock();
1590 return err;
1591
1592rollback:
1593 last = dev;
1594 for_each_net(net) {
1595 for_each_netdev(net, dev) {
1596 if (dev == last)
1597 goto outroll;
1598
1599 if (dev->flags & IFF_UP) {
1600 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1601 dev);
1602 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1603 }
1604 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1605 }
1606 }
1607
1608outroll:
1609 raw_notifier_chain_unregister(&netdev_chain, nb);
1610 goto unlock;
1611}
1612EXPORT_SYMBOL(register_netdevice_notifier);
1613
1614/**
1615 * unregister_netdevice_notifier - unregister a network notifier block
1616 * @nb: notifier
1617 *
1618 * Unregister a notifier previously registered by
1619 * register_netdevice_notifier(). The notifier is unlinked into the
1620 * kernel structures and may then be reused. A negative errno code
1621 * is returned on a failure.
1622 *
1623 * After unregistering unregister and down device events are synthesized
1624 * for all devices on the device list to the removed notifier to remove
1625 * the need for special case cleanup code.
1626 */
1627
1628int unregister_netdevice_notifier(struct notifier_block *nb)
1629{
1630 struct net_device *dev;
1631 struct net *net;
1632 int err;
1633
1634 rtnl_lock();
1635 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1636 if (err)
1637 goto unlock;
1638
1639 for_each_net(net) {
1640 for_each_netdev(net, dev) {
1641 if (dev->flags & IFF_UP) {
1642 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1643 dev);
1644 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1645 }
1646 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1647 }
1648 }
1649unlock:
1650 rtnl_unlock();
1651 return err;
1652}
1653EXPORT_SYMBOL(unregister_netdevice_notifier);
1654
1655/**
1656 * call_netdevice_notifiers_info - call all network notifier blocks
1657 * @val: value passed unmodified to notifier function
1658 * @dev: net_device pointer passed unmodified to notifier function
1659 * @info: notifier information data
1660 *
1661 * Call all network notifier blocks. Parameters and return value
1662 * are as for raw_notifier_call_chain().
1663 */
1664
1665static int call_netdevice_notifiers_info(unsigned long val,
1666 struct net_device *dev,
1667 struct netdev_notifier_info *info)
1668{
1669 ASSERT_RTNL();
1670 netdev_notifier_info_init(info, dev);
1671 return raw_notifier_call_chain(&netdev_chain, val, info);
1672}
1673
1674/**
1675 * call_netdevice_notifiers - call all network notifier blocks
1676 * @val: value passed unmodified to notifier function
1677 * @dev: net_device pointer passed unmodified to notifier function
1678 *
1679 * Call all network notifier blocks. Parameters and return value
1680 * are as for raw_notifier_call_chain().
1681 */
1682
1683int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1684{
1685 struct netdev_notifier_info info;
1686
1687 return call_netdevice_notifiers_info(val, dev, &info);
1688}
1689EXPORT_SYMBOL(call_netdevice_notifiers);
1690
1691#ifdef CONFIG_NET_INGRESS
1692static struct static_key ingress_needed __read_mostly;
1693
1694void net_inc_ingress_queue(void)
1695{
1696 static_key_slow_inc(&ingress_needed);
1697}
1698EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1699
1700void net_dec_ingress_queue(void)
1701{
1702 static_key_slow_dec(&ingress_needed);
1703}
1704EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1705#endif
1706
1707#ifdef CONFIG_NET_EGRESS
1708static struct static_key egress_needed __read_mostly;
1709
1710void net_inc_egress_queue(void)
1711{
1712 static_key_slow_inc(&egress_needed);
1713}
1714EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1715
1716void net_dec_egress_queue(void)
1717{
1718 static_key_slow_dec(&egress_needed);
1719}
1720EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1721#endif
1722
1723static struct static_key netstamp_needed __read_mostly;
1724#ifdef HAVE_JUMP_LABEL
1725static atomic_t netstamp_needed_deferred;
1726static atomic_t netstamp_wanted;
1727static void netstamp_clear(struct work_struct *work)
1728{
1729 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1730 int wanted;
1731
1732 wanted = atomic_add_return(deferred, &netstamp_wanted);
1733 if (wanted > 0)
1734 static_key_enable(&netstamp_needed);
1735 else
1736 static_key_disable(&netstamp_needed);
1737}
1738static DECLARE_WORK(netstamp_work, netstamp_clear);
1739#endif
1740
1741void net_enable_timestamp(void)
1742{
1743#ifdef HAVE_JUMP_LABEL
1744 int wanted;
1745
1746 while (1) {
1747 wanted = atomic_read(&netstamp_wanted);
1748 if (wanted <= 0)
1749 break;
1750 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1751 return;
1752 }
1753 atomic_inc(&netstamp_needed_deferred);
1754 schedule_work(&netstamp_work);
1755#else
1756 static_key_slow_inc(&netstamp_needed);
1757#endif
1758}
1759EXPORT_SYMBOL(net_enable_timestamp);
1760
1761void net_disable_timestamp(void)
1762{
1763#ifdef HAVE_JUMP_LABEL
1764 int wanted;
1765
1766 while (1) {
1767 wanted = atomic_read(&netstamp_wanted);
1768 if (wanted <= 1)
1769 break;
1770 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1771 return;
1772 }
1773 atomic_dec(&netstamp_needed_deferred);
1774 schedule_work(&netstamp_work);
1775#else
1776 static_key_slow_dec(&netstamp_needed);
1777#endif
1778}
1779EXPORT_SYMBOL(net_disable_timestamp);
1780
1781static inline void net_timestamp_set(struct sk_buff *skb)
1782{
1783 skb->tstamp = 0;
1784 if (static_key_false(&netstamp_needed))
1785 __net_timestamp(skb);
1786}
1787
1788#define net_timestamp_check(COND, SKB) \
1789 if (static_key_false(&netstamp_needed)) { \
1790 if ((COND) && !(SKB)->tstamp) \
1791 __net_timestamp(SKB); \
1792 } \
1793
1794bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1795{
1796 unsigned int len;
1797
1798 if (!(dev->flags & IFF_UP))
1799 return false;
1800
1801 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1802 if (skb->len <= len)
1803 return true;
1804
1805 /* if TSO is enabled, we don't care about the length as the packet
1806 * could be forwarded without being segmented before
1807 */
1808 if (skb_is_gso(skb))
1809 return true;
1810
1811 return false;
1812}
1813EXPORT_SYMBOL_GPL(is_skb_forwardable);
1814
1815int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1816{
1817 int ret = ____dev_forward_skb(dev, skb);
1818
1819 if (likely(!ret)) {
1820 skb->protocol = eth_type_trans(skb, dev);
1821 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1822 }
1823
1824 return ret;
1825}
1826EXPORT_SYMBOL_GPL(__dev_forward_skb);
1827
1828/**
1829 * dev_forward_skb - loopback an skb to another netif
1830 *
1831 * @dev: destination network device
1832 * @skb: buffer to forward
1833 *
1834 * return values:
1835 * NET_RX_SUCCESS (no congestion)
1836 * NET_RX_DROP (packet was dropped, but freed)
1837 *
1838 * dev_forward_skb can be used for injecting an skb from the
1839 * start_xmit function of one device into the receive queue
1840 * of another device.
1841 *
1842 * The receiving device may be in another namespace, so
1843 * we have to clear all information in the skb that could
1844 * impact namespace isolation.
1845 */
1846int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1847{
1848 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1849}
1850EXPORT_SYMBOL_GPL(dev_forward_skb);
1851
1852static inline int deliver_skb(struct sk_buff *skb,
1853 struct packet_type *pt_prev,
1854 struct net_device *orig_dev)
1855{
1856 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1857 return -ENOMEM;
1858 refcount_inc(&skb->users);
1859 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1860}
1861
1862static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1863 struct packet_type **pt,
1864 struct net_device *orig_dev,
1865 __be16 type,
1866 struct list_head *ptype_list)
1867{
1868 struct packet_type *ptype, *pt_prev = *pt;
1869
1870 list_for_each_entry_rcu(ptype, ptype_list, list) {
1871 if (ptype->type != type)
1872 continue;
1873 if (pt_prev)
1874 deliver_skb(skb, pt_prev, orig_dev);
1875 pt_prev = ptype;
1876 }
1877 *pt = pt_prev;
1878}
1879
1880static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1881{
1882 if (!ptype->af_packet_priv || !skb->sk)
1883 return false;
1884
1885 if (ptype->id_match)
1886 return ptype->id_match(ptype, skb->sk);
1887 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1888 return true;
1889
1890 return false;
1891}
1892
1893/*
1894 * Support routine. Sends outgoing frames to any network
1895 * taps currently in use.
1896 */
1897
1898void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1899{
1900 struct packet_type *ptype;
1901 struct sk_buff *skb2 = NULL;
1902 struct packet_type *pt_prev = NULL;
1903 struct list_head *ptype_list = &ptype_all;
1904
1905 rcu_read_lock();
1906again:
1907 list_for_each_entry_rcu(ptype, ptype_list, list) {
1908 /* Never send packets back to the socket
1909 * they originated from - MvS (miquels@drinkel.ow.org)
1910 */
1911 if (skb_loop_sk(ptype, skb))
1912 continue;
1913
1914 if (pt_prev) {
1915 deliver_skb(skb2, pt_prev, skb->dev);
1916 pt_prev = ptype;
1917 continue;
1918 }
1919
1920 /* need to clone skb, done only once */
1921 skb2 = skb_clone(skb, GFP_ATOMIC);
1922 if (!skb2)
1923 goto out_unlock;
1924
1925 net_timestamp_set(skb2);
1926
1927 /* skb->nh should be correctly
1928 * set by sender, so that the second statement is
1929 * just protection against buggy protocols.
1930 */
1931 skb_reset_mac_header(skb2);
1932
1933 if (skb_network_header(skb2) < skb2->data ||
1934 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1935 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1936 ntohs(skb2->protocol),
1937 dev->name);
1938 skb_reset_network_header(skb2);
1939 }
1940
1941 skb2->transport_header = skb2->network_header;
1942 skb2->pkt_type = PACKET_OUTGOING;
1943 pt_prev = ptype;
1944 }
1945
1946 if (ptype_list == &ptype_all) {
1947 ptype_list = &dev->ptype_all;
1948 goto again;
1949 }
1950out_unlock:
1951 if (pt_prev)
1952 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1953 rcu_read_unlock();
1954}
1955EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1956
1957/**
1958 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1959 * @dev: Network device
1960 * @txq: number of queues available
1961 *
1962 * If real_num_tx_queues is changed the tc mappings may no longer be
1963 * valid. To resolve this verify the tc mapping remains valid and if
1964 * not NULL the mapping. With no priorities mapping to this
1965 * offset/count pair it will no longer be used. In the worst case TC0
1966 * is invalid nothing can be done so disable priority mappings. If is
1967 * expected that drivers will fix this mapping if they can before
1968 * calling netif_set_real_num_tx_queues.
1969 */
1970static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1971{
1972 int i;
1973 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1974
1975 /* If TC0 is invalidated disable TC mapping */
1976 if (tc->offset + tc->count > txq) {
1977 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1978 dev->num_tc = 0;
1979 return;
1980 }
1981
1982 /* Invalidated prio to tc mappings set to TC0 */
1983 for (i = 1; i < TC_BITMASK + 1; i++) {
1984 int q = netdev_get_prio_tc_map(dev, i);
1985
1986 tc = &dev->tc_to_txq[q];
1987 if (tc->offset + tc->count > txq) {
1988 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1989 i, q);
1990 netdev_set_prio_tc_map(dev, i, 0);
1991 }
1992 }
1993}
1994
1995int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1996{
1997 if (dev->num_tc) {
1998 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1999 int i;
2000
2001 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2002 if ((txq - tc->offset) < tc->count)
2003 return i;
2004 }
2005
2006 return -1;
2007 }
2008
2009 return 0;
2010}
2011
2012#ifdef CONFIG_XPS
2013static DEFINE_MUTEX(xps_map_mutex);
2014#define xmap_dereference(P) \
2015 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2016
2017static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2018 int tci, u16 index)
2019{
2020 struct xps_map *map = NULL;
2021 int pos;
2022
2023 if (dev_maps)
2024 map = xmap_dereference(dev_maps->cpu_map[tci]);
2025 if (!map)
2026 return false;
2027
2028 for (pos = map->len; pos--;) {
2029 if (map->queues[pos] != index)
2030 continue;
2031
2032 if (map->len > 1) {
2033 map->queues[pos] = map->queues[--map->len];
2034 break;
2035 }
2036
2037 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2038 kfree_rcu(map, rcu);
2039 return false;
2040 }
2041
2042 return true;
2043}
2044
2045static bool remove_xps_queue_cpu(struct net_device *dev,
2046 struct xps_dev_maps *dev_maps,
2047 int cpu, u16 offset, u16 count)
2048{
2049 int num_tc = dev->num_tc ? : 1;
2050 bool active = false;
2051 int tci;
2052
2053 for (tci = cpu * num_tc; num_tc--; tci++) {
2054 int i, j;
2055
2056 for (i = count, j = offset; i--; j++) {
2057 if (!remove_xps_queue(dev_maps, cpu, j))
2058 break;
2059 }
2060
2061 active |= i < 0;
2062 }
2063
2064 return active;
2065}
2066
2067static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2068 u16 count)
2069{
2070 struct xps_dev_maps *dev_maps;
2071 int cpu, i;
2072 bool active = false;
2073
2074 mutex_lock(&xps_map_mutex);
2075 dev_maps = xmap_dereference(dev->xps_maps);
2076
2077 if (!dev_maps)
2078 goto out_no_maps;
2079
2080 for_each_possible_cpu(cpu)
2081 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2082 offset, count);
2083
2084 if (!active) {
2085 RCU_INIT_POINTER(dev->xps_maps, NULL);
2086 kfree_rcu(dev_maps, rcu);
2087 }
2088
2089 for (i = offset + (count - 1); count--; i--)
2090 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2091 NUMA_NO_NODE);
2092
2093out_no_maps:
2094 mutex_unlock(&xps_map_mutex);
2095}
2096
2097static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2098{
2099 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2100}
2101
2102static struct xps_map *expand_xps_map(struct xps_map *map,
2103 int cpu, u16 index)
2104{
2105 struct xps_map *new_map;
2106 int alloc_len = XPS_MIN_MAP_ALLOC;
2107 int i, pos;
2108
2109 for (pos = 0; map && pos < map->len; pos++) {
2110 if (map->queues[pos] != index)
2111 continue;
2112 return map;
2113 }
2114
2115 /* Need to add queue to this CPU's existing map */
2116 if (map) {
2117 if (pos < map->alloc_len)
2118 return map;
2119
2120 alloc_len = map->alloc_len * 2;
2121 }
2122
2123 /* Need to allocate new map to store queue on this CPU's map */
2124 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2125 cpu_to_node(cpu));
2126 if (!new_map)
2127 return NULL;
2128
2129 for (i = 0; i < pos; i++)
2130 new_map->queues[i] = map->queues[i];
2131 new_map->alloc_len = alloc_len;
2132 new_map->len = pos;
2133
2134 return new_map;
2135}
2136
2137int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2138 u16 index)
2139{
2140 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2141 int i, cpu, tci, numa_node_id = -2;
2142 int maps_sz, num_tc = 1, tc = 0;
2143 struct xps_map *map, *new_map;
2144 bool active = false;
2145
2146 if (dev->num_tc) {
2147 num_tc = dev->num_tc;
2148 tc = netdev_txq_to_tc(dev, index);
2149 if (tc < 0)
2150 return -EINVAL;
2151 }
2152
2153 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2154 if (maps_sz < L1_CACHE_BYTES)
2155 maps_sz = L1_CACHE_BYTES;
2156
2157 mutex_lock(&xps_map_mutex);
2158
2159 dev_maps = xmap_dereference(dev->xps_maps);
2160
2161 /* allocate memory for queue storage */
2162 for_each_cpu_and(cpu, cpu_online_mask, mask) {
2163 if (!new_dev_maps)
2164 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2165 if (!new_dev_maps) {
2166 mutex_unlock(&xps_map_mutex);
2167 return -ENOMEM;
2168 }
2169
2170 tci = cpu * num_tc + tc;
2171 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2172 NULL;
2173
2174 map = expand_xps_map(map, cpu, index);
2175 if (!map)
2176 goto error;
2177
2178 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2179 }
2180
2181 if (!new_dev_maps)
2182 goto out_no_new_maps;
2183
2184 for_each_possible_cpu(cpu) {
2185 /* copy maps belonging to foreign traffic classes */
2186 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2187 /* fill in the new device map from the old device map */
2188 map = xmap_dereference(dev_maps->cpu_map[tci]);
2189 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2190 }
2191
2192 /* We need to explicitly update tci as prevous loop
2193 * could break out early if dev_maps is NULL.
2194 */
2195 tci = cpu * num_tc + tc;
2196
2197 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2198 /* add queue to CPU maps */
2199 int pos = 0;
2200
2201 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2202 while ((pos < map->len) && (map->queues[pos] != index))
2203 pos++;
2204
2205 if (pos == map->len)
2206 map->queues[map->len++] = index;
2207#ifdef CONFIG_NUMA
2208 if (numa_node_id == -2)
2209 numa_node_id = cpu_to_node(cpu);
2210 else if (numa_node_id != cpu_to_node(cpu))
2211 numa_node_id = -1;
2212#endif
2213 } else if (dev_maps) {
2214 /* fill in the new device map from the old device map */
2215 map = xmap_dereference(dev_maps->cpu_map[tci]);
2216 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2217 }
2218
2219 /* copy maps belonging to foreign traffic classes */
2220 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2221 /* fill in the new device map from the old device map */
2222 map = xmap_dereference(dev_maps->cpu_map[tci]);
2223 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2224 }
2225 }
2226
2227 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2228
2229 /* Cleanup old maps */
2230 if (!dev_maps)
2231 goto out_no_old_maps;
2232
2233 for_each_possible_cpu(cpu) {
2234 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2235 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2236 map = xmap_dereference(dev_maps->cpu_map[tci]);
2237 if (map && map != new_map)
2238 kfree_rcu(map, rcu);
2239 }
2240 }
2241
2242 kfree_rcu(dev_maps, rcu);
2243
2244out_no_old_maps:
2245 dev_maps = new_dev_maps;
2246 active = true;
2247
2248out_no_new_maps:
2249 /* update Tx queue numa node */
2250 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2251 (numa_node_id >= 0) ? numa_node_id :
2252 NUMA_NO_NODE);
2253
2254 if (!dev_maps)
2255 goto out_no_maps;
2256
2257 /* removes queue from unused CPUs */
2258 for_each_possible_cpu(cpu) {
2259 for (i = tc, tci = cpu * num_tc; i--; tci++)
2260 active |= remove_xps_queue(dev_maps, tci, index);
2261 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2262 active |= remove_xps_queue(dev_maps, tci, index);
2263 for (i = num_tc - tc, tci++; --i; tci++)
2264 active |= remove_xps_queue(dev_maps, tci, index);
2265 }
2266
2267 /* free map if not active */
2268 if (!active) {
2269 RCU_INIT_POINTER(dev->xps_maps, NULL);
2270 kfree_rcu(dev_maps, rcu);
2271 }
2272
2273out_no_maps:
2274 mutex_unlock(&xps_map_mutex);
2275
2276 return 0;
2277error:
2278 /* remove any maps that we added */
2279 for_each_possible_cpu(cpu) {
2280 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2281 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2282 map = dev_maps ?
2283 xmap_dereference(dev_maps->cpu_map[tci]) :
2284 NULL;
2285 if (new_map && new_map != map)
2286 kfree(new_map);
2287 }
2288 }
2289
2290 mutex_unlock(&xps_map_mutex);
2291
2292 kfree(new_dev_maps);
2293 return -ENOMEM;
2294}
2295EXPORT_SYMBOL(netif_set_xps_queue);
2296
2297#endif
2298void netdev_reset_tc(struct net_device *dev)
2299{
2300#ifdef CONFIG_XPS
2301 netif_reset_xps_queues_gt(dev, 0);
2302#endif
2303 dev->num_tc = 0;
2304 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2305 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2306}
2307EXPORT_SYMBOL(netdev_reset_tc);
2308
2309int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2310{
2311 if (tc >= dev->num_tc)
2312 return -EINVAL;
2313
2314#ifdef CONFIG_XPS
2315 netif_reset_xps_queues(dev, offset, count);
2316#endif
2317 dev->tc_to_txq[tc].count = count;
2318 dev->tc_to_txq[tc].offset = offset;
2319 return 0;
2320}
2321EXPORT_SYMBOL(netdev_set_tc_queue);
2322
2323int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2324{
2325 if (num_tc > TC_MAX_QUEUE)
2326 return -EINVAL;
2327
2328#ifdef CONFIG_XPS
2329 netif_reset_xps_queues_gt(dev, 0);
2330#endif
2331 dev->num_tc = num_tc;
2332 return 0;
2333}
2334EXPORT_SYMBOL(netdev_set_num_tc);
2335
2336/*
2337 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2338 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2339 */
2340int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2341{
2342 int rc;
2343
2344 if (txq < 1 || txq > dev->num_tx_queues)
2345 return -EINVAL;
2346
2347 if (dev->reg_state == NETREG_REGISTERED ||
2348 dev->reg_state == NETREG_UNREGISTERING) {
2349 ASSERT_RTNL();
2350
2351 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2352 txq);
2353 if (rc)
2354 return rc;
2355
2356 if (dev->num_tc)
2357 netif_setup_tc(dev, txq);
2358
2359 if (txq < dev->real_num_tx_queues) {
2360 qdisc_reset_all_tx_gt(dev, txq);
2361#ifdef CONFIG_XPS
2362 netif_reset_xps_queues_gt(dev, txq);
2363#endif
2364 }
2365 }
2366
2367 dev->real_num_tx_queues = txq;
2368 return 0;
2369}
2370EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2371
2372#ifdef CONFIG_SYSFS
2373/**
2374 * netif_set_real_num_rx_queues - set actual number of RX queues used
2375 * @dev: Network device
2376 * @rxq: Actual number of RX queues
2377 *
2378 * This must be called either with the rtnl_lock held or before
2379 * registration of the net device. Returns 0 on success, or a
2380 * negative error code. If called before registration, it always
2381 * succeeds.
2382 */
2383int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2384{
2385 int rc;
2386
2387 if (rxq < 1 || rxq > dev->num_rx_queues)
2388 return -EINVAL;
2389
2390 if (dev->reg_state == NETREG_REGISTERED) {
2391 ASSERT_RTNL();
2392
2393 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2394 rxq);
2395 if (rc)
2396 return rc;
2397 }
2398
2399 dev->real_num_rx_queues = rxq;
2400 return 0;
2401}
2402EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2403#endif
2404
2405/**
2406 * netif_get_num_default_rss_queues - default number of RSS queues
2407 *
2408 * This routine should set an upper limit on the number of RSS queues
2409 * used by default by multiqueue devices.
2410 */
2411int netif_get_num_default_rss_queues(void)
2412{
2413 return is_kdump_kernel() ?
2414 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2415}
2416EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2417
2418static void __netif_reschedule(struct Qdisc *q)
2419{
2420 struct softnet_data *sd;
2421 unsigned long flags;
2422
2423 local_irq_save(flags);
2424 sd = this_cpu_ptr(&softnet_data);
2425 q->next_sched = NULL;
2426 *sd->output_queue_tailp = q;
2427 sd->output_queue_tailp = &q->next_sched;
2428 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2429 local_irq_restore(flags);
2430}
2431
2432void __netif_schedule(struct Qdisc *q)
2433{
2434 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2435 __netif_reschedule(q);
2436}
2437EXPORT_SYMBOL(__netif_schedule);
2438
2439struct dev_kfree_skb_cb {
2440 enum skb_free_reason reason;
2441};
2442
2443static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2444{
2445 return (struct dev_kfree_skb_cb *)skb->cb;
2446}
2447
2448void netif_schedule_queue(struct netdev_queue *txq)
2449{
2450 rcu_read_lock();
2451 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2452 struct Qdisc *q = rcu_dereference(txq->qdisc);
2453
2454 __netif_schedule(q);
2455 }
2456 rcu_read_unlock();
2457}
2458EXPORT_SYMBOL(netif_schedule_queue);
2459
2460void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2461{
2462 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2463 struct Qdisc *q;
2464
2465 rcu_read_lock();
2466 q = rcu_dereference(dev_queue->qdisc);
2467 __netif_schedule(q);
2468 rcu_read_unlock();
2469 }
2470}
2471EXPORT_SYMBOL(netif_tx_wake_queue);
2472
2473void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2474{
2475 unsigned long flags;
2476
2477 if (unlikely(!skb))
2478 return;
2479
2480 if (likely(refcount_read(&skb->users) == 1)) {
2481 smp_rmb();
2482 refcount_set(&skb->users, 0);
2483 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2484 return;
2485 }
2486 get_kfree_skb_cb(skb)->reason = reason;
2487 local_irq_save(flags);
2488 skb->next = __this_cpu_read(softnet_data.completion_queue);
2489 __this_cpu_write(softnet_data.completion_queue, skb);
2490 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2491 local_irq_restore(flags);
2492}
2493EXPORT_SYMBOL(__dev_kfree_skb_irq);
2494
2495void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2496{
2497 if (in_irq() || irqs_disabled())
2498 __dev_kfree_skb_irq(skb, reason);
2499 else
2500 dev_kfree_skb(skb);
2501}
2502EXPORT_SYMBOL(__dev_kfree_skb_any);
2503
2504
2505/**
2506 * netif_device_detach - mark device as removed
2507 * @dev: network device
2508 *
2509 * Mark device as removed from system and therefore no longer available.
2510 */
2511void netif_device_detach(struct net_device *dev)
2512{
2513 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2514 netif_running(dev)) {
2515 netif_tx_stop_all_queues(dev);
2516 }
2517}
2518EXPORT_SYMBOL(netif_device_detach);
2519
2520/**
2521 * netif_device_attach - mark device as attached
2522 * @dev: network device
2523 *
2524 * Mark device as attached from system and restart if needed.
2525 */
2526void netif_device_attach(struct net_device *dev)
2527{
2528 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2529 netif_running(dev)) {
2530 netif_tx_wake_all_queues(dev);
2531 __netdev_watchdog_up(dev);
2532 }
2533}
2534EXPORT_SYMBOL(netif_device_attach);
2535
2536/*
2537 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2538 * to be used as a distribution range.
2539 */
2540u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2541 unsigned int num_tx_queues)
2542{
2543 u32 hash;
2544 u16 qoffset = 0;
2545 u16 qcount = num_tx_queues;
2546
2547 if (skb_rx_queue_recorded(skb)) {
2548 hash = skb_get_rx_queue(skb);
2549 while (unlikely(hash >= num_tx_queues))
2550 hash -= num_tx_queues;
2551 return hash;
2552 }
2553
2554 if (dev->num_tc) {
2555 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2556
2557 qoffset = dev->tc_to_txq[tc].offset;
2558 qcount = dev->tc_to_txq[tc].count;
2559 }
2560
2561 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2562}
2563EXPORT_SYMBOL(__skb_tx_hash);
2564
2565static void skb_warn_bad_offload(const struct sk_buff *skb)
2566{
2567 static const netdev_features_t null_features;
2568 struct net_device *dev = skb->dev;
2569 const char *name = "";
2570
2571 if (!net_ratelimit())
2572 return;
2573
2574 if (dev) {
2575 if (dev->dev.parent)
2576 name = dev_driver_string(dev->dev.parent);
2577 else
2578 name = netdev_name(dev);
2579 }
2580 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2581 "gso_type=%d ip_summed=%d\n",
2582 name, dev ? &dev->features : &null_features,
2583 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2584 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2585 skb_shinfo(skb)->gso_type, skb->ip_summed);
2586}
2587
2588/*
2589 * Invalidate hardware checksum when packet is to be mangled, and
2590 * complete checksum manually on outgoing path.
2591 */
2592int skb_checksum_help(struct sk_buff *skb)
2593{
2594 __wsum csum;
2595 int ret = 0, offset;
2596
2597 if (skb->ip_summed == CHECKSUM_COMPLETE)
2598 goto out_set_summed;
2599
2600 if (unlikely(skb_shinfo(skb)->gso_size)) {
2601 skb_warn_bad_offload(skb);
2602 return -EINVAL;
2603 }
2604
2605 /* Before computing a checksum, we should make sure no frag could
2606 * be modified by an external entity : checksum could be wrong.
2607 */
2608 if (skb_has_shared_frag(skb)) {
2609 ret = __skb_linearize(skb);
2610 if (ret)
2611 goto out;
2612 }
2613
2614 offset = skb_checksum_start_offset(skb);
2615 BUG_ON(offset >= skb_headlen(skb));
2616 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2617
2618 offset += skb->csum_offset;
2619 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2620
2621 if (skb_cloned(skb) &&
2622 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2623 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2624 if (ret)
2625 goto out;
2626 }
2627
2628 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2629out_set_summed:
2630 skb->ip_summed = CHECKSUM_NONE;
2631out:
2632 return ret;
2633}
2634EXPORT_SYMBOL(skb_checksum_help);
2635
2636int skb_crc32c_csum_help(struct sk_buff *skb)
2637{
2638 __le32 crc32c_csum;
2639 int ret = 0, offset, start;
2640
2641 if (skb->ip_summed != CHECKSUM_PARTIAL)
2642 goto out;
2643
2644 if (unlikely(skb_is_gso(skb)))
2645 goto out;
2646
2647 /* Before computing a checksum, we should make sure no frag could
2648 * be modified by an external entity : checksum could be wrong.
2649 */
2650 if (unlikely(skb_has_shared_frag(skb))) {
2651 ret = __skb_linearize(skb);
2652 if (ret)
2653 goto out;
2654 }
2655 start = skb_checksum_start_offset(skb);
2656 offset = start + offsetof(struct sctphdr, checksum);
2657 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2658 ret = -EINVAL;
2659 goto out;
2660 }
2661 if (skb_cloned(skb) &&
2662 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2663 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2664 if (ret)
2665 goto out;
2666 }
2667 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2668 skb->len - start, ~(__u32)0,
2669 crc32c_csum_stub));
2670 *(__le32 *)(skb->data + offset) = crc32c_csum;
2671 skb->ip_summed = CHECKSUM_NONE;
2672 skb->csum_not_inet = 0;
2673out:
2674 return ret;
2675}
2676
2677__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2678{
2679 __be16 type = skb->protocol;
2680
2681 /* Tunnel gso handlers can set protocol to ethernet. */
2682 if (type == htons(ETH_P_TEB)) {
2683 struct ethhdr *eth;
2684
2685 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2686 return 0;
2687
2688 eth = (struct ethhdr *)skb_mac_header(skb);
2689 type = eth->h_proto;
2690 }
2691
2692 return __vlan_get_protocol(skb, type, depth);
2693}
2694
2695/**
2696 * skb_mac_gso_segment - mac layer segmentation handler.
2697 * @skb: buffer to segment
2698 * @features: features for the output path (see dev->features)
2699 */
2700struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2701 netdev_features_t features)
2702{
2703 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2704 struct packet_offload *ptype;
2705 int vlan_depth = skb->mac_len;
2706 __be16 type = skb_network_protocol(skb, &vlan_depth);
2707
2708 if (unlikely(!type))
2709 return ERR_PTR(-EINVAL);
2710
2711 __skb_pull(skb, vlan_depth);
2712
2713 rcu_read_lock();
2714 list_for_each_entry_rcu(ptype, &offload_base, list) {
2715 if (ptype->type == type && ptype->callbacks.gso_segment) {
2716 segs = ptype->callbacks.gso_segment(skb, features);
2717 break;
2718 }
2719 }
2720 rcu_read_unlock();
2721
2722 __skb_push(skb, skb->data - skb_mac_header(skb));
2723
2724 return segs;
2725}
2726EXPORT_SYMBOL(skb_mac_gso_segment);
2727
2728
2729/* openvswitch calls this on rx path, so we need a different check.
2730 */
2731static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2732{
2733 if (tx_path)
2734 return skb->ip_summed != CHECKSUM_PARTIAL;
2735
2736 return skb->ip_summed == CHECKSUM_NONE;
2737}
2738
2739/**
2740 * __skb_gso_segment - Perform segmentation on skb.
2741 * @skb: buffer to segment
2742 * @features: features for the output path (see dev->features)
2743 * @tx_path: whether it is called in TX path
2744 *
2745 * This function segments the given skb and returns a list of segments.
2746 *
2747 * It may return NULL if the skb requires no segmentation. This is
2748 * only possible when GSO is used for verifying header integrity.
2749 *
2750 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2751 */
2752struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2753 netdev_features_t features, bool tx_path)
2754{
2755 struct sk_buff *segs;
2756
2757 if (unlikely(skb_needs_check(skb, tx_path))) {
2758 int err;
2759
2760 /* We're going to init ->check field in TCP or UDP header */
2761 err = skb_cow_head(skb, 0);
2762 if (err < 0)
2763 return ERR_PTR(err);
2764 }
2765
2766 /* Only report GSO partial support if it will enable us to
2767 * support segmentation on this frame without needing additional
2768 * work.
2769 */
2770 if (features & NETIF_F_GSO_PARTIAL) {
2771 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2772 struct net_device *dev = skb->dev;
2773
2774 partial_features |= dev->features & dev->gso_partial_features;
2775 if (!skb_gso_ok(skb, features | partial_features))
2776 features &= ~NETIF_F_GSO_PARTIAL;
2777 }
2778
2779 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2780 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2781
2782 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2783 SKB_GSO_CB(skb)->encap_level = 0;
2784
2785 skb_reset_mac_header(skb);
2786 skb_reset_mac_len(skb);
2787
2788 segs = skb_mac_gso_segment(skb, features);
2789
2790 if (unlikely(skb_needs_check(skb, tx_path)))
2791 skb_warn_bad_offload(skb);
2792
2793 return segs;
2794}
2795EXPORT_SYMBOL(__skb_gso_segment);
2796
2797/* Take action when hardware reception checksum errors are detected. */
2798#ifdef CONFIG_BUG
2799void netdev_rx_csum_fault(struct net_device *dev)
2800{
2801 if (net_ratelimit()) {
2802 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2803 dump_stack();
2804 }
2805}
2806EXPORT_SYMBOL(netdev_rx_csum_fault);
2807#endif
2808
2809/* Actually, we should eliminate this check as soon as we know, that:
2810 * 1. IOMMU is present and allows to map all the memory.
2811 * 2. No high memory really exists on this machine.
2812 */
2813
2814static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2815{
2816#ifdef CONFIG_HIGHMEM
2817 int i;
2818
2819 if (!(dev->features & NETIF_F_HIGHDMA)) {
2820 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2821 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2822
2823 if (PageHighMem(skb_frag_page(frag)))
2824 return 1;
2825 }
2826 }
2827
2828 if (PCI_DMA_BUS_IS_PHYS) {
2829 struct device *pdev = dev->dev.parent;
2830
2831 if (!pdev)
2832 return 0;
2833 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2834 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2835 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2836
2837 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2838 return 1;
2839 }
2840 }
2841#endif
2842 return 0;
2843}
2844
2845/* If MPLS offload request, verify we are testing hardware MPLS features
2846 * instead of standard features for the netdev.
2847 */
2848#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2849static netdev_features_t net_mpls_features(struct sk_buff *skb,
2850 netdev_features_t features,
2851 __be16 type)
2852{
2853 if (eth_p_mpls(type))
2854 features &= skb->dev->mpls_features;
2855
2856 return features;
2857}
2858#else
2859static netdev_features_t net_mpls_features(struct sk_buff *skb,
2860 netdev_features_t features,
2861 __be16 type)
2862{
2863 return features;
2864}
2865#endif
2866
2867static netdev_features_t harmonize_features(struct sk_buff *skb,
2868 netdev_features_t features)
2869{
2870 int tmp;
2871 __be16 type;
2872
2873 type = skb_network_protocol(skb, &tmp);
2874 features = net_mpls_features(skb, features, type);
2875
2876 if (skb->ip_summed != CHECKSUM_NONE &&
2877 !can_checksum_protocol(features, type)) {
2878 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2879 }
2880 if (illegal_highdma(skb->dev, skb))
2881 features &= ~NETIF_F_SG;
2882
2883 return features;
2884}
2885
2886netdev_features_t passthru_features_check(struct sk_buff *skb,
2887 struct net_device *dev,
2888 netdev_features_t features)
2889{
2890 return features;
2891}
2892EXPORT_SYMBOL(passthru_features_check);
2893
2894static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2895 struct net_device *dev,
2896 netdev_features_t features)
2897{
2898 return vlan_features_check(skb, features);
2899}
2900
2901static netdev_features_t gso_features_check(const struct sk_buff *skb,
2902 struct net_device *dev,
2903 netdev_features_t features)
2904{
2905 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2906
2907 if (gso_segs > dev->gso_max_segs)
2908 return features & ~NETIF_F_GSO_MASK;
2909
2910 /* Support for GSO partial features requires software
2911 * intervention before we can actually process the packets
2912 * so we need to strip support for any partial features now
2913 * and we can pull them back in after we have partially
2914 * segmented the frame.
2915 */
2916 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2917 features &= ~dev->gso_partial_features;
2918
2919 /* Make sure to clear the IPv4 ID mangling feature if the
2920 * IPv4 header has the potential to be fragmented.
2921 */
2922 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2923 struct iphdr *iph = skb->encapsulation ?
2924 inner_ip_hdr(skb) : ip_hdr(skb);
2925
2926 if (!(iph->frag_off & htons(IP_DF)))
2927 features &= ~NETIF_F_TSO_MANGLEID;
2928 }
2929
2930 return features;
2931}
2932
2933netdev_features_t netif_skb_features(struct sk_buff *skb)
2934{
2935 struct net_device *dev = skb->dev;
2936 netdev_features_t features = dev->features;
2937
2938 if (skb_is_gso(skb))
2939 features = gso_features_check(skb, dev, features);
2940
2941 /* If encapsulation offload request, verify we are testing
2942 * hardware encapsulation features instead of standard
2943 * features for the netdev
2944 */
2945 if (skb->encapsulation)
2946 features &= dev->hw_enc_features;
2947
2948 if (skb_vlan_tagged(skb))
2949 features = netdev_intersect_features(features,
2950 dev->vlan_features |
2951 NETIF_F_HW_VLAN_CTAG_TX |
2952 NETIF_F_HW_VLAN_STAG_TX);
2953
2954 if (dev->netdev_ops->ndo_features_check)
2955 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2956 features);
2957 else
2958 features &= dflt_features_check(skb, dev, features);
2959
2960 return harmonize_features(skb, features);
2961}
2962EXPORT_SYMBOL(netif_skb_features);
2963
2964static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2965 struct netdev_queue *txq, bool more)
2966{
2967 unsigned int len;
2968 int rc;
2969
2970 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2971 dev_queue_xmit_nit(skb, dev);
2972
2973 len = skb->len;
2974 trace_net_dev_start_xmit(skb, dev);
2975 rc = netdev_start_xmit(skb, dev, txq, more);
2976 trace_net_dev_xmit(skb, rc, dev, len);
2977
2978 return rc;
2979}
2980
2981struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2982 struct netdev_queue *txq, int *ret)
2983{
2984 struct sk_buff *skb = first;
2985 int rc = NETDEV_TX_OK;
2986
2987 while (skb) {
2988 struct sk_buff *next = skb->next;
2989
2990 skb->next = NULL;
2991 rc = xmit_one(skb, dev, txq, next != NULL);
2992 if (unlikely(!dev_xmit_complete(rc))) {
2993 skb->next = next;
2994 goto out;
2995 }
2996
2997 skb = next;
2998 if (netif_xmit_stopped(txq) && skb) {
2999 rc = NETDEV_TX_BUSY;
3000 break;
3001 }
3002 }
3003
3004out:
3005 *ret = rc;
3006 return skb;
3007}
3008
3009static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3010 netdev_features_t features)
3011{
3012 if (skb_vlan_tag_present(skb) &&
3013 !vlan_hw_offload_capable(features, skb->vlan_proto))
3014 skb = __vlan_hwaccel_push_inside(skb);
3015 return skb;
3016}
3017
3018int skb_csum_hwoffload_help(struct sk_buff *skb,
3019 const netdev_features_t features)
3020{
3021 if (unlikely(skb->csum_not_inet))
3022 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3023 skb_crc32c_csum_help(skb);
3024
3025 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3026}
3027EXPORT_SYMBOL(skb_csum_hwoffload_help);
3028
3029static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3030{
3031 netdev_features_t features;
3032
3033 features = netif_skb_features(skb);
3034 skb = validate_xmit_vlan(skb, features);
3035 if (unlikely(!skb))
3036 goto out_null;
3037
3038 if (netif_needs_gso(skb, features)) {
3039 struct sk_buff *segs;
3040
3041 segs = skb_gso_segment(skb, features);
3042 if (IS_ERR(segs)) {
3043 goto out_kfree_skb;
3044 } else if (segs) {
3045 consume_skb(skb);
3046 skb = segs;
3047 }
3048 } else {
3049 if (skb_needs_linearize(skb, features) &&
3050 __skb_linearize(skb))
3051 goto out_kfree_skb;
3052
3053 if (validate_xmit_xfrm(skb, features))
3054 goto out_kfree_skb;
3055
3056 /* If packet is not checksummed and device does not
3057 * support checksumming for this protocol, complete
3058 * checksumming here.
3059 */
3060 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3061 if (skb->encapsulation)
3062 skb_set_inner_transport_header(skb,
3063 skb_checksum_start_offset(skb));
3064 else
3065 skb_set_transport_header(skb,
3066 skb_checksum_start_offset(skb));
3067 if (skb_csum_hwoffload_help(skb, features))
3068 goto out_kfree_skb;
3069 }
3070 }
3071
3072 return skb;
3073
3074out_kfree_skb:
3075 kfree_skb(skb);
3076out_null:
3077 atomic_long_inc(&dev->tx_dropped);
3078 return NULL;
3079}
3080
3081struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3082{
3083 struct sk_buff *next, *head = NULL, *tail;
3084
3085 for (; skb != NULL; skb = next) {
3086 next = skb->next;
3087 skb->next = NULL;
3088
3089 /* in case skb wont be segmented, point to itself */
3090 skb->prev = skb;
3091
3092 skb = validate_xmit_skb(skb, dev);
3093 if (!skb)
3094 continue;
3095
3096 if (!head)
3097 head = skb;
3098 else
3099 tail->next = skb;
3100 /* If skb was segmented, skb->prev points to
3101 * the last segment. If not, it still contains skb.
3102 */
3103 tail = skb->prev;
3104 }
3105 return head;
3106}
3107EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3108
3109static void qdisc_pkt_len_init(struct sk_buff *skb)
3110{
3111 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3112
3113 qdisc_skb_cb(skb)->pkt_len = skb->len;
3114
3115 /* To get more precise estimation of bytes sent on wire,
3116 * we add to pkt_len the headers size of all segments
3117 */
3118 if (shinfo->gso_size) {
3119 unsigned int hdr_len;
3120 u16 gso_segs = shinfo->gso_segs;
3121
3122 /* mac layer + network layer */
3123 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3124
3125 /* + transport layer */
3126 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3127 hdr_len += tcp_hdrlen(skb);
3128 else
3129 hdr_len += sizeof(struct udphdr);
3130
3131 if (shinfo->gso_type & SKB_GSO_DODGY)
3132 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3133 shinfo->gso_size);
3134
3135 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3136 }
3137}
3138
3139static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3140 struct net_device *dev,
3141 struct netdev_queue *txq)
3142{
3143 spinlock_t *root_lock = qdisc_lock(q);
3144 struct sk_buff *to_free = NULL;
3145 bool contended;
3146 int rc;
3147
3148 qdisc_calculate_pkt_len(skb, q);
3149 /*
3150 * Heuristic to force contended enqueues to serialize on a
3151 * separate lock before trying to get qdisc main lock.
3152 * This permits qdisc->running owner to get the lock more
3153 * often and dequeue packets faster.
3154 */
3155 contended = qdisc_is_running(q);
3156 if (unlikely(contended))
3157 spin_lock(&q->busylock);
3158
3159 spin_lock(root_lock);
3160 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3161 __qdisc_drop(skb, &to_free);
3162 rc = NET_XMIT_DROP;
3163 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3164 qdisc_run_begin(q)) {
3165 /*
3166 * This is a work-conserving queue; there are no old skbs
3167 * waiting to be sent out; and the qdisc is not running -
3168 * xmit the skb directly.
3169 */
3170
3171 qdisc_bstats_update(q, skb);
3172
3173 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3174 if (unlikely(contended)) {
3175 spin_unlock(&q->busylock);
3176 contended = false;
3177 }
3178 __qdisc_run(q);
3179 } else
3180 qdisc_run_end(q);
3181
3182 rc = NET_XMIT_SUCCESS;
3183 } else {
3184 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3185 if (qdisc_run_begin(q)) {
3186 if (unlikely(contended)) {
3187 spin_unlock(&q->busylock);
3188 contended = false;
3189 }
3190 __qdisc_run(q);
3191 }
3192 }
3193 spin_unlock(root_lock);
3194 if (unlikely(to_free))
3195 kfree_skb_list(to_free);
3196 if (unlikely(contended))
3197 spin_unlock(&q->busylock);
3198 return rc;
3199}
3200
3201#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3202static void skb_update_prio(struct sk_buff *skb)
3203{
3204 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3205
3206 if (!skb->priority && skb->sk && map) {
3207 unsigned int prioidx =
3208 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3209
3210 if (prioidx < map->priomap_len)
3211 skb->priority = map->priomap[prioidx];
3212 }
3213}
3214#else
3215#define skb_update_prio(skb)
3216#endif
3217
3218DEFINE_PER_CPU(int, xmit_recursion);
3219EXPORT_SYMBOL(xmit_recursion);
3220
3221/**
3222 * dev_loopback_xmit - loop back @skb
3223 * @net: network namespace this loopback is happening in
3224 * @sk: sk needed to be a netfilter okfn
3225 * @skb: buffer to transmit
3226 */
3227int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3228{
3229 skb_reset_mac_header(skb);
3230 __skb_pull(skb, skb_network_offset(skb));
3231 skb->pkt_type = PACKET_LOOPBACK;
3232 skb->ip_summed = CHECKSUM_UNNECESSARY;
3233 WARN_ON(!skb_dst(skb));
3234 skb_dst_force(skb);
3235 netif_rx_ni(skb);
3236 return 0;
3237}
3238EXPORT_SYMBOL(dev_loopback_xmit);
3239
3240#ifdef CONFIG_NET_EGRESS
3241static struct sk_buff *
3242sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3243{
3244 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3245 struct tcf_result cl_res;
3246
3247 if (!cl)
3248 return skb;
3249
3250 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3251 qdisc_bstats_cpu_update(cl->q, skb);
3252
3253 switch (tcf_classify(skb, cl, &cl_res, false)) {
3254 case TC_ACT_OK:
3255 case TC_ACT_RECLASSIFY:
3256 skb->tc_index = TC_H_MIN(cl_res.classid);
3257 break;
3258 case TC_ACT_SHOT:
3259 qdisc_qstats_cpu_drop(cl->q);
3260 *ret = NET_XMIT_DROP;
3261 kfree_skb(skb);
3262 return NULL;
3263 case TC_ACT_STOLEN:
3264 case TC_ACT_QUEUED:
3265 case TC_ACT_TRAP:
3266 *ret = NET_XMIT_SUCCESS;
3267 consume_skb(skb);
3268 return NULL;
3269 case TC_ACT_REDIRECT:
3270 /* No need to push/pop skb's mac_header here on egress! */
3271 skb_do_redirect(skb);
3272 *ret = NET_XMIT_SUCCESS;
3273 return NULL;
3274 default:
3275 break;
3276 }
3277
3278 return skb;
3279}
3280#endif /* CONFIG_NET_EGRESS */
3281
3282static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3283{
3284#ifdef CONFIG_XPS
3285 struct xps_dev_maps *dev_maps;
3286 struct xps_map *map;
3287 int queue_index = -1;
3288
3289 rcu_read_lock();
3290 dev_maps = rcu_dereference(dev->xps_maps);
3291 if (dev_maps) {
3292 unsigned int tci = skb->sender_cpu - 1;
3293
3294 if (dev->num_tc) {
3295 tci *= dev->num_tc;
3296 tci += netdev_get_prio_tc_map(dev, skb->priority);
3297 }
3298
3299 map = rcu_dereference(dev_maps->cpu_map[tci]);
3300 if (map) {
3301 if (map->len == 1)
3302 queue_index = map->queues[0];
3303 else
3304 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3305 map->len)];
3306 if (unlikely(queue_index >= dev->real_num_tx_queues))
3307 queue_index = -1;
3308 }
3309 }
3310 rcu_read_unlock();
3311
3312 return queue_index;
3313#else
3314 return -1;
3315#endif
3316}
3317
3318static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3319{
3320 struct sock *sk = skb->sk;
3321 int queue_index = sk_tx_queue_get(sk);
3322
3323 if (queue_index < 0 || skb->ooo_okay ||
3324 queue_index >= dev->real_num_tx_queues) {
3325 int new_index = get_xps_queue(dev, skb);
3326
3327 if (new_index < 0)
3328 new_index = skb_tx_hash(dev, skb);
3329
3330 if (queue_index != new_index && sk &&
3331 sk_fullsock(sk) &&
3332 rcu_access_pointer(sk->sk_dst_cache))
3333 sk_tx_queue_set(sk, new_index);
3334
3335 queue_index = new_index;
3336 }
3337
3338 return queue_index;
3339}
3340
3341struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3342 struct sk_buff *skb,
3343 void *accel_priv)
3344{
3345 int queue_index = 0;
3346
3347#ifdef CONFIG_XPS
3348 u32 sender_cpu = skb->sender_cpu - 1;
3349
3350 if (sender_cpu >= (u32)NR_CPUS)
3351 skb->sender_cpu = raw_smp_processor_id() + 1;
3352#endif
3353
3354 if (dev->real_num_tx_queues != 1) {
3355 const struct net_device_ops *ops = dev->netdev_ops;
3356
3357 if (ops->ndo_select_queue)
3358 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3359 __netdev_pick_tx);
3360 else
3361 queue_index = __netdev_pick_tx(dev, skb);
3362
3363 if (!accel_priv)
3364 queue_index = netdev_cap_txqueue(dev, queue_index);
3365 }
3366
3367 skb_set_queue_mapping(skb, queue_index);
3368 return netdev_get_tx_queue(dev, queue_index);
3369}
3370
3371/**
3372 * __dev_queue_xmit - transmit a buffer
3373 * @skb: buffer to transmit
3374 * @accel_priv: private data used for L2 forwarding offload
3375 *
3376 * Queue a buffer for transmission to a network device. The caller must
3377 * have set the device and priority and built the buffer before calling
3378 * this function. The function can be called from an interrupt.
3379 *
3380 * A negative errno code is returned on a failure. A success does not
3381 * guarantee the frame will be transmitted as it may be dropped due
3382 * to congestion or traffic shaping.
3383 *
3384 * -----------------------------------------------------------------------------------
3385 * I notice this method can also return errors from the queue disciplines,
3386 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3387 * be positive.
3388 *
3389 * Regardless of the return value, the skb is consumed, so it is currently
3390 * difficult to retry a send to this method. (You can bump the ref count
3391 * before sending to hold a reference for retry if you are careful.)
3392 *
3393 * When calling this method, interrupts MUST be enabled. This is because
3394 * the BH enable code must have IRQs enabled so that it will not deadlock.
3395 * --BLG
3396 */
3397static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3398{
3399 struct net_device *dev = skb->dev;
3400 struct netdev_queue *txq;
3401 struct Qdisc *q;
3402 int rc = -ENOMEM;
3403
3404 skb_reset_mac_header(skb);
3405
3406 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3407 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3408
3409 /* Disable soft irqs for various locks below. Also
3410 * stops preemption for RCU.
3411 */
3412 rcu_read_lock_bh();
3413
3414 skb_update_prio(skb);
3415
3416 qdisc_pkt_len_init(skb);
3417#ifdef CONFIG_NET_CLS_ACT
3418 skb->tc_at_ingress = 0;
3419# ifdef CONFIG_NET_EGRESS
3420 if (static_key_false(&egress_needed)) {
3421 skb = sch_handle_egress(skb, &rc, dev);
3422 if (!skb)
3423 goto out;
3424 }
3425# endif
3426#endif
3427 /* If device/qdisc don't need skb->dst, release it right now while
3428 * its hot in this cpu cache.
3429 */
3430 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3431 skb_dst_drop(skb);
3432 else
3433 skb_dst_force(skb);
3434
3435 txq = netdev_pick_tx(dev, skb, accel_priv);
3436 q = rcu_dereference_bh(txq->qdisc);
3437
3438 trace_net_dev_queue(skb);
3439 if (q->enqueue) {
3440 rc = __dev_xmit_skb(skb, q, dev, txq);
3441 goto out;
3442 }
3443
3444 /* The device has no queue. Common case for software devices:
3445 * loopback, all the sorts of tunnels...
3446
3447 * Really, it is unlikely that netif_tx_lock protection is necessary
3448 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3449 * counters.)
3450 * However, it is possible, that they rely on protection
3451 * made by us here.
3452
3453 * Check this and shot the lock. It is not prone from deadlocks.
3454 *Either shot noqueue qdisc, it is even simpler 8)
3455 */
3456 if (dev->flags & IFF_UP) {
3457 int cpu = smp_processor_id(); /* ok because BHs are off */
3458
3459 if (txq->xmit_lock_owner != cpu) {
3460 if (unlikely(__this_cpu_read(xmit_recursion) >
3461 XMIT_RECURSION_LIMIT))
3462 goto recursion_alert;
3463
3464 skb = validate_xmit_skb(skb, dev);
3465 if (!skb)
3466 goto out;
3467
3468 HARD_TX_LOCK(dev, txq, cpu);
3469
3470 if (!netif_xmit_stopped(txq)) {
3471 __this_cpu_inc(xmit_recursion);
3472 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3473 __this_cpu_dec(xmit_recursion);
3474 if (dev_xmit_complete(rc)) {
3475 HARD_TX_UNLOCK(dev, txq);
3476 goto out;
3477 }
3478 }
3479 HARD_TX_UNLOCK(dev, txq);
3480 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3481 dev->name);
3482 } else {
3483 /* Recursion is detected! It is possible,
3484 * unfortunately
3485 */
3486recursion_alert:
3487 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3488 dev->name);
3489 }
3490 }
3491
3492 rc = -ENETDOWN;
3493 rcu_read_unlock_bh();
3494
3495 atomic_long_inc(&dev->tx_dropped);
3496 kfree_skb_list(skb);
3497 return rc;
3498out:
3499 rcu_read_unlock_bh();
3500 return rc;
3501}
3502
3503int dev_queue_xmit(struct sk_buff *skb)
3504{
3505 return __dev_queue_xmit(skb, NULL);
3506}
3507EXPORT_SYMBOL(dev_queue_xmit);
3508
3509int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3510{
3511 return __dev_queue_xmit(skb, accel_priv);
3512}
3513EXPORT_SYMBOL(dev_queue_xmit_accel);
3514
3515
3516/*************************************************************************
3517 * Receiver routines
3518 *************************************************************************/
3519
3520int netdev_max_backlog __read_mostly = 1000;
3521EXPORT_SYMBOL(netdev_max_backlog);
3522
3523int netdev_tstamp_prequeue __read_mostly = 1;
3524int netdev_budget __read_mostly = 300;
3525unsigned int __read_mostly netdev_budget_usecs = 2000;
3526int weight_p __read_mostly = 64; /* old backlog weight */
3527int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3528int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3529int dev_rx_weight __read_mostly = 64;
3530int dev_tx_weight __read_mostly = 64;
3531
3532/* Called with irq disabled */
3533static inline void ____napi_schedule(struct softnet_data *sd,
3534 struct napi_struct *napi)
3535{
3536 list_add_tail(&napi->poll_list, &sd->poll_list);
3537 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3538}
3539
3540#ifdef CONFIG_RPS
3541
3542/* One global table that all flow-based protocols share. */
3543struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3544EXPORT_SYMBOL(rps_sock_flow_table);
3545u32 rps_cpu_mask __read_mostly;
3546EXPORT_SYMBOL(rps_cpu_mask);
3547
3548struct static_key rps_needed __read_mostly;
3549EXPORT_SYMBOL(rps_needed);
3550struct static_key rfs_needed __read_mostly;
3551EXPORT_SYMBOL(rfs_needed);
3552
3553static struct rps_dev_flow *
3554set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3555 struct rps_dev_flow *rflow, u16 next_cpu)
3556{
3557 if (next_cpu < nr_cpu_ids) {
3558#ifdef CONFIG_RFS_ACCEL
3559 struct netdev_rx_queue *rxqueue;
3560 struct rps_dev_flow_table *flow_table;
3561 struct rps_dev_flow *old_rflow;
3562 u32 flow_id;
3563 u16 rxq_index;
3564 int rc;
3565
3566 /* Should we steer this flow to a different hardware queue? */
3567 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3568 !(dev->features & NETIF_F_NTUPLE))
3569 goto out;
3570 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3571 if (rxq_index == skb_get_rx_queue(skb))
3572 goto out;
3573
3574 rxqueue = dev->_rx + rxq_index;
3575 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3576 if (!flow_table)
3577 goto out;
3578 flow_id = skb_get_hash(skb) & flow_table->mask;
3579 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3580 rxq_index, flow_id);
3581 if (rc < 0)
3582 goto out;
3583 old_rflow = rflow;
3584 rflow = &flow_table->flows[flow_id];
3585 rflow->filter = rc;
3586 if (old_rflow->filter == rflow->filter)
3587 old_rflow->filter = RPS_NO_FILTER;
3588 out:
3589#endif
3590 rflow->last_qtail =
3591 per_cpu(softnet_data, next_cpu).input_queue_head;
3592 }
3593
3594 rflow->cpu = next_cpu;
3595 return rflow;
3596}
3597
3598/*
3599 * get_rps_cpu is called from netif_receive_skb and returns the target
3600 * CPU from the RPS map of the receiving queue for a given skb.
3601 * rcu_read_lock must be held on entry.
3602 */
3603static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3604 struct rps_dev_flow **rflowp)
3605{
3606 const struct rps_sock_flow_table *sock_flow_table;
3607 struct netdev_rx_queue *rxqueue = dev->_rx;
3608 struct rps_dev_flow_table *flow_table;
3609 struct rps_map *map;
3610 int cpu = -1;
3611 u32 tcpu;
3612 u32 hash;
3613
3614 if (skb_rx_queue_recorded(skb)) {
3615 u16 index = skb_get_rx_queue(skb);
3616
3617 if (unlikely(index >= dev->real_num_rx_queues)) {
3618 WARN_ONCE(dev->real_num_rx_queues > 1,
3619 "%s received packet on queue %u, but number "
3620 "of RX queues is %u\n",
3621 dev->name, index, dev->real_num_rx_queues);
3622 goto done;
3623 }
3624 rxqueue += index;
3625 }
3626
3627 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3628
3629 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3630 map = rcu_dereference(rxqueue->rps_map);
3631 if (!flow_table && !map)
3632 goto done;
3633
3634 skb_reset_network_header(skb);
3635 hash = skb_get_hash(skb);
3636 if (!hash)
3637 goto done;
3638
3639 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3640 if (flow_table && sock_flow_table) {
3641 struct rps_dev_flow *rflow;
3642 u32 next_cpu;
3643 u32 ident;
3644
3645 /* First check into global flow table if there is a match */
3646 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3647 if ((ident ^ hash) & ~rps_cpu_mask)
3648 goto try_rps;
3649
3650 next_cpu = ident & rps_cpu_mask;
3651
3652 /* OK, now we know there is a match,
3653 * we can look at the local (per receive queue) flow table
3654 */
3655 rflow = &flow_table->flows[hash & flow_table->mask];
3656 tcpu = rflow->cpu;
3657
3658 /*
3659 * If the desired CPU (where last recvmsg was done) is
3660 * different from current CPU (one in the rx-queue flow
3661 * table entry), switch if one of the following holds:
3662 * - Current CPU is unset (>= nr_cpu_ids).
3663 * - Current CPU is offline.
3664 * - The current CPU's queue tail has advanced beyond the
3665 * last packet that was enqueued using this table entry.
3666 * This guarantees that all previous packets for the flow
3667 * have been dequeued, thus preserving in order delivery.
3668 */
3669 if (unlikely(tcpu != next_cpu) &&
3670 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3671 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3672 rflow->last_qtail)) >= 0)) {
3673 tcpu = next_cpu;
3674 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3675 }
3676
3677 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3678 *rflowp = rflow;
3679 cpu = tcpu;
3680 goto done;
3681 }
3682 }
3683
3684try_rps:
3685
3686 if (map) {
3687 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3688 if (cpu_online(tcpu)) {
3689 cpu = tcpu;
3690 goto done;
3691 }
3692 }
3693
3694done:
3695 return cpu;
3696}
3697
3698#ifdef CONFIG_RFS_ACCEL
3699
3700/**
3701 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3702 * @dev: Device on which the filter was set
3703 * @rxq_index: RX queue index
3704 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3705 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3706 *
3707 * Drivers that implement ndo_rx_flow_steer() should periodically call
3708 * this function for each installed filter and remove the filters for
3709 * which it returns %true.
3710 */
3711bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3712 u32 flow_id, u16 filter_id)
3713{
3714 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3715 struct rps_dev_flow_table *flow_table;
3716 struct rps_dev_flow *rflow;
3717 bool expire = true;
3718 unsigned int cpu;
3719
3720 rcu_read_lock();
3721 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3722 if (flow_table && flow_id <= flow_table->mask) {
3723 rflow = &flow_table->flows[flow_id];
3724 cpu = ACCESS_ONCE(rflow->cpu);
3725 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3726 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3727 rflow->last_qtail) <
3728 (int)(10 * flow_table->mask)))
3729 expire = false;
3730 }
3731 rcu_read_unlock();
3732 return expire;
3733}
3734EXPORT_SYMBOL(rps_may_expire_flow);
3735
3736#endif /* CONFIG_RFS_ACCEL */
3737
3738/* Called from hardirq (IPI) context */
3739static void rps_trigger_softirq(void *data)
3740{
3741 struct softnet_data *sd = data;
3742
3743 ____napi_schedule(sd, &sd->backlog);
3744 sd->received_rps++;
3745}
3746
3747#endif /* CONFIG_RPS */
3748
3749/*
3750 * Check if this softnet_data structure is another cpu one
3751 * If yes, queue it to our IPI list and return 1
3752 * If no, return 0
3753 */
3754static int rps_ipi_queued(struct softnet_data *sd)
3755{
3756#ifdef CONFIG_RPS
3757 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3758
3759 if (sd != mysd) {
3760 sd->rps_ipi_next = mysd->rps_ipi_list;
3761 mysd->rps_ipi_list = sd;
3762
3763 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3764 return 1;
3765 }
3766#endif /* CONFIG_RPS */
3767 return 0;
3768}
3769
3770#ifdef CONFIG_NET_FLOW_LIMIT
3771int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3772#endif
3773
3774static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3775{
3776#ifdef CONFIG_NET_FLOW_LIMIT
3777 struct sd_flow_limit *fl;
3778 struct softnet_data *sd;
3779 unsigned int old_flow, new_flow;
3780
3781 if (qlen < (netdev_max_backlog >> 1))
3782 return false;
3783
3784 sd = this_cpu_ptr(&softnet_data);
3785
3786 rcu_read_lock();
3787 fl = rcu_dereference(sd->flow_limit);
3788 if (fl) {
3789 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3790 old_flow = fl->history[fl->history_head];
3791 fl->history[fl->history_head] = new_flow;
3792
3793 fl->history_head++;
3794 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3795
3796 if (likely(fl->buckets[old_flow]))
3797 fl->buckets[old_flow]--;
3798
3799 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3800 fl->count++;
3801 rcu_read_unlock();
3802 return true;
3803 }
3804 }
3805 rcu_read_unlock();
3806#endif
3807 return false;
3808}
3809
3810/*
3811 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3812 * queue (may be a remote CPU queue).
3813 */
3814static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3815 unsigned int *qtail)
3816{
3817 struct softnet_data *sd;
3818 unsigned long flags;
3819 unsigned int qlen;
3820
3821 sd = &per_cpu(softnet_data, cpu);
3822
3823 local_irq_save(flags);
3824
3825 rps_lock(sd);
3826 if (!netif_running(skb->dev))
3827 goto drop;
3828 qlen = skb_queue_len(&sd->input_pkt_queue);
3829 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3830 if (qlen) {
3831enqueue:
3832 __skb_queue_tail(&sd->input_pkt_queue, skb);
3833 input_queue_tail_incr_save(sd, qtail);
3834 rps_unlock(sd);
3835 local_irq_restore(flags);
3836 return NET_RX_SUCCESS;
3837 }
3838
3839 /* Schedule NAPI for backlog device
3840 * We can use non atomic operation since we own the queue lock
3841 */
3842 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3843 if (!rps_ipi_queued(sd))
3844 ____napi_schedule(sd, &sd->backlog);
3845 }
3846 goto enqueue;
3847 }
3848
3849drop:
3850 sd->dropped++;
3851 rps_unlock(sd);
3852
3853 local_irq_restore(flags);
3854
3855 atomic_long_inc(&skb->dev->rx_dropped);
3856 kfree_skb(skb);
3857 return NET_RX_DROP;
3858}
3859
3860static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3861 struct bpf_prog *xdp_prog)
3862{
3863 struct xdp_buff xdp;
3864 u32 act = XDP_DROP;
3865 void *orig_data;
3866 int hlen, off;
3867 u32 mac_len;
3868
3869 /* Reinjected packets coming from act_mirred or similar should
3870 * not get XDP generic processing.
3871 */
3872 if (skb_cloned(skb))
3873 return XDP_PASS;
3874
3875 if (skb_linearize(skb))
3876 goto do_drop;
3877
3878 /* The XDP program wants to see the packet starting at the MAC
3879 * header.
3880 */
3881 mac_len = skb->data - skb_mac_header(skb);
3882 hlen = skb_headlen(skb) + mac_len;
3883 xdp.data = skb->data - mac_len;
3884 xdp.data_end = xdp.data + hlen;
3885 xdp.data_hard_start = skb->data - skb_headroom(skb);
3886 orig_data = xdp.data;
3887
3888 act = bpf_prog_run_xdp(xdp_prog, &xdp);
3889
3890 off = xdp.data - orig_data;
3891 if (off > 0)
3892 __skb_pull(skb, off);
3893 else if (off < 0)
3894 __skb_push(skb, -off);
3895
3896 switch (act) {
3897 case XDP_REDIRECT:
3898 case XDP_TX:
3899 __skb_push(skb, mac_len);
3900 /* fall through */
3901 case XDP_PASS:
3902 break;
3903
3904 default:
3905 bpf_warn_invalid_xdp_action(act);
3906 /* fall through */
3907 case XDP_ABORTED:
3908 trace_xdp_exception(skb->dev, xdp_prog, act);
3909 /* fall through */
3910 case XDP_DROP:
3911 do_drop:
3912 kfree_skb(skb);
3913 break;
3914 }
3915
3916 return act;
3917}
3918
3919/* When doing generic XDP we have to bypass the qdisc layer and the
3920 * network taps in order to match in-driver-XDP behavior.
3921 */
3922void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
3923{
3924 struct net_device *dev = skb->dev;
3925 struct netdev_queue *txq;
3926 bool free_skb = true;
3927 int cpu, rc;
3928
3929 txq = netdev_pick_tx(dev, skb, NULL);
3930 cpu = smp_processor_id();
3931 HARD_TX_LOCK(dev, txq, cpu);
3932 if (!netif_xmit_stopped(txq)) {
3933 rc = netdev_start_xmit(skb, dev, txq, 0);
3934 if (dev_xmit_complete(rc))
3935 free_skb = false;
3936 }
3937 HARD_TX_UNLOCK(dev, txq);
3938 if (free_skb) {
3939 trace_xdp_exception(dev, xdp_prog, XDP_TX);
3940 kfree_skb(skb);
3941 }
3942}
3943EXPORT_SYMBOL_GPL(generic_xdp_tx);
3944
3945static struct static_key generic_xdp_needed __read_mostly;
3946
3947int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
3948{
3949 if (xdp_prog) {
3950 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
3951 int err;
3952
3953 if (act != XDP_PASS) {
3954 switch (act) {
3955 case XDP_REDIRECT:
3956 err = xdp_do_generic_redirect(skb->dev, skb,
3957 xdp_prog);
3958 if (err)
3959 goto out_redir;
3960 /* fallthru to submit skb */
3961 case XDP_TX:
3962 generic_xdp_tx(skb, xdp_prog);
3963 break;
3964 }
3965 return XDP_DROP;
3966 }
3967 }
3968 return XDP_PASS;
3969out_redir:
3970 kfree_skb(skb);
3971 return XDP_DROP;
3972}
3973EXPORT_SYMBOL_GPL(do_xdp_generic);
3974
3975static int netif_rx_internal(struct sk_buff *skb)
3976{
3977 int ret;
3978
3979 net_timestamp_check(netdev_tstamp_prequeue, skb);
3980
3981 trace_netif_rx(skb);
3982
3983 if (static_key_false(&generic_xdp_needed)) {
3984 int ret;
3985
3986 preempt_disable();
3987 rcu_read_lock();
3988 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
3989 rcu_read_unlock();
3990 preempt_enable();
3991
3992 /* Consider XDP consuming the packet a success from
3993 * the netdev point of view we do not want to count
3994 * this as an error.
3995 */
3996 if (ret != XDP_PASS)
3997 return NET_RX_SUCCESS;
3998 }
3999
4000#ifdef CONFIG_RPS
4001 if (static_key_false(&rps_needed)) {
4002 struct rps_dev_flow voidflow, *rflow = &voidflow;
4003 int cpu;
4004
4005 preempt_disable();
4006 rcu_read_lock();
4007
4008 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4009 if (cpu < 0)
4010 cpu = smp_processor_id();
4011
4012 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4013
4014 rcu_read_unlock();
4015 preempt_enable();
4016 } else
4017#endif
4018 {
4019 unsigned int qtail;
4020
4021 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4022 put_cpu();
4023 }
4024 return ret;
4025}
4026
4027/**
4028 * netif_rx - post buffer to the network code
4029 * @skb: buffer to post
4030 *
4031 * This function receives a packet from a device driver and queues it for
4032 * the upper (protocol) levels to process. It always succeeds. The buffer
4033 * may be dropped during processing for congestion control or by the
4034 * protocol layers.
4035 *
4036 * return values:
4037 * NET_RX_SUCCESS (no congestion)
4038 * NET_RX_DROP (packet was dropped)
4039 *
4040 */
4041
4042int netif_rx(struct sk_buff *skb)
4043{
4044 trace_netif_rx_entry(skb);
4045
4046 return netif_rx_internal(skb);
4047}
4048EXPORT_SYMBOL(netif_rx);
4049
4050int netif_rx_ni(struct sk_buff *skb)
4051{
4052 int err;
4053
4054 trace_netif_rx_ni_entry(skb);
4055
4056 preempt_disable();
4057 err = netif_rx_internal(skb);
4058 if (local_softirq_pending())
4059 do_softirq();
4060 preempt_enable();
4061
4062 return err;
4063}
4064EXPORT_SYMBOL(netif_rx_ni);
4065
4066static __latent_entropy void net_tx_action(struct softirq_action *h)
4067{
4068 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4069
4070 if (sd->completion_queue) {
4071 struct sk_buff *clist;
4072
4073 local_irq_disable();
4074 clist = sd->completion_queue;
4075 sd->completion_queue = NULL;
4076 local_irq_enable();
4077
4078 while (clist) {
4079 struct sk_buff *skb = clist;
4080
4081 clist = clist->next;
4082
4083 WARN_ON(refcount_read(&skb->users));
4084 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4085 trace_consume_skb(skb);
4086 else
4087 trace_kfree_skb(skb, net_tx_action);
4088
4089 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4090 __kfree_skb(skb);
4091 else
4092 __kfree_skb_defer(skb);
4093 }
4094
4095 __kfree_skb_flush();
4096 }
4097
4098 if (sd->output_queue) {
4099 struct Qdisc *head;
4100
4101 local_irq_disable();
4102 head = sd->output_queue;
4103 sd->output_queue = NULL;
4104 sd->output_queue_tailp = &sd->output_queue;
4105 local_irq_enable();
4106
4107 while (head) {
4108 struct Qdisc *q = head;
4109 spinlock_t *root_lock;
4110
4111 head = head->next_sched;
4112
4113 root_lock = qdisc_lock(q);
4114 spin_lock(root_lock);
4115 /* We need to make sure head->next_sched is read
4116 * before clearing __QDISC_STATE_SCHED
4117 */
4118 smp_mb__before_atomic();
4119 clear_bit(__QDISC_STATE_SCHED, &q->state);
4120 qdisc_run(q);
4121 spin_unlock(root_lock);
4122 }
4123 }
4124}
4125
4126#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4127/* This hook is defined here for ATM LANE */
4128int (*br_fdb_test_addr_hook)(struct net_device *dev,
4129 unsigned char *addr) __read_mostly;
4130EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4131#endif
4132
4133static inline struct sk_buff *
4134sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4135 struct net_device *orig_dev)
4136{
4137#ifdef CONFIG_NET_CLS_ACT
4138 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
4139 struct tcf_result cl_res;
4140
4141 /* If there's at least one ingress present somewhere (so
4142 * we get here via enabled static key), remaining devices
4143 * that are not configured with an ingress qdisc will bail
4144 * out here.
4145 */
4146 if (!cl)
4147 return skb;
4148 if (*pt_prev) {
4149 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4150 *pt_prev = NULL;
4151 }
4152
4153 qdisc_skb_cb(skb)->pkt_len = skb->len;
4154 skb->tc_at_ingress = 1;
4155 qdisc_bstats_cpu_update(cl->q, skb);
4156
4157 switch (tcf_classify(skb, cl, &cl_res, false)) {
4158 case TC_ACT_OK:
4159 case TC_ACT_RECLASSIFY:
4160 skb->tc_index = TC_H_MIN(cl_res.classid);
4161 break;
4162 case TC_ACT_SHOT:
4163 qdisc_qstats_cpu_drop(cl->q);
4164 kfree_skb(skb);
4165 return NULL;
4166 case TC_ACT_STOLEN:
4167 case TC_ACT_QUEUED:
4168 case TC_ACT_TRAP:
4169 consume_skb(skb);
4170 return NULL;
4171 case TC_ACT_REDIRECT:
4172 /* skb_mac_header check was done by cls/act_bpf, so
4173 * we can safely push the L2 header back before
4174 * redirecting to another netdev
4175 */
4176 __skb_push(skb, skb->mac_len);
4177 skb_do_redirect(skb);
4178 return NULL;
4179 default:
4180 break;
4181 }
4182#endif /* CONFIG_NET_CLS_ACT */
4183 return skb;
4184}
4185
4186/**
4187 * netdev_is_rx_handler_busy - check if receive handler is registered
4188 * @dev: device to check
4189 *
4190 * Check if a receive handler is already registered for a given device.
4191 * Return true if there one.
4192 *
4193 * The caller must hold the rtnl_mutex.
4194 */
4195bool netdev_is_rx_handler_busy(struct net_device *dev)
4196{
4197 ASSERT_RTNL();
4198 return dev && rtnl_dereference(dev->rx_handler);
4199}
4200EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4201
4202/**
4203 * netdev_rx_handler_register - register receive handler
4204 * @dev: device to register a handler for
4205 * @rx_handler: receive handler to register
4206 * @rx_handler_data: data pointer that is used by rx handler
4207 *
4208 * Register a receive handler for a device. This handler will then be
4209 * called from __netif_receive_skb. A negative errno code is returned
4210 * on a failure.
4211 *
4212 * The caller must hold the rtnl_mutex.
4213 *
4214 * For a general description of rx_handler, see enum rx_handler_result.
4215 */
4216int netdev_rx_handler_register(struct net_device *dev,
4217 rx_handler_func_t *rx_handler,
4218 void *rx_handler_data)
4219{
4220 if (netdev_is_rx_handler_busy(dev))
4221 return -EBUSY;
4222
4223 /* Note: rx_handler_data must be set before rx_handler */
4224 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4225 rcu_assign_pointer(dev->rx_handler, rx_handler);
4226
4227 return 0;
4228}
4229EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4230
4231/**
4232 * netdev_rx_handler_unregister - unregister receive handler
4233 * @dev: device to unregister a handler from
4234 *
4235 * Unregister a receive handler from a device.
4236 *
4237 * The caller must hold the rtnl_mutex.
4238 */
4239void netdev_rx_handler_unregister(struct net_device *dev)
4240{
4241
4242 ASSERT_RTNL();
4243 RCU_INIT_POINTER(dev->rx_handler, NULL);
4244 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4245 * section has a guarantee to see a non NULL rx_handler_data
4246 * as well.
4247 */
4248 synchronize_net();
4249 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4250}
4251EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4252
4253/*
4254 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4255 * the special handling of PFMEMALLOC skbs.
4256 */
4257static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4258{
4259 switch (skb->protocol) {
4260 case htons(ETH_P_ARP):
4261 case htons(ETH_P_IP):
4262 case htons(ETH_P_IPV6):
4263 case htons(ETH_P_8021Q):
4264 case htons(ETH_P_8021AD):
4265 return true;
4266 default:
4267 return false;
4268 }
4269}
4270
4271static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4272 int *ret, struct net_device *orig_dev)
4273{
4274#ifdef CONFIG_NETFILTER_INGRESS
4275 if (nf_hook_ingress_active(skb)) {
4276 int ingress_retval;
4277
4278 if (*pt_prev) {
4279 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4280 *pt_prev = NULL;
4281 }
4282
4283 rcu_read_lock();
4284 ingress_retval = nf_hook_ingress(skb);
4285 rcu_read_unlock();
4286 return ingress_retval;
4287 }
4288#endif /* CONFIG_NETFILTER_INGRESS */
4289 return 0;
4290}
4291
4292static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4293{
4294 struct packet_type *ptype, *pt_prev;
4295 rx_handler_func_t *rx_handler;
4296 struct net_device *orig_dev;
4297 bool deliver_exact = false;
4298 int ret = NET_RX_DROP;
4299 __be16 type;
4300
4301 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4302
4303 trace_netif_receive_skb(skb);
4304
4305 orig_dev = skb->dev;
4306
4307 skb_reset_network_header(skb);
4308 if (!skb_transport_header_was_set(skb))
4309 skb_reset_transport_header(skb);
4310 skb_reset_mac_len(skb);
4311
4312 pt_prev = NULL;
4313
4314another_round:
4315 skb->skb_iif = skb->dev->ifindex;
4316
4317 __this_cpu_inc(softnet_data.processed);
4318
4319 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4320 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4321 skb = skb_vlan_untag(skb);
4322 if (unlikely(!skb))
4323 goto out;
4324 }
4325
4326 if (skb_skip_tc_classify(skb))
4327 goto skip_classify;
4328
4329 if (pfmemalloc)
4330 goto skip_taps;
4331
4332 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4333 if (pt_prev)
4334 ret = deliver_skb(skb, pt_prev, orig_dev);
4335 pt_prev = ptype;
4336 }
4337
4338 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4339 if (pt_prev)
4340 ret = deliver_skb(skb, pt_prev, orig_dev);
4341 pt_prev = ptype;
4342 }
4343
4344skip_taps:
4345#ifdef CONFIG_NET_INGRESS
4346 if (static_key_false(&ingress_needed)) {
4347 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4348 if (!skb)
4349 goto out;
4350
4351 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4352 goto out;
4353 }
4354#endif
4355 skb_reset_tc(skb);
4356skip_classify:
4357 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4358 goto drop;
4359
4360 if (skb_vlan_tag_present(skb)) {
4361 if (pt_prev) {
4362 ret = deliver_skb(skb, pt_prev, orig_dev);
4363 pt_prev = NULL;
4364 }
4365 if (vlan_do_receive(&skb))
4366 goto another_round;
4367 else if (unlikely(!skb))
4368 goto out;
4369 }
4370
4371 rx_handler = rcu_dereference(skb->dev->rx_handler);
4372 if (rx_handler) {
4373 if (pt_prev) {
4374 ret = deliver_skb(skb, pt_prev, orig_dev);
4375 pt_prev = NULL;
4376 }
4377 switch (rx_handler(&skb)) {
4378 case RX_HANDLER_CONSUMED:
4379 ret = NET_RX_SUCCESS;
4380 goto out;
4381 case RX_HANDLER_ANOTHER:
4382 goto another_round;
4383 case RX_HANDLER_EXACT:
4384 deliver_exact = true;
4385 case RX_HANDLER_PASS:
4386 break;
4387 default:
4388 BUG();
4389 }
4390 }
4391
4392 if (unlikely(skb_vlan_tag_present(skb))) {
4393 if (skb_vlan_tag_get_id(skb))
4394 skb->pkt_type = PACKET_OTHERHOST;
4395 /* Note: we might in the future use prio bits
4396 * and set skb->priority like in vlan_do_receive()
4397 * For the time being, just ignore Priority Code Point
4398 */
4399 skb->vlan_tci = 0;
4400 }
4401
4402 type = skb->protocol;
4403
4404 /* deliver only exact match when indicated */
4405 if (likely(!deliver_exact)) {
4406 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4407 &ptype_base[ntohs(type) &
4408 PTYPE_HASH_MASK]);
4409 }
4410
4411 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4412 &orig_dev->ptype_specific);
4413
4414 if (unlikely(skb->dev != orig_dev)) {
4415 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4416 &skb->dev->ptype_specific);
4417 }
4418
4419 if (pt_prev) {
4420 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4421 goto drop;
4422 else
4423 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4424 } else {
4425drop:
4426 if (!deliver_exact)
4427 atomic_long_inc(&skb->dev->rx_dropped);
4428 else
4429 atomic_long_inc(&skb->dev->rx_nohandler);
4430 kfree_skb(skb);
4431 /* Jamal, now you will not able to escape explaining
4432 * me how you were going to use this. :-)
4433 */
4434 ret = NET_RX_DROP;
4435 }
4436
4437out:
4438 return ret;
4439}
4440
4441static int __netif_receive_skb(struct sk_buff *skb)
4442{
4443 int ret;
4444
4445 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4446 unsigned int noreclaim_flag;
4447
4448 /*
4449 * PFMEMALLOC skbs are special, they should
4450 * - be delivered to SOCK_MEMALLOC sockets only
4451 * - stay away from userspace
4452 * - have bounded memory usage
4453 *
4454 * Use PF_MEMALLOC as this saves us from propagating the allocation
4455 * context down to all allocation sites.
4456 */
4457 noreclaim_flag = memalloc_noreclaim_save();
4458 ret = __netif_receive_skb_core(skb, true);
4459 memalloc_noreclaim_restore(noreclaim_flag);
4460 } else
4461 ret = __netif_receive_skb_core(skb, false);
4462
4463 return ret;
4464}
4465
4466static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4467{
4468 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4469 struct bpf_prog *new = xdp->prog;
4470 int ret = 0;
4471
4472 switch (xdp->command) {
4473 case XDP_SETUP_PROG:
4474 rcu_assign_pointer(dev->xdp_prog, new);
4475 if (old)
4476 bpf_prog_put(old);
4477
4478 if (old && !new) {
4479 static_key_slow_dec(&generic_xdp_needed);
4480 } else if (new && !old) {
4481 static_key_slow_inc(&generic_xdp_needed);
4482 dev_disable_lro(dev);
4483 }
4484 break;
4485
4486 case XDP_QUERY_PROG:
4487 xdp->prog_attached = !!old;
4488 xdp->prog_id = old ? old->aux->id : 0;
4489 break;
4490
4491 default:
4492 ret = -EINVAL;
4493 break;
4494 }
4495
4496 return ret;
4497}
4498
4499static int netif_receive_skb_internal(struct sk_buff *skb)
4500{
4501 int ret;
4502
4503 net_timestamp_check(netdev_tstamp_prequeue, skb);
4504
4505 if (skb_defer_rx_timestamp(skb))
4506 return NET_RX_SUCCESS;
4507
4508 if (static_key_false(&generic_xdp_needed)) {
4509 int ret;
4510
4511 preempt_disable();
4512 rcu_read_lock();
4513 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4514 rcu_read_unlock();
4515 preempt_enable();
4516
4517 if (ret != XDP_PASS)
4518 return NET_RX_DROP;
4519 }
4520
4521 rcu_read_lock();
4522#ifdef CONFIG_RPS
4523 if (static_key_false(&rps_needed)) {
4524 struct rps_dev_flow voidflow, *rflow = &voidflow;
4525 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4526
4527 if (cpu >= 0) {
4528 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4529 rcu_read_unlock();
4530 return ret;
4531 }
4532 }
4533#endif
4534 ret = __netif_receive_skb(skb);
4535 rcu_read_unlock();
4536 return ret;
4537}
4538
4539/**
4540 * netif_receive_skb - process receive buffer from network
4541 * @skb: buffer to process
4542 *
4543 * netif_receive_skb() is the main receive data processing function.
4544 * It always succeeds. The buffer may be dropped during processing
4545 * for congestion control or by the protocol layers.
4546 *
4547 * This function may only be called from softirq context and interrupts
4548 * should be enabled.
4549 *
4550 * Return values (usually ignored):
4551 * NET_RX_SUCCESS: no congestion
4552 * NET_RX_DROP: packet was dropped
4553 */
4554int netif_receive_skb(struct sk_buff *skb)
4555{
4556 trace_netif_receive_skb_entry(skb);
4557
4558 return netif_receive_skb_internal(skb);
4559}
4560EXPORT_SYMBOL(netif_receive_skb);
4561
4562DEFINE_PER_CPU(struct work_struct, flush_works);
4563
4564/* Network device is going away, flush any packets still pending */
4565static void flush_backlog(struct work_struct *work)
4566{
4567 struct sk_buff *skb, *tmp;
4568 struct softnet_data *sd;
4569
4570 local_bh_disable();
4571 sd = this_cpu_ptr(&softnet_data);
4572
4573 local_irq_disable();
4574 rps_lock(sd);
4575 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4576 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4577 __skb_unlink(skb, &sd->input_pkt_queue);
4578 kfree_skb(skb);
4579 input_queue_head_incr(sd);
4580 }
4581 }
4582 rps_unlock(sd);
4583 local_irq_enable();
4584
4585 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4586 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4587 __skb_unlink(skb, &sd->process_queue);
4588 kfree_skb(skb);
4589 input_queue_head_incr(sd);
4590 }
4591 }
4592 local_bh_enable();
4593}
4594
4595static void flush_all_backlogs(void)
4596{
4597 unsigned int cpu;
4598
4599 get_online_cpus();
4600
4601 for_each_online_cpu(cpu)
4602 queue_work_on(cpu, system_highpri_wq,
4603 per_cpu_ptr(&flush_works, cpu));
4604
4605 for_each_online_cpu(cpu)
4606 flush_work(per_cpu_ptr(&flush_works, cpu));
4607
4608 put_online_cpus();
4609}
4610
4611static int napi_gro_complete(struct sk_buff *skb)
4612{
4613 struct packet_offload *ptype;
4614 __be16 type = skb->protocol;
4615 struct list_head *head = &offload_base;
4616 int err = -ENOENT;
4617
4618 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4619
4620 if (NAPI_GRO_CB(skb)->count == 1) {
4621 skb_shinfo(skb)->gso_size = 0;
4622 goto out;
4623 }
4624
4625 rcu_read_lock();
4626 list_for_each_entry_rcu(ptype, head, list) {
4627 if (ptype->type != type || !ptype->callbacks.gro_complete)
4628 continue;
4629
4630 err = ptype->callbacks.gro_complete(skb, 0);
4631 break;
4632 }
4633 rcu_read_unlock();
4634
4635 if (err) {
4636 WARN_ON(&ptype->list == head);
4637 kfree_skb(skb);
4638 return NET_RX_SUCCESS;
4639 }
4640
4641out:
4642 return netif_receive_skb_internal(skb);
4643}
4644
4645/* napi->gro_list contains packets ordered by age.
4646 * youngest packets at the head of it.
4647 * Complete skbs in reverse order to reduce latencies.
4648 */
4649void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4650{
4651 struct sk_buff *skb, *prev = NULL;
4652
4653 /* scan list and build reverse chain */
4654 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4655 skb->prev = prev;
4656 prev = skb;
4657 }
4658
4659 for (skb = prev; skb; skb = prev) {
4660 skb->next = NULL;
4661
4662 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4663 return;
4664
4665 prev = skb->prev;
4666 napi_gro_complete(skb);
4667 napi->gro_count--;
4668 }
4669
4670 napi->gro_list = NULL;
4671}
4672EXPORT_SYMBOL(napi_gro_flush);
4673
4674static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4675{
4676 struct sk_buff *p;
4677 unsigned int maclen = skb->dev->hard_header_len;
4678 u32 hash = skb_get_hash_raw(skb);
4679
4680 for (p = napi->gro_list; p; p = p->next) {
4681 unsigned long diffs;
4682
4683 NAPI_GRO_CB(p)->flush = 0;
4684
4685 if (hash != skb_get_hash_raw(p)) {
4686 NAPI_GRO_CB(p)->same_flow = 0;
4687 continue;
4688 }
4689
4690 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4691 diffs |= p->vlan_tci ^ skb->vlan_tci;
4692 diffs |= skb_metadata_dst_cmp(p, skb);
4693 if (maclen == ETH_HLEN)
4694 diffs |= compare_ether_header(skb_mac_header(p),
4695 skb_mac_header(skb));
4696 else if (!diffs)
4697 diffs = memcmp(skb_mac_header(p),
4698 skb_mac_header(skb),
4699 maclen);
4700 NAPI_GRO_CB(p)->same_flow = !diffs;
4701 }
4702}
4703
4704static void skb_gro_reset_offset(struct sk_buff *skb)
4705{
4706 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4707 const skb_frag_t *frag0 = &pinfo->frags[0];
4708
4709 NAPI_GRO_CB(skb)->data_offset = 0;
4710 NAPI_GRO_CB(skb)->frag0 = NULL;
4711 NAPI_GRO_CB(skb)->frag0_len = 0;
4712
4713 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4714 pinfo->nr_frags &&
4715 !PageHighMem(skb_frag_page(frag0))) {
4716 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4717 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4718 skb_frag_size(frag0),
4719 skb->end - skb->tail);
4720 }
4721}
4722
4723static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4724{
4725 struct skb_shared_info *pinfo = skb_shinfo(skb);
4726
4727 BUG_ON(skb->end - skb->tail < grow);
4728
4729 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4730
4731 skb->data_len -= grow;
4732 skb->tail += grow;
4733
4734 pinfo->frags[0].page_offset += grow;
4735 skb_frag_size_sub(&pinfo->frags[0], grow);
4736
4737 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4738 skb_frag_unref(skb, 0);
4739 memmove(pinfo->frags, pinfo->frags + 1,
4740 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4741 }
4742}
4743
4744static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4745{
4746 struct sk_buff **pp = NULL;
4747 struct packet_offload *ptype;
4748 __be16 type = skb->protocol;
4749 struct list_head *head = &offload_base;
4750 int same_flow;
4751 enum gro_result ret;
4752 int grow;
4753
4754 if (netif_elide_gro(skb->dev))
4755 goto normal;
4756
4757 gro_list_prepare(napi, skb);
4758
4759 rcu_read_lock();
4760 list_for_each_entry_rcu(ptype, head, list) {
4761 if (ptype->type != type || !ptype->callbacks.gro_receive)
4762 continue;
4763
4764 skb_set_network_header(skb, skb_gro_offset(skb));
4765 skb_reset_mac_len(skb);
4766 NAPI_GRO_CB(skb)->same_flow = 0;
4767 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4768 NAPI_GRO_CB(skb)->free = 0;
4769 NAPI_GRO_CB(skb)->encap_mark = 0;
4770 NAPI_GRO_CB(skb)->recursion_counter = 0;
4771 NAPI_GRO_CB(skb)->is_fou = 0;
4772 NAPI_GRO_CB(skb)->is_atomic = 1;
4773 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4774
4775 /* Setup for GRO checksum validation */
4776 switch (skb->ip_summed) {
4777 case CHECKSUM_COMPLETE:
4778 NAPI_GRO_CB(skb)->csum = skb->csum;
4779 NAPI_GRO_CB(skb)->csum_valid = 1;
4780 NAPI_GRO_CB(skb)->csum_cnt = 0;
4781 break;
4782 case CHECKSUM_UNNECESSARY:
4783 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4784 NAPI_GRO_CB(skb)->csum_valid = 0;
4785 break;
4786 default:
4787 NAPI_GRO_CB(skb)->csum_cnt = 0;
4788 NAPI_GRO_CB(skb)->csum_valid = 0;
4789 }
4790
4791 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4792 break;
4793 }
4794 rcu_read_unlock();
4795
4796 if (&ptype->list == head)
4797 goto normal;
4798
4799 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4800 ret = GRO_CONSUMED;
4801 goto ok;
4802 }
4803
4804 same_flow = NAPI_GRO_CB(skb)->same_flow;
4805 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4806
4807 if (pp) {
4808 struct sk_buff *nskb = *pp;
4809
4810 *pp = nskb->next;
4811 nskb->next = NULL;
4812 napi_gro_complete(nskb);
4813 napi->gro_count--;
4814 }
4815
4816 if (same_flow)
4817 goto ok;
4818
4819 if (NAPI_GRO_CB(skb)->flush)
4820 goto normal;
4821
4822 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4823 struct sk_buff *nskb = napi->gro_list;
4824
4825 /* locate the end of the list to select the 'oldest' flow */
4826 while (nskb->next) {
4827 pp = &nskb->next;
4828 nskb = *pp;
4829 }
4830 *pp = NULL;
4831 nskb->next = NULL;
4832 napi_gro_complete(nskb);
4833 } else {
4834 napi->gro_count++;
4835 }
4836 NAPI_GRO_CB(skb)->count = 1;
4837 NAPI_GRO_CB(skb)->age = jiffies;
4838 NAPI_GRO_CB(skb)->last = skb;
4839 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4840 skb->next = napi->gro_list;
4841 napi->gro_list = skb;
4842 ret = GRO_HELD;
4843
4844pull:
4845 grow = skb_gro_offset(skb) - skb_headlen(skb);
4846 if (grow > 0)
4847 gro_pull_from_frag0(skb, grow);
4848ok:
4849 return ret;
4850
4851normal:
4852 ret = GRO_NORMAL;
4853 goto pull;
4854}
4855
4856struct packet_offload *gro_find_receive_by_type(__be16 type)
4857{
4858 struct list_head *offload_head = &offload_base;
4859 struct packet_offload *ptype;
4860
4861 list_for_each_entry_rcu(ptype, offload_head, list) {
4862 if (ptype->type != type || !ptype->callbacks.gro_receive)
4863 continue;
4864 return ptype;
4865 }
4866 return NULL;
4867}
4868EXPORT_SYMBOL(gro_find_receive_by_type);
4869
4870struct packet_offload *gro_find_complete_by_type(__be16 type)
4871{
4872 struct list_head *offload_head = &offload_base;
4873 struct packet_offload *ptype;
4874
4875 list_for_each_entry_rcu(ptype, offload_head, list) {
4876 if (ptype->type != type || !ptype->callbacks.gro_complete)
4877 continue;
4878 return ptype;
4879 }
4880 return NULL;
4881}
4882EXPORT_SYMBOL(gro_find_complete_by_type);
4883
4884static void napi_skb_free_stolen_head(struct sk_buff *skb)
4885{
4886 skb_dst_drop(skb);
4887 secpath_reset(skb);
4888 kmem_cache_free(skbuff_head_cache, skb);
4889}
4890
4891static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4892{
4893 switch (ret) {
4894 case GRO_NORMAL:
4895 if (netif_receive_skb_internal(skb))
4896 ret = GRO_DROP;
4897 break;
4898
4899 case GRO_DROP:
4900 kfree_skb(skb);
4901 break;
4902
4903 case GRO_MERGED_FREE:
4904 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4905 napi_skb_free_stolen_head(skb);
4906 else
4907 __kfree_skb(skb);
4908 break;
4909
4910 case GRO_HELD:
4911 case GRO_MERGED:
4912 case GRO_CONSUMED:
4913 break;
4914 }
4915
4916 return ret;
4917}
4918
4919gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4920{
4921 skb_mark_napi_id(skb, napi);
4922 trace_napi_gro_receive_entry(skb);
4923
4924 skb_gro_reset_offset(skb);
4925
4926 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4927}
4928EXPORT_SYMBOL(napi_gro_receive);
4929
4930static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4931{
4932 if (unlikely(skb->pfmemalloc)) {
4933 consume_skb(skb);
4934 return;
4935 }
4936 __skb_pull(skb, skb_headlen(skb));
4937 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4938 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4939 skb->vlan_tci = 0;
4940 skb->dev = napi->dev;
4941 skb->skb_iif = 0;
4942 skb->encapsulation = 0;
4943 skb_shinfo(skb)->gso_type = 0;
4944 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4945 secpath_reset(skb);
4946
4947 napi->skb = skb;
4948}
4949
4950struct sk_buff *napi_get_frags(struct napi_struct *napi)
4951{
4952 struct sk_buff *skb = napi->skb;
4953
4954 if (!skb) {
4955 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4956 if (skb) {
4957 napi->skb = skb;
4958 skb_mark_napi_id(skb, napi);
4959 }
4960 }
4961 return skb;
4962}
4963EXPORT_SYMBOL(napi_get_frags);
4964
4965static gro_result_t napi_frags_finish(struct napi_struct *napi,
4966 struct sk_buff *skb,
4967 gro_result_t ret)
4968{
4969 switch (ret) {
4970 case GRO_NORMAL:
4971 case GRO_HELD:
4972 __skb_push(skb, ETH_HLEN);
4973 skb->protocol = eth_type_trans(skb, skb->dev);
4974 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4975 ret = GRO_DROP;
4976 break;
4977
4978 case GRO_DROP:
4979 napi_reuse_skb(napi, skb);
4980 break;
4981
4982 case GRO_MERGED_FREE:
4983 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4984 napi_skb_free_stolen_head(skb);
4985 else
4986 napi_reuse_skb(napi, skb);
4987 break;
4988
4989 case GRO_MERGED:
4990 case GRO_CONSUMED:
4991 break;
4992 }
4993
4994 return ret;
4995}
4996
4997/* Upper GRO stack assumes network header starts at gro_offset=0
4998 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4999 * We copy ethernet header into skb->data to have a common layout.
5000 */
5001static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5002{
5003 struct sk_buff *skb = napi->skb;
5004 const struct ethhdr *eth;
5005 unsigned int hlen = sizeof(*eth);
5006
5007 napi->skb = NULL;
5008
5009 skb_reset_mac_header(skb);
5010 skb_gro_reset_offset(skb);
5011
5012 eth = skb_gro_header_fast(skb, 0);
5013 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5014 eth = skb_gro_header_slow(skb, hlen, 0);
5015 if (unlikely(!eth)) {
5016 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5017 __func__, napi->dev->name);
5018 napi_reuse_skb(napi, skb);
5019 return NULL;
5020 }
5021 } else {
5022 gro_pull_from_frag0(skb, hlen);
5023 NAPI_GRO_CB(skb)->frag0 += hlen;
5024 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5025 }
5026 __skb_pull(skb, hlen);
5027
5028 /*
5029 * This works because the only protocols we care about don't require
5030 * special handling.
5031 * We'll fix it up properly in napi_frags_finish()
5032 */
5033 skb->protocol = eth->h_proto;
5034
5035 return skb;
5036}
5037
5038gro_result_t napi_gro_frags(struct napi_struct *napi)
5039{
5040 struct sk_buff *skb = napi_frags_skb(napi);
5041
5042 if (!skb)
5043 return GRO_DROP;
5044
5045 trace_napi_gro_frags_entry(skb);
5046
5047 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5048}
5049EXPORT_SYMBOL(napi_gro_frags);
5050
5051/* Compute the checksum from gro_offset and return the folded value
5052 * after adding in any pseudo checksum.
5053 */
5054__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5055{
5056 __wsum wsum;
5057 __sum16 sum;
5058
5059 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5060
5061 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5062 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5063 if (likely(!sum)) {
5064 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5065 !skb->csum_complete_sw)
5066 netdev_rx_csum_fault(skb->dev);
5067 }
5068
5069 NAPI_GRO_CB(skb)->csum = wsum;
5070 NAPI_GRO_CB(skb)->csum_valid = 1;
5071
5072 return sum;
5073}
5074EXPORT_SYMBOL(__skb_gro_checksum_complete);
5075
5076static void net_rps_send_ipi(struct softnet_data *remsd)
5077{
5078#ifdef CONFIG_RPS
5079 while (remsd) {
5080 struct softnet_data *next = remsd->rps_ipi_next;
5081
5082 if (cpu_online(remsd->cpu))
5083 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5084 remsd = next;
5085 }
5086#endif
5087}
5088
5089/*
5090 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5091 * Note: called with local irq disabled, but exits with local irq enabled.
5092 */
5093static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5094{
5095#ifdef CONFIG_RPS
5096 struct softnet_data *remsd = sd->rps_ipi_list;
5097
5098 if (remsd) {
5099 sd->rps_ipi_list = NULL;
5100
5101 local_irq_enable();
5102
5103 /* Send pending IPI's to kick RPS processing on remote cpus. */
5104 net_rps_send_ipi(remsd);
5105 } else
5106#endif
5107 local_irq_enable();
5108}
5109
5110static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5111{
5112#ifdef CONFIG_RPS
5113 return sd->rps_ipi_list != NULL;
5114#else
5115 return false;
5116#endif
5117}
5118
5119static int process_backlog(struct napi_struct *napi, int quota)
5120{
5121 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5122 bool again = true;
5123 int work = 0;
5124
5125 /* Check if we have pending ipi, its better to send them now,
5126 * not waiting net_rx_action() end.
5127 */
5128 if (sd_has_rps_ipi_waiting(sd)) {
5129 local_irq_disable();
5130 net_rps_action_and_irq_enable(sd);
5131 }
5132
5133 napi->weight = dev_rx_weight;
5134 while (again) {
5135 struct sk_buff *skb;
5136
5137 while ((skb = __skb_dequeue(&sd->process_queue))) {
5138 rcu_read_lock();
5139 __netif_receive_skb(skb);
5140 rcu_read_unlock();
5141 input_queue_head_incr(sd);
5142 if (++work >= quota)
5143 return work;
5144
5145 }
5146
5147 local_irq_disable();
5148 rps_lock(sd);
5149 if (skb_queue_empty(&sd->input_pkt_queue)) {
5150 /*
5151 * Inline a custom version of __napi_complete().
5152 * only current cpu owns and manipulates this napi,
5153 * and NAPI_STATE_SCHED is the only possible flag set
5154 * on backlog.
5155 * We can use a plain write instead of clear_bit(),
5156 * and we dont need an smp_mb() memory barrier.
5157 */
5158 napi->state = 0;
5159 again = false;
5160 } else {
5161 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5162 &sd->process_queue);
5163 }
5164 rps_unlock(sd);
5165 local_irq_enable();
5166 }
5167
5168 return work;
5169}
5170
5171/**
5172 * __napi_schedule - schedule for receive
5173 * @n: entry to schedule
5174 *
5175 * The entry's receive function will be scheduled to run.
5176 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5177 */
5178void __napi_schedule(struct napi_struct *n)
5179{
5180 unsigned long flags;
5181
5182 local_irq_save(flags);
5183 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5184 local_irq_restore(flags);
5185}
5186EXPORT_SYMBOL(__napi_schedule);
5187
5188/**
5189 * napi_schedule_prep - check if napi can be scheduled
5190 * @n: napi context
5191 *
5192 * Test if NAPI routine is already running, and if not mark
5193 * it as running. This is used as a condition variable
5194 * insure only one NAPI poll instance runs. We also make
5195 * sure there is no pending NAPI disable.
5196 */
5197bool napi_schedule_prep(struct napi_struct *n)
5198{
5199 unsigned long val, new;
5200
5201 do {
5202 val = READ_ONCE(n->state);
5203 if (unlikely(val & NAPIF_STATE_DISABLE))
5204 return false;
5205 new = val | NAPIF_STATE_SCHED;
5206
5207 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5208 * This was suggested by Alexander Duyck, as compiler
5209 * emits better code than :
5210 * if (val & NAPIF_STATE_SCHED)
5211 * new |= NAPIF_STATE_MISSED;
5212 */
5213 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5214 NAPIF_STATE_MISSED;
5215 } while (cmpxchg(&n->state, val, new) != val);
5216
5217 return !(val & NAPIF_STATE_SCHED);
5218}
5219EXPORT_SYMBOL(napi_schedule_prep);
5220
5221/**
5222 * __napi_schedule_irqoff - schedule for receive
5223 * @n: entry to schedule
5224 *
5225 * Variant of __napi_schedule() assuming hard irqs are masked
5226 */
5227void __napi_schedule_irqoff(struct napi_struct *n)
5228{
5229 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5230}
5231EXPORT_SYMBOL(__napi_schedule_irqoff);
5232
5233bool napi_complete_done(struct napi_struct *n, int work_done)
5234{
5235 unsigned long flags, val, new;
5236
5237 /*
5238 * 1) Don't let napi dequeue from the cpu poll list
5239 * just in case its running on a different cpu.
5240 * 2) If we are busy polling, do nothing here, we have
5241 * the guarantee we will be called later.
5242 */
5243 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5244 NAPIF_STATE_IN_BUSY_POLL)))
5245 return false;
5246
5247 if (n->gro_list) {
5248 unsigned long timeout = 0;
5249
5250 if (work_done)
5251 timeout = n->dev->gro_flush_timeout;
5252
5253 if (timeout)
5254 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5255 HRTIMER_MODE_REL_PINNED);
5256 else
5257 napi_gro_flush(n, false);
5258 }
5259 if (unlikely(!list_empty(&n->poll_list))) {
5260 /* If n->poll_list is not empty, we need to mask irqs */
5261 local_irq_save(flags);
5262 list_del_init(&n->poll_list);
5263 local_irq_restore(flags);
5264 }
5265
5266 do {
5267 val = READ_ONCE(n->state);
5268
5269 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5270
5271 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5272
5273 /* If STATE_MISSED was set, leave STATE_SCHED set,
5274 * because we will call napi->poll() one more time.
5275 * This C code was suggested by Alexander Duyck to help gcc.
5276 */
5277 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5278 NAPIF_STATE_SCHED;
5279 } while (cmpxchg(&n->state, val, new) != val);
5280
5281 if (unlikely(val & NAPIF_STATE_MISSED)) {
5282 __napi_schedule(n);
5283 return false;
5284 }
5285
5286 return true;
5287}
5288EXPORT_SYMBOL(napi_complete_done);
5289
5290/* must be called under rcu_read_lock(), as we dont take a reference */
5291static struct napi_struct *napi_by_id(unsigned int napi_id)
5292{
5293 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5294 struct napi_struct *napi;
5295
5296 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5297 if (napi->napi_id == napi_id)
5298 return napi;
5299
5300 return NULL;
5301}
5302
5303#if defined(CONFIG_NET_RX_BUSY_POLL)
5304
5305#define BUSY_POLL_BUDGET 8
5306
5307static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5308{
5309 int rc;
5310
5311 /* Busy polling means there is a high chance device driver hard irq
5312 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5313 * set in napi_schedule_prep().
5314 * Since we are about to call napi->poll() once more, we can safely
5315 * clear NAPI_STATE_MISSED.
5316 *
5317 * Note: x86 could use a single "lock and ..." instruction
5318 * to perform these two clear_bit()
5319 */
5320 clear_bit(NAPI_STATE_MISSED, &napi->state);
5321 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5322
5323 local_bh_disable();
5324
5325 /* All we really want here is to re-enable device interrupts.
5326 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5327 */
5328 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5329 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5330 netpoll_poll_unlock(have_poll_lock);
5331 if (rc == BUSY_POLL_BUDGET)
5332 __napi_schedule(napi);
5333 local_bh_enable();
5334}
5335
5336void napi_busy_loop(unsigned int napi_id,
5337 bool (*loop_end)(void *, unsigned long),
5338 void *loop_end_arg)
5339{
5340 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5341 int (*napi_poll)(struct napi_struct *napi, int budget);
5342 void *have_poll_lock = NULL;
5343 struct napi_struct *napi;
5344
5345restart:
5346 napi_poll = NULL;
5347
5348 rcu_read_lock();
5349
5350 napi = napi_by_id(napi_id);
5351 if (!napi)
5352 goto out;
5353
5354 preempt_disable();
5355 for (;;) {
5356 int work = 0;
5357
5358 local_bh_disable();
5359 if (!napi_poll) {
5360 unsigned long val = READ_ONCE(napi->state);
5361
5362 /* If multiple threads are competing for this napi,
5363 * we avoid dirtying napi->state as much as we can.
5364 */
5365 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5366 NAPIF_STATE_IN_BUSY_POLL))
5367 goto count;
5368 if (cmpxchg(&napi->state, val,
5369 val | NAPIF_STATE_IN_BUSY_POLL |
5370 NAPIF_STATE_SCHED) != val)
5371 goto count;
5372 have_poll_lock = netpoll_poll_lock(napi);
5373 napi_poll = napi->poll;
5374 }
5375 work = napi_poll(napi, BUSY_POLL_BUDGET);
5376 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5377count:
5378 if (work > 0)
5379 __NET_ADD_STATS(dev_net(napi->dev),
5380 LINUX_MIB_BUSYPOLLRXPACKETS, work);
5381 local_bh_enable();
5382
5383 if (!loop_end || loop_end(loop_end_arg, start_time))
5384 break;
5385
5386 if (unlikely(need_resched())) {
5387 if (napi_poll)
5388 busy_poll_stop(napi, have_poll_lock);
5389 preempt_enable();
5390 rcu_read_unlock();
5391 cond_resched();
5392 if (loop_end(loop_end_arg, start_time))
5393 return;
5394 goto restart;
5395 }
5396 cpu_relax();
5397 }
5398 if (napi_poll)
5399 busy_poll_stop(napi, have_poll_lock);
5400 preempt_enable();
5401out:
5402 rcu_read_unlock();
5403}
5404EXPORT_SYMBOL(napi_busy_loop);
5405
5406#endif /* CONFIG_NET_RX_BUSY_POLL */
5407
5408static void napi_hash_add(struct napi_struct *napi)
5409{
5410 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5411 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5412 return;
5413
5414 spin_lock(&napi_hash_lock);
5415
5416 /* 0..NR_CPUS range is reserved for sender_cpu use */
5417 do {
5418 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5419 napi_gen_id = MIN_NAPI_ID;
5420 } while (napi_by_id(napi_gen_id));
5421 napi->napi_id = napi_gen_id;
5422
5423 hlist_add_head_rcu(&napi->napi_hash_node,
5424 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5425
5426 spin_unlock(&napi_hash_lock);
5427}
5428
5429/* Warning : caller is responsible to make sure rcu grace period
5430 * is respected before freeing memory containing @napi
5431 */
5432bool napi_hash_del(struct napi_struct *napi)
5433{
5434 bool rcu_sync_needed = false;
5435
5436 spin_lock(&napi_hash_lock);
5437
5438 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5439 rcu_sync_needed = true;
5440 hlist_del_rcu(&napi->napi_hash_node);
5441 }
5442 spin_unlock(&napi_hash_lock);
5443 return rcu_sync_needed;
5444}
5445EXPORT_SYMBOL_GPL(napi_hash_del);
5446
5447static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5448{
5449 struct napi_struct *napi;
5450
5451 napi = container_of(timer, struct napi_struct, timer);
5452
5453 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5454 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5455 */
5456 if (napi->gro_list && !napi_disable_pending(napi) &&
5457 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5458 __napi_schedule_irqoff(napi);
5459
5460 return HRTIMER_NORESTART;
5461}
5462
5463void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5464 int (*poll)(struct napi_struct *, int), int weight)
5465{
5466 INIT_LIST_HEAD(&napi->poll_list);
5467 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5468 napi->timer.function = napi_watchdog;
5469 napi->gro_count = 0;
5470 napi->gro_list = NULL;
5471 napi->skb = NULL;
5472 napi->poll = poll;
5473 if (weight > NAPI_POLL_WEIGHT)
5474 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5475 weight, dev->name);
5476 napi->weight = weight;
5477 list_add(&napi->dev_list, &dev->napi_list);
5478 napi->dev = dev;
5479#ifdef CONFIG_NETPOLL
5480 napi->poll_owner = -1;
5481#endif
5482 set_bit(NAPI_STATE_SCHED, &napi->state);
5483 napi_hash_add(napi);
5484}
5485EXPORT_SYMBOL(netif_napi_add);
5486
5487void napi_disable(struct napi_struct *n)
5488{
5489 might_sleep();
5490 set_bit(NAPI_STATE_DISABLE, &n->state);
5491
5492 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5493 msleep(1);
5494 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5495 msleep(1);
5496
5497 hrtimer_cancel(&n->timer);
5498
5499 clear_bit(NAPI_STATE_DISABLE, &n->state);
5500}
5501EXPORT_SYMBOL(napi_disable);
5502
5503/* Must be called in process context */
5504void netif_napi_del(struct napi_struct *napi)
5505{
5506 might_sleep();
5507 if (napi_hash_del(napi))
5508 synchronize_net();
5509 list_del_init(&napi->dev_list);
5510 napi_free_frags(napi);
5511
5512 kfree_skb_list(napi->gro_list);
5513 napi->gro_list = NULL;
5514 napi->gro_count = 0;
5515}
5516EXPORT_SYMBOL(netif_napi_del);
5517
5518static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5519{
5520 void *have;
5521 int work, weight;
5522
5523 list_del_init(&n->poll_list);
5524
5525 have = netpoll_poll_lock(n);
5526
5527 weight = n->weight;
5528
5529 /* This NAPI_STATE_SCHED test is for avoiding a race
5530 * with netpoll's poll_napi(). Only the entity which
5531 * obtains the lock and sees NAPI_STATE_SCHED set will
5532 * actually make the ->poll() call. Therefore we avoid
5533 * accidentally calling ->poll() when NAPI is not scheduled.
5534 */
5535 work = 0;
5536 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5537 work = n->poll(n, weight);
5538 trace_napi_poll(n, work, weight);
5539 }
5540
5541 WARN_ON_ONCE(work > weight);
5542
5543 if (likely(work < weight))
5544 goto out_unlock;
5545
5546 /* Drivers must not modify the NAPI state if they
5547 * consume the entire weight. In such cases this code
5548 * still "owns" the NAPI instance and therefore can
5549 * move the instance around on the list at-will.
5550 */
5551 if (unlikely(napi_disable_pending(n))) {
5552 napi_complete(n);
5553 goto out_unlock;
5554 }
5555
5556 if (n->gro_list) {
5557 /* flush too old packets
5558 * If HZ < 1000, flush all packets.
5559 */
5560 napi_gro_flush(n, HZ >= 1000);
5561 }
5562
5563 /* Some drivers may have called napi_schedule
5564 * prior to exhausting their budget.
5565 */
5566 if (unlikely(!list_empty(&n->poll_list))) {
5567 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5568 n->dev ? n->dev->name : "backlog");
5569 goto out_unlock;
5570 }
5571
5572 list_add_tail(&n->poll_list, repoll);
5573
5574out_unlock:
5575 netpoll_poll_unlock(have);
5576
5577 return work;
5578}
5579
5580static __latent_entropy void net_rx_action(struct softirq_action *h)
5581{
5582 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5583 unsigned long time_limit = jiffies +
5584 usecs_to_jiffies(netdev_budget_usecs);
5585 int budget = netdev_budget;
5586 LIST_HEAD(list);
5587 LIST_HEAD(repoll);
5588
5589 local_irq_disable();
5590 list_splice_init(&sd->poll_list, &list);
5591 local_irq_enable();
5592
5593 for (;;) {
5594 struct napi_struct *n;
5595
5596 if (list_empty(&list)) {
5597 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5598 goto out;
5599 break;
5600 }
5601
5602 n = list_first_entry(&list, struct napi_struct, poll_list);
5603 budget -= napi_poll(n, &repoll);
5604
5605 /* If softirq window is exhausted then punt.
5606 * Allow this to run for 2 jiffies since which will allow
5607 * an average latency of 1.5/HZ.
5608 */
5609 if (unlikely(budget <= 0 ||
5610 time_after_eq(jiffies, time_limit))) {
5611 sd->time_squeeze++;
5612 break;
5613 }
5614 }
5615
5616 local_irq_disable();
5617
5618 list_splice_tail_init(&sd->poll_list, &list);
5619 list_splice_tail(&repoll, &list);
5620 list_splice(&list, &sd->poll_list);
5621 if (!list_empty(&sd->poll_list))
5622 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5623
5624 net_rps_action_and_irq_enable(sd);
5625out:
5626 __kfree_skb_flush();
5627}
5628
5629struct netdev_adjacent {
5630 struct net_device *dev;
5631
5632 /* upper master flag, there can only be one master device per list */
5633 bool master;
5634
5635 /* counter for the number of times this device was added to us */
5636 u16 ref_nr;
5637
5638 /* private field for the users */
5639 void *private;
5640
5641 struct list_head list;
5642 struct rcu_head rcu;
5643};
5644
5645static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5646 struct list_head *adj_list)
5647{
5648 struct netdev_adjacent *adj;
5649
5650 list_for_each_entry(adj, adj_list, list) {
5651 if (adj->dev == adj_dev)
5652 return adj;
5653 }
5654 return NULL;
5655}
5656
5657static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5658{
5659 struct net_device *dev = data;
5660
5661 return upper_dev == dev;
5662}
5663
5664/**
5665 * netdev_has_upper_dev - Check if device is linked to an upper device
5666 * @dev: device
5667 * @upper_dev: upper device to check
5668 *
5669 * Find out if a device is linked to specified upper device and return true
5670 * in case it is. Note that this checks only immediate upper device,
5671 * not through a complete stack of devices. The caller must hold the RTNL lock.
5672 */
5673bool netdev_has_upper_dev(struct net_device *dev,
5674 struct net_device *upper_dev)
5675{
5676 ASSERT_RTNL();
5677
5678 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5679 upper_dev);
5680}
5681EXPORT_SYMBOL(netdev_has_upper_dev);
5682
5683/**
5684 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5685 * @dev: device
5686 * @upper_dev: upper device to check
5687 *
5688 * Find out if a device is linked to specified upper device and return true
5689 * in case it is. Note that this checks the entire upper device chain.
5690 * The caller must hold rcu lock.
5691 */
5692
5693bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5694 struct net_device *upper_dev)
5695{
5696 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5697 upper_dev);
5698}
5699EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5700
5701/**
5702 * netdev_has_any_upper_dev - Check if device is linked to some device
5703 * @dev: device
5704 *
5705 * Find out if a device is linked to an upper device and return true in case
5706 * it is. The caller must hold the RTNL lock.
5707 */
5708bool netdev_has_any_upper_dev(struct net_device *dev)
5709{
5710 ASSERT_RTNL();
5711
5712 return !list_empty(&dev->adj_list.upper);
5713}
5714EXPORT_SYMBOL(netdev_has_any_upper_dev);
5715
5716/**
5717 * netdev_master_upper_dev_get - Get master upper device
5718 * @dev: device
5719 *
5720 * Find a master upper device and return pointer to it or NULL in case
5721 * it's not there. The caller must hold the RTNL lock.
5722 */
5723struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5724{
5725 struct netdev_adjacent *upper;
5726
5727 ASSERT_RTNL();
5728
5729 if (list_empty(&dev->adj_list.upper))
5730 return NULL;
5731
5732 upper = list_first_entry(&dev->adj_list.upper,
5733 struct netdev_adjacent, list);
5734 if (likely(upper->master))
5735 return upper->dev;
5736 return NULL;
5737}
5738EXPORT_SYMBOL(netdev_master_upper_dev_get);
5739
5740/**
5741 * netdev_has_any_lower_dev - Check if device is linked to some device
5742 * @dev: device
5743 *
5744 * Find out if a device is linked to a lower device and return true in case
5745 * it is. The caller must hold the RTNL lock.
5746 */
5747static bool netdev_has_any_lower_dev(struct net_device *dev)
5748{
5749 ASSERT_RTNL();
5750
5751 return !list_empty(&dev->adj_list.lower);
5752}
5753
5754void *netdev_adjacent_get_private(struct list_head *adj_list)
5755{
5756 struct netdev_adjacent *adj;
5757
5758 adj = list_entry(adj_list, struct netdev_adjacent, list);
5759
5760 return adj->private;
5761}
5762EXPORT_SYMBOL(netdev_adjacent_get_private);
5763
5764/**
5765 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5766 * @dev: device
5767 * @iter: list_head ** of the current position
5768 *
5769 * Gets the next device from the dev's upper list, starting from iter
5770 * position. The caller must hold RCU read lock.
5771 */
5772struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5773 struct list_head **iter)
5774{
5775 struct netdev_adjacent *upper;
5776
5777 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5778
5779 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5780
5781 if (&upper->list == &dev->adj_list.upper)
5782 return NULL;
5783
5784 *iter = &upper->list;
5785
5786 return upper->dev;
5787}
5788EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5789
5790static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5791 struct list_head **iter)
5792{
5793 struct netdev_adjacent *upper;
5794
5795 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5796
5797 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5798
5799 if (&upper->list == &dev->adj_list.upper)
5800 return NULL;
5801
5802 *iter = &upper->list;
5803
5804 return upper->dev;
5805}
5806
5807int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5808 int (*fn)(struct net_device *dev,
5809 void *data),
5810 void *data)
5811{
5812 struct net_device *udev;
5813 struct list_head *iter;
5814 int ret;
5815
5816 for (iter = &dev->adj_list.upper,
5817 udev = netdev_next_upper_dev_rcu(dev, &iter);
5818 udev;
5819 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5820 /* first is the upper device itself */
5821 ret = fn(udev, data);
5822 if (ret)
5823 return ret;
5824
5825 /* then look at all of its upper devices */
5826 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5827 if (ret)
5828 return ret;
5829 }
5830
5831 return 0;
5832}
5833EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5834
5835/**
5836 * netdev_lower_get_next_private - Get the next ->private from the
5837 * lower neighbour list
5838 * @dev: device
5839 * @iter: list_head ** of the current position
5840 *
5841 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5842 * list, starting from iter position. The caller must hold either hold the
5843 * RTNL lock or its own locking that guarantees that the neighbour lower
5844 * list will remain unchanged.
5845 */
5846void *netdev_lower_get_next_private(struct net_device *dev,
5847 struct list_head **iter)
5848{
5849 struct netdev_adjacent *lower;
5850
5851 lower = list_entry(*iter, struct netdev_adjacent, list);
5852
5853 if (&lower->list == &dev->adj_list.lower)
5854 return NULL;
5855
5856 *iter = lower->list.next;
5857
5858 return lower->private;
5859}
5860EXPORT_SYMBOL(netdev_lower_get_next_private);
5861
5862/**
5863 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5864 * lower neighbour list, RCU
5865 * variant
5866 * @dev: device
5867 * @iter: list_head ** of the current position
5868 *
5869 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5870 * list, starting from iter position. The caller must hold RCU read lock.
5871 */
5872void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5873 struct list_head **iter)
5874{
5875 struct netdev_adjacent *lower;
5876
5877 WARN_ON_ONCE(!rcu_read_lock_held());
5878
5879 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5880
5881 if (&lower->list == &dev->adj_list.lower)
5882 return NULL;
5883
5884 *iter = &lower->list;
5885
5886 return lower->private;
5887}
5888EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5889
5890/**
5891 * netdev_lower_get_next - Get the next device from the lower neighbour
5892 * list
5893 * @dev: device
5894 * @iter: list_head ** of the current position
5895 *
5896 * Gets the next netdev_adjacent from the dev's lower neighbour
5897 * list, starting from iter position. The caller must hold RTNL lock or
5898 * its own locking that guarantees that the neighbour lower
5899 * list will remain unchanged.
5900 */
5901void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5902{
5903 struct netdev_adjacent *lower;
5904
5905 lower = list_entry(*iter, struct netdev_adjacent, list);
5906
5907 if (&lower->list == &dev->adj_list.lower)
5908 return NULL;
5909
5910 *iter = lower->list.next;
5911
5912 return lower->dev;
5913}
5914EXPORT_SYMBOL(netdev_lower_get_next);
5915
5916static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5917 struct list_head **iter)
5918{
5919 struct netdev_adjacent *lower;
5920
5921 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5922
5923 if (&lower->list == &dev->adj_list.lower)
5924 return NULL;
5925
5926 *iter = &lower->list;
5927
5928 return lower->dev;
5929}
5930
5931int netdev_walk_all_lower_dev(struct net_device *dev,
5932 int (*fn)(struct net_device *dev,
5933 void *data),
5934 void *data)
5935{
5936 struct net_device *ldev;
5937 struct list_head *iter;
5938 int ret;
5939
5940 for (iter = &dev->adj_list.lower,
5941 ldev = netdev_next_lower_dev(dev, &iter);
5942 ldev;
5943 ldev = netdev_next_lower_dev(dev, &iter)) {
5944 /* first is the lower device itself */
5945 ret = fn(ldev, data);
5946 if (ret)
5947 return ret;
5948
5949 /* then look at all of its lower devices */
5950 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5951 if (ret)
5952 return ret;
5953 }
5954
5955 return 0;
5956}
5957EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5958
5959static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5960 struct list_head **iter)
5961{
5962 struct netdev_adjacent *lower;
5963
5964 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5965 if (&lower->list == &dev->adj_list.lower)
5966 return NULL;
5967
5968 *iter = &lower->list;
5969
5970 return lower->dev;
5971}
5972
5973int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5974 int (*fn)(struct net_device *dev,
5975 void *data),
5976 void *data)
5977{
5978 struct net_device *ldev;
5979 struct list_head *iter;
5980 int ret;
5981
5982 for (iter = &dev->adj_list.lower,
5983 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5984 ldev;
5985 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5986 /* first is the lower device itself */
5987 ret = fn(ldev, data);
5988 if (ret)
5989 return ret;
5990
5991 /* then look at all of its lower devices */
5992 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5993 if (ret)
5994 return ret;
5995 }
5996
5997 return 0;
5998}
5999EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6000
6001/**
6002 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6003 * lower neighbour list, RCU
6004 * variant
6005 * @dev: device
6006 *
6007 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6008 * list. The caller must hold RCU read lock.
6009 */
6010void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6011{
6012 struct netdev_adjacent *lower;
6013
6014 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6015 struct netdev_adjacent, list);
6016 if (lower)
6017 return lower->private;
6018 return NULL;
6019}
6020EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6021
6022/**
6023 * netdev_master_upper_dev_get_rcu - Get master upper device
6024 * @dev: device
6025 *
6026 * Find a master upper device and return pointer to it or NULL in case
6027 * it's not there. The caller must hold the RCU read lock.
6028 */
6029struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6030{
6031 struct netdev_adjacent *upper;
6032
6033 upper = list_first_or_null_rcu(&dev->adj_list.upper,
6034 struct netdev_adjacent, list);
6035 if (upper && likely(upper->master))
6036 return upper->dev;
6037 return NULL;
6038}
6039EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6040
6041static int netdev_adjacent_sysfs_add(struct net_device *dev,
6042 struct net_device *adj_dev,
6043 struct list_head *dev_list)
6044{
6045 char linkname[IFNAMSIZ+7];
6046
6047 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6048 "upper_%s" : "lower_%s", adj_dev->name);
6049 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6050 linkname);
6051}
6052static void netdev_adjacent_sysfs_del(struct net_device *dev,
6053 char *name,
6054 struct list_head *dev_list)
6055{
6056 char linkname[IFNAMSIZ+7];
6057
6058 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6059 "upper_%s" : "lower_%s", name);
6060 sysfs_remove_link(&(dev->dev.kobj), linkname);
6061}
6062
6063static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6064 struct net_device *adj_dev,
6065 struct list_head *dev_list)
6066{
6067 return (dev_list == &dev->adj_list.upper ||
6068 dev_list == &dev->adj_list.lower) &&
6069 net_eq(dev_net(dev), dev_net(adj_dev));
6070}
6071
6072static int __netdev_adjacent_dev_insert(struct net_device *dev,
6073 struct net_device *adj_dev,
6074 struct list_head *dev_list,
6075 void *private, bool master)
6076{
6077 struct netdev_adjacent *adj;
6078 int ret;
6079
6080 adj = __netdev_find_adj(adj_dev, dev_list);
6081
6082 if (adj) {
6083 adj->ref_nr += 1;
6084 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6085 dev->name, adj_dev->name, adj->ref_nr);
6086
6087 return 0;
6088 }
6089
6090 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6091 if (!adj)
6092 return -ENOMEM;
6093
6094 adj->dev = adj_dev;
6095 adj->master = master;
6096 adj->ref_nr = 1;
6097 adj->private = private;
6098 dev_hold(adj_dev);
6099
6100 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6101 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6102
6103 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6104 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6105 if (ret)
6106 goto free_adj;
6107 }
6108
6109 /* Ensure that master link is always the first item in list. */
6110 if (master) {
6111 ret = sysfs_create_link(&(dev->dev.kobj),
6112 &(adj_dev->dev.kobj), "master");
6113 if (ret)
6114 goto remove_symlinks;
6115
6116 list_add_rcu(&adj->list, dev_list);
6117 } else {
6118 list_add_tail_rcu(&adj->list, dev_list);
6119 }
6120
6121 return 0;
6122
6123remove_symlinks:
6124 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6125 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6126free_adj:
6127 kfree(adj);
6128 dev_put(adj_dev);
6129
6130 return ret;
6131}
6132
6133static void __netdev_adjacent_dev_remove(struct net_device *dev,
6134 struct net_device *adj_dev,
6135 u16 ref_nr,
6136 struct list_head *dev_list)
6137{
6138 struct netdev_adjacent *adj;
6139
6140 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6141 dev->name, adj_dev->name, ref_nr);
6142
6143 adj = __netdev_find_adj(adj_dev, dev_list);
6144
6145 if (!adj) {
6146 pr_err("Adjacency does not exist for device %s from %s\n",
6147 dev->name, adj_dev->name);
6148 WARN_ON(1);
6149 return;
6150 }
6151
6152 if (adj->ref_nr > ref_nr) {
6153 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6154 dev->name, adj_dev->name, ref_nr,
6155 adj->ref_nr - ref_nr);
6156 adj->ref_nr -= ref_nr;
6157 return;
6158 }
6159
6160 if (adj->master)
6161 sysfs_remove_link(&(dev->dev.kobj), "master");
6162
6163 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6164 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6165
6166 list_del_rcu(&adj->list);
6167 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6168 adj_dev->name, dev->name, adj_dev->name);
6169 dev_put(adj_dev);
6170 kfree_rcu(adj, rcu);
6171}
6172
6173static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6174 struct net_device *upper_dev,
6175 struct list_head *up_list,
6176 struct list_head *down_list,
6177 void *private, bool master)
6178{
6179 int ret;
6180
6181 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6182 private, master);
6183 if (ret)
6184 return ret;
6185
6186 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6187 private, false);
6188 if (ret) {
6189 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6190 return ret;
6191 }
6192
6193 return 0;
6194}
6195
6196static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6197 struct net_device *upper_dev,
6198 u16 ref_nr,
6199 struct list_head *up_list,
6200 struct list_head *down_list)
6201{
6202 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6203 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6204}
6205
6206static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6207 struct net_device *upper_dev,
6208 void *private, bool master)
6209{
6210 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6211 &dev->adj_list.upper,
6212 &upper_dev->adj_list.lower,
6213 private, master);
6214}
6215
6216static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6217 struct net_device *upper_dev)
6218{
6219 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6220 &dev->adj_list.upper,
6221 &upper_dev->adj_list.lower);
6222}
6223
6224static int __netdev_upper_dev_link(struct net_device *dev,
6225 struct net_device *upper_dev, bool master,
6226 void *upper_priv, void *upper_info)
6227{
6228 struct netdev_notifier_changeupper_info changeupper_info;
6229 int ret = 0;
6230
6231 ASSERT_RTNL();
6232
6233 if (dev == upper_dev)
6234 return -EBUSY;
6235
6236 /* To prevent loops, check if dev is not upper device to upper_dev. */
6237 if (netdev_has_upper_dev(upper_dev, dev))
6238 return -EBUSY;
6239
6240 if (netdev_has_upper_dev(dev, upper_dev))
6241 return -EEXIST;
6242
6243 if (master && netdev_master_upper_dev_get(dev))
6244 return -EBUSY;
6245
6246 changeupper_info.upper_dev = upper_dev;
6247 changeupper_info.master = master;
6248 changeupper_info.linking = true;
6249 changeupper_info.upper_info = upper_info;
6250
6251 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6252 &changeupper_info.info);
6253 ret = notifier_to_errno(ret);
6254 if (ret)
6255 return ret;
6256
6257 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6258 master);
6259 if (ret)
6260 return ret;
6261
6262 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6263 &changeupper_info.info);
6264 ret = notifier_to_errno(ret);
6265 if (ret)
6266 goto rollback;
6267
6268 return 0;
6269
6270rollback:
6271 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6272
6273 return ret;
6274}
6275
6276/**
6277 * netdev_upper_dev_link - Add a link to the upper device
6278 * @dev: device
6279 * @upper_dev: new upper device
6280 *
6281 * Adds a link to device which is upper to this one. The caller must hold
6282 * the RTNL lock. On a failure a negative errno code is returned.
6283 * On success the reference counts are adjusted and the function
6284 * returns zero.
6285 */
6286int netdev_upper_dev_link(struct net_device *dev,
6287 struct net_device *upper_dev)
6288{
6289 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6290}
6291EXPORT_SYMBOL(netdev_upper_dev_link);
6292
6293/**
6294 * netdev_master_upper_dev_link - Add a master link to the upper device
6295 * @dev: device
6296 * @upper_dev: new upper device
6297 * @upper_priv: upper device private
6298 * @upper_info: upper info to be passed down via notifier
6299 *
6300 * Adds a link to device which is upper to this one. In this case, only
6301 * one master upper device can be linked, although other non-master devices
6302 * might be linked as well. The caller must hold the RTNL lock.
6303 * On a failure a negative errno code is returned. On success the reference
6304 * counts are adjusted and the function returns zero.
6305 */
6306int netdev_master_upper_dev_link(struct net_device *dev,
6307 struct net_device *upper_dev,
6308 void *upper_priv, void *upper_info)
6309{
6310 return __netdev_upper_dev_link(dev, upper_dev, true,
6311 upper_priv, upper_info);
6312}
6313EXPORT_SYMBOL(netdev_master_upper_dev_link);
6314
6315/**
6316 * netdev_upper_dev_unlink - Removes a link to upper device
6317 * @dev: device
6318 * @upper_dev: new upper device
6319 *
6320 * Removes a link to device which is upper to this one. The caller must hold
6321 * the RTNL lock.
6322 */
6323void netdev_upper_dev_unlink(struct net_device *dev,
6324 struct net_device *upper_dev)
6325{
6326 struct netdev_notifier_changeupper_info changeupper_info;
6327
6328 ASSERT_RTNL();
6329
6330 changeupper_info.upper_dev = upper_dev;
6331 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6332 changeupper_info.linking = false;
6333
6334 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6335 &changeupper_info.info);
6336
6337 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6338
6339 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6340 &changeupper_info.info);
6341}
6342EXPORT_SYMBOL(netdev_upper_dev_unlink);
6343
6344/**
6345 * netdev_bonding_info_change - Dispatch event about slave change
6346 * @dev: device
6347 * @bonding_info: info to dispatch
6348 *
6349 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6350 * The caller must hold the RTNL lock.
6351 */
6352void netdev_bonding_info_change(struct net_device *dev,
6353 struct netdev_bonding_info *bonding_info)
6354{
6355 struct netdev_notifier_bonding_info info;
6356
6357 memcpy(&info.bonding_info, bonding_info,
6358 sizeof(struct netdev_bonding_info));
6359 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6360 &info.info);
6361}
6362EXPORT_SYMBOL(netdev_bonding_info_change);
6363
6364static void netdev_adjacent_add_links(struct net_device *dev)
6365{
6366 struct netdev_adjacent *iter;
6367
6368 struct net *net = dev_net(dev);
6369
6370 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6371 if (!net_eq(net, dev_net(iter->dev)))
6372 continue;
6373 netdev_adjacent_sysfs_add(iter->dev, dev,
6374 &iter->dev->adj_list.lower);
6375 netdev_adjacent_sysfs_add(dev, iter->dev,
6376 &dev->adj_list.upper);
6377 }
6378
6379 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6380 if (!net_eq(net, dev_net(iter->dev)))
6381 continue;
6382 netdev_adjacent_sysfs_add(iter->dev, dev,
6383 &iter->dev->adj_list.upper);
6384 netdev_adjacent_sysfs_add(dev, iter->dev,
6385 &dev->adj_list.lower);
6386 }
6387}
6388
6389static void netdev_adjacent_del_links(struct net_device *dev)
6390{
6391 struct netdev_adjacent *iter;
6392
6393 struct net *net = dev_net(dev);
6394
6395 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6396 if (!net_eq(net, dev_net(iter->dev)))
6397 continue;
6398 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6399 &iter->dev->adj_list.lower);
6400 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6401 &dev->adj_list.upper);
6402 }
6403
6404 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6405 if (!net_eq(net, dev_net(iter->dev)))
6406 continue;
6407 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6408 &iter->dev->adj_list.upper);
6409 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6410 &dev->adj_list.lower);
6411 }
6412}
6413
6414void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6415{
6416 struct netdev_adjacent *iter;
6417
6418 struct net *net = dev_net(dev);
6419
6420 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6421 if (!net_eq(net, dev_net(iter->dev)))
6422 continue;
6423 netdev_adjacent_sysfs_del(iter->dev, oldname,
6424 &iter->dev->adj_list.lower);
6425 netdev_adjacent_sysfs_add(iter->dev, dev,
6426 &iter->dev->adj_list.lower);
6427 }
6428
6429 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6430 if (!net_eq(net, dev_net(iter->dev)))
6431 continue;
6432 netdev_adjacent_sysfs_del(iter->dev, oldname,
6433 &iter->dev->adj_list.upper);
6434 netdev_adjacent_sysfs_add(iter->dev, dev,
6435 &iter->dev->adj_list.upper);
6436 }
6437}
6438
6439void *netdev_lower_dev_get_private(struct net_device *dev,
6440 struct net_device *lower_dev)
6441{
6442 struct netdev_adjacent *lower;
6443
6444 if (!lower_dev)
6445 return NULL;
6446 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6447 if (!lower)
6448 return NULL;
6449
6450 return lower->private;
6451}
6452EXPORT_SYMBOL(netdev_lower_dev_get_private);
6453
6454
6455int dev_get_nest_level(struct net_device *dev)
6456{
6457 struct net_device *lower = NULL;
6458 struct list_head *iter;
6459 int max_nest = -1;
6460 int nest;
6461
6462 ASSERT_RTNL();
6463
6464 netdev_for_each_lower_dev(dev, lower, iter) {
6465 nest = dev_get_nest_level(lower);
6466 if (max_nest < nest)
6467 max_nest = nest;
6468 }
6469
6470 return max_nest + 1;
6471}
6472EXPORT_SYMBOL(dev_get_nest_level);
6473
6474/**
6475 * netdev_lower_change - Dispatch event about lower device state change
6476 * @lower_dev: device
6477 * @lower_state_info: state to dispatch
6478 *
6479 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6480 * The caller must hold the RTNL lock.
6481 */
6482void netdev_lower_state_changed(struct net_device *lower_dev,
6483 void *lower_state_info)
6484{
6485 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6486
6487 ASSERT_RTNL();
6488 changelowerstate_info.lower_state_info = lower_state_info;
6489 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6490 &changelowerstate_info.info);
6491}
6492EXPORT_SYMBOL(netdev_lower_state_changed);
6493
6494static void dev_change_rx_flags(struct net_device *dev, int flags)
6495{
6496 const struct net_device_ops *ops = dev->netdev_ops;
6497
6498 if (ops->ndo_change_rx_flags)
6499 ops->ndo_change_rx_flags(dev, flags);
6500}
6501
6502static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6503{
6504 unsigned int old_flags = dev->flags;
6505 kuid_t uid;
6506 kgid_t gid;
6507
6508 ASSERT_RTNL();
6509
6510 dev->flags |= IFF_PROMISC;
6511 dev->promiscuity += inc;
6512 if (dev->promiscuity == 0) {
6513 /*
6514 * Avoid overflow.
6515 * If inc causes overflow, untouch promisc and return error.
6516 */
6517 if (inc < 0)
6518 dev->flags &= ~IFF_PROMISC;
6519 else {
6520 dev->promiscuity -= inc;
6521 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6522 dev->name);
6523 return -EOVERFLOW;
6524 }
6525 }
6526 if (dev->flags != old_flags) {
6527 pr_info("device %s %s promiscuous mode\n",
6528 dev->name,
6529 dev->flags & IFF_PROMISC ? "entered" : "left");
6530 if (audit_enabled) {
6531 current_uid_gid(&uid, &gid);
6532 audit_log(current->audit_context, GFP_ATOMIC,
6533 AUDIT_ANOM_PROMISCUOUS,
6534 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6535 dev->name, (dev->flags & IFF_PROMISC),
6536 (old_flags & IFF_PROMISC),
6537 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6538 from_kuid(&init_user_ns, uid),
6539 from_kgid(&init_user_ns, gid),
6540 audit_get_sessionid(current));
6541 }
6542
6543 dev_change_rx_flags(dev, IFF_PROMISC);
6544 }
6545 if (notify)
6546 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6547 return 0;
6548}
6549
6550/**
6551 * dev_set_promiscuity - update promiscuity count on a device
6552 * @dev: device
6553 * @inc: modifier
6554 *
6555 * Add or remove promiscuity from a device. While the count in the device
6556 * remains above zero the interface remains promiscuous. Once it hits zero
6557 * the device reverts back to normal filtering operation. A negative inc
6558 * value is used to drop promiscuity on the device.
6559 * Return 0 if successful or a negative errno code on error.
6560 */
6561int dev_set_promiscuity(struct net_device *dev, int inc)
6562{
6563 unsigned int old_flags = dev->flags;
6564 int err;
6565
6566 err = __dev_set_promiscuity(dev, inc, true);
6567 if (err < 0)
6568 return err;
6569 if (dev->flags != old_flags)
6570 dev_set_rx_mode(dev);
6571 return err;
6572}
6573EXPORT_SYMBOL(dev_set_promiscuity);
6574
6575static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6576{
6577 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6578
6579 ASSERT_RTNL();
6580
6581 dev->flags |= IFF_ALLMULTI;
6582 dev->allmulti += inc;
6583 if (dev->allmulti == 0) {
6584 /*
6585 * Avoid overflow.
6586 * If inc causes overflow, untouch allmulti and return error.
6587 */
6588 if (inc < 0)
6589 dev->flags &= ~IFF_ALLMULTI;
6590 else {
6591 dev->allmulti -= inc;
6592 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6593 dev->name);
6594 return -EOVERFLOW;
6595 }
6596 }
6597 if (dev->flags ^ old_flags) {
6598 dev_change_rx_flags(dev, IFF_ALLMULTI);
6599 dev_set_rx_mode(dev);
6600 if (notify)
6601 __dev_notify_flags(dev, old_flags,
6602 dev->gflags ^ old_gflags);
6603 }
6604 return 0;
6605}
6606
6607/**
6608 * dev_set_allmulti - update allmulti count on a device
6609 * @dev: device
6610 * @inc: modifier
6611 *
6612 * Add or remove reception of all multicast frames to a device. While the
6613 * count in the device remains above zero the interface remains listening
6614 * to all interfaces. Once it hits zero the device reverts back to normal
6615 * filtering operation. A negative @inc value is used to drop the counter
6616 * when releasing a resource needing all multicasts.
6617 * Return 0 if successful or a negative errno code on error.
6618 */
6619
6620int dev_set_allmulti(struct net_device *dev, int inc)
6621{
6622 return __dev_set_allmulti(dev, inc, true);
6623}
6624EXPORT_SYMBOL(dev_set_allmulti);
6625
6626/*
6627 * Upload unicast and multicast address lists to device and
6628 * configure RX filtering. When the device doesn't support unicast
6629 * filtering it is put in promiscuous mode while unicast addresses
6630 * are present.
6631 */
6632void __dev_set_rx_mode(struct net_device *dev)
6633{
6634 const struct net_device_ops *ops = dev->netdev_ops;
6635
6636 /* dev_open will call this function so the list will stay sane. */
6637 if (!(dev->flags&IFF_UP))
6638 return;
6639
6640 if (!netif_device_present(dev))
6641 return;
6642
6643 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6644 /* Unicast addresses changes may only happen under the rtnl,
6645 * therefore calling __dev_set_promiscuity here is safe.
6646 */
6647 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6648 __dev_set_promiscuity(dev, 1, false);
6649 dev->uc_promisc = true;
6650 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6651 __dev_set_promiscuity(dev, -1, false);
6652 dev->uc_promisc = false;
6653 }
6654 }
6655
6656 if (ops->ndo_set_rx_mode)
6657 ops->ndo_set_rx_mode(dev);
6658}
6659
6660void dev_set_rx_mode(struct net_device *dev)
6661{
6662 netif_addr_lock_bh(dev);
6663 __dev_set_rx_mode(dev);
6664 netif_addr_unlock_bh(dev);
6665}
6666
6667/**
6668 * dev_get_flags - get flags reported to userspace
6669 * @dev: device
6670 *
6671 * Get the combination of flag bits exported through APIs to userspace.
6672 */
6673unsigned int dev_get_flags(const struct net_device *dev)
6674{
6675 unsigned int flags;
6676
6677 flags = (dev->flags & ~(IFF_PROMISC |
6678 IFF_ALLMULTI |
6679 IFF_RUNNING |
6680 IFF_LOWER_UP |
6681 IFF_DORMANT)) |
6682 (dev->gflags & (IFF_PROMISC |
6683 IFF_ALLMULTI));
6684
6685 if (netif_running(dev)) {
6686 if (netif_oper_up(dev))
6687 flags |= IFF_RUNNING;
6688 if (netif_carrier_ok(dev))
6689 flags |= IFF_LOWER_UP;
6690 if (netif_dormant(dev))
6691 flags |= IFF_DORMANT;
6692 }
6693
6694 return flags;
6695}
6696EXPORT_SYMBOL(dev_get_flags);
6697
6698int __dev_change_flags(struct net_device *dev, unsigned int flags)
6699{
6700 unsigned int old_flags = dev->flags;
6701 int ret;
6702
6703 ASSERT_RTNL();
6704
6705 /*
6706 * Set the flags on our device.
6707 */
6708
6709 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6710 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6711 IFF_AUTOMEDIA)) |
6712 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6713 IFF_ALLMULTI));
6714
6715 /*
6716 * Load in the correct multicast list now the flags have changed.
6717 */
6718
6719 if ((old_flags ^ flags) & IFF_MULTICAST)
6720 dev_change_rx_flags(dev, IFF_MULTICAST);
6721
6722 dev_set_rx_mode(dev);
6723
6724 /*
6725 * Have we downed the interface. We handle IFF_UP ourselves
6726 * according to user attempts to set it, rather than blindly
6727 * setting it.
6728 */
6729
6730 ret = 0;
6731 if ((old_flags ^ flags) & IFF_UP) {
6732 if (old_flags & IFF_UP)
6733 __dev_close(dev);
6734 else
6735 ret = __dev_open(dev);
6736 }
6737
6738 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6739 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6740 unsigned int old_flags = dev->flags;
6741
6742 dev->gflags ^= IFF_PROMISC;
6743
6744 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6745 if (dev->flags != old_flags)
6746 dev_set_rx_mode(dev);
6747 }
6748
6749 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6750 * is important. Some (broken) drivers set IFF_PROMISC, when
6751 * IFF_ALLMULTI is requested not asking us and not reporting.
6752 */
6753 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6754 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6755
6756 dev->gflags ^= IFF_ALLMULTI;
6757 __dev_set_allmulti(dev, inc, false);
6758 }
6759
6760 return ret;
6761}
6762
6763void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6764 unsigned int gchanges)
6765{
6766 unsigned int changes = dev->flags ^ old_flags;
6767
6768 if (gchanges)
6769 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6770
6771 if (changes & IFF_UP) {
6772 if (dev->flags & IFF_UP)
6773 call_netdevice_notifiers(NETDEV_UP, dev);
6774 else
6775 call_netdevice_notifiers(NETDEV_DOWN, dev);
6776 }
6777
6778 if (dev->flags & IFF_UP &&
6779 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6780 struct netdev_notifier_change_info change_info;
6781
6782 change_info.flags_changed = changes;
6783 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6784 &change_info.info);
6785 }
6786}
6787
6788/**
6789 * dev_change_flags - change device settings
6790 * @dev: device
6791 * @flags: device state flags
6792 *
6793 * Change settings on device based state flags. The flags are
6794 * in the userspace exported format.
6795 */
6796int dev_change_flags(struct net_device *dev, unsigned int flags)
6797{
6798 int ret;
6799 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6800
6801 ret = __dev_change_flags(dev, flags);
6802 if (ret < 0)
6803 return ret;
6804
6805 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6806 __dev_notify_flags(dev, old_flags, changes);
6807 return ret;
6808}
6809EXPORT_SYMBOL(dev_change_flags);
6810
6811int __dev_set_mtu(struct net_device *dev, int new_mtu)
6812{
6813 const struct net_device_ops *ops = dev->netdev_ops;
6814
6815 if (ops->ndo_change_mtu)
6816 return ops->ndo_change_mtu(dev, new_mtu);
6817
6818 dev->mtu = new_mtu;
6819 return 0;
6820}
6821EXPORT_SYMBOL(__dev_set_mtu);
6822
6823/**
6824 * dev_set_mtu - Change maximum transfer unit
6825 * @dev: device
6826 * @new_mtu: new transfer unit
6827 *
6828 * Change the maximum transfer size of the network device.
6829 */
6830int dev_set_mtu(struct net_device *dev, int new_mtu)
6831{
6832 int err, orig_mtu;
6833
6834 if (new_mtu == dev->mtu)
6835 return 0;
6836
6837 /* MTU must be positive, and in range */
6838 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6839 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6840 dev->name, new_mtu, dev->min_mtu);
6841 return -EINVAL;
6842 }
6843
6844 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6845 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6846 dev->name, new_mtu, dev->max_mtu);
6847 return -EINVAL;
6848 }
6849
6850 if (!netif_device_present(dev))
6851 return -ENODEV;
6852
6853 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6854 err = notifier_to_errno(err);
6855 if (err)
6856 return err;
6857
6858 orig_mtu = dev->mtu;
6859 err = __dev_set_mtu(dev, new_mtu);
6860
6861 if (!err) {
6862 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6863 err = notifier_to_errno(err);
6864 if (err) {
6865 /* setting mtu back and notifying everyone again,
6866 * so that they have a chance to revert changes.
6867 */
6868 __dev_set_mtu(dev, orig_mtu);
6869 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6870 }
6871 }
6872 return err;
6873}
6874EXPORT_SYMBOL(dev_set_mtu);
6875
6876/**
6877 * dev_set_group - Change group this device belongs to
6878 * @dev: device
6879 * @new_group: group this device should belong to
6880 */
6881void dev_set_group(struct net_device *dev, int new_group)
6882{
6883 dev->group = new_group;
6884}
6885EXPORT_SYMBOL(dev_set_group);
6886
6887/**
6888 * dev_set_mac_address - Change Media Access Control Address
6889 * @dev: device
6890 * @sa: new address
6891 *
6892 * Change the hardware (MAC) address of the device
6893 */
6894int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6895{
6896 const struct net_device_ops *ops = dev->netdev_ops;
6897 int err;
6898
6899 if (!ops->ndo_set_mac_address)
6900 return -EOPNOTSUPP;
6901 if (sa->sa_family != dev->type)
6902 return -EINVAL;
6903 if (!netif_device_present(dev))
6904 return -ENODEV;
6905 err = ops->ndo_set_mac_address(dev, sa);
6906 if (err)
6907 return err;
6908 dev->addr_assign_type = NET_ADDR_SET;
6909 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6910 add_device_randomness(dev->dev_addr, dev->addr_len);
6911 return 0;
6912}
6913EXPORT_SYMBOL(dev_set_mac_address);
6914
6915/**
6916 * dev_change_carrier - Change device carrier
6917 * @dev: device
6918 * @new_carrier: new value
6919 *
6920 * Change device carrier
6921 */
6922int dev_change_carrier(struct net_device *dev, bool new_carrier)
6923{
6924 const struct net_device_ops *ops = dev->netdev_ops;
6925
6926 if (!ops->ndo_change_carrier)
6927 return -EOPNOTSUPP;
6928 if (!netif_device_present(dev))
6929 return -ENODEV;
6930 return ops->ndo_change_carrier(dev, new_carrier);
6931}
6932EXPORT_SYMBOL(dev_change_carrier);
6933
6934/**
6935 * dev_get_phys_port_id - Get device physical port ID
6936 * @dev: device
6937 * @ppid: port ID
6938 *
6939 * Get device physical port ID
6940 */
6941int dev_get_phys_port_id(struct net_device *dev,
6942 struct netdev_phys_item_id *ppid)
6943{
6944 const struct net_device_ops *ops = dev->netdev_ops;
6945
6946 if (!ops->ndo_get_phys_port_id)
6947 return -EOPNOTSUPP;
6948 return ops->ndo_get_phys_port_id(dev, ppid);
6949}
6950EXPORT_SYMBOL(dev_get_phys_port_id);
6951
6952/**
6953 * dev_get_phys_port_name - Get device physical port name
6954 * @dev: device
6955 * @name: port name
6956 * @len: limit of bytes to copy to name
6957 *
6958 * Get device physical port name
6959 */
6960int dev_get_phys_port_name(struct net_device *dev,
6961 char *name, size_t len)
6962{
6963 const struct net_device_ops *ops = dev->netdev_ops;
6964
6965 if (!ops->ndo_get_phys_port_name)
6966 return -EOPNOTSUPP;
6967 return ops->ndo_get_phys_port_name(dev, name, len);
6968}
6969EXPORT_SYMBOL(dev_get_phys_port_name);
6970
6971/**
6972 * dev_change_proto_down - update protocol port state information
6973 * @dev: device
6974 * @proto_down: new value
6975 *
6976 * This info can be used by switch drivers to set the phys state of the
6977 * port.
6978 */
6979int dev_change_proto_down(struct net_device *dev, bool proto_down)
6980{
6981 const struct net_device_ops *ops = dev->netdev_ops;
6982
6983 if (!ops->ndo_change_proto_down)
6984 return -EOPNOTSUPP;
6985 if (!netif_device_present(dev))
6986 return -ENODEV;
6987 return ops->ndo_change_proto_down(dev, proto_down);
6988}
6989EXPORT_SYMBOL(dev_change_proto_down);
6990
6991u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id)
6992{
6993 struct netdev_xdp xdp;
6994
6995 memset(&xdp, 0, sizeof(xdp));
6996 xdp.command = XDP_QUERY_PROG;
6997
6998 /* Query must always succeed. */
6999 WARN_ON(xdp_op(dev, &xdp) < 0);
7000 if (prog_id)
7001 *prog_id = xdp.prog_id;
7002
7003 return xdp.prog_attached;
7004}
7005
7006static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
7007 struct netlink_ext_ack *extack, u32 flags,
7008 struct bpf_prog *prog)
7009{
7010 struct netdev_xdp xdp;
7011
7012 memset(&xdp, 0, sizeof(xdp));
7013 if (flags & XDP_FLAGS_HW_MODE)
7014 xdp.command = XDP_SETUP_PROG_HW;
7015 else
7016 xdp.command = XDP_SETUP_PROG;
7017 xdp.extack = extack;
7018 xdp.flags = flags;
7019 xdp.prog = prog;
7020
7021 return xdp_op(dev, &xdp);
7022}
7023
7024/**
7025 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7026 * @dev: device
7027 * @extack: netlink extended ack
7028 * @fd: new program fd or negative value to clear
7029 * @flags: xdp-related flags
7030 *
7031 * Set or clear a bpf program for a device
7032 */
7033int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7034 int fd, u32 flags)
7035{
7036 const struct net_device_ops *ops = dev->netdev_ops;
7037 struct bpf_prog *prog = NULL;
7038 xdp_op_t xdp_op, xdp_chk;
7039 int err;
7040
7041 ASSERT_RTNL();
7042
7043 xdp_op = xdp_chk = ops->ndo_xdp;
7044 if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7045 return -EOPNOTSUPP;
7046 if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
7047 xdp_op = generic_xdp_install;
7048 if (xdp_op == xdp_chk)
7049 xdp_chk = generic_xdp_install;
7050
7051 if (fd >= 0) {
7052 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL))
7053 return -EEXIST;
7054 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7055 __dev_xdp_attached(dev, xdp_op, NULL))
7056 return -EBUSY;
7057
7058 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7059 if (IS_ERR(prog))
7060 return PTR_ERR(prog);
7061 }
7062
7063 err = dev_xdp_install(dev, xdp_op, extack, flags, prog);
7064 if (err < 0 && prog)
7065 bpf_prog_put(prog);
7066
7067 return err;
7068}
7069
7070/**
7071 * dev_new_index - allocate an ifindex
7072 * @net: the applicable net namespace
7073 *
7074 * Returns a suitable unique value for a new device interface
7075 * number. The caller must hold the rtnl semaphore or the
7076 * dev_base_lock to be sure it remains unique.
7077 */
7078static int dev_new_index(struct net *net)
7079{
7080 int ifindex = net->ifindex;
7081
7082 for (;;) {
7083 if (++ifindex <= 0)
7084 ifindex = 1;
7085 if (!__dev_get_by_index(net, ifindex))
7086 return net->ifindex = ifindex;
7087 }
7088}
7089
7090/* Delayed registration/unregisteration */
7091static LIST_HEAD(net_todo_list);
7092DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7093
7094static void net_set_todo(struct net_device *dev)
7095{
7096 list_add_tail(&dev->todo_list, &net_todo_list);
7097 dev_net(dev)->dev_unreg_count++;
7098}
7099
7100static void rollback_registered_many(struct list_head *head)
7101{
7102 struct net_device *dev, *tmp;
7103 LIST_HEAD(close_head);
7104
7105 BUG_ON(dev_boot_phase);
7106 ASSERT_RTNL();
7107
7108 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7109 /* Some devices call without registering
7110 * for initialization unwind. Remove those
7111 * devices and proceed with the remaining.
7112 */
7113 if (dev->reg_state == NETREG_UNINITIALIZED) {
7114 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7115 dev->name, dev);
7116
7117 WARN_ON(1);
7118 list_del(&dev->unreg_list);
7119 continue;
7120 }
7121 dev->dismantle = true;
7122 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7123 }
7124
7125 /* If device is running, close it first. */
7126 list_for_each_entry(dev, head, unreg_list)
7127 list_add_tail(&dev->close_list, &close_head);
7128 dev_close_many(&close_head, true);
7129
7130 list_for_each_entry(dev, head, unreg_list) {
7131 /* And unlink it from device chain. */
7132 unlist_netdevice(dev);
7133
7134 dev->reg_state = NETREG_UNREGISTERING;
7135 }
7136 flush_all_backlogs();
7137
7138 synchronize_net();
7139
7140 list_for_each_entry(dev, head, unreg_list) {
7141 struct sk_buff *skb = NULL;
7142
7143 /* Shutdown queueing discipline. */
7144 dev_shutdown(dev);
7145
7146
7147 /* Notify protocols, that we are about to destroy
7148 * this device. They should clean all the things.
7149 */
7150 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7151
7152 if (!dev->rtnl_link_ops ||
7153 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7154 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7155 GFP_KERNEL);
7156
7157 /*
7158 * Flush the unicast and multicast chains
7159 */
7160 dev_uc_flush(dev);
7161 dev_mc_flush(dev);
7162
7163 if (dev->netdev_ops->ndo_uninit)
7164 dev->netdev_ops->ndo_uninit(dev);
7165
7166 if (skb)
7167 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7168
7169 /* Notifier chain MUST detach us all upper devices. */
7170 WARN_ON(netdev_has_any_upper_dev(dev));
7171 WARN_ON(netdev_has_any_lower_dev(dev));
7172
7173 /* Remove entries from kobject tree */
7174 netdev_unregister_kobject(dev);
7175#ifdef CONFIG_XPS
7176 /* Remove XPS queueing entries */
7177 netif_reset_xps_queues_gt(dev, 0);
7178#endif
7179 }
7180
7181 synchronize_net();
7182
7183 list_for_each_entry(dev, head, unreg_list)
7184 dev_put(dev);
7185}
7186
7187static void rollback_registered(struct net_device *dev)
7188{
7189 LIST_HEAD(single);
7190
7191 list_add(&dev->unreg_list, &single);
7192 rollback_registered_many(&single);
7193 list_del(&single);
7194}
7195
7196static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7197 struct net_device *upper, netdev_features_t features)
7198{
7199 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7200 netdev_features_t feature;
7201 int feature_bit;
7202
7203 for_each_netdev_feature(&upper_disables, feature_bit) {
7204 feature = __NETIF_F_BIT(feature_bit);
7205 if (!(upper->wanted_features & feature)
7206 && (features & feature)) {
7207 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7208 &feature, upper->name);
7209 features &= ~feature;
7210 }
7211 }
7212
7213 return features;
7214}
7215
7216static void netdev_sync_lower_features(struct net_device *upper,
7217 struct net_device *lower, netdev_features_t features)
7218{
7219 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7220 netdev_features_t feature;
7221 int feature_bit;
7222
7223 for_each_netdev_feature(&upper_disables, feature_bit) {
7224 feature = __NETIF_F_BIT(feature_bit);
7225 if (!(features & feature) && (lower->features & feature)) {
7226 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7227 &feature, lower->name);
7228 lower->wanted_features &= ~feature;
7229 netdev_update_features(lower);
7230
7231 if (unlikely(lower->features & feature))
7232 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7233 &feature, lower->name);
7234 }
7235 }
7236}
7237
7238static netdev_features_t netdev_fix_features(struct net_device *dev,
7239 netdev_features_t features)
7240{
7241 /* Fix illegal checksum combinations */
7242 if ((features & NETIF_F_HW_CSUM) &&
7243 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7244 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7245 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7246 }
7247
7248 /* TSO requires that SG is present as well. */
7249 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7250 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7251 features &= ~NETIF_F_ALL_TSO;
7252 }
7253
7254 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7255 !(features & NETIF_F_IP_CSUM)) {
7256 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7257 features &= ~NETIF_F_TSO;
7258 features &= ~NETIF_F_TSO_ECN;
7259 }
7260
7261 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7262 !(features & NETIF_F_IPV6_CSUM)) {
7263 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7264 features &= ~NETIF_F_TSO6;
7265 }
7266
7267 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7268 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7269 features &= ~NETIF_F_TSO_MANGLEID;
7270
7271 /* TSO ECN requires that TSO is present as well. */
7272 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7273 features &= ~NETIF_F_TSO_ECN;
7274
7275 /* Software GSO depends on SG. */
7276 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7277 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7278 features &= ~NETIF_F_GSO;
7279 }
7280
7281 /* GSO partial features require GSO partial be set */
7282 if ((features & dev->gso_partial_features) &&
7283 !(features & NETIF_F_GSO_PARTIAL)) {
7284 netdev_dbg(dev,
7285 "Dropping partially supported GSO features since no GSO partial.\n");
7286 features &= ~dev->gso_partial_features;
7287 }
7288
7289 return features;
7290}
7291
7292int __netdev_update_features(struct net_device *dev)
7293{
7294 struct net_device *upper, *lower;
7295 netdev_features_t features;
7296 struct list_head *iter;
7297 int err = -1;
7298
7299 ASSERT_RTNL();
7300
7301 features = netdev_get_wanted_features(dev);
7302
7303 if (dev->netdev_ops->ndo_fix_features)
7304 features = dev->netdev_ops->ndo_fix_features(dev, features);
7305
7306 /* driver might be less strict about feature dependencies */
7307 features = netdev_fix_features(dev, features);
7308
7309 /* some features can't be enabled if they're off an an upper device */
7310 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7311 features = netdev_sync_upper_features(dev, upper, features);
7312
7313 if (dev->features == features)
7314 goto sync_lower;
7315
7316 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7317 &dev->features, &features);
7318
7319 if (dev->netdev_ops->ndo_set_features)
7320 err = dev->netdev_ops->ndo_set_features(dev, features);
7321 else
7322 err = 0;
7323
7324 if (unlikely(err < 0)) {
7325 netdev_err(dev,
7326 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7327 err, &features, &dev->features);
7328 /* return non-0 since some features might have changed and
7329 * it's better to fire a spurious notification than miss it
7330 */
7331 return -1;
7332 }
7333
7334sync_lower:
7335 /* some features must be disabled on lower devices when disabled
7336 * on an upper device (think: bonding master or bridge)
7337 */
7338 netdev_for_each_lower_dev(dev, lower, iter)
7339 netdev_sync_lower_features(dev, lower, features);
7340
7341 if (!err) {
7342 netdev_features_t diff = features ^ dev->features;
7343
7344 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7345 /* udp_tunnel_{get,drop}_rx_info both need
7346 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7347 * device, or they won't do anything.
7348 * Thus we need to update dev->features
7349 * *before* calling udp_tunnel_get_rx_info,
7350 * but *after* calling udp_tunnel_drop_rx_info.
7351 */
7352 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7353 dev->features = features;
7354 udp_tunnel_get_rx_info(dev);
7355 } else {
7356 udp_tunnel_drop_rx_info(dev);
7357 }
7358 }
7359
7360 dev->features = features;
7361 }
7362
7363 return err < 0 ? 0 : 1;
7364}
7365
7366/**
7367 * netdev_update_features - recalculate device features
7368 * @dev: the device to check
7369 *
7370 * Recalculate dev->features set and send notifications if it
7371 * has changed. Should be called after driver or hardware dependent
7372 * conditions might have changed that influence the features.
7373 */
7374void netdev_update_features(struct net_device *dev)
7375{
7376 if (__netdev_update_features(dev))
7377 netdev_features_change(dev);
7378}
7379EXPORT_SYMBOL(netdev_update_features);
7380
7381/**
7382 * netdev_change_features - recalculate device features
7383 * @dev: the device to check
7384 *
7385 * Recalculate dev->features set and send notifications even
7386 * if they have not changed. Should be called instead of
7387 * netdev_update_features() if also dev->vlan_features might
7388 * have changed to allow the changes to be propagated to stacked
7389 * VLAN devices.
7390 */
7391void netdev_change_features(struct net_device *dev)
7392{
7393 __netdev_update_features(dev);
7394 netdev_features_change(dev);
7395}
7396EXPORT_SYMBOL(netdev_change_features);
7397
7398/**
7399 * netif_stacked_transfer_operstate - transfer operstate
7400 * @rootdev: the root or lower level device to transfer state from
7401 * @dev: the device to transfer operstate to
7402 *
7403 * Transfer operational state from root to device. This is normally
7404 * called when a stacking relationship exists between the root
7405 * device and the device(a leaf device).
7406 */
7407void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7408 struct net_device *dev)
7409{
7410 if (rootdev->operstate == IF_OPER_DORMANT)
7411 netif_dormant_on(dev);
7412 else
7413 netif_dormant_off(dev);
7414
7415 if (netif_carrier_ok(rootdev))
7416 netif_carrier_on(dev);
7417 else
7418 netif_carrier_off(dev);
7419}
7420EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7421
7422#ifdef CONFIG_SYSFS
7423static int netif_alloc_rx_queues(struct net_device *dev)
7424{
7425 unsigned int i, count = dev->num_rx_queues;
7426 struct netdev_rx_queue *rx;
7427 size_t sz = count * sizeof(*rx);
7428
7429 BUG_ON(count < 1);
7430
7431 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7432 if (!rx)
7433 return -ENOMEM;
7434
7435 dev->_rx = rx;
7436
7437 for (i = 0; i < count; i++)
7438 rx[i].dev = dev;
7439 return 0;
7440}
7441#endif
7442
7443static void netdev_init_one_queue(struct net_device *dev,
7444 struct netdev_queue *queue, void *_unused)
7445{
7446 /* Initialize queue lock */
7447 spin_lock_init(&queue->_xmit_lock);
7448 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7449 queue->xmit_lock_owner = -1;
7450 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7451 queue->dev = dev;
7452#ifdef CONFIG_BQL
7453 dql_init(&queue->dql, HZ);
7454#endif
7455}
7456
7457static void netif_free_tx_queues(struct net_device *dev)
7458{
7459 kvfree(dev->_tx);
7460}
7461
7462static int netif_alloc_netdev_queues(struct net_device *dev)
7463{
7464 unsigned int count = dev->num_tx_queues;
7465 struct netdev_queue *tx;
7466 size_t sz = count * sizeof(*tx);
7467
7468 if (count < 1 || count > 0xffff)
7469 return -EINVAL;
7470
7471 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7472 if (!tx)
7473 return -ENOMEM;
7474
7475 dev->_tx = tx;
7476
7477 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7478 spin_lock_init(&dev->tx_global_lock);
7479
7480 return 0;
7481}
7482
7483void netif_tx_stop_all_queues(struct net_device *dev)
7484{
7485 unsigned int i;
7486
7487 for (i = 0; i < dev->num_tx_queues; i++) {
7488 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7489
7490 netif_tx_stop_queue(txq);
7491 }
7492}
7493EXPORT_SYMBOL(netif_tx_stop_all_queues);
7494
7495/**
7496 * register_netdevice - register a network device
7497 * @dev: device to register
7498 *
7499 * Take a completed network device structure and add it to the kernel
7500 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7501 * chain. 0 is returned on success. A negative errno code is returned
7502 * on a failure to set up the device, or if the name is a duplicate.
7503 *
7504 * Callers must hold the rtnl semaphore. You may want
7505 * register_netdev() instead of this.
7506 *
7507 * BUGS:
7508 * The locking appears insufficient to guarantee two parallel registers
7509 * will not get the same name.
7510 */
7511
7512int register_netdevice(struct net_device *dev)
7513{
7514 int ret;
7515 struct net *net = dev_net(dev);
7516
7517 BUG_ON(dev_boot_phase);
7518 ASSERT_RTNL();
7519
7520 might_sleep();
7521
7522 /* When net_device's are persistent, this will be fatal. */
7523 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7524 BUG_ON(!net);
7525
7526 spin_lock_init(&dev->addr_list_lock);
7527 netdev_set_addr_lockdep_class(dev);
7528
7529 ret = dev_get_valid_name(net, dev, dev->name);
7530 if (ret < 0)
7531 goto out;
7532
7533 /* Init, if this function is available */
7534 if (dev->netdev_ops->ndo_init) {
7535 ret = dev->netdev_ops->ndo_init(dev);
7536 if (ret) {
7537 if (ret > 0)
7538 ret = -EIO;
7539 goto out;
7540 }
7541 }
7542
7543 if (((dev->hw_features | dev->features) &
7544 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7545 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7546 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7547 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7548 ret = -EINVAL;
7549 goto err_uninit;
7550 }
7551
7552 ret = -EBUSY;
7553 if (!dev->ifindex)
7554 dev->ifindex = dev_new_index(net);
7555 else if (__dev_get_by_index(net, dev->ifindex))
7556 goto err_uninit;
7557
7558 /* Transfer changeable features to wanted_features and enable
7559 * software offloads (GSO and GRO).
7560 */
7561 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7562 dev->features |= NETIF_F_SOFT_FEATURES;
7563
7564 if (dev->netdev_ops->ndo_udp_tunnel_add) {
7565 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7566 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7567 }
7568
7569 dev->wanted_features = dev->features & dev->hw_features;
7570
7571 if (!(dev->flags & IFF_LOOPBACK))
7572 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7573
7574 /* If IPv4 TCP segmentation offload is supported we should also
7575 * allow the device to enable segmenting the frame with the option
7576 * of ignoring a static IP ID value. This doesn't enable the
7577 * feature itself but allows the user to enable it later.
7578 */
7579 if (dev->hw_features & NETIF_F_TSO)
7580 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7581 if (dev->vlan_features & NETIF_F_TSO)
7582 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7583 if (dev->mpls_features & NETIF_F_TSO)
7584 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7585 if (dev->hw_enc_features & NETIF_F_TSO)
7586 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7587
7588 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7589 */
7590 dev->vlan_features |= NETIF_F_HIGHDMA;
7591
7592 /* Make NETIF_F_SG inheritable to tunnel devices.
7593 */
7594 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7595
7596 /* Make NETIF_F_SG inheritable to MPLS.
7597 */
7598 dev->mpls_features |= NETIF_F_SG;
7599
7600 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7601 ret = notifier_to_errno(ret);
7602 if (ret)
7603 goto err_uninit;
7604
7605 ret = netdev_register_kobject(dev);
7606 if (ret)
7607 goto err_uninit;
7608 dev->reg_state = NETREG_REGISTERED;
7609
7610 __netdev_update_features(dev);
7611
7612 /*
7613 * Default initial state at registry is that the
7614 * device is present.
7615 */
7616
7617 set_bit(__LINK_STATE_PRESENT, &dev->state);
7618
7619 linkwatch_init_dev(dev);
7620
7621 dev_init_scheduler(dev);
7622 dev_hold(dev);
7623 list_netdevice(dev);
7624 add_device_randomness(dev->dev_addr, dev->addr_len);
7625
7626 /* If the device has permanent device address, driver should
7627 * set dev_addr and also addr_assign_type should be set to
7628 * NET_ADDR_PERM (default value).
7629 */
7630 if (dev->addr_assign_type == NET_ADDR_PERM)
7631 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7632
7633 /* Notify protocols, that a new device appeared. */
7634 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7635 ret = notifier_to_errno(ret);
7636 if (ret) {
7637 rollback_registered(dev);
7638 dev->reg_state = NETREG_UNREGISTERED;
7639 }
7640 /*
7641 * Prevent userspace races by waiting until the network
7642 * device is fully setup before sending notifications.
7643 */
7644 if (!dev->rtnl_link_ops ||
7645 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7646 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7647
7648out:
7649 return ret;
7650
7651err_uninit:
7652 if (dev->netdev_ops->ndo_uninit)
7653 dev->netdev_ops->ndo_uninit(dev);
7654 if (dev->priv_destructor)
7655 dev->priv_destructor(dev);
7656 goto out;
7657}
7658EXPORT_SYMBOL(register_netdevice);
7659
7660/**
7661 * init_dummy_netdev - init a dummy network device for NAPI
7662 * @dev: device to init
7663 *
7664 * This takes a network device structure and initialize the minimum
7665 * amount of fields so it can be used to schedule NAPI polls without
7666 * registering a full blown interface. This is to be used by drivers
7667 * that need to tie several hardware interfaces to a single NAPI
7668 * poll scheduler due to HW limitations.
7669 */
7670int init_dummy_netdev(struct net_device *dev)
7671{
7672 /* Clear everything. Note we don't initialize spinlocks
7673 * are they aren't supposed to be taken by any of the
7674 * NAPI code and this dummy netdev is supposed to be
7675 * only ever used for NAPI polls
7676 */
7677 memset(dev, 0, sizeof(struct net_device));
7678
7679 /* make sure we BUG if trying to hit standard
7680 * register/unregister code path
7681 */
7682 dev->reg_state = NETREG_DUMMY;
7683
7684 /* NAPI wants this */
7685 INIT_LIST_HEAD(&dev->napi_list);
7686
7687 /* a dummy interface is started by default */
7688 set_bit(__LINK_STATE_PRESENT, &dev->state);
7689 set_bit(__LINK_STATE_START, &dev->state);
7690
7691 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7692 * because users of this 'device' dont need to change
7693 * its refcount.
7694 */
7695
7696 return 0;
7697}
7698EXPORT_SYMBOL_GPL(init_dummy_netdev);
7699
7700
7701/**
7702 * register_netdev - register a network device
7703 * @dev: device to register
7704 *
7705 * Take a completed network device structure and add it to the kernel
7706 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7707 * chain. 0 is returned on success. A negative errno code is returned
7708 * on a failure to set up the device, or if the name is a duplicate.
7709 *
7710 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7711 * and expands the device name if you passed a format string to
7712 * alloc_netdev.
7713 */
7714int register_netdev(struct net_device *dev)
7715{
7716 int err;
7717
7718 rtnl_lock();
7719 err = register_netdevice(dev);
7720 rtnl_unlock();
7721 return err;
7722}
7723EXPORT_SYMBOL(register_netdev);
7724
7725int netdev_refcnt_read(const struct net_device *dev)
7726{
7727 int i, refcnt = 0;
7728
7729 for_each_possible_cpu(i)
7730 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7731 return refcnt;
7732}
7733EXPORT_SYMBOL(netdev_refcnt_read);
7734
7735/**
7736 * netdev_wait_allrefs - wait until all references are gone.
7737 * @dev: target net_device
7738 *
7739 * This is called when unregistering network devices.
7740 *
7741 * Any protocol or device that holds a reference should register
7742 * for netdevice notification, and cleanup and put back the
7743 * reference if they receive an UNREGISTER event.
7744 * We can get stuck here if buggy protocols don't correctly
7745 * call dev_put.
7746 */
7747static void netdev_wait_allrefs(struct net_device *dev)
7748{
7749 unsigned long rebroadcast_time, warning_time;
7750 int refcnt;
7751
7752 linkwatch_forget_dev(dev);
7753
7754 rebroadcast_time = warning_time = jiffies;
7755 refcnt = netdev_refcnt_read(dev);
7756
7757 while (refcnt != 0) {
7758 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7759 rtnl_lock();
7760
7761 /* Rebroadcast unregister notification */
7762 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7763
7764 __rtnl_unlock();
7765 rcu_barrier();
7766 rtnl_lock();
7767
7768 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7769 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7770 &dev->state)) {
7771 /* We must not have linkwatch events
7772 * pending on unregister. If this
7773 * happens, we simply run the queue
7774 * unscheduled, resulting in a noop
7775 * for this device.
7776 */
7777 linkwatch_run_queue();
7778 }
7779
7780 __rtnl_unlock();
7781
7782 rebroadcast_time = jiffies;
7783 }
7784
7785 msleep(250);
7786
7787 refcnt = netdev_refcnt_read(dev);
7788
7789 if (time_after(jiffies, warning_time + 10 * HZ)) {
7790 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7791 dev->name, refcnt);
7792 warning_time = jiffies;
7793 }
7794 }
7795}
7796
7797/* The sequence is:
7798 *
7799 * rtnl_lock();
7800 * ...
7801 * register_netdevice(x1);
7802 * register_netdevice(x2);
7803 * ...
7804 * unregister_netdevice(y1);
7805 * unregister_netdevice(y2);
7806 * ...
7807 * rtnl_unlock();
7808 * free_netdev(y1);
7809 * free_netdev(y2);
7810 *
7811 * We are invoked by rtnl_unlock().
7812 * This allows us to deal with problems:
7813 * 1) We can delete sysfs objects which invoke hotplug
7814 * without deadlocking with linkwatch via keventd.
7815 * 2) Since we run with the RTNL semaphore not held, we can sleep
7816 * safely in order to wait for the netdev refcnt to drop to zero.
7817 *
7818 * We must not return until all unregister events added during
7819 * the interval the lock was held have been completed.
7820 */
7821void netdev_run_todo(void)
7822{
7823 struct list_head list;
7824
7825 /* Snapshot list, allow later requests */
7826 list_replace_init(&net_todo_list, &list);
7827
7828 __rtnl_unlock();
7829
7830
7831 /* Wait for rcu callbacks to finish before next phase */
7832 if (!list_empty(&list))
7833 rcu_barrier();
7834
7835 while (!list_empty(&list)) {
7836 struct net_device *dev
7837 = list_first_entry(&list, struct net_device, todo_list);
7838 list_del(&dev->todo_list);
7839
7840 rtnl_lock();
7841 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7842 __rtnl_unlock();
7843
7844 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7845 pr_err("network todo '%s' but state %d\n",
7846 dev->name, dev->reg_state);
7847 dump_stack();
7848 continue;
7849 }
7850
7851 dev->reg_state = NETREG_UNREGISTERED;
7852
7853 netdev_wait_allrefs(dev);
7854
7855 /* paranoia */
7856 BUG_ON(netdev_refcnt_read(dev));
7857 BUG_ON(!list_empty(&dev->ptype_all));
7858 BUG_ON(!list_empty(&dev->ptype_specific));
7859 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7860 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7861 WARN_ON(dev->dn_ptr);
7862
7863 if (dev->priv_destructor)
7864 dev->priv_destructor(dev);
7865 if (dev->needs_free_netdev)
7866 free_netdev(dev);
7867
7868 /* Report a network device has been unregistered */
7869 rtnl_lock();
7870 dev_net(dev)->dev_unreg_count--;
7871 __rtnl_unlock();
7872 wake_up(&netdev_unregistering_wq);
7873
7874 /* Free network device */
7875 kobject_put(&dev->dev.kobj);
7876 }
7877}
7878
7879/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7880 * all the same fields in the same order as net_device_stats, with only
7881 * the type differing, but rtnl_link_stats64 may have additional fields
7882 * at the end for newer counters.
7883 */
7884void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7885 const struct net_device_stats *netdev_stats)
7886{
7887#if BITS_PER_LONG == 64
7888 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7889 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
7890 /* zero out counters that only exist in rtnl_link_stats64 */
7891 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7892 sizeof(*stats64) - sizeof(*netdev_stats));
7893#else
7894 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7895 const unsigned long *src = (const unsigned long *)netdev_stats;
7896 u64 *dst = (u64 *)stats64;
7897
7898 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7899 for (i = 0; i < n; i++)
7900 dst[i] = src[i];
7901 /* zero out counters that only exist in rtnl_link_stats64 */
7902 memset((char *)stats64 + n * sizeof(u64), 0,
7903 sizeof(*stats64) - n * sizeof(u64));
7904#endif
7905}
7906EXPORT_SYMBOL(netdev_stats_to_stats64);
7907
7908/**
7909 * dev_get_stats - get network device statistics
7910 * @dev: device to get statistics from
7911 * @storage: place to store stats
7912 *
7913 * Get network statistics from device. Return @storage.
7914 * The device driver may provide its own method by setting
7915 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7916 * otherwise the internal statistics structure is used.
7917 */
7918struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7919 struct rtnl_link_stats64 *storage)
7920{
7921 const struct net_device_ops *ops = dev->netdev_ops;
7922
7923 if (ops->ndo_get_stats64) {
7924 memset(storage, 0, sizeof(*storage));
7925 ops->ndo_get_stats64(dev, storage);
7926 } else if (ops->ndo_get_stats) {
7927 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7928 } else {
7929 netdev_stats_to_stats64(storage, &dev->stats);
7930 }
7931 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
7932 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
7933 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
7934 return storage;
7935}
7936EXPORT_SYMBOL(dev_get_stats);
7937
7938struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7939{
7940 struct netdev_queue *queue = dev_ingress_queue(dev);
7941
7942#ifdef CONFIG_NET_CLS_ACT
7943 if (queue)
7944 return queue;
7945 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7946 if (!queue)
7947 return NULL;
7948 netdev_init_one_queue(dev, queue, NULL);
7949 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7950 queue->qdisc_sleeping = &noop_qdisc;
7951 rcu_assign_pointer(dev->ingress_queue, queue);
7952#endif
7953 return queue;
7954}
7955
7956static const struct ethtool_ops default_ethtool_ops;
7957
7958void netdev_set_default_ethtool_ops(struct net_device *dev,
7959 const struct ethtool_ops *ops)
7960{
7961 if (dev->ethtool_ops == &default_ethtool_ops)
7962 dev->ethtool_ops = ops;
7963}
7964EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7965
7966void netdev_freemem(struct net_device *dev)
7967{
7968 char *addr = (char *)dev - dev->padded;
7969
7970 kvfree(addr);
7971}
7972
7973/**
7974 * alloc_netdev_mqs - allocate network device
7975 * @sizeof_priv: size of private data to allocate space for
7976 * @name: device name format string
7977 * @name_assign_type: origin of device name
7978 * @setup: callback to initialize device
7979 * @txqs: the number of TX subqueues to allocate
7980 * @rxqs: the number of RX subqueues to allocate
7981 *
7982 * Allocates a struct net_device with private data area for driver use
7983 * and performs basic initialization. Also allocates subqueue structs
7984 * for each queue on the device.
7985 */
7986struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7987 unsigned char name_assign_type,
7988 void (*setup)(struct net_device *),
7989 unsigned int txqs, unsigned int rxqs)
7990{
7991 struct net_device *dev;
7992 size_t alloc_size;
7993 struct net_device *p;
7994
7995 BUG_ON(strlen(name) >= sizeof(dev->name));
7996
7997 if (txqs < 1) {
7998 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7999 return NULL;
8000 }
8001
8002#ifdef CONFIG_SYSFS
8003 if (rxqs < 1) {
8004 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8005 return NULL;
8006 }
8007#endif
8008
8009 alloc_size = sizeof(struct net_device);
8010 if (sizeof_priv) {
8011 /* ensure 32-byte alignment of private area */
8012 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8013 alloc_size += sizeof_priv;
8014 }
8015 /* ensure 32-byte alignment of whole construct */
8016 alloc_size += NETDEV_ALIGN - 1;
8017
8018 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8019 if (!p)
8020 return NULL;
8021
8022 dev = PTR_ALIGN(p, NETDEV_ALIGN);
8023 dev->padded = (char *)dev - (char *)p;
8024
8025 dev->pcpu_refcnt = alloc_percpu(int);
8026 if (!dev->pcpu_refcnt)
8027 goto free_dev;
8028
8029 if (dev_addr_init(dev))
8030 goto free_pcpu;
8031
8032 dev_mc_init(dev);
8033 dev_uc_init(dev);
8034
8035 dev_net_set(dev, &init_net);
8036
8037 dev->gso_max_size = GSO_MAX_SIZE;
8038 dev->gso_max_segs = GSO_MAX_SEGS;
8039
8040 INIT_LIST_HEAD(&dev->napi_list);
8041 INIT_LIST_HEAD(&dev->unreg_list);
8042 INIT_LIST_HEAD(&dev->close_list);
8043 INIT_LIST_HEAD(&dev->link_watch_list);
8044 INIT_LIST_HEAD(&dev->adj_list.upper);
8045 INIT_LIST_HEAD(&dev->adj_list.lower);
8046 INIT_LIST_HEAD(&dev->ptype_all);
8047 INIT_LIST_HEAD(&dev->ptype_specific);
8048#ifdef CONFIG_NET_SCHED
8049 hash_init(dev->qdisc_hash);
8050#endif
8051 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8052 setup(dev);
8053
8054 if (!dev->tx_queue_len) {
8055 dev->priv_flags |= IFF_NO_QUEUE;
8056 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8057 }
8058
8059 dev->num_tx_queues = txqs;
8060 dev->real_num_tx_queues = txqs;
8061 if (netif_alloc_netdev_queues(dev))
8062 goto free_all;
8063
8064#ifdef CONFIG_SYSFS
8065 dev->num_rx_queues = rxqs;
8066 dev->real_num_rx_queues = rxqs;
8067 if (netif_alloc_rx_queues(dev))
8068 goto free_all;
8069#endif
8070
8071 strcpy(dev->name, name);
8072 dev->name_assign_type = name_assign_type;
8073 dev->group = INIT_NETDEV_GROUP;
8074 if (!dev->ethtool_ops)
8075 dev->ethtool_ops = &default_ethtool_ops;
8076
8077 nf_hook_ingress_init(dev);
8078
8079 return dev;
8080
8081free_all:
8082 free_netdev(dev);
8083 return NULL;
8084
8085free_pcpu:
8086 free_percpu(dev->pcpu_refcnt);
8087free_dev:
8088 netdev_freemem(dev);
8089 return NULL;
8090}
8091EXPORT_SYMBOL(alloc_netdev_mqs);
8092
8093/**
8094 * free_netdev - free network device
8095 * @dev: device
8096 *
8097 * This function does the last stage of destroying an allocated device
8098 * interface. The reference to the device object is released. If this
8099 * is the last reference then it will be freed.Must be called in process
8100 * context.
8101 */
8102void free_netdev(struct net_device *dev)
8103{
8104 struct napi_struct *p, *n;
8105 struct bpf_prog *prog;
8106
8107 might_sleep();
8108 netif_free_tx_queues(dev);
8109#ifdef CONFIG_SYSFS
8110 kvfree(dev->_rx);
8111#endif
8112
8113 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8114
8115 /* Flush device addresses */
8116 dev_addr_flush(dev);
8117
8118 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8119 netif_napi_del(p);
8120
8121 free_percpu(dev->pcpu_refcnt);
8122 dev->pcpu_refcnt = NULL;
8123
8124 prog = rcu_dereference_protected(dev->xdp_prog, 1);
8125 if (prog) {
8126 bpf_prog_put(prog);
8127 static_key_slow_dec(&generic_xdp_needed);
8128 }
8129
8130 /* Compatibility with error handling in drivers */
8131 if (dev->reg_state == NETREG_UNINITIALIZED) {
8132 netdev_freemem(dev);
8133 return;
8134 }
8135
8136 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8137 dev->reg_state = NETREG_RELEASED;
8138
8139 /* will free via device release */
8140 put_device(&dev->dev);
8141}
8142EXPORT_SYMBOL(free_netdev);
8143
8144/**
8145 * synchronize_net - Synchronize with packet receive processing
8146 *
8147 * Wait for packets currently being received to be done.
8148 * Does not block later packets from starting.
8149 */
8150void synchronize_net(void)
8151{
8152 might_sleep();
8153 if (rtnl_is_locked())
8154 synchronize_rcu_expedited();
8155 else
8156 synchronize_rcu();
8157}
8158EXPORT_SYMBOL(synchronize_net);
8159
8160/**
8161 * unregister_netdevice_queue - remove device from the kernel
8162 * @dev: device
8163 * @head: list
8164 *
8165 * This function shuts down a device interface and removes it
8166 * from the kernel tables.
8167 * If head not NULL, device is queued to be unregistered later.
8168 *
8169 * Callers must hold the rtnl semaphore. You may want
8170 * unregister_netdev() instead of this.
8171 */
8172
8173void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8174{
8175 ASSERT_RTNL();
8176
8177 if (head) {
8178 list_move_tail(&dev->unreg_list, head);
8179 } else {
8180 rollback_registered(dev);
8181 /* Finish processing unregister after unlock */
8182 net_set_todo(dev);
8183 }
8184}
8185EXPORT_SYMBOL(unregister_netdevice_queue);
8186
8187/**
8188 * unregister_netdevice_many - unregister many devices
8189 * @head: list of devices
8190 *
8191 * Note: As most callers use a stack allocated list_head,
8192 * we force a list_del() to make sure stack wont be corrupted later.
8193 */
8194void unregister_netdevice_many(struct list_head *head)
8195{
8196 struct net_device *dev;
8197
8198 if (!list_empty(head)) {
8199 rollback_registered_many(head);
8200 list_for_each_entry(dev, head, unreg_list)
8201 net_set_todo(dev);
8202 list_del(head);
8203 }
8204}
8205EXPORT_SYMBOL(unregister_netdevice_many);
8206
8207/**
8208 * unregister_netdev - remove device from the kernel
8209 * @dev: device
8210 *
8211 * This function shuts down a device interface and removes it
8212 * from the kernel tables.
8213 *
8214 * This is just a wrapper for unregister_netdevice that takes
8215 * the rtnl semaphore. In general you want to use this and not
8216 * unregister_netdevice.
8217 */
8218void unregister_netdev(struct net_device *dev)
8219{
8220 rtnl_lock();
8221 unregister_netdevice(dev);
8222 rtnl_unlock();
8223}
8224EXPORT_SYMBOL(unregister_netdev);
8225
8226/**
8227 * dev_change_net_namespace - move device to different nethost namespace
8228 * @dev: device
8229 * @net: network namespace
8230 * @pat: If not NULL name pattern to try if the current device name
8231 * is already taken in the destination network namespace.
8232 *
8233 * This function shuts down a device interface and moves it
8234 * to a new network namespace. On success 0 is returned, on
8235 * a failure a netagive errno code is returned.
8236 *
8237 * Callers must hold the rtnl semaphore.
8238 */
8239
8240int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8241{
8242 int err;
8243
8244 ASSERT_RTNL();
8245
8246 /* Don't allow namespace local devices to be moved. */
8247 err = -EINVAL;
8248 if (dev->features & NETIF_F_NETNS_LOCAL)
8249 goto out;
8250
8251 /* Ensure the device has been registrered */
8252 if (dev->reg_state != NETREG_REGISTERED)
8253 goto out;
8254
8255 /* Get out if there is nothing todo */
8256 err = 0;
8257 if (net_eq(dev_net(dev), net))
8258 goto out;
8259
8260 /* Pick the destination device name, and ensure
8261 * we can use it in the destination network namespace.
8262 */
8263 err = -EEXIST;
8264 if (__dev_get_by_name(net, dev->name)) {
8265 /* We get here if we can't use the current device name */
8266 if (!pat)
8267 goto out;
8268 if (dev_get_valid_name(net, dev, pat) < 0)
8269 goto out;
8270 }
8271
8272 /*
8273 * And now a mini version of register_netdevice unregister_netdevice.
8274 */
8275
8276 /* If device is running close it first. */
8277 dev_close(dev);
8278
8279 /* And unlink it from device chain */
8280 err = -ENODEV;
8281 unlist_netdevice(dev);
8282
8283 synchronize_net();
8284
8285 /* Shutdown queueing discipline. */
8286 dev_shutdown(dev);
8287
8288 /* Notify protocols, that we are about to destroy
8289 * this device. They should clean all the things.
8290 *
8291 * Note that dev->reg_state stays at NETREG_REGISTERED.
8292 * This is wanted because this way 8021q and macvlan know
8293 * the device is just moving and can keep their slaves up.
8294 */
8295 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8296 rcu_barrier();
8297 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8298 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8299
8300 /*
8301 * Flush the unicast and multicast chains
8302 */
8303 dev_uc_flush(dev);
8304 dev_mc_flush(dev);
8305
8306 /* Send a netdev-removed uevent to the old namespace */
8307 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8308 netdev_adjacent_del_links(dev);
8309
8310 /* Actually switch the network namespace */
8311 dev_net_set(dev, net);
8312
8313 /* If there is an ifindex conflict assign a new one */
8314 if (__dev_get_by_index(net, dev->ifindex))
8315 dev->ifindex = dev_new_index(net);
8316
8317 /* Send a netdev-add uevent to the new namespace */
8318 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8319 netdev_adjacent_add_links(dev);
8320
8321 /* Fixup kobjects */
8322 err = device_rename(&dev->dev, dev->name);
8323 WARN_ON(err);
8324
8325 /* Add the device back in the hashes */
8326 list_netdevice(dev);
8327
8328 /* Notify protocols, that a new device appeared. */
8329 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8330
8331 /*
8332 * Prevent userspace races by waiting until the network
8333 * device is fully setup before sending notifications.
8334 */
8335 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8336
8337 synchronize_net();
8338 err = 0;
8339out:
8340 return err;
8341}
8342EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8343
8344static int dev_cpu_dead(unsigned int oldcpu)
8345{
8346 struct sk_buff **list_skb;
8347 struct sk_buff *skb;
8348 unsigned int cpu;
8349 struct softnet_data *sd, *oldsd, *remsd = NULL;
8350
8351 local_irq_disable();
8352 cpu = smp_processor_id();
8353 sd = &per_cpu(softnet_data, cpu);
8354 oldsd = &per_cpu(softnet_data, oldcpu);
8355
8356 /* Find end of our completion_queue. */
8357 list_skb = &sd->completion_queue;
8358 while (*list_skb)
8359 list_skb = &(*list_skb)->next;
8360 /* Append completion queue from offline CPU. */
8361 *list_skb = oldsd->completion_queue;
8362 oldsd->completion_queue = NULL;
8363
8364 /* Append output queue from offline CPU. */
8365 if (oldsd->output_queue) {
8366 *sd->output_queue_tailp = oldsd->output_queue;
8367 sd->output_queue_tailp = oldsd->output_queue_tailp;
8368 oldsd->output_queue = NULL;
8369 oldsd->output_queue_tailp = &oldsd->output_queue;
8370 }
8371 /* Append NAPI poll list from offline CPU, with one exception :
8372 * process_backlog() must be called by cpu owning percpu backlog.
8373 * We properly handle process_queue & input_pkt_queue later.
8374 */
8375 while (!list_empty(&oldsd->poll_list)) {
8376 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8377 struct napi_struct,
8378 poll_list);
8379
8380 list_del_init(&napi->poll_list);
8381 if (napi->poll == process_backlog)
8382 napi->state = 0;
8383 else
8384 ____napi_schedule(sd, napi);
8385 }
8386
8387 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8388 local_irq_enable();
8389
8390#ifdef CONFIG_RPS
8391 remsd = oldsd->rps_ipi_list;
8392 oldsd->rps_ipi_list = NULL;
8393#endif
8394 /* send out pending IPI's on offline CPU */
8395 net_rps_send_ipi(remsd);
8396
8397 /* Process offline CPU's input_pkt_queue */
8398 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8399 netif_rx_ni(skb);
8400 input_queue_head_incr(oldsd);
8401 }
8402 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8403 netif_rx_ni(skb);
8404 input_queue_head_incr(oldsd);
8405 }
8406
8407 return 0;
8408}
8409
8410/**
8411 * netdev_increment_features - increment feature set by one
8412 * @all: current feature set
8413 * @one: new feature set
8414 * @mask: mask feature set
8415 *
8416 * Computes a new feature set after adding a device with feature set
8417 * @one to the master device with current feature set @all. Will not
8418 * enable anything that is off in @mask. Returns the new feature set.
8419 */
8420netdev_features_t netdev_increment_features(netdev_features_t all,
8421 netdev_features_t one, netdev_features_t mask)
8422{
8423 if (mask & NETIF_F_HW_CSUM)
8424 mask |= NETIF_F_CSUM_MASK;
8425 mask |= NETIF_F_VLAN_CHALLENGED;
8426
8427 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8428 all &= one | ~NETIF_F_ALL_FOR_ALL;
8429
8430 /* If one device supports hw checksumming, set for all. */
8431 if (all & NETIF_F_HW_CSUM)
8432 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8433
8434 return all;
8435}
8436EXPORT_SYMBOL(netdev_increment_features);
8437
8438static struct hlist_head * __net_init netdev_create_hash(void)
8439{
8440 int i;
8441 struct hlist_head *hash;
8442
8443 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8444 if (hash != NULL)
8445 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8446 INIT_HLIST_HEAD(&hash[i]);
8447
8448 return hash;
8449}
8450
8451/* Initialize per network namespace state */
8452static int __net_init netdev_init(struct net *net)
8453{
8454 if (net != &init_net)
8455 INIT_LIST_HEAD(&net->dev_base_head);
8456
8457 net->dev_name_head = netdev_create_hash();
8458 if (net->dev_name_head == NULL)
8459 goto err_name;
8460
8461 net->dev_index_head = netdev_create_hash();
8462 if (net->dev_index_head == NULL)
8463 goto err_idx;
8464
8465 return 0;
8466
8467err_idx:
8468 kfree(net->dev_name_head);
8469err_name:
8470 return -ENOMEM;
8471}
8472
8473/**
8474 * netdev_drivername - network driver for the device
8475 * @dev: network device
8476 *
8477 * Determine network driver for device.
8478 */
8479const char *netdev_drivername(const struct net_device *dev)
8480{
8481 const struct device_driver *driver;
8482 const struct device *parent;
8483 const char *empty = "";
8484
8485 parent = dev->dev.parent;
8486 if (!parent)
8487 return empty;
8488
8489 driver = parent->driver;
8490 if (driver && driver->name)
8491 return driver->name;
8492 return empty;
8493}
8494
8495static void __netdev_printk(const char *level, const struct net_device *dev,
8496 struct va_format *vaf)
8497{
8498 if (dev && dev->dev.parent) {
8499 dev_printk_emit(level[1] - '0',
8500 dev->dev.parent,
8501 "%s %s %s%s: %pV",
8502 dev_driver_string(dev->dev.parent),
8503 dev_name(dev->dev.parent),
8504 netdev_name(dev), netdev_reg_state(dev),
8505 vaf);
8506 } else if (dev) {
8507 printk("%s%s%s: %pV",
8508 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8509 } else {
8510 printk("%s(NULL net_device): %pV", level, vaf);
8511 }
8512}
8513
8514void netdev_printk(const char *level, const struct net_device *dev,
8515 const char *format, ...)
8516{
8517 struct va_format vaf;
8518 va_list args;
8519
8520 va_start(args, format);
8521
8522 vaf.fmt = format;
8523 vaf.va = &args;
8524
8525 __netdev_printk(level, dev, &vaf);
8526
8527 va_end(args);
8528}
8529EXPORT_SYMBOL(netdev_printk);
8530
8531#define define_netdev_printk_level(func, level) \
8532void func(const struct net_device *dev, const char *fmt, ...) \
8533{ \
8534 struct va_format vaf; \
8535 va_list args; \
8536 \
8537 va_start(args, fmt); \
8538 \
8539 vaf.fmt = fmt; \
8540 vaf.va = &args; \
8541 \
8542 __netdev_printk(level, dev, &vaf); \
8543 \
8544 va_end(args); \
8545} \
8546EXPORT_SYMBOL(func);
8547
8548define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8549define_netdev_printk_level(netdev_alert, KERN_ALERT);
8550define_netdev_printk_level(netdev_crit, KERN_CRIT);
8551define_netdev_printk_level(netdev_err, KERN_ERR);
8552define_netdev_printk_level(netdev_warn, KERN_WARNING);
8553define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8554define_netdev_printk_level(netdev_info, KERN_INFO);
8555
8556static void __net_exit netdev_exit(struct net *net)
8557{
8558 kfree(net->dev_name_head);
8559 kfree(net->dev_index_head);
8560}
8561
8562static struct pernet_operations __net_initdata netdev_net_ops = {
8563 .init = netdev_init,
8564 .exit = netdev_exit,
8565};
8566
8567static void __net_exit default_device_exit(struct net *net)
8568{
8569 struct net_device *dev, *aux;
8570 /*
8571 * Push all migratable network devices back to the
8572 * initial network namespace
8573 */
8574 rtnl_lock();
8575 for_each_netdev_safe(net, dev, aux) {
8576 int err;
8577 char fb_name[IFNAMSIZ];
8578
8579 /* Ignore unmoveable devices (i.e. loopback) */
8580 if (dev->features & NETIF_F_NETNS_LOCAL)
8581 continue;
8582
8583 /* Leave virtual devices for the generic cleanup */
8584 if (dev->rtnl_link_ops)
8585 continue;
8586
8587 /* Push remaining network devices to init_net */
8588 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8589 err = dev_change_net_namespace(dev, &init_net, fb_name);
8590 if (err) {
8591 pr_emerg("%s: failed to move %s to init_net: %d\n",
8592 __func__, dev->name, err);
8593 BUG();
8594 }
8595 }
8596 rtnl_unlock();
8597}
8598
8599static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8600{
8601 /* Return with the rtnl_lock held when there are no network
8602 * devices unregistering in any network namespace in net_list.
8603 */
8604 struct net *net;
8605 bool unregistering;
8606 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8607
8608 add_wait_queue(&netdev_unregistering_wq, &wait);
8609 for (;;) {
8610 unregistering = false;
8611 rtnl_lock();
8612 list_for_each_entry(net, net_list, exit_list) {
8613 if (net->dev_unreg_count > 0) {
8614 unregistering = true;
8615 break;
8616 }
8617 }
8618 if (!unregistering)
8619 break;
8620 __rtnl_unlock();
8621
8622 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8623 }
8624 remove_wait_queue(&netdev_unregistering_wq, &wait);
8625}
8626
8627static void __net_exit default_device_exit_batch(struct list_head *net_list)
8628{
8629 /* At exit all network devices most be removed from a network
8630 * namespace. Do this in the reverse order of registration.
8631 * Do this across as many network namespaces as possible to
8632 * improve batching efficiency.
8633 */
8634 struct net_device *dev;
8635 struct net *net;
8636 LIST_HEAD(dev_kill_list);
8637
8638 /* To prevent network device cleanup code from dereferencing
8639 * loopback devices or network devices that have been freed
8640 * wait here for all pending unregistrations to complete,
8641 * before unregistring the loopback device and allowing the
8642 * network namespace be freed.
8643 *
8644 * The netdev todo list containing all network devices
8645 * unregistrations that happen in default_device_exit_batch
8646 * will run in the rtnl_unlock() at the end of
8647 * default_device_exit_batch.
8648 */
8649 rtnl_lock_unregistering(net_list);
8650 list_for_each_entry(net, net_list, exit_list) {
8651 for_each_netdev_reverse(net, dev) {
8652 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8653 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8654 else
8655 unregister_netdevice_queue(dev, &dev_kill_list);
8656 }
8657 }
8658 unregister_netdevice_many(&dev_kill_list);
8659 rtnl_unlock();
8660}
8661
8662static struct pernet_operations __net_initdata default_device_ops = {
8663 .exit = default_device_exit,
8664 .exit_batch = default_device_exit_batch,
8665};
8666
8667/*
8668 * Initialize the DEV module. At boot time this walks the device list and
8669 * unhooks any devices that fail to initialise (normally hardware not
8670 * present) and leaves us with a valid list of present and active devices.
8671 *
8672 */
8673
8674/*
8675 * This is called single threaded during boot, so no need
8676 * to take the rtnl semaphore.
8677 */
8678static int __init net_dev_init(void)
8679{
8680 int i, rc = -ENOMEM;
8681
8682 BUG_ON(!dev_boot_phase);
8683
8684 if (dev_proc_init())
8685 goto out;
8686
8687 if (netdev_kobject_init())
8688 goto out;
8689
8690 INIT_LIST_HEAD(&ptype_all);
8691 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8692 INIT_LIST_HEAD(&ptype_base[i]);
8693
8694 INIT_LIST_HEAD(&offload_base);
8695
8696 if (register_pernet_subsys(&netdev_net_ops))
8697 goto out;
8698
8699 /*
8700 * Initialise the packet receive queues.
8701 */
8702
8703 for_each_possible_cpu(i) {
8704 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8705 struct softnet_data *sd = &per_cpu(softnet_data, i);
8706
8707 INIT_WORK(flush, flush_backlog);
8708
8709 skb_queue_head_init(&sd->input_pkt_queue);
8710 skb_queue_head_init(&sd->process_queue);
8711 INIT_LIST_HEAD(&sd->poll_list);
8712 sd->output_queue_tailp = &sd->output_queue;
8713#ifdef CONFIG_RPS
8714 sd->csd.func = rps_trigger_softirq;
8715 sd->csd.info = sd;
8716 sd->cpu = i;
8717#endif
8718
8719 sd->backlog.poll = process_backlog;
8720 sd->backlog.weight = weight_p;
8721 }
8722
8723 dev_boot_phase = 0;
8724
8725 /* The loopback device is special if any other network devices
8726 * is present in a network namespace the loopback device must
8727 * be present. Since we now dynamically allocate and free the
8728 * loopback device ensure this invariant is maintained by
8729 * keeping the loopback device as the first device on the
8730 * list of network devices. Ensuring the loopback devices
8731 * is the first device that appears and the last network device
8732 * that disappears.
8733 */
8734 if (register_pernet_device(&loopback_net_ops))
8735 goto out;
8736
8737 if (register_pernet_device(&default_device_ops))
8738 goto out;
8739
8740 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8741 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8742
8743 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8744 NULL, dev_cpu_dead);
8745 WARN_ON(rc < 0);
8746 rc = 0;
8747out:
8748 return rc;
8749}
8750
8751subsys_initcall(net_dev_init);